JP2007192973A - Telecentric objective - Google Patents

Telecentric objective Download PDF

Info

Publication number
JP2007192973A
JP2007192973A JP2006009578A JP2006009578A JP2007192973A JP 2007192973 A JP2007192973 A JP 2007192973A JP 2006009578 A JP2006009578 A JP 2006009578A JP 2006009578 A JP2006009578 A JP 2006009578A JP 2007192973 A JP2007192973 A JP 2007192973A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
positive
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006009578A
Other languages
Japanese (ja)
Other versions
JP4867356B2 (en
Inventor
Kenta Sudo
健太 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006009578A priority Critical patent/JP4867356B2/en
Publication of JP2007192973A publication Critical patent/JP2007192973A/en
Application granted granted Critical
Publication of JP4867356B2 publication Critical patent/JP4867356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a telecentric objective on an image side whose aberrations including chromatic aberration is completely corrected from a near ultraviolet region to a near infrared region even when it is a refraction system. <P>SOLUTION: The telecentric objective is constituted of a first lens group G1 having positive refractive power as a whole, an aperture diaphragm and a second lens group G2 having positive refractive power as a whole in order from an object side. The first lens group G1, the aperture diaphragm and the second lens group G2 are arranged to be nearly telecentric on the image side, and the objective satisfies a predetermined conditional expression. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、対物レンズに関するものである。   The present invention relates to an objective lens.

近年、地球環境の観測や資源探査を目的とした、人工衛星からの観測が注目されている。人工衛星からの地球観測は紫外線から赤外線にわたる広い波長域で観測を行うことにより様々な情報をグローバルに取得できるという特徴を持っている。   In recent years, observation from artificial satellites for the purpose of observing the global environment and exploring resources has attracted attention. Earth observation from satellites has the feature that various information can be acquired globally by performing observations in a wide wavelength range from ultraviolet to infrared.

通常、人工衛星から広い波長域に渡る光学観測を行う際には、色収差の生じない反射光学系を用いることが一般的である。一方、レンズで構成される屈折光学系は、反射光学系に比べて収差補正の自由度が多く、広い視野角と高い結像性能を得ることが出来るが、色収差の補正に困難を伴うという特徴を有する。   Usually, when performing optical observation over a wide wavelength range from an artificial satellite, it is common to use a reflection optical system that does not cause chromatic aberration. On the other hand, a refractive optical system composed of lenses has more freedom of aberration correction than a reflective optical system and can provide a wide viewing angle and high imaging performance, but it is difficult to correct chromatic aberration. Have

また、係る観測の際には、集光した光を分光して観測することも一般的であり、対物レンズと撮像面との間の光路中にバンドパスフィルターや色分解プリズムを挿入する必要があり、分光された光にムラが生じるのを防ぐため、像側にテレセントリックであることも要求される。   In such observation, it is also common to spectroscopically observe the collected light, and it is necessary to insert a band-pass filter or a color separation prism in the optical path between the objective lens and the imaging surface. In order to prevent unevenness in the dispersed light, the image side is also required to be telecentric.

上記の如き対物レンズは、例えば以下の特許公報に開示されている。
特開2002−250863しかしながら、 に開示されている対物レンズでは、色収差の補正が充分ではなく、更には歪曲収差の残存量も大きいので、広い波長域に渡って高い結像性能を要求される人工衛星からの観測に供する対物レンズとしては充分なものではない。
The objective lens as described above is disclosed in, for example, the following patent publications.
However, JP-A-2002-250863, In the objective lens disclosed in, the correction of chromatic aberration is not sufficient, and the residual amount of distortion is also large, so that the objective lens used for observation from an artificial satellite that requires high imaging performance over a wide wavelength range is used. It is not enough as a lens.

本発明は、このような従来の問題点を解決するためになされたものであり、屈折系であっても近紫外域から近赤外域まで色収差が充分に補正され、歪曲収差をはじめとした諸収差も良好に補正された、広い波長域に渡る観測に好適な像側テレセントリック対物レンズを提供することを課題としている。   The present invention has been made in order to solve such a conventional problem. Even in a refractive system, chromatic aberration is sufficiently corrected from the near ultraviolet region to the near infrared region, and various distortions including distortion aberration can be obtained. An object of the present invention is to provide an image-side telecentric objective lens that is well corrected for aberrations and suitable for observation over a wide wavelength range.

上記目的を達成するため、本発明の対物レンズは以下の構成とする。
請求項1に係わる対物レンズは、物体側より順に、全体として正の屈折力を有する第1レンズ群G1と、開口絞りと、全体として正の屈折力を有する第2レンズ群G2とより構成され、前記第1レンズ群G1は、物体側より順に、正屈折力を有し物体側に凸面を向けたメニスカス形状のレンズ成分L1、所定の空気間隔を隔てて互いに隣り合うか又は接合された、物体側に凸面を向けた正レンズL2と像側に凹面を向けた負レンズL3を含んだ構成であり、第2レンズ群G2は、正の屈折力を有する前群G21と正の屈折力を有する後群G22とより成り、前記前群G21は物体側より順に、所定の空気間隔を隔てて互いに隣り合うか又は接合された、物体側に凹面を向けた負レンズL4および像側に凸面を向けた正レンズL5と、像側に凸面を向けた正レンズL6の3枚のレンズより構成され、前記後群G22は、少なくとも1枚の正レンズと少なくとも1枚の負レンズを含む構成であり、前記第1レンズ群G1、前記開口絞り、前記第2レンズ群G2は、像側にほぼテレセントリックとなるように配置され、且つ以下の条件式を満たす構成の対物レンズとする。
In order to achieve the above object, the objective lens of the present invention has the following configuration.
The objective lens according to claim 1 includes, in order from the object side, a first lens group G1 having a positive refractive power as a whole, an aperture stop, and a second lens group G2 having a positive refractive power as a whole. The first lens group G1 is, in order from the object side, a meniscus lens component L1 having a positive refractive power and a convex surface facing the object side, adjacent to each other with a predetermined air interval, or joined. The configuration includes a positive lens L2 having a convex surface facing the object side and a negative lens L3 having a concave surface facing the image side. The second lens group G2 has a positive refractive power and a front group G21 having a positive refractive power. The front group G21 includes, in order from the object side, the negative lens L4 having a concave surface on the object side and a convex surface on the image side, which are adjacent to or joined to each other with a predetermined air interval. Directed positive lens L5 and convex surface toward the image side The rear lens group G22 includes three lenses, that is, a positive lens L6. The rear group G22 includes at least one positive lens and at least one negative lens. The first lens group G1, the aperture stop, and the first lens The second lens group G2 is an objective lens that is arranged so as to be substantially telecentric on the image side and that satisfies the following conditional expression.

ν2−ν3 > 30 ・・・(1)
ν5−ν4 > 25 ・・・(2)
ν3、ν4 > 45 ・・・(3)
1.50 < n3、n4 <1.70 ・・・(4)
但し、ν2:前記L2の硝材のアッベ数
ν3:前記L3の硝材のアッベ数
ν4:前記L4の硝材のアッベ数
ν5:前記L5の硝材のアッベ数
n3:前記L3のF線に対する屈折率
n4:前記L4のF線に対する屈折率
請求項2に関わる対物レンズは、前記第2レンズ群G2の後群G22に含まれる前記負レンズのアッベ数をνNとするとき、以下の条件を満たす構成の請求項1に記載の対物レンズとする。
ν2-ν3> 30 (1)
ν5-ν4> 25 (2)
ν3, ν4> 45 (3)
1.50 <n3, n4 <1.70 (4)
Where ν2: Abbe number of the glass material of L2
ν3: Abbe number of the glass material of L3
ν4: Abbe number of the glass material of L4
ν5: Abbe number of the glass material of L5
n3: Refractive index of the L3 with respect to the F-line
n4: Refractive index with respect to F-line of L4 The objective lens according to claim 2 has the following condition when the Abbe number of the negative lens included in the rear group G22 of the second lens group G2 is νN The objective lens according to claim 1.

85 > νN >35 ・・・(5)
請求項3に係わる対物レンズは、f1を前記第1レンズ群G1のF線に対する焦点距離、f2を前記第2レンズ群G2のF線に対する焦点距離、f22を前記第2レンズ群の後群G22のF線に対する焦点距離としたとき以下の条件を満たす構成の請求項1乃至請求項2に記載の対物レンズとする。
85>νN> 35 (5)
In the objective lens according to claim 3, f1 is a focal length with respect to the F line of the first lens group G1, f2 is a focal length with respect to the F line of the second lens group G2, and f22 is a rear group G22 of the second lens group. The objective lens according to claim 1, wherein the objective lens is configured to satisfy the following condition when the focal length with respect to the F line is:

1.8 < f1/f2 < 2 ・・・・・・(6)
1.3 < f22/f2 < 2.2 ・・・(7)
請求項4に係わる対物レンズは、F線に対する入射光束の主光線が前記対物レンズの最終面を射出したときの光軸との成す角をα(単位は度)とした時、以下の条件を満たす構成の請求項1乃至請求項3のいずれか1項に記載の対物レンズとする。
1.8 <f1 / f2 <2 (6)
1.3 <f22 / f2 <2.2 (7)
The objective lens according to claim 4 has the following conditions when the angle formed by the principal axis of the incident light beam with respect to the F-line and the optical axis when exiting the final surface of the objective lens is α (unit: degree). It is set as the objective lens of any one of Claim 1 thru | or 3 of the structure satisfy | filled.

|α| < 1 ・・・(8)
但し、αの符号は、光軸から測って反時計回りを正、時計回りを負とする。
| Α | <1 (8)
However, the sign of α is positive when measured counterclockwise and negative when measured clockwise.

本発明によれば、屈折系であっても近紫外域から近赤外域まで色収差が充分に補正され、歪曲収差をはじめとした諸収差が良好に補正された、広い波長域に渡る観測に好適な像側テレセントリック対物レンズを提供することができる。   According to the present invention, even in a refraction system, chromatic aberration is sufficiently corrected from the near ultraviolet region to the near infrared region, and various aberrations including distortion aberration are well corrected, suitable for observation over a wide wavelength range. An image side telecentric objective lens can be provided.

以下、最良の形態の構成および条件式を詳しく説明する。
既に述べた如く、レンズで構成される屈折光学系は、反射光学系に比べて収差補正の自由度が多く、広い視野角と高い結像性能を得ることが出来る反面、現実に存在する光学ガラス等の光学材料は、限られた範囲のアッベ数と屈折率しか持たないので、広い波長域に渡って色収差を補正するのは困難を伴う。通常の対物レンズは可視域での色収差が補正出来れば充分であるが、人工衛星に搭載して地球を観測するような目的の対物レンズでは、広い波長域に渡る観測が必要とされるので、近紫外から近赤外までの色収差を補正する必要がある。更に、分光観測における要求から、対物レンズと撮像面との間の光路中にバンドパスフィルターや色分解プリズムを挿入する必要があり、分光された光にムラが生じるのを防ぐため、像側にテレセントリックであることも要求される。請求項1に係わるレンズ構成はこれを解決するための基本的な構成である。
Hereinafter, the configuration and conditional expressions of the best mode will be described in detail.
As already mentioned, a refractive optical system composed of lenses has more freedom of aberration correction than a reflective optical system, and can provide a wide viewing angle and high imaging performance, but it actually exists in optical glass. Since optical materials such as these have only a limited range of Abbe numbers and refractive indices, it is difficult to correct chromatic aberration over a wide wavelength range. A normal objective lens is sufficient if it can correct chromatic aberration in the visible range, but an objective lens that is mounted on an artificial satellite to observe the earth requires observation over a wide wavelength range. It is necessary to correct chromatic aberration from the near ultraviolet to the near infrared. Furthermore, due to the requirement in spectroscopic observation, it is necessary to insert a bandpass filter and a color separation prism in the optical path between the objective lens and the imaging surface. It is also required to be telecentric. The lens configuration according to claim 1 is a basic configuration for solving this problem.

本発明に関わる対物レンズでは、基本構成としては所謂ガウスタイプを採用し、ガウスタイプの絞りより後ろのレンズ群を、像側テレセントリックになるようなレンズ構成にしたものである。   In the objective lens according to the present invention, a so-called Gauss type is adopted as a basic configuration, and the lens group behind the Gauss type diaphragm is configured to be an image side telecentric lens configuration.

最も物体側のレンズ成分L1は、画角に対応する角度を持って対物レンズに入射する光束に対し、収差の発生を出来る限り抑えるように、全体として正の屈折力を有し、物体側に凸面を向けたメニスカス形状のレンズ成分とする。L1に続く各レンズに関しても、前記画角に対応する角度を持って対物レンズに入射する光束に対し、収差の発生を出来る限り抑え、最小偏角に近い偏角を持って光線を屈折させるように、絞りSより物体側の正レンズは物体側に凸面を向けた形状、負レンズは像側に凹面を向けた形状とし、絞りSより像側の第2レンズ群G2の前群G21に含まれる負レンズは物体側に凹面を向けた形状、正レンズは像側に凸面を向けた形状とする必要がある。第2レンズ群G2の後群G22は、第2レンズ群G2の前群G21より射出される光束を、瞳の収差および歪曲収差をバランスよく補正しつつ、各画角に対応する主光線を光軸と平行にし良好なテレセン性をもって像面に結像させる。   The lens component L1 closest to the object side has a positive refractive power as a whole so as to suppress the occurrence of aberration as much as possible with respect to the light beam incident on the objective lens at an angle corresponding to the angle of view. The lens component has a meniscus shape with a convex surface. For each lens following L1, the generation of aberration is suppressed as much as possible with respect to the light beam incident on the objective lens at an angle corresponding to the angle of view, and the light beam is refracted with a declination close to the minimum declination. In addition, the positive lens on the object side from the stop S has a shape with a convex surface facing the object side, and the negative lens has a shape with a concave surface on the image side, and is included in the front group G21 of the second lens group G2 on the image side from the stop S. The negative lens must have a shape with a concave surface facing the object side, and the positive lens must have a shape with a convex surface facing the image side. The rear group G22 of the second lens group G2 emits the chief rays corresponding to each angle of view while correcting the light beam emitted from the front group G21 of the second lens group G2 in a balanced manner with respect to pupil aberration and distortion. An image is formed on the image plane parallel to the axis and with good telecentricity.

条件式(1)から(4)は、絞りより物体側および絞りより像側で、全系の色収差補正に大きく寄与する、物体側より順に所定の空気間隔を隔てて正レンズと負レンズが隣り合うか又は接合された、L2およびL3、物体側より順に負レンズと正レンズが所定の空気間隔を隔てて隣り合うか又は接合された、L4およびL5のガラスの選択に関わる条件を見出したものである。通常の色収差補正では、正レンズには低分散(アッベ数は大)の硝材、負レンズには高分散の硝材を使用する。しかしながら、本発明の如き、近紫外から近赤外に渡る広い波長域で色収差を補正するには、所謂2次スペクトルの発生を抑えることが重要となる。   Conditional expressions (1) to (4) indicate that the positive lens and the negative lens are adjacent to each other with a predetermined air interval in order from the object side, which greatly contributes to chromatic aberration correction of the entire system on the object side from the stop and on the image side from the stop. L2 and L3 fitted or joined, and the negative lens and the positive lens adjacent to each other with a predetermined air interval or joined together in order from the object side. It is. In normal chromatic aberration correction, a low dispersion (large Abbe number) glass material is used for the positive lens, and a high dispersion glass material is used for the negative lens. However, in order to correct chromatic aberration in a wide wavelength range from near ultraviolet to near infrared as in the present invention, it is important to suppress the generation of so-called secondary spectrum.

条件式(1)および(2)は、L2およびL3、L4およびL5の硝材のアッベ数の差を規定したものであり、下限を超えると正レンズと負レンズのアッベ数の差が小さくなり過ぎ、通常の2色消しが困難となる。条件式(3)は、負レンズL3とL4が満たすべき2次スペクトルの補正に関わるアッベ数の条件であり、下限を超えると2次スペクトルの補正を効率的に行うことが出来なくなる。条件式(4)は、負レンズL3とL4が満たすべきF線の屈折率に関する条件である。通常の場合、L3、L4はF線の屈折率で1・7以上の硝材が使用される。しかしながら、本発明に関わる対物レンズでは、2次スペクトルの補正が重要であるため、正レンズは所謂異常分散ガラスないしは蛍石などの通常光学ガラスにはない部分分散比を持った硝材を使用する必要がある。これらの硝材は屈折率が低いため、像面湾曲の指標である、ペッツバール和の補正を著しく困難にする。このペッツバール和と他の収差をバランスよく補正するため、負レンズL3,L4のとる屈折率の範囲を規定するのが条件式(4)である。上限を超えると、球面収差やコマ収差の補正には有利であるがペッツバール和が正方向に増大し、補正が困難となる。下限を超えると、現実的な光学ガラスが存在しない。なお、好ましくは条件式(4)の上限を1.6とすれば、より良好にペッツバール和の補正が出来る。   Conditional expressions (1) and (2) define the difference in the Abbe numbers of the glass materials of L2 and L3, L4 and L5. If the lower limit is exceeded, the difference between the Abbe numbers of the positive lens and the negative lens becomes too small. Therefore, it is difficult to erase the normal two colors. Conditional expression (3) is an Abbe number condition related to the correction of the secondary spectrum to be satisfied by the negative lenses L3 and L4. If the lower limit is exceeded, the correction of the secondary spectrum cannot be performed efficiently. Conditional expression (4) is a condition relating to the refractive index of the F-line to be satisfied by the negative lenses L3 and L4. In normal cases, L3 and L4 are made of a glass material having a refractive index of F-line of 1.7 or more. However, since correction of the secondary spectrum is important in the objective lens according to the present invention, the positive lens needs to use a so-called anomalous dispersion glass or a glass material having a partial dispersion ratio that is not found in ordinary optical glass such as fluorite. There is. Since these glass materials have a low refractive index, correction of Petzval sum, which is an index of curvature of field, becomes extremely difficult. In order to correct the Petzval sum and other aberrations in a well-balanced manner, conditional expression (4) defines the range of the refractive index taken by the negative lenses L3 and L4. Exceeding the upper limit is advantageous for correcting spherical aberration and coma, but the Petzval sum increases in the positive direction, making correction difficult. If the lower limit is exceeded, there is no realistic optical glass. Preferably, if the upper limit of conditional expression (4) is 1.6, the Petzval sum can be corrected more favorably.

条件式(5)は、倍率の色収差の補正を効率よく行うため、前記第2レンズ群の後群G22に含まれる負レンズの硝材が満たすべき、好ましいアッベ数の範囲を規定するものである。通常のガウスタイプ光学系では、絞りに対し略同心的にレンズが配置されるため、歪曲収差と倍率の色収差の発生は必然的に抑えられる。しかしながら本発明では、像側でテレセントリックな光学系とするため、絞りより像側のレンズに強い正の屈折力を配する必要があり、更には絞りに対する同心性のないレンズ配置とする必要がある。このため、歪曲収差の発生が増大し、これを補正するためにG22には適切な屈折力を持った負レンズを配置する必要がある。このレンズ配置の下で、前記負レンズが条件式(5)を満たすことによって、倍率の色収差も効率よく補正できる。条件式(5)の上限を超えると硝材の分散が小さくなりすぎ、短波長の倍率の色収差は負に残存し補正が困難となる。下限を超えると硝材の分散が大きくなり過ぎ、短波長の倍率の色収差が補正過剰となってしまう。       Conditional expression (5) defines a preferable Abbe number range to be satisfied by the glass material of the negative lens included in the rear group G22 of the second lens group in order to efficiently correct the chromatic aberration of magnification. In a normal Gauss type optical system, since lenses are arranged substantially concentrically with respect to the stop, the occurrence of distortion and lateral chromatic aberration is inevitably suppressed. However, in the present invention, in order to provide a telecentric optical system on the image side, it is necessary to provide a strong positive refractive power to the lens closer to the image side than the stop, and it is also necessary to provide a lens arrangement that is not concentric with the stop. . For this reason, the occurrence of distortion increases, and in order to correct this, it is necessary to arrange a negative lens having an appropriate refractive power in G22. Under this lens arrangement, when the negative lens satisfies the conditional expression (5), chromatic aberration of magnification can be corrected efficiently. If the upper limit of conditional expression (5) is exceeded, the dispersion of the glass material becomes too small, and the chromatic aberration of short wavelength magnification remains negative, making correction difficult. If the lower limit is exceeded, the dispersion of the glass material becomes too large, and the chromatic aberration at the short wavelength magnification is overcorrected.

条件式(6)、(7)は、本発明の対物レンズを、像側テレセントリックに構成するために、第1レンズ群のF線に対する焦点距離f1に対する第2レンズ群G2のF線に対する焦点距離f2および前記f2に対する第2レンズ群の後群G22のF線に対する焦点距離f22がとる、好ましい範囲を規定するものである。   Conditional expressions (6) and (7) indicate that the focal length of the second lens group G2 with respect to the F-line with respect to the focal length f1 of the first lens group with respect to the F-line in order to configure the objective lens of the present invention to be image side telecentric. This defines a preferable range that the focal length f22 of the second lens group with respect to f2 and the F-line of the rear group G22 with respect to f2 takes.

条件式(6)の上限を超えると、第1レンズ群G1の焦点距離に比して第2レンズ群G2の焦点距離が大きくなり過ぎ、屈折力が弱くなることから像側にテレセントリックな光学系を構成することが困難となる。条件式(7)は、第2レンズ群G2の全体の焦点距離に対する、第2レンズ群の後群G22が担う適切な焦点距離の範囲を規定するものである。本発明に関わる対物レンズを像側テレセントリックに構成する時、大きく歪曲収差が発生することは既に述べた。条件式(7)の下限を超えると第2レンズ群全体に対する後群G22の屈折力が強くなりすぎ、大きな負の歪曲収差が発生し補正困難となる。上限を超えると第2レンズ群全体に対する後群G22の屈折力は弱くなりすぎ、像側テレセントリックな光学系を構成するのが困難となる。   If the upper limit of conditional expression (6) is exceeded, the focal length of the second lens group G2 becomes too large compared to the focal length of the first lens group G1, and the refractive power becomes weak. It becomes difficult to construct. Conditional expression (7) defines an appropriate focal length range for the rear group G22 of the second lens group with respect to the entire focal length of the second lens group G2. As described above, when the objective lens according to the present invention is configured to be image side telecentric, a large amount of distortion is generated. When the lower limit of conditional expression (7) is exceeded, the refractive power of the rear group G22 with respect to the entire second lens group becomes too strong, and a large negative distortion occurs, making correction difficult. If the upper limit is exceeded, the refractive power of the rear group G22 with respect to the entire second lens group becomes too weak, making it difficult to construct an image side telecentric optical system.

条件式(8)は、像側でのテレセン性の程度の好ましい範囲を規定するものである。条件式(8)の範囲外では、対物レンズとその像面の間の光路中に、バンドパスフィルターや色分解プリズムを配置して分光観測を行う場合、分光される光に大きな色むらが発生し、観測に支障をきたす。   Conditional expression (8) defines a preferable range of the degree of telecentricity on the image side. Outside the range of conditional expression (8), when spectral observation is performed with a bandpass filter or color separation prism in the optical path between the objective lens and its image plane, large color unevenness occurs in the dispersed light. This interferes with observation.

以下、添付図面に基づいて、実施の形態を説明する。
なお、各実施例とも、対物レンズを評価するための基準波長はF線(波長86.133nm)としている。
Embodiments will be described below with reference to the accompanying drawings.
In each example, the reference wavelength for evaluating the objective lens is the F line (wavelength 86.133 nm).

図1は、本発明による第1実施形態の対物レンズ構成図である。なお、図1には、無限遠物点からの光束に対し、像の中心から最周辺に至る4点に結像する光線の光路を併せて記載している。この第1実施例の対物レンズは、物体側より順に、第1レンズ群G1、開口絞りS,第2レンズ群G2で構成される。第1レンズ群G1は、物体側より順に、正の屈折力を有し物体側に凸面を向けたメニスカス形状の単レンズL1、所定の空気間隔を隔てて互いに隣り合った、物体側に凸面を向けた正レンズL2と像側に凹面を向けた負レンズL3より構成されている。第2レンズ群G2は、物体側より順に、正の屈折力を有する前群G21と正の屈折力を有する後群G22から構成されており、前群G21は物体側より順に、所定の空気間隔を隔てて互いに隣り合った、物体側に凹面を向けた負レンズL4と像側に凸面を向けた正レンズL5、および像側に凸面を向けた正レンズL6で構成されている。後群G22は、物体側より順に、正レンズL7、正レンズL8、負レンズL9の3枚の単レンズより成る構成である。   FIG. 1 is a configuration diagram of an objective lens according to a first embodiment of the present invention. FIG. 1 also shows the optical paths of light rays that are imaged at four points from the center of the image to the outermost periphery with respect to the light flux from the object point at infinity. The objective lens of the first example is composed of a first lens group G1, an aperture stop S, and a second lens group G2 in order from the object side. The first lens group G1 includes, in order from the object side, a meniscus single lens L1 having a positive refractive power and having a convex surface directed toward the object side, adjacent to each other with a predetermined air gap, and having a convex surface on the object side. It consists of a positive lens L2 that is directed and a negative lens L3 that is concave on the image side. The second lens group G2 includes, in order from the object side, a front group G21 having a positive refractive power and a rear group G22 having a positive refractive power. The front group G21 has a predetermined air interval in order from the object side. And a negative lens L4 having a concave surface facing the object side, a positive lens L5 having a convex surface facing the image side, and a positive lens L6 having a convex surface facing the image side. The rear group G22 is configured by three single lenses of a positive lens L7, a positive lens L8, and a negative lens L9 in order from the object side.

以下、第1実施例の諸元の値を表1に示す。表1において、fは対物レンズ全系のF線に対する合成焦点距離(単位mm)、F/はFナンバーであり、物体距離は無限遠である。左端の数字は物体側からの各面の順序を表し、Sは開口絞りである。各レンズ面の曲率半径の単位はmmであり、曲率半径INFINITYは平面を表す。面間隔の単位はmm、nFは各レンズ硝材のF線(波長486.133nm)に対する屈折率、νdは各レンズ硝材のアッベ数である。

表1[実施例1]
f =100.0mm F/4 画角36°
面 曲率半径 面間隔 nF νd
1: 34.63656 14.000000 1.50123 81.54
2: 222.91650 0.100000
3: 30.69056 8.500000 1.44195 94.93
4: 113.26770 1.400000
5: 336.46049 3.000000 1.53934 48.84
6: 22.87269 8.800000
S: INFINITY 17.300000
8: -16.70603 4.000000 1.52431 52.43
9: INFINITY 0.900000
10: -648.40761 19.000000 1.50123 81.54
11: -31.35238 0.100000
12: 363.55599 13.500000 1.50123 81.54
13: -83.82712 0.100000
14: 550.90694 11.500000 1.50123 81.54
15: -118.42127 0.100000
16: 220.43382 12.000000 1.62479 63.33
17: -133.89709 1.000000
18: -143.73557 5.000000 1.60458 35.31
19: INFINITY 31.734700

第1実施例についての諸収差図を図2および図3に示す。
The values of the specifications of the first example are shown in Table 1 below. In Table 1, f is the combined focal length (unit: mm) for the F line of the entire objective lens system, F / is the F number, and the object distance is infinity. The number at the left end represents the order of each surface from the object side, and S is the aperture stop. The unit of curvature radius of each lens surface is mm, and the curvature radius INFINITY represents a plane. The unit of the surface interval is mm, nF is the refractive index of each lens glass material with respect to the F-line (wavelength 486.133 nm), and νd is the Abbe number of each lens glass material.

Table 1 [Example 1]
f = 100.0mm F / 4 Angle of view 36 °
Surface radius of curvature Surface spacing n F ν d
1: 34.63656 14.000000 1.50123 81.54
2: 222.91650 0.100000
3: 30.69056 8.500000 1.44195 94.93
4: 113.26770 1.400000
5: 336.46049 3.000000 1.53934 48.84
6: 22.87269 8.800000
S: INFINITY 17.300000
8: -16.70603 4.000000 1.52431 52.43
9: INFINITY 0.900000
10: -648.40761 19.000000 1.50123 81.54
11: -31.35238 0.100000
12: 363.55599 13.500000 1.50123 81.54
13: -83.82712 0.100000
14: 550.90694 11.500000 1.50123 81.54
15: -118.42127 0.100000
16: 220.43382 12.000000 1.62479 63.33
17: -133.89709 1.000000
18: -143.73557 5.000000 1.60458 35.31
19: INFINITY 31.734700

The aberration diagrams for the first example are shown in FIGS.

図2は、球面収差、非点収差、歪曲収差、図3は横収差の収差図であり、全て基準波長はF線としている。
なお、各収差図では、rはr線(波長706.519nm)、dはd線(波長587.562nm)、FはF線(波長486.133nm)、hはh線(波長404.656nm)の収差曲線をそれぞれ示す。なお非点収差図では、一点鎖線Sはサジタル像面、破線Tはタンジェンシャル像面をそれぞれ示す。また、球面収差図では、Hは入射高(但し、最大入射高を1と規格化する)を示し、非点収差図および歪曲収差図で、ωは半画角を示す。横収差図では、タンジェンシャルおよびサジタル像面において各半画角ごとに収差曲線を示す。以上の収差図の説明は、他の実施例においても同様である。
FIG. 2 is a spherical aberration, astigmatism, distortion, and FIG. 3 is an aberration diagram of lateral aberration, and the reference wavelength is all F-line.
In each aberration diagram, r is r line (wavelength 706.519 nm), d is d line (wavelength 587.562 nm), F is F line (wavelength 486.133 nm), and h is h line (wavelength 404.656 nm). Each aberration curve is shown. In the astigmatism diagram, the alternate long and short dash line S indicates the sagittal image plane, and the broken line T indicates the tangential image plane. In the spherical aberration diagram, H represents the incident height (however, the maximum incident height is normalized to 1), the astigmatism diagram and the distortion diagram, and ω represents the half angle of view. In the lateral aberration diagram, aberration curves are shown for each half angle of view on the tangential and sagittal image planes. The explanation of the above aberration diagrams is the same in the other examples.

図2および図3に示すように第1実施例の対物レンズでは、r線、d線、F線、h線の各波長において諸収差が良好に補正されており、歪曲収差をはじめとする諸収差も良好に補正されている。   As shown in FIGS. 2 and 3, in the objective lens of the first example, various aberrations are satisfactorily corrected at each wavelength of the r-line, d-line, F-line, and h-line, and various aberrations including distortion aberrations are obtained. Aberrations are also well corrected.

図4は、本発明による第2実施例の対物レンズ構成図(光路図)である。この第2実施例では、第1レンズ群G1の最も物体側のレンズ成分L1を、物体側より順に正レンズと負レンズの接合メニスカスレンズとしている。また、第2レンズ群G2の前群G21で、L4とL5を接合レンズとしており、後群G22は、物体側より順に、正レンズL7、正レンズと負レンズの接合レンズであるレンズ成分L8で構成している。上記特徴を除けば第1実施例と同様の構成となっている。   FIG. 4 is a configuration diagram (optical path diagram) of an objective lens according to the second embodiment of the present invention. In the second embodiment, the most object side lens component L1 of the first lens group G1 is a cemented meniscus lens of a positive lens and a negative lens in order from the object side. Further, in the front group G21 of the second lens group G2, L4 and L5 are cemented lenses, and the rear group G22 is a positive lens L7 and a lens component L8 that is a cemented lens of a positive lens and a negative lens in order from the object side. It is composed. Except for the above features, the configuration is the same as that of the first embodiment.

以下、表2に上記第1実施例と同様に第2実施例の諸元を示す。

表2[実施例2]
f =100.0mm F/4 画角36°
面 曲率半径 面間隔 nF νd
1: 36.30738 18.000000 1.50123 81.54
2: -174.06381 5.000000 1.70552 55.53
3: 15.94595 0.300000
4: 23.95810 8.000000 1.50123 81.54
5: 34.40563 3.000000 1.55654 45.79
6: 17.95223 7.100000
S: INFINITY 13.800000
8: -16.24022 4.000000 1.55654 45.79
9: 247.41396 14.000000 1.50123 81.54
10: -37.90302 0.100000
11: -90.21635 13.500000 1.50123 81.54
12: -40.21623 0.100000
13: 336.57976 14.500000 1.50123 81.54
14: -72.98365 4.100000
15: 165.58350 14.000000 1.62479 63.33
16: -100.66293 5.000000 1.52191 64.14
17: INFINITY 25.959191

第2実施例についての諸収差図を図5および図6に示す。
Table 2 below shows the specifications of the second embodiment as in the first embodiment.

Table 2 [Example 2]
f = 100.0mm F / 4 Angle of view 36 °
Surface radius of curvature Surface spacing n F ν d
1: 36.30738 18.000000 1.50123 81.54
2: -174.06381 5.000000 1.70552 55.53
3: 15.94595 0.300000
4: 23.95810 8.000000 1.50123 81.54
5: 34.40563 3.000000 1.55654 45.79
6: 17.95223 7.100000
S: INFINITY 13.800000
8: -16.24022 4.000000 1.55654 45.79
9: 247.41396 14.000000 1.50123 81.54
10: -37.90302 0.100000
11: -90.21635 13.500000 1.50123 81.54
12: -40.21623 0.100000
13: 336.57976 14.500000 1.50123 81.54
14: -72.98365 4.100000
15: 165.58350 14.000000 1.62479 63.33
16: -100.66293 5.000000 1.52191 64.14
17: INFINITY 25.959191

The aberration diagrams for the second example are shown in FIGS.

図5は、球面収差、非点収差、歪曲収差、図6は横収差の収差図であり、第1実施例と同様、全て基準波長はF線としている。図5および図6に示すように第2実施例の対物レンズでは、r線、d線、F線、h線 の各波長において諸収差が良好に補正されており、歪曲収差をはじめとする諸収差も良好に補正されている。
FIG. 5 is a diagram showing spherical aberration, astigmatism, distortion, and FIG. 6 is an aberration diagram showing transverse aberration. As in the first embodiment, all reference wavelengths are F-line. As shown in FIGS. 5 and 6, in the objective lens of the second example, various aberrations are well corrected at each wavelength of the r-line, d-line, F-line, and h-line. Aberrations are also well corrected.

図7は、本発明による第3実施例の対物レンズ構成図(光路図)である。この第3実 施例は、第2レンズ群G2の前群G21のL4とL5を接合レンズとしており、第2レンズ 群G2後群G22は、物体側より、正レンズと負レンズの順で接合したレンズ成分L7 のみから構成されている。上記特徴を除けば第1実施例と同様の構成となっている。

以下、表3に上記第1実施例と同様に第3実施例の諸元を示す。

表3[実施例3]
f =100.0mm F/4 画角30°
面 曲率半径 面間隔 nF νd
1: 36.34602 13.000000 1.50123 81.54
2: 243.18180 0.100000
3: 28.67656 9.000000 1.50123 81.54
4: 95.72364 2.000000
5: 222.68282 3.500000 1.55654 45.79
6: 20.15468 9.300000
S: INFINITY 17.200000
8: -16.46591 4.000000 1.55654 45.79
9: INFINITY 15.000000 1.50123 81.54
10: -27.04528 1.800000
11: 247.58556 11.000000 1.50123 81.54
12: -70.97397 10.000000
13: 128.72093 13.000000 1.73844 54.68
14: -87.77053 5.000000 1.50123 81.54
15: INFINITY 23.390013

第3実施例についての諸収差図を図8および図9に示す。
FIG. 7 is an objective lens configuration diagram (optical path diagram) of the third embodiment according to the present invention. In this third embodiment, L4 and L5 of the front group G21 of the second lens group G2 are cemented lenses, and the second lens group G2 and rear group G22 are cemented in order of a positive lens and a negative lens from the object side. Only the lens component L7. Except for the above features, the configuration is the same as that of the first embodiment.

Table 3 below shows the specifications of the third embodiment as in the first embodiment.

Table 3 [Example 3]
f = 100.0mm F / 4 Angle of view 30 °
Surface radius of curvature Surface spacing n F ν d
1: 36.34602 13.000000 1.50123 81.54
2: 243.18180 0.100000
3: 28.67656 9.000000 1.50123 81.54
4: 95.72364 2.000000
5: 222.68282 3.500000 1.55654 45.79
6: 20.15468 9.300000
S: INFINITY 17.200000
8: -16.46591 4.000000 1.55654 45.79
9: INFINITY 15.000000 1.50123 81.54
10: -27.04528 1.800000
11: 247.58556 11.000000 1.50123 81.54
12: -70.97397 10.000000
13: 128.72093 13.000000 1.73844 54.68
14: -87.77053 5.000000 1.50123 81.54
15: INFINITY 23.390013

The aberration diagrams for the third example are shown in FIGS.

図8は、球面収差、非点収差、歪曲収差、図9は横収差の収差図であり、第1実施例と同様、全て基準波長はF線としている。図8および図9に示すように第3実施例の対物レンズでは、r線、d線、F線、h線 の各波長において諸収差が良好に補正されており、歪曲収差をはじめとする諸収差も良好に補正されている。第3実施例についての諸収差図を図6に示す。


以下に各実施例の条件式を構成する各要素の値及び条件式対応値を示す。

┌───────┬───────┬───────┬───────┐
│ | 実施例1 | 実施例2 | 実施例3 │
├───────┼───────┼───────┼───────┤
|ν2−ν3 | 46.09 | 35.75 | 35.75 |
├───────┼───────┼───────┼───────┤
|ν5−ν4 | 29.11 | 35.75 | 35.75 │
├───────┼───────┼───────┼───────┤
│ ν3 | 48.84 | 45.79 | 45.79 │
├───────┼───────┼───────┼───────┤
│ ν4 | 52.43 | 45.79 | 45.79 │
├───────┼───────┼───────┼───────┤
│ n3 | 1.53934 | 1.55654 | 1.55654 |
├───────┼───────┼───────┼───────┤
│ n4 | 1.52431 | 1.55654 | 1.55654 │
├───────┼───────┼───────┼───────┤
│ νN | 35.31 | 64.14 | 81.54 │
├───────┼───────┼───────┼───────┤
│ f1 | 122.39 | 106.78 | 119.24 │
├───────┼───────┼───────┼───────┤
│ f2 | 60.44 | 56.54 | 57.04 │
├───────┼───────┼───────┼───────┤
│ f22 | 118.94 | 78.63 | 120.14 │
├───────┼───────┼───────┼───────┤
│f1/f2 | 2.02 | 1.89 | 2.09 │
├───────┼───────┼───────┼───────┤
│f22/f2 | 1.97 | 1.39 | 2.11 │
├───────┼───────┼───────┼───────┤
│最大|α| | 0.86 | 0.80 | 0.80 │
└───────┴───────┴───────┴───────┘

以上の説明は、人工衛星に搭載して地球を観測する対物レンズを例に説明したが、地上観測に用いられる対物レンズにも、本発明が適用できることは言うまでもない。
FIG. 8 is a spherical aberration, astigmatism, distortion aberration, and FIG. 9 is an aberration diagram of transverse aberration. As in the first embodiment, all reference wavelengths are F-line. As shown in FIGS. 8 and 9, in the objective lens of the third example, various aberrations are satisfactorily corrected at each wavelength of the r-line, d-line, F-line, and h-line. Aberrations are also well corrected. The aberration diagrams for the third example are shown in FIG.


The value of each element constituting the conditional expression of each embodiment and the value corresponding to the conditional expression are shown below.

┌───────┬───────┬───────┬───────┐
| | Example 1 | Example 2 | Example 3 |
├───────┼───────┼───────┼───────┤
| Ν2-ν3 | 46.09 | 35.75 | 35.75 |
├───────┼───────┼───────┼───────┤
| ν5-ν4 | 29.11 | 35.75 | 35.75 │
├───────┼───────┼───────┼───────┤
│ ν3 │ 48.84 │ 45.79 │ 45.79 │
├───────┼───────┼───────┼───────┤
│ ν4 │ 52.43 │ 45.79 │ 45.79 │
├───────┼───────┼───────┼───────┤
│ n3 | 1.53934 | 1.55654 | 1.55654 |
├───────┼───────┼───────┼───────┤
│ n4 | 1.52431 | 1.55654 | 1.55654 │
├───────┼───────┼───────┼───────┤
│ νN │ 35.31 │ 64.14 │ 81.54 │
├───────┼───────┼───────┼───────┤
│ f1 | 122.39 | 106.78 | 119.24 │
├───────┼───────┼───────┼───────┤
│ f2 | 60.44 | 56.54 | 57.04 │
├───────┼───────┼───────┼───────┤
│ f22 | 118.94 | 78.63 | 120.14 │
├───────┼───────┼───────┼───────┤
│f1 / f2 │ 2.02 │ 1.89 │ 2.09 │
├───────┼───────┼───────┼───────┤
│f22 / f2 │ 1.97 │ 1.39 │ 2.11 │
├───────┼───────┼───────┼───────┤
│ Maximum │α│ │ 0.86 │ 0.80 │ 0.80 │
└───────┴───────┴───────┴───────┘

In the above description, the objective lens mounted on an artificial satellite and observing the earth has been described as an example. However, it goes without saying that the present invention can also be applied to an objective lens used for ground observation.

また、以上のレンズ諸元表では、長さの単位はmmが使われている。但し、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位はmmに限定されることなく、他の適当な単位を用いることが可能である。また、空気の屈折率1.00000は省略してある。     In the above lens specifications, the unit of length is mm. However, since the optical system can obtain the same optical performance even when proportionally enlarged or reduced, the unit is not limited to mm, and other appropriate units can be used. Further, the refractive index of air of 1.0000 is omitted.

実施例1の対物レンズ構成図(光路図)Objective lens configuration diagram of Example 1 (optical path diagram) 実施例1の対物レンズの球面収差、非点収差、歪曲収差の収差図Aberration diagram of spherical aberration, astigmatism, and distortion of the objective lens of Example 1 実施例1の対物レンズの横収差図Lateral aberration diagram of the objective lens of Example 1 実施例2の対物レンズ構成図(光路図)Objective lens configuration diagram of Example 2 (optical path diagram) 実施例2の対物レンズの球面収差、非点収差、歪曲収差の収差図Aberration diagram of spherical aberration, astigmatism and distortion of objective lens of Example 2 実施例2の対物レンズの横収差図Lateral aberration diagram of the objective lens of Example 2 実施例3の対物レンズ構成図(光路図)Objective lens configuration diagram of Example 3 (optical path diagram) 実施例3の対物レンズの球面収差、非点収差、歪曲収差の収差図Aberration diagram of spherical aberration, astigmatism and distortion of objective lens of Example 3 実施例3の対物レンズの横収差図Lateral aberration diagram of the objective lens of Example 3

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G21 第2レンズ群の前群
G22 第2レンズ群の後群
S 開口絞り
Li 物体側よりi番目のレンズまたはレンズ成分
G1 1st lens group G2 2nd lens group G21 Front group of 2nd lens group G22 Rear group of 2nd lens group S Aperture stop Li The i-th lens or lens component from the object side

Claims (4)

物体側より順に、全体として正の屈折力を有する第1レンズ群G1と、開口絞りと、全体として正の屈折力を有する第2レンズ群G2とより構成され、前記第1レンズ群G1は、物体側より順に、正の屈折力を有し物体側に凸面を向けたメニスカス形状のレンズ成分L1と、所定の空気間隔を隔てて互いに隣り合うか又は接合された、物体側に凸面を向けた正レンズL2と像側に凹面を向けた負レンズL3を含んだ構成であり、第2レンズ群G2は、正の屈折力を有する前群G21と正の屈折力を有する後群G22とより成り、前記前群G21は物体側より順に、所定の空気間隔を隔てて互いに隣り合うか又は接合された、物体側に凹面を向けた負レンズL4および像側に凸面を向けた正レンズL5と、像側に凸面を向けた正レンズL6の3枚のレンズより構成され、前記後群G22は、少なくとも1枚の正レンズと少なくとも1枚の負レンズを含む構成であり、前記第1レンズ群G1、前記開口絞り、前記第2レンズ群G2は、像側にほぼテレセントリックとなるように配置され、且つ以下の条件式を満たすことを特徴とする対物レンズ。
ν2−ν3 > 30
ν5−ν4 > 25
ν3、ν4 > 45
1.50 < n3、n4 <1.70
但し、ν2:前記L2の硝材のアッベ数
ν3:前記L3の硝材のアッベ数
ν4:前記L4の硝材のアッベ数
ν5:前記L5の硝材のアッベ数
n3:前記L3のF線に対する屈折率
n4:前記L4のF線に対する屈折率
In order from the object side, the first lens group G1 having a positive refractive power as a whole, an aperture stop, and a second lens group G2 having a positive refractive power as a whole, the first lens group G1 In order from the object side, a meniscus-shaped lens component L1 having a positive refractive power and having a convex surface directed toward the object side, and a convex surface directed toward the object side that are adjacent to each other or bonded with a predetermined air gap. The second lens group G2 includes a front lens group G21 having a positive refractive power and a rear lens group G22 having a positive refractive power. The positive lens L2 includes a negative lens L3 having a concave surface facing the image side. The front group G21 is, in order from the object side, adjacent to or joined to each other with a predetermined air interval, a negative lens L4 having a concave surface on the object side, and a positive lens L5 having a convex surface on the image side, Three lenses of positive lens L6 with convex surface facing the image side The rear group G22 includes at least one positive lens and at least one negative lens. The first lens group G1, the aperture stop, and the second lens group G2 The objective lens is arranged so as to be substantially telecentric and satisfies the following conditional expression.
ν2-ν3> 30
ν5-ν4> 25
ν3, ν4> 45
1.50 <n3, n4 <1.70
Where ν2: Abbe number of the glass material of L2
ν3: Abbe number of the glass material of L3
ν4: Abbe number of the glass material of L4
ν5: Abbe number of the glass material of L5
n3: Refractive index of the L3 with respect to the F-line
n4: Refractive index of the L4 with respect to the F line
前記第2レンズ群G2の後群G22に含まれる前記負レンズのアッベ数をνNとするとき以下の条件を満たすことを特徴とする、請求項1に記載の対物レンズ。
85 > νN >35
2. The objective lens according to claim 1, wherein the following condition is satisfied when an Abbe number of the negative lens included in the rear group G <b> 22 of the second lens group G <b> 2 is νN.
85>νN> 35
f1を前記第1レンズ群G1のF線に対する焦点距離、f2を前記第2レンズ群G2のF線に対する焦点距離、f22を前記第2レンズ群の後群G22のF線に対する焦点距離としたとき以下の条件を満たすことを特徴とする請求項1乃至請求項2に記載の対物レンズ。
1.8 < f1/f2 < 2.2
1.3 < f22/f2 < 2.2
When f1 is a focal length with respect to the F line of the first lens group G1, f2 is a focal length with respect to the F line of the second lens group G2, and f22 is a focal length with respect to the F line of the rear group G22 of the second lens group. The objective lens according to claim 1, wherein the following condition is satisfied.
1.8 <f1 / f2 <2.2
1.3 <f22 / f2 <2.2
F線に対する入射光束の主光線が、前記対物レンズの最終面を射出したときの光軸との成す角をα(単位は度)とした時、以下の条件を満たすことを特徴とする請求項1乃至請求項3のいずれか1項に記載の対物レンズ。
|α| < 1
但し、αの符号は、光軸から測って反時計回りを正、時計回りを負とする。
The chief ray of an incident light beam with respect to an F-line satisfies the following condition when an angle formed by an optical axis when exiting the final surface of the objective lens is α (unit is degree). The objective lens according to claim 1.
| Α | <1
However, the sign of α is positive when measured counterclockwise and negative when measured clockwise.
JP2006009578A 2006-01-18 2006-01-18 Telecentric objective lens Active JP4867356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009578A JP4867356B2 (en) 2006-01-18 2006-01-18 Telecentric objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009578A JP4867356B2 (en) 2006-01-18 2006-01-18 Telecentric objective lens

Publications (2)

Publication Number Publication Date
JP2007192973A true JP2007192973A (en) 2007-08-02
JP4867356B2 JP4867356B2 (en) 2012-02-01

Family

ID=38448739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009578A Active JP4867356B2 (en) 2006-01-18 2006-01-18 Telecentric objective lens

Country Status (1)

Country Link
JP (1) JP4867356B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192614A (en) * 2008-02-12 2009-08-27 Nikon Corp Photographic lens, optical equipment equipped with the photographic lens, and image forming method
US8427763B2 (en) 2008-02-12 2013-04-23 Nikon Corporation Lens system, optical device with lens system, and method of manufacturing lens system
US9366854B2 (en) 2013-11-14 2016-06-14 Olympus Corporation Re-imaging optical system
CN108802965A (en) * 2018-01-18 2018-11-13 桂林电子科技大学 High-resolution object space telecentric system based on machine vision
CN109188651A (en) * 2018-09-28 2019-01-11 长春长光瑞实科技有限公司 A kind of refraction type high-resolution optical system of star sensor
CN110967810A (en) * 2018-09-28 2020-04-07 富士胶片株式会社 Imaging lens and imaging device
CN111077641A (en) * 2019-12-04 2020-04-28 瑞声通讯科技(常州)有限公司 Image pickup optical lens
US10983315B2 (en) 2018-02-28 2021-04-20 Canon Kabushiki Kaisha Optical system and imaging apparatus
WO2021189917A1 (en) * 2020-03-25 2021-09-30 诚瑞光学(深圳)有限公司 Camera lens
CN115047595A (en) * 2022-07-12 2022-09-13 广州长步道光学科技有限公司 Ultraviolet band large-aperture industrial imaging lens
WO2023075466A1 (en) * 2021-10-29 2023-05-04 엘지이노텍 주식회사 Optical system and camera module comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218513A (en) * 1985-07-18 1987-01-27 Olympus Optical Co Ltd Large aperture long focus macrolens
JPH01284817A (en) * 1988-05-12 1989-11-16 Canon Inc Adaptor lens for mount conversion
JPH0372310A (en) * 1989-08-11 1991-03-27 Dainippon Screen Mfg Co Ltd Image forming lens system
JP2001337265A (en) * 2000-05-24 2001-12-07 Tochigi Nikon Corp Photographing lens utilizing floating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218513A (en) * 1985-07-18 1987-01-27 Olympus Optical Co Ltd Large aperture long focus macrolens
JPH01284817A (en) * 1988-05-12 1989-11-16 Canon Inc Adaptor lens for mount conversion
JPH0372310A (en) * 1989-08-11 1991-03-27 Dainippon Screen Mfg Co Ltd Image forming lens system
JP2001337265A (en) * 2000-05-24 2001-12-07 Tochigi Nikon Corp Photographing lens utilizing floating

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192614A (en) * 2008-02-12 2009-08-27 Nikon Corp Photographic lens, optical equipment equipped with the photographic lens, and image forming method
US8427763B2 (en) 2008-02-12 2013-04-23 Nikon Corporation Lens system, optical device with lens system, and method of manufacturing lens system
US8630046B2 (en) 2008-02-12 2014-01-14 Nikon Corporation Lens system, optical device with lens system, and method of manufacturing lens system
US8773779B2 (en) 2008-02-12 2014-07-08 Nikon Corporation Lens system, optical device with lens system, and method of manufacturing lens
US9366854B2 (en) 2013-11-14 2016-06-14 Olympus Corporation Re-imaging optical system
CN108802965A (en) * 2018-01-18 2018-11-13 桂林电子科技大学 High-resolution object space telecentric system based on machine vision
US10983315B2 (en) 2018-02-28 2021-04-20 Canon Kabushiki Kaisha Optical system and imaging apparatus
DE102019104848B4 (en) 2018-02-28 2021-07-15 Canon Kabushiki Kaisha Optical system and image capture device
DE102019009255B3 (en) 2018-02-28 2021-08-19 Canon Kabushiki Kaisha Optical system and image capture device
CN110967810A (en) * 2018-09-28 2020-04-07 富士胶片株式会社 Imaging lens and imaging device
CN109188651A (en) * 2018-09-28 2019-01-11 长春长光瑞实科技有限公司 A kind of refraction type high-resolution optical system of star sensor
CN110967810B (en) * 2018-09-28 2023-01-24 富士胶片株式会社 Imaging lens and imaging device
CN109188651B (en) * 2018-09-28 2023-10-20 长春长光瑞实科技有限公司 Refractive high-resolution star sensor optical system
CN111077641A (en) * 2019-12-04 2020-04-28 瑞声通讯科技(常州)有限公司 Image pickup optical lens
CN111077641B (en) * 2019-12-04 2021-12-24 诚瑞光学(常州)股份有限公司 Image pickup optical lens
WO2021189917A1 (en) * 2020-03-25 2021-09-30 诚瑞光学(深圳)有限公司 Camera lens
WO2023075466A1 (en) * 2021-10-29 2023-05-04 엘지이노텍 주식회사 Optical system and camera module comprising same
CN115047595A (en) * 2022-07-12 2022-09-13 广州长步道光学科技有限公司 Ultraviolet band large-aperture industrial imaging lens

Also Published As

Publication number Publication date
JP4867356B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4867356B2 (en) Telecentric objective lens
US6994668B2 (en) Four-group endoscope objective lens
US7253972B2 (en) Telephoto lens system
US9013811B2 (en) Imaging lens and imaging apparatus using the same
US8199408B2 (en) Immersion microscope objective lens
JPH11142730A (en) Image pickup lens
JP3397439B2 (en) Imaging lens
WO2014054407A1 (en) Endoscope objective optical system
JPH05188289A (en) Rear converter lens
KR20200089235A (en) Photographic objective having at least six lenses
WO2013077139A1 (en) Endoscope objective optical system
JP2740662B2 (en) Objective lens for endoscope
WO2014155821A1 (en) Optical system for endoscope
WO2017216969A1 (en) Bright relay optical system, rigid scope optical system using same, and rigid scope
JP6230518B2 (en) Endoscope objective optical system
JP2007304312A (en) Achromatic lens system
US11199687B2 (en) Dry objective
JPH05341185A (en) Objective optical system for endoscope
JPH0876033A (en) Aspherical eyepiece
JP4337314B2 (en) Fisheye lens
JP5164648B2 (en) Imaging optics
US5815317A (en) Eyepiece with broad visibility
JPH0244042B2 (en)
JPH07253535A (en) Endoscopic objective lens
JPH11316337A (en) Image-formation lens

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250