JP2007192645A - Crack shape identifying method and system - Google Patents

Crack shape identifying method and system Download PDF

Info

Publication number
JP2007192645A
JP2007192645A JP2006010623A JP2006010623A JP2007192645A JP 2007192645 A JP2007192645 A JP 2007192645A JP 2006010623 A JP2006010623 A JP 2006010623A JP 2006010623 A JP2006010623 A JP 2006010623A JP 2007192645 A JP2007192645 A JP 2007192645A
Authority
JP
Japan
Prior art keywords
potential difference
crack
shape
voltage
measurement position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006010623A
Other languages
Japanese (ja)
Inventor
Mikiro Ito
幹郎 伊藤
Masayuki Asano
政之 淺野
Tatsuya Kubo
達也 久保
Masaaki Kikuchi
正明 菊池
Norihiko Tanaka
徳彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006010623A priority Critical patent/JP2007192645A/en
Publication of JP2007192645A publication Critical patent/JP2007192645A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely detect a change of a crack shape even in a case that a crack shows a minute shape change. <P>SOLUTION: In this crack shape identifying method, voltage is applied to the voltage applying position in the vicinity of the cracks of a plurality of preparatory test targets, which have cracks different in shape from each other are formed, in order to identify the shape of the crack of a test target and the potential difference at the potential difference measuring position in the vicinity of the cracks when a current is allowed to flow is evaluated to calculate potential difference standard data (S1 and S2). Next, voltage is applied to the voltage applying position to allow a current to flow to the test target and the potential difference at the potential difference measuring position is measured to determine potential difference actually measured data (S5). The crack shape is determined so that both of the square of the difference between the potential difference actually measured data and the potential difference reference data at the potential difference measuring position and the response of the sum total of them become minimum to identify the crack shape of the test target (S6). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、試験体に形成されたき裂形状の同定方法およびき裂形状同定システムに関する。   The present invention relates to a crack shape identification method and a crack shape identification system formed on a specimen.

原子力プラントの原子炉一次系冷却水に接する原子炉圧力容器炉内構造物や原子炉一次系配管などの構造物においては、高温水に晒されて応力腐食割れ(SCC)が発生する場合がある。このような構造物にSCCなどによるき裂が発生した場合には、その構造健全性を評価するために、き裂の進展寿命を精度良く評価し、寿命予測を行う必要がある。そのために、使用環境を模擬した環境条件下において、破壊力学型試験片や配管形状の試験体を用いてき裂進展特性評価試験を実施し、対象材料のSCCによるき裂進展特性データを採取する。   In structures such as reactor pressure vessel reactor structures and reactor primary system piping that come into contact with nuclear reactor primary system cooling water in nuclear power plants, stress corrosion cracking (SCC) may occur due to exposure to high-temperature water. . When a crack due to SCC or the like occurs in such a structure, it is necessary to accurately evaluate the crack propagation life and perform life prediction in order to evaluate the structural integrity. For this purpose, a crack propagation characteristic evaluation test is performed using a fracture mechanics type test piece or a pipe-shaped specimen under environmental conditions simulating the use environment, and crack propagation characteristic data by SCC of the target material is collected.

このような構造物にき裂が発生、進展する場合には、そのき裂は構造物表面に表面き裂の状態で形成されるため、このような形状のき裂が進展する際の形状変化を精度良く計測する必要がある。   When a crack is generated and propagated in such a structure, the crack is formed in the state of a surface crack on the surface of the structure, so the shape changes when such a crack propagates. Must be measured with high accuracy.

平板状あるいは配管形状の試験体の表面に存在する半楕円状のき裂形状を検出する方法として、電位差法を用いる方法が開示されている。この方法は、き裂の近傍に複数の電位差計測用プローブを設置して計測電位差の分布からき裂形状を計測する方法である(たとえば非特許文献1ないし3参照)。   As a method for detecting a semi-elliptical crack shape existing on the surface of a flat or pipe-shaped specimen, a method using a potentiometric method is disclosed. This method is a method of measuring a crack shape from a distribution of measured potential differences by installing a plurality of potential difference measuring probes in the vicinity of the crack (for example, see Non-Patent Documents 1 to 3).

また、特許文献1には、平板状試験体の表面き裂に対する電位差法によるき裂形状の簡易評価方法に関しては、電位差法による計測電位差から電位差比を求め、別途作成したき裂長さと電位差比の関係を示すマスターカーブとの関係からき裂深さ、き裂の表面長さを決定する方法が開示されている。特許文献2には、深さが一様な場合における、き裂の深さを試料中の電位差によって測定する方法が開示されている。
特開平10−300698号公報 特開2000−111509号公報 林,外3名、「直流ポテンシャル法による表面き裂形状の検出」、材料、1984年、第33巻、第368号、p.602 林、外4名、「直流ポテンシャル法によるステンレス鋼パイプ内面疲労き裂形状の検出」、材料、1986年、第35巻、第395号、p.936 Y.Hashimoto,外4名、"Procedure of Crack Shape Determination by Reversing DC Potential Method"、Nuclear Engineering Design、1992年、138、p.259
In addition, in Patent Document 1, regarding a simple evaluation method of a crack shape by a potential difference method for a surface crack of a flat specimen, a potential difference ratio is obtained from a measured potential difference by a potential difference method, and a separately prepared crack length and potential difference ratio are obtained. A method of determining the crack depth and the surface length of the crack from the relationship with the master curve indicating the relationship is disclosed. Patent Document 2 discloses a method for measuring the depth of a crack by a potential difference in a sample when the depth is uniform.
Japanese Patent Laid-Open No. 10-300698 JP 2000-11509 A Hayashi, et al., “Detection of surface crack shape by DC potential method”, Materials, 1984, Vol. 33, No. 368, p. 602 Hayashi et al., “Detection of Fatigue Crack Shape on Stainless Steel Pipe by DC Potential Method”, Materials, 1986, Vol. 35, No. 395, p. 936 Y. Hashimoto, 4 others, "Procedure of Crack Shape Determination by Reversing DC Potential Method", Nuclear Engineering Design, 1992, 138, p. 259

構造物表面に発生するSCCによるき裂は一般的に半楕円形状であり、また、SCCによる進展は、疲労などとは異なり、き裂の進展量が小さい場合が多い。従来技術では、試験体表面の半楕円状のき裂が板厚方向に同様な形状で大きく変化していく状態に対する電位差法によるき裂形状検出方法は示されているものの、SCC進展のような微小な形状変化を精度良く計測する手段、方法については知られていない。   Cracks due to SCC generated on the surface of the structure are generally semi-elliptical, and the progress due to SCC is often small, unlike fatigue. Although the prior art shows a crack shape detection method by a potential difference method for a state in which a semi-elliptical crack on the surface of a specimen changes greatly in a similar shape in the plate thickness direction, No means or method for accurately measuring a minute shape change is known.

本発明は、上記課題を解決するためになされたものであり、き裂が微小な形状変化を示すような場合でも、き裂形状変化を精度良く検出できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to detect a crack shape change with high accuracy even when the crack shows a minute shape change.

上記課題を解決するため、本発明は、試験体のき裂の形状を同定するき裂形状同定方法において、互いに形状が異なるき裂が形成された複数の予備試験体のき裂近傍の電圧印加位置に電圧を印加して電流を流したときのき裂の近傍の複数の電位差測定位置における電位差を評価して電位差基準データを求める電位差評価予備工程と、前記電圧印加位置に電圧を印加して前記試験体に電流を流し、前記電位差測定位置における電位差を測定して電位差実測データを求める電位差測定工程と、き裂形状の変化に関する、各前記電位差測定位置における前記電位差実測データと前記電位差基準データとの、差の二乗およびそれらの総和の応答が、いずれも最小になるようなき裂形状を求めることにより、前記試験体の前記き裂の形状を同定する同定工程と、を有することを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a crack shape identification method for identifying the shape of a crack in a specimen, and voltage application in the vicinity of a crack in a plurality of preliminary specimens in which cracks having different shapes are formed. A potential difference evaluation preliminary step for evaluating potential differences at a plurality of potential difference measurement positions in the vicinity of the crack when a voltage is applied to the position and flowing a current to obtain potential difference reference data; and a voltage is applied to the voltage application position. A potential difference measurement step for obtaining a potential difference actual measurement data by passing a current through the test body and measuring a potential difference at the potential difference measurement position, and the potential difference actual measurement data and the potential difference reference data at each potential difference measurement position regarding a change in crack shape. To identify the crack shape of the specimen by determining the crack shape that minimizes both the square of the difference and the response of the sum of them. And having a degree, the.

また、本発明は、試験体のき裂の形状を同定するき裂形状同定システムにおいて、電源と、前記電源に接続された一対の電流印加プローブと、電位差計と、前記電位差計に接続された複数対の電位差測定プローブと、互いに形状が異なるき裂が形成された複数の予備試験体のき裂近傍の電圧印加位置に電圧を印加して電流を流したときのき裂の近傍の複数の電位差測定位置における電位差を評価して求めた電位差基準データ、および、前記電圧印加位置に電圧を印加して前記試験体に電流を流し、前記電位差測定位置における電位差を測定して求めた電位差実測データを受け取り、き裂形状の変化に関する、各前記電位差測定位置における前記電位差実測データと前記電位差基準データとの、差の二乗およびそれらの総和の応答が、いずれも最小になるようなき裂形状を求めることにより、前記試験体の前記き裂の形状を同定するデータ収集・制御装置と、を有することを特徴とする。   The present invention also relates to a crack shape identification system for identifying the shape of a crack in a specimen, wherein the power source, a pair of current application probes connected to the power source, a potentiometer, and the potentiometer are connected. Plural pairs of potentiometric probes and a plurality of proximate cracks when a current is applied to a voltage application position near the cracks of a plurality of preliminary test specimens formed with cracks having different shapes. Potential difference reference data obtained by evaluating a potential difference at a potential difference measurement position, and potential difference actual measurement data obtained by applying a voltage to the voltage application position to cause a current to flow through the specimen and measuring the potential difference at the potential difference measurement position. The difference squared and the total sum response of the potential difference measurement data and the potential difference reference data at each potential difference measurement position with respect to the crack shape change By determining the so defunct 裂形 shape having a small, and having a data acquisition and control device for identifying the shape of the crack of the specimen.

本発明によれば、き裂が微小な形状変化を示すような場合でも、き裂形状変化を精度良く検出することができる。   According to the present invention, it is possible to accurately detect a crack shape change even when the crack shows a minute shape change.

本発明に係るき裂形状同定方法の実施形態を、図面を参照して説明する。なお、同一または類似の構成には同一の符号を付し、重複する説明は省略する。   An embodiment of a crack shape identification method according to the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or similar structure, and the overlapping description is abbreviate | omitted.

[実施形態1]
図3は、本発明に係る実施形態1のき裂形状同定システムのブロック図である。
[Embodiment 1]
FIG. 3 is a block diagram of the crack shape identification system according to the first embodiment of the present invention.

き裂形状同定システム9は、電位差計10、直流電源11、電流交番用スイッチ12およびデータ収集・制御装置13を有している。電位差計10、直流電源11および電流交番用スイッチ12は、それぞれデータ収集・制御装置13に接続されている。   The crack shape identification system 9 includes a potentiometer 10, a DC power supply 11, a current alternating switch 12, and a data collection / control device 13. The potentiometer 10, the DC power supply 11, and the current alternating switch 12 are each connected to a data collection / control device 13.

直流電源11には電流印加プローブ16が電流印加線17を介して接続されている。直流電源11には、電流交番用スイッチ12が接続されていて、電流印加プローブ16に流す直流電流が交番できるようになっている。   A current application probe 16 is connected to the DC power source 11 via a current application line 17. The DC power supply 11 is connected to a current alternation switch 12 so that a DC current flowing through the current application probe 16 can be alternated.

電位差計11には、電位差計測用プローブ14が電位差計測線15を介して接続されている。電位差計測用プローブ14の間の電位差は電位差計10を介して、データ収集・制御装置13に伝達されるようになっている。   A potentiometer 11 is connected to the potentiometer 11 via a potential difference measuring line 15. The potential difference between the potential difference measuring probes 14 is transmitted to the data collection / control device 13 via the potentiometer 10.

図4は、本発明に係る実施形態1のき裂形状同定システムの電流印加プローブおよび電位差計測用プローブを試験体への取り付け方法の詳細を示す図であって、(a)は試験体の表面図、(b)は試験体の断面図である。   FIG. 4 is a diagram showing details of a method of attaching the current application probe and the potential difference measurement probe of the crack shape identification system according to the first embodiment of the present invention to a test specimen, wherein (a) shows the surface of the test specimen. FIG. 2B is a cross-sectional view of the specimen.

本実施形態では、試験体8の表面に形成された同定対象のき裂7の近傍の電位差測定位置にA、A、A、A、A1’、A2’、A3’の7対の電位差計測プローブ14を設置している。なお、電位差測定位置をi(i=3,2,1,0,1’,2’,3’)と表すこととする。それぞれ対となる電位差計測プローブ14は、図4(b)で斜線で示すき裂7を挟むように試験体8の表面に図4(a)に示すように取り付けられる。電位差計測用プローブ14は、たとえばスポット溶接により試験体8の表面に取り付けられる。また、電位差計測プローブ14を挟む電圧印加位置に一対の電流印加プローブ16の対が設けられている。電流印加プローブ16は、たとえばスポット溶接により試験体8の表面に取り付けられる。 In the present embodiment, A 3 , A 2 , A 1 , A 0 , A 1 ′ , A 2 ′ , A 3 ′ are positioned at the potential difference measurement position in the vicinity of the crack 7 to be identified formed on the surface of the specimen 8. 7 pairs of potential difference measuring probes 14 are installed. The potential difference measurement position is represented as i (i = 3, 2, 1, 0, 1 ′, 2 ′, 3 ′). Each pair of potential difference measuring probes 14 is attached to the surface of the test body 8 as shown in FIG. 4A so as to sandwich the crack 7 indicated by the oblique lines in FIG. The potential difference measuring probe 14 is attached to the surface of the specimen 8 by spot welding, for example. A pair of current application probes 16 is provided at a voltage application position across the potential difference measurement probe 14. The current application probe 16 is attached to the surface of the specimen 8 by spot welding, for example.

なお、電位差計測プローブ14の対の数は7に限定されるものではなく、き裂の大きさや目標とするき裂の分解能などに応じて任意に設定することができる。   The number of pairs of potential difference measuring probes 14 is not limited to seven, and can be arbitrarily set according to the size of the crack, the target crack resolution, and the like.

次に、このき裂形状同定システム9を用いたき裂計測方法について説明する。   Next, a crack measurement method using this crack shape identification system 9 will be described.

図1は、本発明に係る電位差法によるき裂形状同定方法の手順を示すフロー図である。   FIG. 1 is a flowchart showing a procedure of a crack shape identification method by a potential difference method according to the present invention.

計測手順は、前段のデータベース作成部分Aと、後段のき裂形状同定部分Bの2つの部分に分けられる。校正式の決定部分Aは、工程S1から工程S4に分けられ、き裂形状同定部分Bは、工程S5および工程S6に分けられる。   The measurement procedure is divided into two parts: a database creation part A at the front stage and a crack shape identification part B at the rear stage. The determination part A of the calibration formula is divided into steps S1 to S4, and the crack shape identification portion B is divided into steps S5 and S6.

データベース作成部分Aでは、き裂近傍の複数の電位差計測用プローブ14間で、様々なき裂形状に対応した電位差分布を求め、き裂形状と電位差に関する電位差分布基準データベースを作成する。   In the database creation part A, potential difference distributions corresponding to various crack shapes are obtained between a plurality of potential difference measuring probes 14 in the vicinity of the crack, and a potential difference distribution reference database relating to crack shapes and potential differences is created.

き裂近傍の複数の電位差計測用プローブ14間でき裂7の形状が変化した場合の電位差の変化を評価する工程を電位差評価予備工程と呼ぶ。この工程は工程S1および工程S2に分けることができる。   A step of evaluating a change in potential difference when the shape of the crack 7 changes between a plurality of potential difference measurement probes 14 in the vicinity of the crack is referred to as a potential difference evaluation preliminary step. This process can be divided into process S1 and process S2.

図2は、き裂が形成された試験体の断面図である。   FIG. 2 is a cross-sectional view of a test body in which a crack is formed.

工程S1では、図2に示すような、き裂深さa、き裂長さ2cの異なる複数の組み合わせの形状を有する表面き裂の形状を設定する。   In step S1, the shape of a surface crack having a plurality of combinations of different crack depths a and crack lengths 2c as shown in FIG. 2 is set.

工程S2では、工程S1で設定したき裂形状を有する複数の試験体8(予備試験体)を用い、電圧印加位置に電圧を印加して電流を流したときのき裂7近傍の電位差測定位置における電位差を評価する。まず、試験体8に一対の電流印加プローブ16を、き裂7を挟む電圧印加位置に取り付ける。また、試験体8に、7対の電位差計測プローブ14を、き裂7を挟む電位差測定位置に取り付ける。その後、電流印加プローブ16の間に電圧を印加して、試験体8に電流を流し、電位差計測プローブ14によって、電位差法により電位差測定位置における電位差を計測する。ここで、測定された電位差測定位置i(i=3,2,1,0,1’,2’,3’)での電位差をVとする。 In step S2, a plurality of test bodies 8 (preliminary test bodies) having the crack shape set in step S1 are used, and a potential difference measurement position in the vicinity of the crack 7 when a voltage is applied to the voltage application position and a current flows. The potential difference at is evaluated. First, a pair of current application probes 16 is attached to the test body 8 at a voltage application position that sandwiches the crack 7. Further, seven pairs of potential difference measurement probes 14 are attached to the test body 8 at potential difference measurement positions that sandwich the crack 7. Thereafter, a voltage is applied between the current application probes 16 to cause a current to flow through the specimen 8, and the potential difference measurement probe 14 measures the potential difference at the potential difference measurement position by the potential difference method. Here, the measured potential difference at the potential difference measurement position i (i = 3, 2, 1, 0, 1 ′, 2 ′, 3 ′) is V i .

電位差法としては一般に、直流法と交流法の2種類の手法が知られており、いずれの手法も採用することができる。ここでは、交番型の直流電位差法による計測システム9を用いている。   As the potential difference method, generally two types of methods, a direct current method and an alternating current method, are known, and either method can be adopted. Here, a measurement system 9 using an alternating DC potential difference method is used.

工程S3では、規格化するための固定値となる基準電位差を計測する。この工程を基準電位差評価予備工程と呼ぶ。   In step S3, a reference potential difference that is a fixed value for normalization is measured. This process is referred to as a reference potential difference evaluation preliminary process.

図5は、本発明に係る実施形態1のき裂形状同定システムの電流印加プローブおよび電位差計測用プローブを、基準電位差を計測するために試験体へ取り付ける方法の詳細を示す図であって、(a)は試験体の表面図、(b)は試験体の断面図である。   FIG. 5 is a diagram showing details of a method of attaching the current application probe and the potential difference measurement probe of the crack shape identification system according to the first embodiment of the present invention to a test specimen in order to measure a reference potential difference. a) is a surface view of the specimen, and (b) is a cross-sectional view of the specimen.

工程S2とは異なり、き裂が無い試験体8または試験体8のき裂の影響が無視できる場所に、電流印加プローブ16および電位差計測プローブ14をそれぞれ取り付ける。このとき、電流印加プローブ16および電位差計測プローブ14を取り付ける基準電圧印加位置および基準電位差測定位置は、工程S2における電圧印加位置および電位差測定位置と同一の配置とする。電位差測定位置をi(i=3,2,1,0,1’,2’,3’)に対応する基準電位差測定位置をir(i=3,2,1,0,1’,2’,3’)と表し、電位差測定位置に取り付けられた電位差計測プローブA、A、A、A、A1’、A2’、A3’に対応する、基準電位差測定位置に取り付けられた電位差計測プローブ14を、それぞれAr3、Ar2、Ar1、Ar0、Ar1’、Ar2’、Ar3’と呼ぶ。測定された基準電位差測定位置ir(i=3,2,1,0,1’,2’,3’)での電位差をVirとする。 Unlike the step S2, the current application probe 16 and the potential difference measurement probe 14 are respectively attached to the specimen 8 having no crack or the place where the influence of the crack of the specimen 8 can be ignored. At this time, the reference voltage application position and the reference potential difference measurement position to which the current application probe 16 and the potential difference measurement probe 14 are attached are the same as the voltage application position and the potential difference measurement position in step S2. The reference potential difference measurement position corresponding to i (i = 3, 2, 1, 0, 1 ′, 2 ′, 3 ′) is ir (i = 3, 2, 1, 0, 1 ′, 2 ′). , 3 ′) and attached to the reference potential difference measurement position corresponding to the potential difference measurement probe A 3 , A 2 , A 1 , A 0 , A 1 ′ , A 2 ′ , A 3 ′ attached to the potential difference measurement position. The obtained potential difference measurement probes 14 are referred to as A r3 , A r2 , A r1 , A r0 , A r1 ′ , A r2 ′ , and A r3 ′ , respectively. The potential difference at the measured reference potential difference measurement position ir (i = 3, 2, 1, 0, 1 ′, 2 ′, 3 ′) is defined as V ir .

図6は、き裂近傍の電位差Vと基準電位差Virの特性例を示すグラフである。 FIG. 6 is a graph showing a characteristic example of the potential difference V i near the crack and the reference potential difference V ir .

なお、工程S2および工程S3において、試験体8を用いて実際に電位差法によって計測する代わりに、有限要素法などを用いた電位分布解析を行うことにより、電位差測定位置の電位差を求めてもよい。   In step S2 and step S3, the potential difference at the potential difference measurement position may be obtained by performing a potential distribution analysis using a finite element method or the like instead of actually measuring the specimen 8 by the potential difference method. .

工程S4では、工程S2において計測あるいは解析により求めた各電位差測定位置の電位差値を、工程S3で求めた固定値で除する。すなわち、電位差測定位置i(i=3,2,1,0,1’,2’,3’)での電位差Vを、それぞれに対応する基準電位差測定位置ir(i=3,2,1,0,1’,2’,3’)における、き裂の無い部分の基準電位差Virで除する。これにより電位差測定位置iにおける規格化電位差(電位差分布基準データ)V/Virを求め、き裂深さa、き裂長さcの様々な組み合わせのき裂形状についての電位差分布基準データベースを作成する。この工程をデータベース作成工程と呼ぶ。 In step S4, the potential difference value at each potential difference measurement position obtained by measurement or analysis in step S2 is divided by the fixed value obtained in step S3. That is, the potential difference V i at the potential difference measurement position i (i = 3, 2, 1, 0, 1 ′, 2 ′, 3 ′) is converted into the corresponding reference potential difference measurement position ir (i = 3, 2, 1). , 0, 1 ′, 2 ′, 3 ′) is divided by the reference potential difference V ir of the crack-free portion. As a result, the normalized potential difference (potential difference distribution reference data) V i / V ir at the potential difference measurement position i is obtained, and a potential difference distribution reference database is created for crack shapes of various combinations of crack depth a and crack length c. To do. This process is called a database creation process.

き裂形状同定部分Bでは、まず、対象とする試験体において電位差法による計測を行う。この工程を電位差測定工程(工程S5)と呼ぶ。次に、応答曲面法によりき裂形状を決定する。この工程を、同定工程(工程S6)と呼ぶ。   In the crack shape identification portion B, first, measurement by the potential difference method is performed on the target specimen. This step is referred to as a potential difference measurement step (step S5). Next, the crack shape is determined by the response surface method. This process is called an identification process (process S6).

工程S5では、まず、工程S2と同様に、電圧印加位置に電圧を印加して電流を流したときのき裂7近傍の電位差測定位置における電位差を評価する。このとき、電流印加プローブ16および電位差計測プローブ14を取り付ける電圧印加位置および電位差測定位置は、工程S2における電圧印加位置および電位差測定位置と同一の配置とする。まず、試験体8に一対の電流印加プローブ16を、き裂7を挟む電圧印加位置に取り付ける。また、試験体8に、7対の電位差計測プローブ14を、き裂7を挟む電位差測定位置に取り付ける。その後、電流印加プローブ16の間に電圧を印加して、試験体8に電流を流し、電位差計測プローブ14によって、電位差法により電位差測定位置iにおける電位差Pを計測する。 In step S5, first, as in step S2, the potential difference at the potential difference measurement position in the vicinity of the crack 7 when a voltage is applied to the voltage application position and a current flows is evaluated. At this time, the voltage application position and the potential difference measurement position to which the current application probe 16 and the potential difference measurement probe 14 are attached are the same as the voltage application position and the potential difference measurement position in step S2. First, a pair of current application probes 16 is attached to the test body 8 at a voltage application position that sandwiches the crack 7. Further, seven pairs of potential difference measurement probes 14 are attached to the test body 8 at potential difference measurement positions that sandwich the crack 7. Then, a voltage is applied between the current application probe 16, a current flows to the specimen 8, the potential difference measuring probe 14 to measure the potential difference P i in potentiometric measurement position i by potentiometry.

また、工程S3と同様に、き裂が無い試験体8または試験体8のき裂の影響が無視できる場所に、電流印加プローブ16および電位差計測プローブ14をそれぞれ取り付ける。このとき、電流印加プローブ16および電位差計測プローブ14を取り付ける基準電圧印加位置および基準電位差測定位置は、工程S5における電圧印加位置および電位差測定位置と同一の配置とする。その後、電流印加プローブ16の間に電圧を印加して、試験体8に電流を流し、電位差計測プローブ14によって、基準電位差測定位置irにおける電位差Pirを計測する。 Similarly to the step S3, the current application probe 16 and the potential difference measurement probe 14 are respectively attached to the test body 8 having no crack or the place where the influence of the crack of the test body 8 can be ignored. At this time, the reference voltage application position and the reference potential difference measurement position to which the current application probe 16 and the potential difference measurement probe 14 are attached are the same as the voltage application position and the potential difference measurement position in step S5. Thereafter, a voltage is applied between the current application probes 16 to pass a current through the test body 8, and the potential difference P ir at the reference potential difference measurement position ir is measured by the potential difference measurement probe 14.

さらに、各電位差測定位置の電位差Pを、各基準電位差測定位置の電位差Pirで除して、規格化した電位差分布実測データP/Pirを作成する。 Further, the potential difference P i at each potential difference measurement position is divided by the potential difference P ir at each reference potential difference measurement position to create normalized potential difference distribution measurement data P i / P ir .

工程S6では、各電位差測定位置(i)について、電位差分布実測データと電位差分布基準データとの差の二乗(P/Pir−V/Virの応答曲面と、全電位差測定位置についての、電位差分布実測データと電位差分布基準データとの差の二乗和Σ(P/Pir−V/Virの応答曲面を求める。これらの応答曲面を用いて、いずれの電位差測定位置における応答も最小になるように、あるいは、それぞれの電位差測定位置におけるこれらの差および差の二乗和の応答も最小となるようなき裂形状(き裂深さaおよびき裂長さ2c、あるいはa/c)を同定する。 In step S6, for each potential difference measurement position (i), the response surface of the square (P i / P ir −V i / V ir ) 2 of the difference between the potential difference actual measurement data and the potential difference distribution reference data, and the total potential difference measurement position A response surface of the sum of squares Σ (P i / P ir −V i / V ir ) 2 of the difference between the potential difference distribution actual measurement data and the potential difference distribution reference data is obtained. These response surfaces are used to minimize the response at any potential difference measurement position, or to minimize the response of these differences and the sum of squares of the differences at each potential difference measurement position. Identify crack depth a and crack length 2c, or a / c).

なお、工程S6を同定工程と呼ぶ。   In addition, process S6 is called an identification process.

き裂を有する平板状あるいは配管形状の試験体8のき裂進展評価試験に、この方法を適用する場合には、試験の進行に伴い、定期的あるいは任意の時間の経過ごとに、き裂同定部分Bの工程S5および工程S6を繰り返し実行する。このようにして、電位差法による計測結果からき裂形状の決定を行うことにより、き裂形状の経時変化を計測することが可能となる。   When this method is applied to a crack growth evaluation test of a flat or pipe-shaped specimen 8 having a crack, crack identification is performed periodically or at any time as the test progresses. The process S5 and the process S6 of the part B are repeatedly executed. In this way, by determining the crack shape from the measurement result by the potential difference method, it is possible to measure the temporal change of the crack shape.

なお、本実施形態では、電位差は基準電位差で除することにより規格化しているが、測定または評価した電位差そのものを用いてもよい。   In the present embodiment, the potential difference is normalized by dividing by the reference potential difference, but the measured or evaluated potential difference itself may be used.

[実施形態2]
本実施形態は、配管状試験体の内面に存在するき裂を、外面側から計測したり、平板状の試験体に存在するき裂をき裂の開口する表面の反対面から計測する場合のものである。
[Embodiment 2]
In this embodiment, the crack existing on the inner surface of the pipe-shaped specimen is measured from the outer surface side, or the crack present in the flat specimen is measured from the opposite surface of the surface where the crack opens. Is.

図7は、本発明に係る実施形態2のき裂形状同定システムの電流印加プローブおよび電位差計測用プローブを試験体への取り付け位置を示す図であって、(a)は試験体の表面図、(b)は試験体の断面図である。   FIG. 7 is a view showing a position where the current application probe and the potential difference measurement probe of the crack shape identification system according to the second embodiment of the present invention are attached to a test body, (a) is a surface view of the test body, (B) is sectional drawing of a test body.

、A、A、A、A1’、A2’、A3’の7対の電位差計測プローブ14および一対の電流印加プローブ16は、図7(b)で斜線で示すき裂7の反対面に、図7(a)で示すようにき裂の投影位置7Bを挟むように設置されている。このような状況で、実施形態1と同様に電位差法による計測を行うことにより、き裂形状の同定ができる。 Seven pairs of potential difference measurement probes 14 and a pair of current application probes 16 of A 3 , A 2 , A 1 , A 0 , A 1 ′ , A 2 ′ , A 3 ′ are shown by diagonal lines in FIG. On the opposite surface of the crack 7, as shown in FIG. 7 (a), the crack projection position 7B is interposed. In such a situation, the crack shape can be identified by performing measurement by the potential difference method as in the first embodiment.

なお、実施形態1と同様に、電流印加プローブ16は、き裂7が開口する表面に取り付けてもよい。また、電位差計測プローブ14は、き裂7が開口する表面に取り付けてもよい。   As in the first embodiment, the current application probe 16 may be attached to the surface where the crack 7 opens. The potential difference measurement probe 14 may be attached to the surface where the crack 7 opens.

[実施形態3]
本実施形態は、実施形態1の電位差計測プローブ14を8対とし、そのうちの1つを参照用電位差計測プローブ20としたものである。
[Embodiment 3]
In this embodiment, eight pairs of the potential difference measuring probes 14 of the first embodiment are used, and one of them is a reference potential difference measuring probe 20.

図8は、本発明に係る実施形態3のき裂形状同定システムの電流印加プローブおよび電位差計測用プローブを試験体への取り付け位置を示す図であって、(a)は試験体の表面図、(b)は試験体の断面図である。   FIG. 8 is a diagram showing a position where the current application probe and the potential difference measurement probe of the crack shape identification system according to the third embodiment of the present invention are attached to a test body, (a) is a surface view of the test body, (B) is sectional drawing of a test body.

参照用電位差計測プローブ20は、図7(b)で斜線で示すき裂7の形状の変化によって電位差が生じない、き裂7から離れた参照電位測定位置に取り付けられる。この参照用電位差計測プローブ20の位置において測定される電位差は、き裂7の形状の変化に応答しないが、温度の変動等の外的要因に応答する。したがって、電位差計測プローブ14における計測電位差がき裂形状変化以外の外的要因の影響を受ける場合には、参照用電位差計測プローブによる計測電位差の変化で補償することにより、より精度の高い計測、すなわち、より精度の高いき裂形状の決定が可能となる。   The reference potential difference measurement probe 20 is attached to a reference potential measurement position away from the crack 7 where a potential difference does not occur due to a change in the shape of the crack 7 indicated by hatching in FIG. The potential difference measured at the position of the reference potential difference measuring probe 20 does not respond to a change in the shape of the crack 7, but responds to external factors such as temperature fluctuations. Therefore, when the measurement potential difference in the potential difference measurement probe 14 is affected by external factors other than the crack shape change, more accurate measurement, that is, by compensating for the change in the measurement potential difference by the reference potential difference measurement probe, that is, It is possible to determine the crack shape with higher accuracy.

なお、以上の説明は単なる例示であり、本発明は上述の各実施形態の各々を、精度の向上を図るために組み合わせて実施することができる。   The above description is merely an example, and the present invention can be implemented by combining each of the above-described embodiments in order to improve accuracy.

本発明に係る実施形態1の電位差法によるき裂形状同定方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the crack shape identification method by the potential difference method of Embodiment 1 which concerns on this invention. き裂が形成された試験体の断面図である。It is sectional drawing of the test body in which the crack was formed. 本発明に係る実施形態1のき裂形状同定システムのブロック図である。It is a block diagram of the crack shape identification system of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1のき裂形状同定システムの電圧印加位置および電位差測定位置を示す図であって、(a)は試験体の表面図、(b)は試験体の断面図である。It is a figure which shows the voltage application position and potential difference measurement position of the crack shape identification system of Embodiment 1 which concerns on this invention, Comprising: (a) is a surface view of a test body, (b) is sectional drawing of a test body. 本発明に係る実施形態1のき裂形状同定システムの基準電圧印加位置および基準電位差測定位置を示す図であって、(a)は試験体の表面図、(b)は試験体の断面図である。It is a figure which shows the reference voltage application position and reference potential difference measurement position of the crack shape identification system of Embodiment 1 which concerns on this invention, Comprising: (a) is a surface figure of a test body, (b) is sectional drawing of a test body. is there. き裂近傍の電位差と基準電位差の例を示すグラフである。It is a graph which shows the example of the potential difference near a crack, and a reference potential difference. 本発明に係る実施形態2のき裂形状同定システムの電圧印加位置および電位差測定位置を示す図であって、(a)は試験体の表面図、(b)は試験体の断面図である。It is a figure which shows the voltage application position and potential difference measurement position of the crack shape identification system of Embodiment 2 which concerns on this invention, Comprising: (a) is a surface figure of a test body, (b) is sectional drawing of a test body. 本発明に係る実施形態3のき裂形状同定システムの電圧印加位置および電位差測定位置を示す図であって、(a)は試験体の表面図、(b)は試験体の断面図である。It is a figure which shows the voltage application position and potential difference measurement position of the crack shape identification system of Embodiment 3 which concerns on this invention, Comprising: (a) is a surface figure of a test body, (b) is sectional drawing of a test body.

符号の説明Explanation of symbols

7…き裂、7B…き裂の投影位置、8…試験体、9…き裂形状同定システム、10…電位差計、11…直流電源、12…電流交番用スイッチ、13・・・データ収集・制御装置、14…電位差計測用プローブ、15…電位差計測線、16…電流印加プローブ、17…電流印加線、20…参照用電位差計測プローブ   DESCRIPTION OF SYMBOLS 7 ... Crack, 7B ... Projection position of crack, 8 ... Specimen, 9 ... Crack shape identification system, 10 ... Potentiometer, 11 ... DC power supply, 12 ... Switch for alternating current, 13 ... Data collection Control device, 14 ... potential difference measurement probe, 15 ... potential difference measurement line, 16 ... current application probe, 17 ... current application line, 20 ... reference potential difference measurement probe

Claims (10)

試験体のき裂の形状を同定するき裂形状同定方法において、
互いに形状が異なるき裂が形成された複数の予備試験体のき裂近傍の電圧印加位置に電圧を印加して電流を流したときのき裂の近傍の複数の電位差測定位置における電位差を評価して電位差基準データを求める電位差評価予備工程と、
前記電圧印加位置に電圧を印加して前記試験体に電流を流し、前記電位差測定位置における電位差を測定して電位差実測データを求める電位差測定工程と、
き裂形状の変化に関する、各前記電位差測定位置における前記電位差実測データと前記電位差基準データとの、差の二乗およびそれらの総和の応答が、いずれも最小になるようなき裂形状を求めることにより、前記試験体の前記き裂の形状を同定する同定工程と、
を有することを特徴とするき裂形状同定方法。
In the crack shape identification method for identifying the shape of the crack in the test specimen,
Evaluate the potential difference at multiple potential difference measurement positions in the vicinity of the crack when a voltage is applied to the voltage application position in the vicinity of the crack of multiple preliminary test specimens with cracks of different shapes. Potential difference evaluation preliminary process for obtaining potential difference reference data,
A potential difference measuring step of applying a voltage to the voltage application position to cause a current to flow through the specimen, measuring a potential difference at the potential difference measurement position, and obtaining potential difference actual measurement data;
By obtaining a crack shape that minimizes the square of the difference between the potential difference actual measurement data and the potential difference reference data at each potential difference measurement position and the sum of their responses regarding the change in the crack shape, An identification step for identifying the shape of the crack of the specimen;
A crack shape identification method characterized by comprising:
前記電位差評価予備工程は、前記試験体のき裂の影響が無視できる場所で、前記電位差評価工程と同一に配置された前記電圧印加位置および前記電位差測定位置に対して、電圧を印加して電流を流したときの基準電位差を評価し、この基準電位差で前記電位差測定位置における電位差を除して電位差実測データを求めるものである、
ことを特徴とする請求項1記載のき裂形状同定方法。
In the potential difference evaluation preliminary step, a current is applied by applying a voltage to the voltage application position and the potential difference measurement position arranged in the same manner as the potential difference evaluation step in a place where the influence of the crack of the specimen can be ignored. The potential difference measurement data is obtained by dividing the potential difference at the potential difference measurement position by the reference potential difference.
The crack shape identification method according to claim 1.
前記電位差評価予備工程は、前記電位差測定位置における電位差を電位分布解析により評価するものであることを特徴とする請求項1記載のき裂形状同定方法。   The crack shape identification method according to claim 1, wherein the potential difference evaluation preliminary step evaluates a potential difference at the potential difference measurement position by potential distribution analysis. 前記電位差評価予備工程は、模擬き裂が形成された予備試験体に電流を流し、前記電位差測定位置における電位差を測定するものであることを特徴とする請求項1記載のき裂形状同定方法。   2. The crack shape identification method according to claim 1, wherein in the potential difference evaluation preliminary step, a current is passed through a preliminary test body in which a simulated crack is formed, and the potential difference at the potential difference measurement position is measured. 前記電圧印加位置は、前記試験体の前記き裂が開口する表面と同一表面およびその反対面の少なくとも一方に位置することを特徴とする請求項1ないし請求項4のいずれか記載のき裂形状同定方法。   5. The crack shape according to claim 1, wherein the voltage application position is located on at least one of the same surface as the surface where the crack opens of the specimen and the opposite surface thereof. 6. Identification method. 前記電位差測定位置は、前記試験体の前記き裂が開口する表面と同一表面およびその反対面の少なくとも一方に位置することを特徴とする請求項1ないし請求項5のいずれか記載のき裂形状同定方法。   The crack shape according to any one of claims 1 to 5, wherein the potential difference measurement position is located on at least one of the same surface as the surface where the crack opens of the test body and the opposite surface thereof. Identification method. 前記電圧印加位置は、前記き裂を挟むように位置することを特徴とする請求項1ないし請求項6のいずれか記載のき裂形状同定方法。   The crack shape identification method according to any one of claims 1 to 6, wherein the voltage application position is located so as to sandwich the crack. 前記電位差測定位置は、前記き裂を挟むように位置していることを特徴とする請求項1ないし請求項7のいずれか記載のき裂形状同定方法。   The crack shape identification method according to claim 1, wherein the potential difference measurement position is located so as to sandwich the crack. 前記電圧印加位置に電圧を印加して前記試験体に電流を流し、前記き裂形状の違いによる電位差の変化が無視できる参照電位測定位置おける電位差を測定する参照電位測定工程と、
前記同定工程で同定された前記き裂の形状を、前記参照電位測定位置における電位差に基づいて、補正する補正工程と、
を有することを特徴とする請求項1ないし請求項8のいずれか記載のき裂形状同定方法。
A reference potential measurement step of applying a voltage to the voltage application position to cause a current to flow through the specimen and measuring a potential difference at a reference potential measurement position where a change in potential difference due to a difference in crack shape can be ignored;
A correction step of correcting the shape of the crack identified in the identification step based on a potential difference at the reference potential measurement position;
The crack shape identification method according to claim 1, comprising:
試験体のき裂の形状を同定するき裂形状同定システムにおいて、
電源と、
前記電源に接続された一対の電流印加プローブと、
電位差計と、
前記電位差計に接続された複数対の電位差測定プローブと、
互いに形状が異なるき裂が形成された複数の予備試験体のき裂近傍の電圧印加位置に電圧を印加して電流を流したときのき裂の近傍の複数の電位差測定位置における電位差を評価して求めた電位差基準データ、および、前記電圧印加位置に電圧を印加して前記試験体に電流を流し、前記電位差測定位置における電位差を測定して求めた電位差実測データを受け取り、き裂形状の変化に関する、各前記電位差測定位置における前記電位差実測データと前記電位差基準データとの、差の二乗およびそれらの総和の応答が、いずれも最小になるようなき裂形状を求めることにより、前記試験体の前記き裂の形状を同定するデータ収集・制御装置と、
を有することを特徴とするき裂形状同定システム。
In the crack shape identification system that identifies the shape of the crack in the specimen,
Power supply,
A pair of current application probes connected to the power source;
A potentiometer;
A plurality of pairs of potentiometric probes connected to the potentiometer;
Evaluate the potential difference at multiple potential difference measurement positions in the vicinity of the crack when a voltage is applied to the voltage application position in the vicinity of the crack of multiple preliminary test specimens with cracks of different shapes. The potential difference reference data obtained in this way and the potential difference actual measurement data obtained by applying a voltage to the voltage application position and passing a current through the test body and measuring the potential difference at the potential difference measurement position are received, and the crack shape changes. By obtaining a crack shape that minimizes the square of the difference between the measured potential difference data and the potential difference reference data at each potential difference measurement position and the sum of their responses, the A data collection and control device that identifies the shape of the crack;
The crack shape identification system characterized by having.
JP2006010623A 2006-01-19 2006-01-19 Crack shape identifying method and system Withdrawn JP2007192645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010623A JP2007192645A (en) 2006-01-19 2006-01-19 Crack shape identifying method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010623A JP2007192645A (en) 2006-01-19 2006-01-19 Crack shape identifying method and system

Publications (1)

Publication Number Publication Date
JP2007192645A true JP2007192645A (en) 2007-08-02

Family

ID=38448469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010623A Withdrawn JP2007192645A (en) 2006-01-19 2006-01-19 Crack shape identifying method and system

Country Status (1)

Country Link
JP (1) JP2007192645A (en)

Similar Documents

Publication Publication Date Title
Beghini et al. A procedure for evaluating high residual stresses using the blind hole drilling method, including the effect of plasticity
JP2005518534A (en) Measuring the surface profile of an object
CN101109728A (en) Method for monitoring ferromagnetic material fatigue crack expansion by variated magnetic signal
WO2016051558A1 (en) Remaining life estimation method for estimating remaining life of high-chromium steel pipe
JP5050873B2 (en) Remaining life evaluation method for machine parts
US6933718B2 (en) Quantification method and system for corrosion and damage assessment
Weeks et al. Direct comparison of single-specimen clamped SE (T) test methods on X100 line pipe steel
JP2013019841A (en) Defect evaluation method for structure
JP5535296B2 (en) Test piece for eddy current testing, eddy current testing method using the same, and manufacturing method thereof
Weeks et al. Comparison of J-integral from single specimen SE (T) tests on API-5L X100 line pipe steel
Merah Detecting and measuring flaws using electric potential techniques
CN111656182A (en) Method for inspecting plant equipment
KR20070088016A (en) Monitoring method for crack growth in real steel structure and estimation method for residual life of real steel structure
KR20210059924A (en) Measuring system and method of metal material property
JP2007192645A (en) Crack shape identifying method and system
JP3825378B2 (en) Life evaluation method of heat-resistant steel
JP2007064817A (en) Quenching depth measuring instrument
Goldfine et al. Introduction to the Meandering Winding Magnetometer (MWM) and the grid measurement approach
Kamaya et al. Monitoring of inside surface crack growth by strain measurement of the outside surface: a feasibility study
JPS63101742A (en) Defect inspection
JP2007192703A (en) Crack shape identifying method and system
Saeed et al. Calibration and validation of extended back-face strain compliance for a wide range of crack lengths in SENB-4P specimens
Fonzo et al. Techniques for fracture toughness testing of offshore pipelines
JP2008020323A (en) Crack shape identifying method and system
RU2585796C1 (en) Method for quality control of articles

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407