JP2007193001A - Manufacturing method for conductive roller - Google Patents

Manufacturing method for conductive roller Download PDF

Info

Publication number
JP2007193001A
JP2007193001A JP2006010016A JP2006010016A JP2007193001A JP 2007193001 A JP2007193001 A JP 2007193001A JP 2006010016 A JP2006010016 A JP 2006010016A JP 2006010016 A JP2006010016 A JP 2006010016A JP 2007193001 A JP2007193001 A JP 2007193001A
Authority
JP
Japan
Prior art keywords
adhesive
conductive
thickness
rubber
charging roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006010016A
Other languages
Japanese (ja)
Inventor
Hiroshi Mayuzumi
博志 黛
Nozomi Takahata
望 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006010016A priority Critical patent/JP2007193001A/en
Publication of JP2007193001A publication Critical patent/JP2007193001A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive roller; without any extruding of adhesive from an end part of a conductive elastic layer, without any remaining rubber on the end part, without any peeling of the adhesive even when left standing under high temperature and high humidity, and therefore with no occurrence of an abnormal image due to an adhesion failure. <P>SOLUTION: The manufacturing method for the conductive roller on which the adhesive is coated on a conductive substrate and more than one resistance layer is further coated on it is provided with a distribution of adhesive thickness in an axial direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複写機やレーザープリンター等の画像形成装置に用いられる帯電ローラ、現像ローラ、転写ローラ等の導電性ローラの製造方法に関する。   The present invention relates to a method for manufacturing a conductive roller such as a charging roller, a developing roller, or a transfer roller used in an image forming apparatus such as a copying machine or a laser printer.

複写機、プリンター等に代表される電子写真装置では、一般にドラム状の感光体を一様に帯電する帯電ローラ、トナーを感光体に搬送する現像ローラ、感光体表面に形成されたトナー像を紙等の転写材表面に転写するための転写ローラ等の導電性ローラが使用されている。   In electrophotographic apparatuses typified by copying machines and printers, generally, a charging roller that uniformly charges a drum-shaped photoconductor, a developing roller that conveys toner to the photoconductor, and a toner image formed on the surface of the photoconductor are printed on paper. For example, a conductive roller such as a transfer roller for transferring to the surface of a transfer material is used.

これら導電性ローラは、体積抵抗値が10〜1014Ωcmの範囲内に制御され、いわゆる半導電性領域の材料が用いられている。導電性ローラの製造方法は、従来技術では、絶縁性の固形ゴムに加硫剤、可塑剤、導電性フィラー等の混合物を混練りして、導電性ゴム組成物とし、押し出し機によりチューブ状に押し出した後に加硫してゴムチューブを成型する。次いで得られたゴムチューブの空孔部に、接着剤を被覆した導電性基体を挿入(圧入)して加熱等による接着工程を経て導電性ローラ素材を成型する。 These conductive rollers have a volume resistance value controlled within a range of 10 5 to 10 14 Ωcm, and a material of a so-called semiconductive region is used. In the prior art, the conductive roller is manufactured by kneading a mixture of a vulcanizing agent, a plasticizer, a conductive filler and the like into an insulating solid rubber to obtain a conductive rubber composition, which is formed into a tube shape by an extruder. After extrusion, vulcanize to form a rubber tube. Next, a conductive base material coated with an adhesive is inserted (press-fitted) into the hole portion of the obtained rubber tube, and a conductive roller material is molded through an adhesion process such as heating.

導電性ローラ素材は図1に示すように、導電性基体1aと、その外周面に接着剤2cを介してゴムチューブ層2とを備えている。導電性ローラ素材は、表面を研磨機により研磨し、ゴムチューブ端部を切断(突っ切り)して端部ゴム2dを除去して、弾性抵抗層を得る。さらに表面に導電性被覆層を設ける場合には、塗布等により被覆層を設けている。   As shown in FIG. 1, the conductive roller material includes a conductive substrate 1a and a rubber tube layer 2 on the outer peripheral surface thereof with an adhesive 2c interposed therebetween. The surface of the conductive roller material is polished by a polishing machine, and the end portion of the rubber tube is cut (cut off) to remove the end rubber 2d to obtain an elastic resistance layer. Further, when a conductive coating layer is provided on the surface, the coating layer is provided by coating or the like.

近年の電子写真装置の高性能化に伴い、導電性ローラの特性も電気抵抗のムラを従来以上に抑制することが求められている。そのため、導電性フィラーを添加しなくてもゴム自身が極性を有し導電性を発揮するイオン導電性のゴム組成物を使用した導電性ローラの製造が増加している。   Along with the recent high performance of electrophotographic apparatuses, the characteristics of the conductive roller are also required to suppress the unevenness of electric resistance more than before. Therefore, the production of conductive rollers using an ion conductive rubber composition in which the rubber itself has polarity and exhibits conductivity without adding a conductive filler is increasing.

このようなイオン導電性のゴム組成物としては、一般的に、エピクロロヒドリン系ゴム(CO、ECO、GECO)、アクリロニトリル−ブタジエンゴム(NBR)、アクリルゴム(ACM)及びクロロプレンゴム(CR)等が挙げられる。   As such an ion conductive rubber composition, epichlorohydrin rubber (CO, ECO, GECO), acrylonitrile-butadiene rubber (NBR), acrylic rubber (ACM) and chloroprene rubber (CR) are generally used. Etc.

しかしこのようなイオン導電性を有するゴム組成物は、吸湿性が高いため、高温高湿の状態では体積膨張が比較的大きいといった特徴がある。そのためイオン導電性ゴムからなる導電性ローラを高温高湿の状態で長期間放置すると、イオン導電性ゴムからなる導電性弾性層の体積膨張のために弾性抵抗層と導電性基体との間で接着剥れが発生する場合があった。接着剥れが発生した箇所では電気抵抗ムラとなり異常画像を引き起こす問題があった。   However, such a rubber composition having ionic conductivity has a high hygroscopic property, and thus has a characteristic that volume expansion is relatively large in a high temperature and high humidity state. Therefore, when a conductive roller made of ionic conductive rubber is left for a long time in a high temperature and high humidity state, the elastic elastic layer made of ionic conductive rubber adheres between the elastic resistance layer and the conductive substrate due to volume expansion. There was a case where peeling occurred. There is a problem in that the electrical resistance becomes uneven at the place where the adhesion peeling occurs, causing an abnormal image.

そこで接着不良を抑制する手段として、接着剤の厚みを増加させて接着性を高める方法や、導電性基体の外径に対してゴムチューブを従来よりも小さい内径で成型して導電性基体に厚入することでゴムチューブの締め付け力を向上させる方法がとられている。   Therefore, as a means to suppress poor adhesion, a method of increasing the adhesive thickness by increasing the thickness of the adhesive, or a rubber tube molded with a smaller inner diameter than the conventional outer diameter of the conductive base to thicken the conductive base. A method of improving the tightening force of the rubber tube by entering is taken.

しかしながらこれらの方法では、端部ゴム2dに相当する導電性基体表面には接着剤を塗布していないにもかかわらず、接着剤が進入してしまい、端部ゴム2dを容易に除去できなかったり、除去しても導電性基体表面に接着剤による汚れが残るなどの問題があった。これらのため、電子写真装置に組み込んだ場合に導電性ローラが正常に回転しないことによって異常画像が発生するといった問題があった。   However, in these methods, although the adhesive is not applied to the surface of the conductive substrate corresponding to the end rubber 2d, the adhesive enters and the end rubber 2d cannot be easily removed. Even if it is removed, there is a problem that dirt due to the adhesive remains on the surface of the conductive substrate. For these reasons, there has been a problem that when incorporated in an electrophotographic apparatus, the conductive roller does not rotate normally and an abnormal image is generated.

発明者が、端部ゴムの領域に対して接着剤が進入する理由について検討した結果、ゴムチューブを導電性基体に厚入すると、ゴムチューブの内径は導電性基体の外径と等しく又は小さく成型されるため、ゴムチューブの締め付け力により、接着剤が端部方向へ締め出されることが原因であると判明した。これは接着剤を厚く塗布するとともにゴムチューブ内径を小径化した場合や、またさらに接着剤が乾燥しきってない場合に特に顕著に起こることがわかった。また、厚入工程により、ゴムチューブ内面は接着剤層と擦れ、厚入方向へ移動させていることが分かり、そのため厚入方向下流側で厚くなり接着剤が締め出されやすいことがわかった。   As a result of examining the reason why the adhesive enters the end rubber region, when the rubber tube is inserted into the conductive substrate, the inner diameter of the rubber tube is equal to or smaller than the outer diameter of the conductive substrate. Therefore, it has been found that the cause is that the adhesive is squeezed out toward the end due to the tightening force of the rubber tube. It has been found that this particularly occurs when the adhesive is applied thick and the inner diameter of the rubber tube is reduced, or when the adhesive is not completely dried. Further, it was found that the inner surface of the rubber tube was rubbed with the adhesive layer by the thick insertion step and moved in the thick insertion direction, so that it became thicker on the downstream side in the thick insertion direction and the adhesive was easily squeezed out.

ゴムチューブの端部ゴム2dの除去工程を容易に行うため、従来技術としてゴム層2aの両端面から所定の範囲を予め接着剤を塗布しない未接着領域とする方法が開示されている(例えば特許文献1参照)。   In order to easily perform the process of removing the end rubber 2d of the rubber tube, as a conventional technique, a method has been disclosed in which a predetermined range from both end surfaces of the rubber layer 2a is set as an unbonded region in which no adhesive is previously applied (for example, a patent). Reference 1).

このような従来技術では、接着剤を厚く塗布し、ゴムチューブの内径を小径化する場合には、厚入工程によって接着剤が締め出されやすくなるため、接着剤を塗布しない未接着領域を予め広く設定しておく必要がある。しかし接着剤の締め出しは周方向で均一には起こらず、接着剤が存在しないため未接着領域となる部分が内部まで残存することになり、ゴム層の浮きが発生するといった問題があった。   In such a conventional technique, when the adhesive is applied thickly and the inner diameter of the rubber tube is reduced, the adhesive is easily squeezed out by the thickening process. It is necessary to set. However, the sticking out of the adhesive does not occur uniformly in the circumferential direction, and since there is no adhesive, a portion that becomes an unbonded region remains inside, and there is a problem that the rubber layer is lifted.

一方、導電性ローラの軸方向において抵抗分布を発生させるために、導電性発泡体と導電性チューブとの間に設ける半導電性の接着剤層の厚みに高低分布を設ける方法が開示されている(例えば特許文献2参照)。   On the other hand, in order to generate a resistance distribution in the axial direction of the conductive roller, a method of providing a high and low distribution in the thickness of the semiconductive adhesive layer provided between the conductive foam and the conductive tube is disclosed. (For example, refer to Patent Document 2).

しかしながらこの方法は、軸方向に抵抗分布をもたせるための抵抗層として接着剤層を形成し、その厚みに高低分布を形成させるもので、本発明の趣旨である、導電性ローラを高温高湿度の状態で長期にわたって放置されても接着不良が発生せず、それによる画像不良の発生がなく、また製造工程においては端部ゴムの突っ切りおよび除去工程が容易である導電性ローラの製造方法について言及されていない。
特開平09-029843号公報 特開2004-301929号公報
However, this method forms an adhesive layer as a resistance layer for giving a resistance distribution in the axial direction, and forms a high-low distribution in the thickness thereof. No mention is made of a method of manufacturing a conductive roller that does not cause poor adhesion even when left in a state for a long time, does not cause image defects, and is easy to cut off and remove the end rubber in the manufacturing process. Not.
JP 09-029843 A JP 2004-301929 A

本発明はこのような事情に鑑みなされたものであって、導電性基体の外周上に接着剤層を介して導電性弾性層を有する導電性ローラにおいて、導電性基体と導電性弾性層との接着性が良好で、高温高湿度の状態で長期にわたって放置されても接着不良が発生せず、それによる画像不良の発生がなく、また製造工程においては端部ゴムの突っ切りおよび除去工程が容易で接着剤が導電性弾性層端面より食み出る事の無い導電性ローラの製造方法を提供するものである。   The present invention has been made in view of such circumstances, and in a conductive roller having a conductive elastic layer on an outer periphery of a conductive substrate via an adhesive layer, the conductive substrate and the conductive elastic layer are Good adhesion, no adhesion failure even if left for a long time in high temperature and high humidity condition, no image defect caused by it, and easy to cut off and remove the end rubber in the manufacturing process The present invention provides a method for producing a conductive roller in which the adhesive does not protrude from the end face of the conductive elastic layer.

第1の発明による導電性ローラの製造方法は、導電性基体に接着剤が被覆され、接着剤上に1層以上の抵抗層が被覆された導電性ローラの製造方法において、接着剤の厚みが、長手方向で分布を有することを特徴とする。   According to a first aspect of the present invention, there is provided a method for manufacturing a conductive roller, wherein the conductive substrate is coated with an adhesive, and the adhesive is coated with one or more resistive layers. And having a distribution in the longitudinal direction.

第2の発明による導電性ローラの製造方法は、接着剤の長手方向での厚み分布が、接着剤端部が中央部より薄く被覆したことを特徴とする。   The conductive roller manufacturing method according to the second invention is characterized in that the thickness distribution in the longitudinal direction of the adhesive is such that the edge of the adhesive is covered thinner than the center.

第3の発明による導電性ローラの製造方法は、端部より塗布領域全体の1/8の領域での接着剤の平均厚みが両端部で異なり、平均厚みの薄い側の導電性基体端部を、導電性基体を導電性弾性層素材となるゴムチューブに圧入する際の後端になるように配置することを特徴とする。   In the method for manufacturing a conductive roller according to the third invention, the average thickness of the adhesive in the region 1/8 of the entire coating region from the end portion is different at both end portions, and the end portion of the conductive substrate on the side having a smaller average thickness is provided. The conductive substrate is disposed so as to be a rear end when press-fitted into a rubber tube as a conductive elastic layer material.

第4の発明による導電性ローラの製造方法は、端部より塗布領域全体の1/8の領域での接着剤の平均厚みが3μm以上、15μm以下とし、それらを除いた中央部の平均厚みを50μm以下としたことを特徴とする。   In the method for manufacturing a conductive roller according to the fourth invention, the average thickness of the adhesive in the region 1/8 of the entire coating region from the end is set to 3 μm or more and 15 μm or less, and the average thickness of the central portion excluding them is set. It is characterized by being 50 μm or less.

以上説明したように、本発明によれば、接着剤の食み出しがなく、よって端部ゴムの除去処理を容易に行えると共に、導電性基体と導電性弾性層との接着が良好で高温高湿の状態に放置しても接着不良が発生せず、よって導電性不良による異常画像の発生がいない導電性ローラを製造することができる。   As described above, according to the present invention, there is no protrusion of the adhesive, so that the end rubber can be easily removed, the adhesion between the conductive substrate and the conductive elastic layer is good, and the temperature is high. Even if left in a wet state, no adhesion failure occurs, and therefore a conductive roller can be produced in which no abnormal image is generated due to conductivity failure.

本発明の導電性ローラの製造方法について、実施の形態を詳細に述べる。以下本発明を帯電ローラの製造方法として適用した実施例を図面に基づいて説明する。   An embodiment of the method for producing a conductive roller of the present invention will be described in detail. Embodiments in which the present invention is applied as a method for manufacturing a charging roller will be described below with reference to the drawings.

図1は本発明により作成した導電性ローラの断面図であり、図2は本発明により作成した導電性ローラを帯電ローラとした一実施例を示す断面図であり、図3は本発明により作成した導電性ローラを帯電ローラを適用した帯電装置の例を示す断面図であり、図4は本発明により作成した導電性ローラを帯電ローラを画像形成装置に適用した例を示す断面図である。   FIG. 1 is a cross-sectional view of a conductive roller made according to the present invention, FIG. 2 is a cross-sectional view showing an embodiment in which the conductive roller made according to the present invention is a charging roller, and FIG. 3 is made according to the present invention. FIG. 4 is a cross-sectional view showing an example of a charging device in which a charging roller is applied to the conductive roller, and FIG. 4 is a cross-sectional view showing an example in which the charging roller is applied to an image forming apparatus.

本発明の帯電ローラは、図2に示すように、導電性基体1aと、その外周に被覆された接着剤層2c、及び導電性弾性層2a、表面層2bとからなる。また導電性弾性層と表面層の間に1層以上の抵抗層を設けた構成としてもよい。   As shown in FIG. 2, the charging roller of the present invention comprises a conductive substrate 1a, an adhesive layer 2c coated on the outer periphery thereof, a conductive elastic layer 2a, and a surface layer 2b. Moreover, it is good also as a structure which provided the 1 or more resistance layer between the electroconductive elastic layer and the surface layer.

本発明では、接着剤層2cは、導電性基体の軸方向で接着剤の厚み分布を有しなければならない。これにより、接着剤の厚みを厚くすることでチューブ内面との接着を強固にするだけでなく、接着剤が薄い領域を設けることで、ゴムチューブの内径を小径化した場合でも、接着剤が厚い領域から締め出された接着剤は薄い部分を超えて締め出されることがないから、端部ゴム内面にまで接着剤が食み出すことがない。   In the present invention, the adhesive layer 2c must have an adhesive thickness distribution in the axial direction of the conductive substrate. This not only strengthens the adhesion with the inner surface of the tube by increasing the thickness of the adhesive, but also provides a thick adhesive even when the inner diameter of the rubber tube is reduced by providing a thin region of the adhesive. Since the adhesive squeezed out from the region does not squeeze out beyond the thin portion, the adhesive does not stick out to the inner surface of the end rubber.

接着強度の点から接着剤は導電性弾性層端面まで塗布することが好ましい。本発明では、接着剤の厚みに分布を持たせることで、接着剤を導電性弾性層端面まで塗布しても接着剤が食み出すことがなく導電性ローラを作成した。   From the viewpoint of adhesive strength, the adhesive is preferably applied to the end surface of the conductive elastic layer. In the present invention, a conductive roller was created by providing a distribution in the thickness of the adhesive so that the adhesive does not protrude even when the adhesive is applied to the end surface of the conductive elastic layer.

接着剤の厚みは50μm以下とすることが好ましい。接着剤の厚みを50μm以上にしても接着力の向上がほとんど見られないばかりか、溶剤により希釈された接着剤を使用する場合では50μm以上の厚みになるように塗布した場合には接着剤層の表面は容易に乾燥するが、内部での乾燥が遅いため、乾燥が不十分なため圧入工程で接着剤が移動しやすくなる。   The thickness of the adhesive is preferably 50 μm or less. Even when the adhesive thickness is 50 μm or more, there is almost no improvement in adhesive strength, and when an adhesive diluted with a solvent is used, the adhesive layer is applied to a thickness of 50 μm or more. However, since the drying inside is slow, the adhesive is likely to move during the press-fitting process.

厚入工程を自動圧入機等で機械的に行うため、ゴムチューブの内径は導電性基体の外径に対して60%以上が好ましく、導電性基体に対する締め付けを行うため98%以下、導電性弾性層がイオン導電性ゴムからなる場合や発泡体からなる場合など締め付け力が小さい場合には80%以下で製造されることが好ましい。   Since the thick insertion process is mechanically performed by an automatic press-fitting machine or the like, the inner diameter of the rubber tube is preferably 60% or more with respect to the outer diameter of the conductive substrate, and 98% or less for tightening the conductive substrate. When the clamping force is small, such as when the layer is made of an ion conductive rubber or a foam, it is preferable that the layer is manufactured at 80% or less.

また導電性基体に対するゴムチューブの締め付け力を得るために、ゴムチューブ材料の10%モジュラスは0.01MPa以上であることが好ましい。また圧入工程を機械的に行うために10%モジュラスは1MPa以下であることが好ましい。   In order to obtain a tightening force of the rubber tube against the conductive substrate, the 10% modulus of the rubber tube material is preferably 0.01 MPa or more. In order to perform the press-fitting process mechanically, the 10% modulus is preferably 1 MPa or less.

導電性基体の外径に対してゴムチューブの内径が小さい場合や、10%モジュラスが高い場合においても、接着剤の食み出しを抑制するためには、接着剤の厚みが薄い領域では厚みを15μm以下にすることが好ましい。一方、ゴムチューブによる締め付け力が弱く接着剤の移動が少ない場合や、接着剤の締め出しが周方向で不均一なために接着剤が移動してこなかった領域でも、ゴム層の浮きを抑制するために、接着剤の厚みが薄い領域では厚みを3μm以上とすることが好ましい。   Even when the inner diameter of the rubber tube is small relative to the outer diameter of the conductive substrate or when the 10% modulus is high, in order to suppress the protrusion of the adhesive, the thickness should be reduced in the region where the adhesive is thin. It is preferable to make it 15 μm or less. On the other hand, in order to prevent the rubber layer from floating even when the tightening force by the rubber tube is weak and the movement of the adhesive is small, or even in the area where the adhesive does not move because the adhesive is not even in the circumferential direction. In addition, in the region where the adhesive is thin, the thickness is preferably 3 μm or more.

さらに接着剤の端部の厚みは、他の中央部の領域よりも薄く形成されることが好ましい。これにより上記のようにゴムチューブの締め付け力が大きい状態でも、接着剤の食み出しを抑制することができる。接着剤の薄い領域の大きさは、接着剤の厚い領域からの接着剤の締め出される程度により適宜設定できるが、接着剤の厚みが厚い領域で50μm程度であれば、端部から接着剤塗布領域の1/8の長さの領域について接着剤が薄い領域とすればよい事がわかり、その平均厚みとしては15μm以下として接着剤層を設けることで、端部ゴムへ接着剤が食み出さない事がわかった。   Furthermore, it is preferable that the thickness of the edge part of an adhesive agent is formed thinner than the area | region of another center part. Thereby, even if the fastening force of the rubber tube is large as described above, the protrusion of the adhesive can be suppressed. The size of the thin region of the adhesive can be set as appropriate depending on the extent to which the adhesive is squeezed out from the thick region of the adhesive, but if the adhesive is thick in the region of about 50 μm, the adhesive application region from the end It can be seen that the region where the length is 1/8 of the thickness of the adhesive should be a thin region. By providing an adhesive layer with an average thickness of 15 μm or less, the adhesive does not stick out to the end rubber. I understood that.

接着剤の厚みは、連続的に変化させても、段階的に変化させてもよいが、周方向で均一に変化することが好ましい。このように接着剤の厚み分布を持たせる加工手段としては、例えば両端部をチャックした導電性基体を円周方向に回転させ、スプレー塗布によって塗布速度を調節して膜厚分布を持たせる方法や、ロールコータでのロール形状を調節して膜厚分布を持たせる方法、刷毛塗りによる接着剤の塗布量を調節して膜厚分布を持たせる方法、接着剤の滴下速度を変更しながらスポンジ等の塗布冶具を導電性基体の表面で移動させる方法など公知の方法を選択すればよい。   The thickness of the adhesive may be changed continuously or stepwise, but it is preferable to change uniformly in the circumferential direction. As processing means for giving the adhesive thickness distribution in this way, for example, a method of rotating the conductive substrate chucked at both ends in the circumferential direction and adjusting the coating speed by spray coating to have a film thickness distribution, , A method of adjusting the roll shape on the roll coater to give a film thickness distribution, a method of adjusting the coating amount of the adhesive by brush coating to give a film thickness distribution, a sponge etc. while changing the dropping speed of the adhesive A known method such as a method of moving the coating jig on the surface of the conductive substrate may be selected.

接着剤の材質としては、厚み分布を持たせるため接着剤を適当な有機溶媒に希釈した液状接着剤が好ましく、絶縁性接着剤、導電性接着剤のどちらでも使用できるが、本発明では接着剤の厚み分布による電気抵抗ムラを発生させるものではないため、導電性接着剤が好ましい。また一液乾燥剤接着剤、化学反応型接着剤、熱溶融型接着剤、粘着型接着剤のいずれでもよく、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、エポキシ樹脂系、酢酸ビニル樹脂系、シアノアクリレート系、ポリウレタン系、αオレフィン−無水マレイン酸樹脂系、水性高分子−イソシアネート系、反応型アクリル樹脂系、変性アクリル樹脂系、その他の樹脂系等の合成樹脂系接着剤、酢酸ビニル樹脂系、酢酸ビニル共重合体樹脂系、EVA樹脂系、アクリル樹脂系、その他の樹脂系等のエマルジョン系接着剤、クロロプレン系、その他の合成ゴム系等の合成ゴム接着剤やホットメルト系接着剤に、導電性フィラーとしてカーボンブラック、金属粉末、金属酸化物等を分散させたものを用いればよい。なかでもヒドリンゴム等のイオン導電性ゴムを導電性弾性層として使用する場合は、NBRやウレタンゴム等の弾性を有する合成ゴムにフェノール樹脂、エポキシ樹脂やそれらの混合物、さらにカーボンブラックを導電剤として混合した導電性接着剤が導電性弾性層への追従性がよく接着性に優れると共に導電性基体の防錆の面から好ましい。   As the material of the adhesive, a liquid adhesive obtained by diluting the adhesive in an appropriate organic solvent to give a thickness distribution is preferable, and either an insulating adhesive or a conductive adhesive can be used. The conductive adhesive is preferable because it does not cause uneven electrical resistance due to the thickness distribution. Also, one-component desiccant adhesive, chemical reaction type adhesive, hot melt type adhesive, adhesive type adhesive may be used, urea resin type, melamine resin type, phenol resin type, epoxy resin type, vinyl acetate resin type, Synthetic resin adhesives such as cyanoacrylate, polyurethane, α-olefin-maleic anhydride resin, aqueous polymer-isocyanate, reactive acrylic resin, modified acrylic resin, and other resins, vinyl acetate resin , Vinyl acetate copolymer resin-based, EVA resin-based, acrylic resin-based, other resin-based emulsion-based adhesives, chloroprene-based, other synthetic rubber-based synthetic rubber adhesives and hot-melt adhesives, What is necessary is just to use what disperse | distributed carbon black, a metal powder, a metal oxide etc. as an electroconductive filler. In particular, when ion conductive rubber such as hydrin rubber is used as the conductive elastic layer, phenolic resin, epoxy resin or a mixture thereof, and carbon black as a conductive agent are mixed with elastic rubber such as NBR or urethane rubber. The conductive adhesive thus obtained is preferable from the viewpoint of rust prevention of the conductive substrate while having good followability to the conductive elastic layer and excellent adhesion.

本発明に用いられる導電性基体は、導電性及び必要とされる形状精度が満たされればどのような素材でも差し支えなく使用でき、例えば鉄、銅、ステンレス、アルミニウム及びニッケル等の金属材料の丸棒を用いることができる。更に、これらの金属表面に防錆や耐傷性付与を目的として、導電性を損なわないようにメッキ処理を施すことが好ましい。一般的なメッキ方法としては電解メッキと無電解メッキの大きく2つの方法があるが、後者の方がメッキ膜厚の均一性に優れているために高い精度が得られ、かつピンホール等の欠陥が少ないために耐食性に優れるという点から好ましく選ばれる。更に、無電解メッキの中でも無電解ニッケルメッキはメッキ液の安定性やコストの面からより好ましく使用される。また中空状あるいは中実状であっても差し支えなく使用できる。強度、コストの面から、鉄からなる外径4mmから10mmの中実状の金属棒にニッケルメッキを施したものが好ましい。   The conductive substrate used in the present invention can be any material as long as the conductivity and required shape accuracy are satisfied. For example, a round bar made of a metal material such as iron, copper, stainless steel, aluminum and nickel. Can be used. Furthermore, for the purpose of imparting rust prevention and scratch resistance to these metal surfaces, it is preferable to perform plating so as not to impair the conductivity. There are two general plating methods: electrolytic plating and electroless plating. The latter is superior in uniformity of the plating film thickness, so high accuracy is obtained and defects such as pinholes are obtained. Therefore, it is preferably selected from the viewpoint of excellent corrosion resistance. Further, among electroless plating, electroless nickel plating is more preferably used from the viewpoint of the stability of the plating solution and cost. Moreover, even if it is hollow or solid, it can be used without any problem. From the viewpoint of strength and cost, a solid metal rod made of iron and having a diameter of 4 mm to 10 mm is preferably plated with nickel.

弾性抵抗層2aの製造方法としては、固形ゴム、液状ゴム等のゴム材料に加硫剤、可塑剤、導電剤やその他充填剤を配合し、ニーダー、バンバリーミキサー、オープンロール、ダイナミックミキサー等で配合剤を混合したゴム組成物を作製する。ついでゴム組成物を金型内に注入するインジェクション成型やトランスファー成型、また押出し機を用いてチューブ状に押出した後、加硫缶、熱風乾燥炉等により加硫してゴムチューブを作成する押出し成型など公知の方法に中空状のゴムチューブを成型する。   The elastic resistance layer 2a is manufactured by blending a rubber material such as solid rubber and liquid rubber with a vulcanizing agent, plasticizer, conductive agent and other fillers, and blending with a kneader, Banbury mixer, open roll, dynamic mixer, etc. A rubber composition mixed with an agent is prepared. Next, injection molding or transfer molding in which the rubber composition is injected into the mold, and extrusion molding to extrude into a tube shape using an extruder and then vulcanize with a vulcanizing can, hot air drying oven, etc. A hollow rubber tube is molded by a known method.

次いで先に示した所定の厚み分布を有するように接着剤を塗布した導電性基体に対して、ゴムチューブを圧入する。   Next, a rubber tube is press-fitted into the conductive substrate coated with an adhesive so as to have the predetermined thickness distribution described above.

ここでゴムチューブの圧入方向は、接着剤塗布領域の端部から塗布領域の1/8の長さの領域における接着剤の平均厚みが薄い側を、ゴムチューブに対して後端になるように配置して圧入することが好ましい。これにより、接着剤の乾燥が不足しているなど接着剤がゴムチューブ内面により擦れて移動しやすい場合でも、端部ゴム内面にまで接着剤が食み出されない。この場合、両端側での接着剤塗布領域の1/8の長さにおける接着剤の平均厚みは、圧入における接着剤の移動の程度で適宜設定できるが、先に述べたゴムチューブの内径やモジュラスの範囲では、圧入方向の後端側の接着剤の平均厚みを10μm以下とすることが好ましい。   Here, the direction of press-fitting of the rubber tube is such that the side where the average thickness of the adhesive is thin in the region of 1/8 length from the end of the adhesive application region is the rear end with respect to the rubber tube. It is preferable to place and press fit. As a result, even when the adhesive is rubbed by the inner surface of the rubber tube and moved easily, such as insufficient drying of the adhesive, the adhesive does not stick out to the inner surface of the end rubber. In this case, the average thickness of the adhesive in the length of 1/8 of the adhesive application area at both ends can be set as appropriate depending on the degree of movement of the adhesive in the press-fitting, but the inner diameter and modulus of the rubber tube described above In this range, the average thickness of the adhesive on the rear end side in the press-fitting direction is preferably 10 μm or less.

また導電性弾性層には、適宜加硫剤が配合される。加硫剤としては、使用するゴムの種類により、硫黄系加硫剤、有機過酸化物、キノイド系加硫剤、樹脂架橋剤、金属酸化物架橋剤、アミン架橋剤、トリアジン系架橋剤、マレイミド系架橋剤、など公知の加硫剤を適宜使用でき、この他に、加硫促進剤、老化防止剤、可塑剤等を添加してもよい。   Further, a vulcanizing agent is appropriately blended in the conductive elastic layer. As vulcanizing agents, depending on the type of rubber used, sulfur vulcanizing agents, organic peroxides, quinoid vulcanizing agents, resin crosslinking agents, metal oxide crosslinking agents, amine crosslinking agents, triazine crosslinking agents, maleimides A known vulcanizing agent such as a system cross-linking agent can be used as appropriate, and in addition, a vulcanization accelerator, an anti-aging agent, a plasticizer, and the like may be added.

弾性抵抗層2aは被帯電体である感光ドラムとの当接を均一にするために適当な導電性と弾性を持たせるとともに、研磨によって中央部を一番太く、両端部に行くほど細くなる形状、いわゆるクラウン形状に形成することが好ましい。図4に示す電子写真装置内では、帯電ローラ4が、導電性基体1aの両端部に所定の押圧力を与えて電子写真感光ドラム12と当接されているので、中央部の押圧力が小さく、両端部ほど大きくなっているために、帯電ローラ2の真直度が十分であれば問題ないが、十分でない場合には中央部と両端部に対応する画像に濃度ムラが生じてしまう場合がある。クラウン形状は、これを防止するために形成する。弾性抵抗層2aの厚さは特に限定されないが、弾性を保持させ被帯電体と均一に当接させるため1mm以上10mm以下が好ましい。   The elastic resistance layer 2a has appropriate conductivity and elasticity to make the contact with the photosensitive drum, which is a member to be charged, uniform, and has a shape in which the central portion is thickest by polishing and becomes thinner toward both ends. It is preferable to form a so-called crown shape. In the electrophotographic apparatus shown in FIG. 4, the charging roller 4 applies a predetermined pressing force to both ends of the conductive substrate 1a and is in contact with the electrophotographic photosensitive drum 12, so that the pressing force at the center is small. Since the both ends are larger, there is no problem if the straightness of the charging roller 2 is sufficient, but if it is not sufficient, density unevenness may occur in the images corresponding to the center and both ends. . The crown shape is formed to prevent this. The thickness of the elastic resistance layer 2a is not particularly limited, but is preferably 1 mm or more and 10 mm or less in order to maintain elasticity and make it contact with the charged body uniformly.

導電性弾性層2aに使用されるゴム材料としては、例えば、EPDM、ポリブタジエン、天然ゴム、ポリイソプレン、SBR(スチレンブタジエンゴム)、CR(クロロプレンゴム)、NBR(ニトリルブタジエンゴム)、シリコーンゴム、ウレタンゴム、エピクロルヒドリンゴム等を使用することができる。中でも帯電体の帯電処理を行う帯電ローラにおいては、帯電均一性を達成するために、特にイオン伝導機構による中抵抗の極性ゴム、例えば、エピクロルヒドリンゴム、NBR、CR及びウレタンゴム等を用いるのが好ましい。   Examples of the rubber material used for the conductive elastic layer 2a include EPDM, polybutadiene, natural rubber, polyisoprene, SBR (styrene butadiene rubber), CR (chloroprene rubber), NBR (nitrile butadiene rubber), silicone rubber, and urethane. Rubber, epichlorohydrin rubber and the like can be used. In particular, in the charging roller for charging the charged body, in order to achieve charging uniformity, it is particularly preferable to use a medium resistance polar rubber such as epichlorohydrin rubber, NBR, CR and urethane rubber by an ion conduction mechanism. .

本発明において導電材料を添加する場合は、公知の導電材料が使用でき、アセチレンブラック、ケッチェンブラックの導電性カーボンブラックやグラファイト、金属粉や酸化チタン、酸化錫、酸化亜鉛等の金属酸化物、又は、適当な粒子の表面を酸化錫、酸化アンチモン、酸化インジウム、酸化モリブデン、亜鉛、アルミニウム、金、銀、鉄、銅、クロム、コバルト、鉛、白金、ロジウムを電解処理、スプレー塗工、混合振とうにより付着させたものでもよい。また、テトラエチルアンモニウム、テトラブチルアンモニウムスルホネイトなどの4級アルキルアンモニウム塩やそのポリエチレンオキシド変性体、過塩素酸リチウム、臭素酸ナトリウム等の金属塩、またはエステル系可塑剤や界面活性剤などのイオン性導電剤を使用してもよい。本発明ではイオン導電性の導電性弾性層とし、エピクロルヒドリンゴムにイオン導電剤として4級アンモニウム塩を混合して使用し、上記抵抗範囲に4級アンモニウム塩の添加量を調節した。   In the case of adding a conductive material in the present invention, a known conductive material can be used, acetylene black, conductive carbon black or graphite of ketjen black, metal oxide such as metal powder, titanium oxide, tin oxide, zinc oxide, Alternatively, tin oxide, antimony oxide, indium oxide, molybdenum oxide, zinc, aluminum, gold, silver, iron, copper, chromium, cobalt, lead, platinum, rhodium are electrolyzed, spray-coated, mixed on the surface of suitable particles It may be attached by shaking. In addition, quaternary alkylammonium salts such as tetraethylammonium and tetrabutylammonium sulfonate, polyethylene oxide modified products thereof, metal salts such as lithium perchlorate and sodium bromate, or ionic properties such as ester plasticizers and surfactants A conductive agent may be used. In the present invention, an ion conductive conductive elastic layer is used, and an epichlorohydrin rubber is used by mixing a quaternary ammonium salt as an ionic conductive agent, and the addition amount of the quaternary ammonium salt is adjusted within the above resistance range.

導電性弾性層の形態として、本発明ではソリッドとしたが、発泡体でもよく、発泡剤を用いることで発泡体を製造する場合、発泡剤としては、A.D.C.A.(アゾジカルボナミド)系、D.P.T.(ジ−ニトロソペンタメチレンテトラミン)系、O.B.S.H.(4.4′−オキシビス−ベンゼンサルフオニル−ヒドラジド)系、T.S.H.(P−トリエンサルフオニルヒドラジド)系、A.I.B.N.(アゾビスイソブチロニトリル)系などを使用することができる。   The conductive elastic layer is solid in the present invention, but may be a foam. When a foam is produced by using a foaming agent, the foaming agent may be A. D. C. A. (Azodicarbonamide), D.I. P. T. (Di-nitrosopentamethylenetetramine) system, O.D. B. S. H. (4.4'-oxybis-benzenesulfonyl-hydrazide) system, T.P. S. H. (P-trienesulfonyl hydrazide) system, A.I. I. B. N. (Azobisisobutyronitrile) type and the like can be used.

表面層2bの結着樹脂は、弾性抵抗層の染み出し防止やトナー等の付着性防止の観点から架橋性の樹脂が好ましく、フッ素樹脂、ポリアミド樹脂、シリコーン樹脂、RB(ブタジエン樹脂)、SBS(スチレン・ブタジエン・スチレンエラストマー)等のポリスチレン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン樹脂 、PVC(ポリ塩化ビニル)、アクリル系樹脂、スチレン・酢酸ビニル共重合体、ブタジエン・アクリロニトリル共重合体等の高分子材料を用いることができる。抵抗層を形成するために、これらの材料1種を用いても、2種以上を併用してもよい。また、表面層に、架橋剤を配合する場合、架橋剤としてはイソシアネート系架橋剤、メラミン系架橋剤、アミン系架橋剤など通常使われている架橋剤が使用できる。本発明では、抵抗層の成形性および柔軟性の観点からアクリル樹脂を使用し硬化剤としてイソシアネート系架橋剤を使用した。   The binder resin for the surface layer 2b is preferably a crosslinkable resin from the viewpoint of preventing the elastic resistance layer from seeping out and preventing adhesion of toner and the like. Fluorine resin, polyamide resin, silicone resin, RB (butadiene resin), SBS ( Polystyrene resins such as styrene / butadiene / styrene elastomer), polyolefin resins, polyester resins, polyurethane resins, PVC (polyvinyl chloride), acrylic resins, styrene / vinyl acetate copolymers, butadiene / acrylonitrile copolymers, etc. These polymer materials can be used. In order to form the resistance layer, one kind of these materials may be used or two or more kinds may be used in combination. In addition, when a crosslinking agent is blended in the surface layer, conventionally used crosslinking agents such as isocyanate crosslinking agents, melamine crosslinking agents, and amine crosslinking agents can be used as the crosslinking agent. In the present invention, an acrylic resin is used from the viewpoint of moldability and flexibility of the resistance layer, and an isocyanate crosslinking agent is used as a curing agent.

また、帯電ローラの表面粗さを調節するために公知のつや消し剤を使用してもよく、中でもウレタン樹脂、アクリル樹脂、シリコーン樹脂等の樹脂粒子を混合することが分散性、柔軟性の点で好ましい。またトナー汚れを防止する観点から帯電ローラ表面の十点平均表面粗さは2μm以上15μm以下が好ましい。   In addition, a known matting agent may be used to adjust the surface roughness of the charging roller. Among them, mixing resin particles such as urethane resin, acrylic resin, and silicone resin is preferable in terms of dispersibility and flexibility. preferable. From the viewpoint of preventing toner contamination, the 10-point average surface roughness of the charging roller surface is preferably 2 μm or more and 15 μm or less.

表面層の形成方法としては特に制限はないが、導電性弾性層の上から、表面層を構成する樹脂組成物をスプレー塗布、ディップ塗布、ロールコート等の方法を用いて所定の厚みに塗布し、所定の温度で乾燥、硬化させることにより、該導電性弾性層上に表面層を形成することができ、製造装置が簡便であること、材料の使用率が高いことからディップ塗布がこのましい。   The method for forming the surface layer is not particularly limited, but the resin composition constituting the surface layer is applied to a predetermined thickness from above the conductive elastic layer using a method such as spray coating, dip coating, or roll coating. By drying and curing at a predetermined temperature, a surface layer can be formed on the conductive elastic layer, and the dip coating is preferable because the manufacturing apparatus is simple and the usage rate of the material is high. .

表面層に添加する導電材は、温度や湿度の変化による抵抗値の変動が少ないことにより、電子伝導性を有することが好ましい。電子伝導性を発現させるための導電剤としては、例えば、カーボンブラック、グラファイト、アルミニウム、ニッケル、銅合金等の金属又は合金、酸化錫、酸化亜鉛、チタン酸カリウム、酸化錫−酸化インジウム及び酸化錫−酸化アンチモン複合酸化物等の金属酸化物等が挙げられ、分散性の点で金属酸化物が好ましい。   The conductive material added to the surface layer preferably has electronic conductivity due to a small variation in resistance value due to changes in temperature and humidity. Examples of the conductive agent for developing electron conductivity include metals or alloys such as carbon black, graphite, aluminum, nickel, and copper alloys, tin oxide, zinc oxide, potassium titanate, tin oxide-indium oxide, and tin oxide. -Metal oxides, such as an antimony oxide complex oxide, etc. are mentioned, A metal oxide is preferable at a dispersible point.

また、表面層2bの膜厚は3〜30μmが好ましい。3μm未満だと、表面層の抵抗の調整が困難となり、30μmより厚くなると、帯電ローラとして所望の抵抗を得るには大量の導電性粒子が必要となり、凝集し易くなるため好ましくない。   The film thickness of the surface layer 2b is preferably 3 to 30 μm. If the thickness is less than 3 μm, it is difficult to adjust the resistance of the surface layer. If the thickness is more than 30 μm, a large amount of conductive particles are required to obtain a desired resistance as a charging roller, which is not preferable because it easily aggregates.

帯電ローラ4の体積抵抗値は、被帯電体への過剰電流を防止する点で1×10Ω・cm以上が好ましく、また、被帯電体表面を帯電させるためには1×1013Ω・cm以下が好ましい。 The volume resistance value of the charging roller 4 is preferably 1 × 10 4 Ω · cm or more from the viewpoint of preventing an excessive current to the member to be charged, and 1 × 10 13 Ω · cm for charging the surface of the member to be charged. cm or less is preferable.

図3において、帯電装置1は、帯電ローラ4と電源3とから構成され、ドラム状電子写真感光体である感光ドラム12は、R方向に回動可能な接地されたドラム基体に、OPC、アモルファスシリコン、セレン、酸化亜鉛等の感光体を覆設した構造をしている。   In FIG. 3, a charging device 1 is composed of a charging roller 4 and a power source 3, and a photosensitive drum 12, which is a drum-shaped electrophotographic photosensitive member, is OPC, amorphous on a grounded drum base that can rotate in the R direction. It has a structure in which a photoconductor such as silicon, selenium, or zinc oxide is covered.

図4に示す電子写真装置150におてい、帯電ローラ4は、導電性基体1aの両端部を不図示の押圧手段で感光ドラム12の回転駆動に伴い従動回転する。電源3により、導電性基体1aに所定の直流(DC)バイアスが印加されることで感光ドラム12の周面が所定の電位に接触帯電される。帯電ローラ2で均一に帯電処理を受けた感光ドラム12は次いで露光手段20により目的画像情報の露光(レーザービーム走査露光、原稿画像のスリット露光等)を受けることで、その周面に目的の画像情報に対した静電潜像が形成される。   In the electrophotographic apparatus 150 shown in FIG. 4, the charging roller 4 is driven to rotate at both ends of the conductive substrate 1 a by the unillustrated pressing means as the photosensitive drum 12 is driven to rotate. A predetermined direct current (DC) bias is applied to the conductive substrate 1a by the power source 3, whereby the peripheral surface of the photosensitive drum 12 is contact-charged to a predetermined potential. The photosensitive drum 12 that has been uniformly charged by the charging roller 2 is then subjected to exposure of target image information (laser beam scanning exposure, slit exposure of a document image, etc.) by the exposure means 20, so that the target image is formed on the peripheral surface thereof. An electrostatic latent image for information is formed.

その潜像は次いで現像手段24によりトナー画像として順次に可視像化されていく。このトナー画像は次いで転写手段25により不図示の給紙手段部から感光ドラム12の回転と同期取りされて適正なタイミングをもって感光ドラム12と転写手段25との間の転写部へ搬送された転写材26面に順次転写されていく。本例の転写手段25はローラ状の転写ローラであり、転写材26の裏からトナーと逆極性の帯電を行うことで感光体12のトナー画像が転写材26の表面側に転写されていく。   The latent image is then successively visualized as a toner image by the developing means 24. The toner image is then transferred from the sheet feeding means (not shown) by the transfer means 25 in synchronization with the rotation of the photosensitive drum 12 and conveyed to the transfer section between the photosensitive drum 12 and the transfer means 25 at an appropriate timing. The images are sequentially transferred to the 26th surface. The transfer means 25 of this example is a roller-shaped transfer roller, and the toner image on the photoconductor 12 is transferred to the front surface side of the transfer material 26 by charging the reverse polarity of the toner from the back of the transfer material 26.

トナー画像の転写を受けた転写材26は感光ドラム12から分離されて不図示の像定着手段へ搬送されて像定着を受け、画像形成物として出力される。あるいは、裏面にも像形成するものでは転写部への再搬送手段へ搬送される。   The transfer material 26 that has received the transfer of the toner image is separated from the photosensitive drum 12, conveyed to an image fixing unit (not shown), subjected to image fixing, and output as an image formed product. Alternatively, in the case of forming an image on the back side, it is conveyed to a re-conveying means to the transfer unit.

像転写後の感光ドラム12はクリーニング手段27で転写残りトナー等の付着汚染物の除去を受けて洗浄面化されて繰り返して作像に供される。   After the image transfer, the photosensitive drum 12 is subjected to the removal of adhering contaminants such as transfer residual toner by the cleaning means 27 to be cleaned and repeatedly used for image formation.

帯電ローラ4には電源3より−1200Vの直流電圧を印加し、OPC感光体ドラムの表面電位を−500Vに帯電させ、またOPC感光ドラムの周速度を150mm/secとした。   A DC voltage of -1200 V was applied to the charging roller 4 from the power source 3 to charge the surface potential of the OPC photosensitive drum to -500 V, and the peripheral speed of the OPC photosensitive drum was set to 150 mm / sec.

トナーはワックスを中心に電荷制御剤と色素等を含有するスチレンとブチルアクリレートのランダムコポリマーを重合させ,さらに表面にポリエステル薄層を重合させたシリカ微粒子を外添した。このトナーのガラス転移温度は63℃、体積平均粒子径6μmの重合トナーである。   The toner was externally added with silica fine particles in which a random copolymer of styrene and butyl acrylate containing a charge control agent, a pigment and the like centered on wax was polymerized, and a polyester thin layer was polymerized on the surface. This toner is a polymerized toner having a glass transition temperature of 63 ° C. and a volume average particle diameter of 6 μm.

本実施例で使用した帯電ローラは以下のような方法で製造した。   The charging roller used in this example was manufactured by the following method.

エピクロルヒドリンゴム(商品名:エピクロマー(エピクロマーは登録商標です)CG102、ダイソー(株)製) 100質量部、充填剤としての炭酸カルシウム 30質量部、カーボンブラック(商品名:シースト(シーストは登録商標です)SO、東海カーボン製) 3質量部、酸化亜鉛5質量部、ステアリン酸2質量部、可塑剤としてのDOP 5質量部、4級アンモニウム塩 4重量部、老化防止剤としての2−メルカプトベンズイミダゾール 1質量部を60℃に調節した密閉型ミキサーにて10分間混練し、原料コンパウンドを調整した。このコンパウンドに加硫促進剤としてのDM 1質量部、加硫促進剤としてのTS 1質量部、加硫剤としての硫黄 1質量部を加えて更に15分間オープンロールで混練した。   Epichlorohydrin rubber (trade name: Epichromer (Epichromer is a registered trademark) CG102, manufactured by Daiso Corporation) 100 parts by weight, calcium carbonate as filler 30 parts by weight, carbon black (trade name: Seast (Seast is a registered trademark) 3 parts by mass, 5 parts by mass of zinc oxide, 2 parts by mass of stearic acid, 5 parts by mass of DOP as a plasticizer, 4 parts by weight of a quaternary ammonium salt, 2-mercaptobenzimidazole as an antioxidant The material compound was adjusted by kneading for 10 minutes in a closed mixer whose mass part was adjusted to 60 ° C. To this compound, 1 part by mass of DM as a vulcanization accelerator, 1 part by mass of TS as a vulcanization accelerator, and 1 part by mass of sulfur as a vulcanization agent were added and kneaded with an open roll for 15 minutes.

得られたコンパウンドをゴム押し出し機を使用して、ゴムチューブ素材を作成し、次いで水蒸気加硫缶を用いて160℃で30分間加熱し加硫させ、内径4.5mm、外径12.2mm、長さ240mmのゴムチューブを作成した。   Using the rubber extruder, a rubber tube material is prepared from the obtained compound, and then heated and vulcanized at 160 ° C. for 30 minutes using a steam vulcanizer, the inner diameter is 4.5 mm, the outer diameter is 12.2 mm, A rubber tube having a length of 240 mm was prepared.

熱硬化性接着剤(商品名:メタロックU−20)の固形分に対して3%のカーボンブラック(MA−100、三菱化学製)を3本ロールで混合し、体積抵抗10Ωcmにした導電性接着剤を作成した。直径6mm、長さ250mmの円柱形の導電性基体(鋼製、表面はニッケルメッキ)の両端3mmをチャックし、回転させた状態で、導電性基体の周面に押し付けたスポンジに、接着剤を滴下しながら軸方向に移動させて接着剤塗布し、室温で乾燥させた。接着剤の厚みは、滴下量を変量して調節し、導電性基体の両端部から10mmの範囲は接着剤を塗布せず、片側端部(A端)より10mmから37.5mmの範囲を厚みが10μm、他方の端部(B端)より10mmから37.5mmの範囲を厚みが15μm、両端部37.5mmより中央部を厚みが50μmになるように接着剤を塗布した。   3% carbon black (MA-100, manufactured by Mitsubishi Chemical Co., Ltd.) is mixed with 3 rolls with respect to the solid content of thermosetting adhesive (trade name: METALOC U-20), and the conductive adhesive has a volume resistance of 10 Ωcm. An agent was created. Adhesive agent is applied to the sponge pressed against the peripheral surface of the conductive substrate while chucking and rotating 3 mm at both ends of a cylindrical conductive substrate (steel, surface is nickel-plated) having a diameter of 6 mm and a length of 250 mm. While dripping, it was moved in the axial direction, coated with an adhesive, and dried at room temperature. The thickness of the adhesive is adjusted by varying the amount of dripping. The adhesive is not applied in the range of 10 mm from both ends of the conductive substrate, and the thickness is in the range of 10 mm to 37.5 mm from the one end (A end). Was 10 μm, the thickness was 15 μm in the range from 10 mm to 37.5 mm from the other end (B end), and the adhesive was applied so that the thickness was 50 μm at the center from both ends 37.5 mm.

接着剤の厚みは、接着剤を塗布する前の導電性基体の形状を予めレーザー測長機で測定し、接着剤を塗布した後で再度測定し、それら差分を周方向で360箇所計算して算術平均により求めた。またある領域での平均厚みは、その領域を0.5mm間隔で測定した際の算術平均により計算した。   The thickness of the adhesive is determined by measuring the shape of the conductive substrate before applying the adhesive with a laser length measuring machine in advance, measuring it again after applying the adhesive, and calculating the difference in 360 locations in the circumferential direction. Obtained by arithmetic mean. Moreover, the average thickness in a certain area | region was calculated by the arithmetic average at the time of measuring the area | region at intervals of 0.5 mm.

得られたゴムチューブの内空の片端部に、導電性基体のB端を5mm押し込み、ゴムチューブの逆側の端部から加圧空気を送入し、導電性基体の中央とゴムチューブの中央が概ね一致するように圧入した。次いで、電気オーブンの中で160℃で30分間加熱して接着させて、弾性抵抗層素材を得た。得られた弾性抵抗層素材のゴム部分の両端から10mmの位置で突っ切りを行い、端部ゴムを除去した。   Push the B end of the conductive substrate 5 mm into the inner end of the resulting rubber tube, and send pressurized air from the opposite end of the rubber tube to the center of the conductive substrate and the center of the rubber tube. Was press-fitted so that they almost coincided. Next, the elastic resistance layer material was obtained by heating and bonding at 160 ° C. for 30 minutes in an electric oven. Cut off at the position of 10 mm from both ends of the rubber part of the obtained elastic resistance layer material, and the end rubber was removed.

さらに弾性抵抗層素材の表面を回転砥石により研磨し、端部直径12.00mm、中央部直径12.10mmのクラウン形状の弾性抵抗層を得た。   Further, the surface of the elastic resistance layer material was polished with a rotating grindstone to obtain a crown-shaped elastic resistance layer having an end diameter of 12.00 mm and a central diameter of 12.10 mm.

表面層用塗料として、ポリエステルポリオール(ニッポラン(ニッポランは登録商標です)131 日本ポリウレタン工業株式会社)100質量部に対して、導電性材料として導電性のアセチレンブラック(#4500 東海カーボン株式会社製)15質量部、溶媒として酢酸エチル 200質量部、上に述べた非導電性粒子 50質量部を添加し、ペイントシェイカーで10時間分散処理を行った。ついで固形分75%のイソシアネート樹脂(コロネート(コロネートは登録商標です)L 日本ポリウレタン工業株式会社)90質量部を添加して、粘度10mPa・sの表面層組成物とした。   As a coating material for the surface layer, 100 parts by mass of polyester polyol (Nipporan (Nipporan is a registered trademark) 131 Nippon Polyurethane Industry Co., Ltd.), conductive acetylene black (# 4500 manufactured by Tokai Carbon Co., Ltd.) 15 as a conductive material 200 parts by mass of ethyl acetate as a part by mass and 50 parts by mass of the non-conductive particles described above were added, and dispersion treatment was performed for 10 hours using a paint shaker. Next, 90 parts by mass of an isocyanate resin (coronate (coronate is a registered trademark) L Nippon Polyurethane Industry Co., Ltd.) having a solid content of 75% was added to obtain a surface layer composition having a viscosity of 10 mPa · s.

弾性体に、表面層用塗料をディッピングにより塗工し、150℃で1時間加熱することで架橋反応を行い、帯電ローラ1を作成した。このとき引き上げ速度(抵抗層組成物に対して弾性体の移動速度)は、上端部で20mm/s、その後直線的に減速して下端部2mm/sになるように制御した。帯電ローラ1の抵抗値は5x10Ω、表面層の厚みが10μm、十点平均表面粗さが2.5μmであった。 A coating material for the surface layer was applied to the elastic body by dipping, and the crosslinking reaction was performed by heating at 150 ° C. for 1 hour, whereby the charging roller 1 was prepared. At this time, the pulling speed (moving speed of the elastic body with respect to the resistance layer composition) was controlled to 20 mm / s at the upper end, and then linearly decelerated to 2 mm / s at the lower end. The charging roller 1 had a resistance value of 5 × 10 7 Ω, a surface layer thickness of 10 μm, and a ten-point average surface roughness of 2.5 μm.

帯電ローラの抵抗値としては、発泡体を円柱状の金属ドラムに当接させ、回転させた状態で、導電性基体と金属ドラム間に直流100Vの電圧を印加し、金属ドラムと直列に接続した抵抗体にかかる電圧を測定する事により求めた。   As for the resistance value of the charging roller, the foam was brought into contact with the cylindrical metal drum and rotated, and a DC voltage of 100 V was applied between the conductive substrate and the metal drum to connect the metal drum in series. It was determined by measuring the voltage applied to the resistor.

帯電ローラ1の表面粗さは表面粗さ測定器(商品名:サーフコーダーSE−33−H、小坂研究所製)を使用し、条件としてカットオフ0.8mm、送り速度0.2mm/sにて。帯電ローラの軸方向の両端部からそれぞれ15mmの位置と、中央の3箇所について算術平均により平均値を求めた。   As for the surface roughness of the charging roller 1, a surface roughness measuring device (trade name: Surfcoder SE-33-H, manufactured by Kosaka Laboratory) was used, and the conditions were a cutoff of 0.8 mm and a feed rate of 0.2 mm / s. T An average value was obtained by arithmetic average at a position of 15 mm from each end of the charging roller in the axial direction and at three positions in the center.

表面層の厚みは、軸方向の5箇所で電子顕微鏡により観察し、算術平均により平均値を求めた。帯電ローラ1は表面層の厚みが10μmであった。   The thickness of the surface layer was observed with an electron microscope at five locations in the axial direction, and the average value was obtained by arithmetic average. The charging roller 1 had a surface layer thickness of 10 μm.

表1には、帯電ローラ1を50℃、98%の雰囲気中に10日間放置した後での、導電性基体と弾性抵抗層の間での浮きの有無について、目視により帯電ローラの凹凸の発生について観察した結果を示す。さらに50℃、98%の雰囲気中に10日間放置した後に25℃50%に3日間放置した後、電子写真装置1に組み込んで異常画像の発生について有無を確認した結果を示す。   Table 1 shows the occurrence of irregularities on the charging roller by visual inspection for the presence or absence of floating between the conductive substrate and the elastic resistance layer after leaving the charging roller 1 in an atmosphere of 50 ° C. and 98% for 10 days. The result observed about is shown. Further, the results of checking whether or not an abnormal image is generated after being left in an atmosphere of 50 ° C. and 98% for 10 days and then left at 25 ° C. and 50% for 3 days are incorporated into the electrophotographic apparatus 1 are shown.

また、導電性弾性層端面から接着剤の食み出しについて観察した結果を示す。   Moreover, the result observed about the protrusion of an adhesive agent from an electroconductive elastic layer end surface is shown.

表1で、浮きの全くないものを◎、非常に軽微に発生しているものの画像不良の無いものを○、浮きが軽微に発生しており、画像評価により軽微な帯電不良が観察されるものの実使用上問題ないレベルのものを△、浮きが観察され、また画像からも悪いレベルで帯電不良が観察されたものを×と表記した。また、端部ゴムの除去工程の後、目視により導電性弾性層端面を観察し、接着剤の食み出しが全くないものを◎、食み出しは非常に軽微であり、回転不良による画像不良の発生がないものを○、軽微に食み出しており、回転不良による帯電ローラ周期のスジが画像不良として軽微に発生しているものの実用上問題ないレベルのものを△、接着剤の食み出しが容易に観察でき、回転不良による帯電ローラ周期のスジが悪いレベルで観察されるもの×と表記した。   In Table 1, ◎ indicates that there is no float, ◯ indicates that there is very slight occurrence, but ○ indicates that there is no image failure, but there is slight lift, and slight charging failure is observed by image evaluation. The level at which there was no problem in actual use was indicated by Δ, and the level at which floating was observed, and the case where defective charging was observed at a bad level from the image was indicated by ×. In addition, after the end rubber removal process, visually observe the end surface of the conductive elastic layer, ◎ if there is no adhesive sticking out, the sticking out is very slight, poor image due to rotation failure O, where there is no occurrence of color, slightly protruding, and streaks of the charging roller cycle due to rotation failure are slightly generated as image defects, but △, where there is no practical problem, erosion of adhesive It was indicated as “x”, which can be easily observed and the streaks of the charging roller cycle due to poor rotation are observed at a bad level.

表1より帯電ローラ1は、接着不良による浮きの発生が全くなく、また接着剤の食み出しも全く無かった。   As shown in Table 1, the charging roller 1 was free from any floating due to poor adhesion, and the adhesive did not protrude at all.

実施例1でA端側10mmから37.5mmの領域での接着剤の厚みを3μm、B端側10mmから37.5mmの領域での接着剤の厚みを15μmとした以外は実施例1と同様に行い、帯電ローラ2を作成した。帯電ローラ2の抵抗値は5x10Ω、表面層の厚みが10μm、十点平均表面粗さが2.5μmであった。 Example 1 is the same as Example 1 except that the thickness of the adhesive in the region from 10 mm to 37.5 mm on the A end side is 3 μm, and the thickness of the adhesive in the region from 10 mm to 37.5 mm on the B end side is 15 μm. The charging roller 2 was prepared. The charging roller 2 had a resistance value of 5 × 10 7 Ω, a surface layer thickness of 10 μm, and a ten-point average surface roughness of 2.5 μm.

帯電ローラ2は、接着不良による浮きの発生がなく、画像不良の発生もなく、また接着剤の食み出しも全く無かった。   The charging roller 2 was free from floating due to poor adhesion, no defective image, and no adhesive sticking out.

実施例1でA端側10mmから37.5mmの領域での接着剤の厚みを12μm、B端側10mmから37.5mmの領域での接着剤の厚みを20μm、両端部37.5μmから中央部では厚みを60μmとした以外は実施例1と同様に行い、帯電ローラ3を作成した。帯電ローラ3の抵抗値は5x10Ω、表面層の厚みが10μm、十点平均表面粗さが2.5μmであった。 In Example 1, the thickness of the adhesive in the region of 10 mm to 37.5 mm on the A end side is 12 μm, the thickness of the adhesive in the region of 10 mm to 37.5 mm on the B end side is 20 μm, and the central portion from 37.5 μm on both ends Then, the charging roller 3 was prepared in the same manner as in Example 1 except that the thickness was 60 μm. The charging roller 3 had a resistance value of 5 × 10 7 Ω, a surface layer thickness of 10 μm, and a ten-point average surface roughness of 2.5 μm.

帯電ローラ3は、接着不良による浮きの発生がなく、画像不良の発生もなかった。また接着剤の食み出しは、A端部側での発生はなく、B端部側で非常に軽微に発生しているものの、画像不良の発生は無かった。   The charging roller 3 was free from floating due to poor adhesion and no image failure. Further, the protrusion of the adhesive did not occur on the A end side and occurred very slightly on the B end side, but no image defect occurred.

実施例1でA端側10mmから37.5mmの領域での接着剤の厚みを1μm、B端側10mmから37.5mmの領域での接着剤の厚みを2μm、両端部37.5μmから中央部では厚みを60μmとした以外は実施例1と同様に行い、帯電ローラ4を作成した。帯電ローラ4の抵抗値は5x10Ω、表面層の厚みが10μm、十点平均表面粗さが2.5μmであった。 In Example 1, the thickness of the adhesive in the region from 10 mm to 37.5 mm on the A end side is 1 μm, the thickness of the adhesive in the region from 10 mm to 37.5 mm on the B end side is 2 μm, and the central portion from both ends 37.5 μm Then, the charging roller 4 was prepared in the same manner as in Example 1 except that the thickness was 60 μm. The charging roller 4 had a resistance value of 5 × 10 7 Ω, a surface layer thickness of 10 μm, and a ten-point average surface roughness of 2.5 μm.

帯電ローラ4は、接着剤の食み出しは全くなかった。また接着不良による浮きは、両端部で非常に軽微に発生しているものの、画像不良の発生は無かった。   The charging roller 4 did not protrude any adhesive. Further, although the float due to poor adhesion occurred very slightly at both ends, no image defect occurred.

実施例1でA端側10mmから37.5mmの領域での接着剤の厚みを1μm、B端側10mmから37.5mmの領域での接着剤の厚みを20μm、両端部37.5μmから中央部では厚みを60μmとした以外は実施例1と同様に行い、帯電ローラ5を作成した。帯電ローラ5の抵抗値は5x10Ω、表面層の厚みが10μm、十点平均表面粗さが2.5μmであった。 In Example 1, the thickness of the adhesive in the region from 10 mm to 37.5 mm on the A end side is 1 μm, the thickness of the adhesive in the region from 10 mm to 37.5 mm on the B end side is 20 μm, and the central portion from both ends 37.5 μm Then, the charging roller 5 was prepared in the same manner as in Example 1 except that the thickness was 60 μm. The charging roller 5 had a resistance value of 5 × 10 7 Ω, a surface layer thickness of 10 μm, and a ten-point average surface roughness of 2.5 μm.

帯電ローラ5は、B端側で接着剤の食み出しが非常に軽微に観察されたが画像不良の発生はなかった。また接着不良による浮きは、A端側で非常に軽微に発生しているものの、画像不良の発生は無かった。   On the charging roller 5, the protrusion of the adhesive was observed very slightly on the B end side, but no image defect occurred. Further, although the float due to poor adhesion occurred very slightly on the A end side, no image defect occurred.

実施例1で両端部10mmから37.5mmの領域での接着剤の厚みを25μm、両端部37.5μmから中央部では厚みを60μmとした以外は実施例1と同様に行い、帯電ローラ6を作成した。帯電ローラ6の抵抗値は6x10Ω、表面層の厚みが10μm、十点平均表面粗さが2.5μmであった。 In Example 1, the same procedure as in Example 1 was performed except that the thickness of the adhesive in the region from 10 mm to 37.5 mm at both ends was 25 μm, and the thickness from 37.5 μm to both ends was 60 μm. Created. The charging roller 6 had a resistance value of 6 × 10 7 Ω, a surface layer thickness of 10 μm, and a ten-point average surface roughness of 2.5 μm.

帯電ローラ6は、接着剤の食み出しが、B端側では非常に軽微に観察され、A端側では軽微に観察され帯電ローラ周期のスジ不良が軽微に発生したものの実用上問題ないレベルであった。また接着不良による浮きは、発生してなく、画像不良の発生は無かった。   In the charging roller 6, the adhesive protrusion is observed very slightly on the B end side and slightly on the A end side, and the charging roller cycle has a slight streak defect, but there is no practical problem. there were. Further, there was no floating due to poor adhesion, and there was no image defect.

(比較例1)
両端部から10mmを除く全域を厚み60μmで接着剤を塗布した以外は実施例1と同様に行い、帯電ローラ7を作成した。帯電ローラ7の抵抗値は5x10Ω、表面層の厚みが10μm、十点平均表面粗さが2.5μmであった。
(Comparative Example 1)
A charging roller 7 was prepared in the same manner as in Example 1 except that the adhesive was applied to the entire area excluding 10 mm from both ends with a thickness of 60 μm. The charging roller 7 had a resistance value of 5 × 10 7 Ω, a surface layer thickness of 10 μm, and a ten-point average surface roughness of 2.5 μm.

帯電ローラ7は、接着不良による浮きは発生なく、浮きによる画像不良の発生は無かったが、接着剤の食み出しにいては両端部で容易に観察でき、画像評価では帯電ローラ周期のスジは実用上問題なレベルであった。   The charging roller 7 did not float due to poor adhesion and did not cause image failure due to floating. However, when the adhesive protrudes, it can be easily observed at both ends. It was a practically problematic level.

(比較例2)
実施例1でA端部側10mmから37.5mmの領域で接着剤を塗布せず、A端側37.5μmからB端側10mmの領域で接着剤の厚みを60μmとした以外は実施例1と同様に行い、帯電ローラ8を作成した。帯電ローラ8の抵抗値は8x10Ω、表面層の厚みが10μm、十点平均表面粗さが2.5μmであった。
(Comparative Example 2)
Example 1 except that the adhesive was not applied in the region from 10 mm to 37.5 mm on the A end side in Example 1, and the thickness of the adhesive was changed to 60 μm in the region from 37.5 μm on the A end side to 10 mm on the B end side. The charging roller 8 was prepared in the same manner as described above. The charging roller 8 had a resistance value of 8 × 10 7 Ω, a surface layer thickness of 10 μm, and a ten-point average surface roughness of 2.5 μm.

帯電ローラ8は、B端側で容易に観察でき、画像評価では帯電ローラ周期のスジは実用上問題なレベルであった。またA端側では浮きが観察され、画像評価からも著しい帯電不良が観察された。   The charging roller 8 can be easily observed on the B-end side, and the streak of the charging roller cycle is a practically problematic level in image evaluation. Further, floating was observed on the A end side, and remarkable charging failure was also observed from the image evaluation.

Figure 2007193001
Figure 2007193001

本発明の実施例1、2、3、4、5,6及び比較例1、2に適用される帯電ローラの断面概念図Cross-sectional conceptual diagram of a charging roller applied to Examples 1, 2, 3, 4, 5, 6 and Comparative Examples 1 and 2 of the present invention 本発明の帯電ローラの一例を示す断面図Sectional drawing which shows an example of the charging roller of this invention 本発明の帯電ローラが適用される帯電装置Charging apparatus to which the charging roller of the present invention is applied 本発明の帯電ローラが適用される画像形成装置Image forming apparatus to which charging roller of the present invention is applied

符号の説明Explanation of symbols

1 接触帯電装置
1a 導電性基体
2a 導電性弾性層
2b 表面層
2c 端部ゴム
3 電源
4 帯電ローラ
12 感光体
13 ニップ部
150 電子写真装置
DESCRIPTION OF SYMBOLS 1 Contact charging device 1a Conductive base | substrate 2a Conductive elastic layer 2b Surface layer 2c End rubber | gum 3 Power supply 4 Charging roller 12 Photoconductor 13 Nip part 150 Electrophotographic apparatus

Claims (4)

導電性基体に接着剤が被覆され、接着剤上に1層以上の導電性弾性層が被覆された導電性ローラの製造方法において、
接着剤の厚みが、長手方向で分布を有することを特徴とする導電性ローラの製造方法。
In a method for producing a conductive roller, in which a conductive substrate is coated with an adhesive, and one or more conductive elastic layers are coated on the adhesive,
A method for producing a conductive roller, wherein the thickness of the adhesive has a distribution in the longitudinal direction.
長手方向での接着剤の厚み分布において、端部が中央部より薄く被覆することを特徴とする、請求項1記載の導電性ローラの製造方法。   2. The method for producing a conductive roller according to claim 1, wherein the thickness of the adhesive in the longitudinal direction covers the end portion thinner than the central portion. 接着剤塗布領域の端部から塗布領域の1/8の領域での平均厚みが両端で異なり、平均厚みの薄い端部側を、接着剤を塗布した導電性基体を導電性弾性層の空孔部に圧入にする際、導電性弾性層への圧入の進行方向に対して後端になるように配置することを特徴とする請求項1,2記載の導電性ローラの製造方法。   The average thickness from the end of the adhesive application area to 1/8 of the application area is different at both ends, and the end of the thin average thickness is placed on the conductive substrate coated with the adhesive. The method for manufacturing a conductive roller according to claim 1, wherein when press-fitting into the part, the rear end is arranged with respect to the direction of press-fitting into the conductive elastic layer. 接着剤の厚みが、端部から塗布領域の1/8の領域までの平均厚みを3μm以上、15μm以下とし、それらを除く中央部の接着剤の厚みを50μm以下としたことを特徴とする、請求項1から3記載の導電性ローラの製造方法。   The thickness of the adhesive is characterized in that the average thickness from the end part to 1/8 of the application area is 3 μm or more and 15 μm or less, and the thickness of the adhesive in the central part excluding them is 50 μm or less, The method for producing a conductive roller according to claim 1.
JP2006010016A 2006-01-18 2006-01-18 Manufacturing method for conductive roller Withdrawn JP2007193001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010016A JP2007193001A (en) 2006-01-18 2006-01-18 Manufacturing method for conductive roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010016A JP2007193001A (en) 2006-01-18 2006-01-18 Manufacturing method for conductive roller

Publications (1)

Publication Number Publication Date
JP2007193001A true JP2007193001A (en) 2007-08-02

Family

ID=38448761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010016A Withdrawn JP2007193001A (en) 2006-01-18 2006-01-18 Manufacturing method for conductive roller

Country Status (1)

Country Link
JP (1) JP2007193001A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012081626A1 (en) * 2010-12-16 2014-05-22 株式会社ブリヂストン OA roller manufacturing method and OA roller
EP3062158A1 (en) * 2015-02-27 2016-08-31 Canon Kabushiki Kaisha Electroconductive roller, process cartridge, and electrophotographic apparatus
WO2017104663A1 (en) * 2015-12-16 2017-06-22 株式会社ブリヂストン Tire
JP2017109612A (en) * 2015-12-16 2017-06-22 株式会社ブリヂストン tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012081626A1 (en) * 2010-12-16 2014-05-22 株式会社ブリヂストン OA roller manufacturing method and OA roller
JP5638626B2 (en) * 2010-12-16 2014-12-10 株式会社ブリヂストン OA roller manufacturing method and OA roller
EP3062158A1 (en) * 2015-02-27 2016-08-31 Canon Kabushiki Kaisha Electroconductive roller, process cartridge, and electrophotographic apparatus
WO2017104663A1 (en) * 2015-12-16 2017-06-22 株式会社ブリヂストン Tire
JP2017109612A (en) * 2015-12-16 2017-06-22 株式会社ブリヂストン tire
CN108367597A (en) * 2015-12-16 2018-08-03 株式会社普利司通 Tire
JPWO2017104663A1 (en) * 2015-12-16 2018-10-04 株式会社ブリヂストン tire
US20180370285A1 (en) * 2015-12-16 2018-12-27 Bridgestone Corporation Tire

Similar Documents

Publication Publication Date Title
CN105652620B (en) Electrophotography component, handle box and image forming apparatus
WO2016158813A1 (en) Electrophotographic equipment-use electrically conductive member
JP2006330483A (en) Conductive member, process cartridge including same, and image forming apparatus including process cartridge
JP6056705B2 (en) Charging roll, charging device, process cartridge, image forming apparatus, and manufacturing method of charging roll
JP2005091818A (en) Conductive member, and process cartridge and image forming device provided with the conductive member
US7734221B2 (en) Conductive member, process cartridge using conductive member and image formation apparatus using process cartridge
JP2006208447A (en) Conductive roller and its manufacturing method, and image forming apparatus
JP2004109688A (en) Method and device for regenerating charging member and charging member
JP2007193001A (en) Manufacturing method for conductive roller
JP6343579B2 (en) Conductive roll for electrophotographic equipment
JP2007121445A (en) Charging roller
JP2017116685A (en) Conductive member for electrophotographic apparatus
JP2002268398A (en) Transfer belt and method of manufacturing for same
US20030086730A1 (en) Roll and development apparatus using the same
JP2004037551A (en) Developing roller and developing apparatus equipped with the same
JP2006258967A (en) Conductive rubber composition and conductive rubber roller using the same
JP2005148488A (en) Component of image forming apparatus
JP4648168B2 (en) Conductive member, process cartridge, and image forming apparatus
JP6554806B2 (en) Conductive member, charging device, process cartridge, image forming apparatus, and method of manufacturing conductive member
JP2019117230A (en) Charging member, method for manufacturing charging member, process cartridge, and electrophotographic system image formation device
JP2007108319A (en) Charging roller for electrophotography
JP2004077814A (en) Development roller and development device having the same
JP2008107622A (en) Conductive roller and method for manufacturing the same
JP2006350093A (en) Conductive member and process cartridge having the same, and image forming apparatus having the process cartridge
JP2007052168A (en) Conductive member, process cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407