JP2007191758A - Method for reforming resin base material - Google Patents

Method for reforming resin base material Download PDF

Info

Publication number
JP2007191758A
JP2007191758A JP2006011625A JP2006011625A JP2007191758A JP 2007191758 A JP2007191758 A JP 2007191758A JP 2006011625 A JP2006011625 A JP 2006011625A JP 2006011625 A JP2006011625 A JP 2006011625A JP 2007191758 A JP2007191758 A JP 2007191758A
Authority
JP
Japan
Prior art keywords
base material
resin base
target
resin
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006011625A
Other languages
Japanese (ja)
Other versions
JP4895092B2 (en
Inventor
Hirozumi Azuma
博純 東
Takeshi Narita
猛 成田
Akihiro Takeuchi
昭博 竹内
Kazuyuki Tate
和幸 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006011625A priority Critical patent/JP4895092B2/en
Publication of JP2007191758A publication Critical patent/JP2007191758A/en
Application granted granted Critical
Publication of JP4895092B2 publication Critical patent/JP4895092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reforming method for reforming the surface of a resin base material while moving the resin base material at a rate of ≥300 mm/min under the atmospheric pressure. <P>SOLUTION: In the method for reforming the surface of a resin material, the surface of a target 13 is irradiated with laser light L to generate vacuum ultraviolet light and scattering particles (a), and the scattering particles (a) are stuck to the surface of the resin base material 15 while irradiating the same with the vacuum ultraviolet light. While the surface of the target 13 is irradiated with the laser light L in such a manner that the shape of the irradiated light formed on the surface of the target 13 is made into the almost elliptical one in which the width in the major axis direction reaches 1.5 to 10 times the width in the minor axis direction, the resin base material 15 is moved in such a manner that the opening angle between the direction vertical to the major axis direction in the plane parallel to the surface of the target 13 and the moving direction of the resin base material 15 becomes ≤10°, and the scattering particles (a) are stuck to the surface of the resin base material 15 in a shielding gas atmosphere having an oxygen content of ≤8 vol.% while irradiating the surface of the resin base material 15 with the vacuum ultraviolet light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂基材の表面改質方法に関し、より詳しくは、ターゲットの表面にレーザー光を照射して発生させた真空紫外光露光と飛散粒子を基材の表面に付着させて改質する方法に関する。   The present invention relates to a method for modifying the surface of a resin substrate, and more specifically, the surface of a target is modified by attaching a vacuum ultraviolet light exposure and scattered particles generated by irradiating a laser beam to the surface of the substrate. Regarding the method.

近年、樹脂や金属等からなる基材の表面にX線や紫外線、更には真空紫外線を照射することにより基材表面を活性化させる様々な技術が開発されている。中でも、基材表面を活性化させた直後に飛散粒子を付着せしめて改質することが可能な方法として、特開2004−2962号公報(特許文献1)においては、ターゲットの表面にレーザー光を照射して飛散粒子と共に真空紫外光を発生させ、その真空紫外光を照射しつつ飛散粒子を基材の表面に付着させて改質する、いわゆるレーザーアブレーションを利用した基材の表面改質方法が開示されている。そして、特許文献1に記載の基材の表面改質方法においては、真空状態又はシールドガス雰囲気下において基材の表面を改質させていた。   In recent years, various techniques for activating a substrate surface by irradiating the surface of the substrate made of resin, metal, or the like with X-rays, ultraviolet rays, or vacuum ultraviolet rays have been developed. Among them, as a method that can be modified by adhering scattered particles immediately after activating the substrate surface, Japanese Patent Application Laid-Open No. 2004-2962 (Patent Document 1) uses laser light on the surface of a target. There is a method for surface modification of a substrate using so-called laser ablation, in which vacuum ultraviolet light is generated together with scattered particles and the scattered particles are adhered to the surface of the substrate while being irradiated with the vacuum ultraviolet light. It is disclosed. In the substrate surface modification method described in Patent Document 1, the surface of the substrate is modified in a vacuum state or in a shield gas atmosphere.

しかしながら、特許文献1に記載のような従来の基材の表面改質方法においては、真空状態において基材の表面を改質させる場合、真空引きが必要でバッチ処理となり、しかも真空引きに時間を要することから、処理速度の観点からは必ずしも十分なものではなかった。また、特許文献1に記載のような従来の基材の表面改質方法においては、シールドガス雰囲気下において基材の表面を改質させる場合においても処理速度の観点からは必ずしも十分なものではなかった。
特開2004−2962号公報
However, in the conventional method for modifying the surface of a substrate as described in Patent Document 1, when the surface of the substrate is modified in a vacuum state, evacuation is required and batch processing is performed. Therefore, it is not always sufficient from the viewpoint of processing speed. Further, in the conventional substrate surface modification method as described in Patent Document 1, even when the substrate surface is modified in a shielding gas atmosphere, it is not always sufficient from the viewpoint of processing speed. It was.
JP 2004-2962 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、バッチ方式で樹脂基材の表面改質処理を行う必要がなく、大気圧下において樹脂基材を300mm/分以上という非常に速い移動速度で移動させながら、十分な処理速度で効率よく且つ確実に樹脂基材の表面を改質することが可能な樹脂基材の表面改質方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and it is not necessary to perform surface modification treatment of the resin base material in a batch system, and the resin base material is 300 mm / min or more under atmospheric pressure. An object of the present invention is to provide a method for modifying the surface of a resin substrate that can efficiently and reliably modify the surface of the resin substrate at a sufficient processing speed while being moved at a high movement speed.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ターゲットの表面上に照射されるレーザー光の形状を所定の略楕円状の形状となるようにし、樹脂基材を所定の方向に移動させつつ所定のシールドガス雰囲気下において処理することによって、バッチ方式で樹脂基材の表面改質処理を行う必要がなく、大気圧下において樹脂基材を300mm/分以上という非常に速い移動速度で移動させながら、十分な処理速度で効率よく且つ確実に樹脂基材の表面を改質することが可能となることを見出し、本発明を完成するに至った。   As a result of intensive research to achieve the above object, the inventors of the present invention have made the shape of the laser light irradiated on the surface of the target to be a predetermined substantially elliptical shape, By processing in a predetermined shielding gas atmosphere while moving in the direction, there is no need to perform a surface modification treatment of the resin base material in a batch system, and the resin base material is very fast at 300 mm / min or more under atmospheric pressure. It has been found that the surface of the resin substrate can be efficiently and reliably modified at a sufficient processing speed while moving at a moving speed, and the present invention has been completed.

すなわち、本発明の樹脂基材の表面改質方法は、ターゲットの表面にレーザー光を照射して波長50nm〜100nmの真空紫外光及び飛散粒子を発生させ、樹脂基材の表面に前記真空紫外光を照射しつつ前記飛散粒子を付着させる樹脂基材の表面改質方法であって、
前記ターゲットの表面上に形成される照射光形状が長軸方向の幅が短軸方向の幅の1.5倍〜10倍である略楕円形状となるように前記ターゲットの表面に前記レーザー光を照射しつつ、前記ターゲットの表面に対して平行な面上において前記長軸方向に対して垂直な方向と樹脂基材の移動方向との開口角度が10°以内となるように前記樹脂基材を移動させ、酸素量が8容量%以下のシールドガス雰囲気下において前記樹脂基材の表面に前記真空紫外光を照射しつつ前記飛散粒子を付着させることを特徴とする方法である。
That is, the method for modifying the surface of a resin substrate according to the present invention generates a vacuum ultraviolet light and scattered particles having a wavelength of 50 nm to 100 nm by irradiating the surface of a target with laser light, and the vacuum ultraviolet light is generated on the surface of the resin substrate. A surface modification method for a resin base material that adheres the scattered particles while irradiating
The laser light is applied to the surface of the target so that the shape of the irradiation light formed on the surface of the target is a substantially elliptical shape whose width in the major axis direction is 1.5 to 10 times the width in the minor axis direction. While irradiating, the resin base material is adjusted so that the opening angle between the direction perpendicular to the major axis direction and the moving direction of the resin base material is within 10 ° on a plane parallel to the surface of the target. The scattering particles are adhered to the surface of the resin base material while being irradiated with the vacuum ultraviolet light in a shielding gas atmosphere having an oxygen amount of 8% by volume or less.

なお、本発明の樹脂基材の表面改質方法によって上記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、先ず、レーザーアブレーションを利用した処理においてターゲットからの飛散粒子の飛散方向の分布や飛散粒子の衝突による粒子の粗大化はターゲットに照射されるレーザー光の集光形状や集光サイズに大きく依存する。そして、レーザー光の集光サイズが大きくなると飛散粒子の衝突確率が高くなり、基板面に対して垂直な方向以外の速度成分が相殺されて基板面に対して垂直な方向に飛散粒子が飛散する確率が高くなる。VUV光に関しては光源より均等に輻射されるため集光形状について考慮する必要はない。そのため、ターゲットの表面に略楕円状の形状にレーザー光が照射されると長軸方向への飛散粒子の速度成分は小さくなるのに対し、衝突による相殺がほとんどないことから短軸方向への飛散粒子の速度成分は小さくなり難く、飛散粒子は短軸方向へは比較的広い角度分布を持って飛散する。したがって、ターゲットの表面に照射されるレーザー光の形状(照射光形状)を長軸方向の幅が短軸方向の幅の1.5〜10倍である略楕円形状となるようにしつつ、前述のように前記樹脂基材を移動させることによって、不要な方向への飛散粒子を少なくしつつ樹脂基材の表面に適量の飛散粒子を均一に堆積させることが可能となる。   The reason why the above object is achieved by the surface modification method for a resin base material of the present invention is not necessarily clear, but the present inventors speculate as follows. That is, first, in the processing using laser ablation, the distribution of the scattering direction of the scattering particles from the target and the coarsening of the particles due to the collision of the scattering particles largely depend on the condensing shape and the condensing size of the laser light irradiated to the target. To do. As the laser light collection size increases, the collision probability of scattered particles increases, and the velocity components other than the direction perpendicular to the substrate surface are offset, and the scattered particles are scattered in the direction perpendicular to the substrate surface. Probability increases. Since VUV light is radiated from the light source evenly, it is not necessary to consider the condensing shape. Therefore, when the target surface is irradiated with laser light in a substantially elliptical shape, the velocity component of the scattered particles in the major axis direction becomes small, whereas there is almost no cancellation due to collision, so that the scattering in the minor axis direction The velocity component of particles is unlikely to be small, and scattered particles scatter with a relatively wide angular distribution in the minor axis direction. Accordingly, the shape of the laser light irradiated onto the surface of the target (irradiation light shape) is set to be substantially elliptical with the width in the major axis direction being 1.5 to 10 times the width in the minor axis direction. By moving the resin base as described above, it is possible to uniformly deposit an appropriate amount of scattered particles on the surface of the resin base while reducing the number of scattered particles in unnecessary directions.

ここで、本発明における略楕円形状とは、長軸方向の幅が短軸方向の幅の1.5〜10倍(より好ましくは2〜6倍)となる楕円形状及び線分形状を含む形状である。前記略楕円形状において、長軸方向の幅が短軸方向の幅の1.5倍未満では、ターゲット面に垂直で長軸を含む面内の方向における飛散粒子の角度分布が広くなることから、処理速度を上げると場所による濃度むらができ、処理しようとするすべての領域に十分な量の飛散粒子を付着させることが困難となり、他方、10倍を超えるとターゲット面に垂直で長軸を含む面内の方向における飛散粒子の角度分布は小さくなるが、ターゲット面に垂直で短軸を含む面内の飛散粒子の角度分布が広くなりすぎ、移動方向への粒子濃度のむらは少なくなるがその垂直方向の粒子が分布する幅が狭くなりすぎ、縦移動距離が極端に短くなって全体としての処理速度はかえって遅くなる。   Here, the substantially elliptical shape in the present invention is a shape including an elliptical shape and a line segment shape in which the width in the major axis direction is 1.5 to 10 times (more preferably 2 to 6 times) the width in the minor axis direction. It is. In the substantially elliptical shape, when the width in the major axis direction is less than 1.5 times the width in the minor axis direction, the angular distribution of scattered particles in a direction perpendicular to the target surface and including the major axis becomes wide. Increasing the processing speed will cause uneven density depending on the location, making it difficult to attach a sufficient amount of scattered particles to all areas to be processed, while exceeding 10 times includes the long axis perpendicular to the target surface The angular distribution of scattered particles in the in-plane direction becomes small, but the angular distribution of the scattered particles in the plane perpendicular to the target surface and including the minor axis becomes too wide, and the unevenness of the particle concentration in the moving direction decreases, but the vertical The width in which the directional particles are distributed becomes too narrow, the longitudinal movement distance becomes extremely short, and the overall processing speed is rather slow.

また、前記ターゲットからの飛散粒子は樹脂基材の表面に到達する前に雰囲気ガス分子とも衝突する。そのため、雰囲気ガス分子が重いものである場合には衝突による滅速が大きくなって飛散粒子が樹脂基材の表面に到達しない確率が高くなる。したがって、飛散粒子の飛散速度の減少を十分に抑えるためには飛散粒子と雰囲気ガス分子との衝突による影響を十分に抑える必要がある。また、雰囲気ガス分子の主成分はヘリウムであるが、それ以外の成分の一つが酸素である場合には、波長50nmから100nmの真空紫外光の透過率が低減して、処理に十分な前記真空紫外光が照射されない。そこで、本発明においては、酸素量が8容量%以下であるシールドガス雰囲気下において処理を行うことによって、飛散粒子の飛散速度の減少を十分に抑えることを可能としつつ真空紫外光の透過率を十分に向上させて、樹脂基材の表面に十分な量の真空紫外光を照射して樹脂基材の表面をより効率良く活性化するとともに、樹脂基材を300mm/分以上という非常に速い移動速度で移動させながら処理を行い、効率よく且つ確実に樹脂基材の表面を改質することを可能とする。なお、酸素量は4容量%以下であることが更に好ましい。   The scattered particles from the target also collide with atmospheric gas molecules before reaching the surface of the resin substrate. For this reason, when the atmospheric gas molecules are heavy, the rate of decay due to the collision increases, and the probability that the scattered particles do not reach the surface of the resin base material increases. Therefore, in order to sufficiently suppress the decrease in the scattering speed of the scattered particles, it is necessary to sufficiently suppress the influence caused by the collision between the scattered particles and the atmospheric gas molecules. In addition, when the main component of the atmospheric gas molecule is helium, but one of the other components is oxygen, the transmittance of vacuum ultraviolet light having a wavelength of 50 nm to 100 nm is reduced, and the vacuum sufficient for processing is achieved. No ultraviolet light is irradiated. Therefore, in the present invention, by performing the treatment in a shield gas atmosphere in which the oxygen amount is 8% by volume or less, it is possible to sufficiently suppress the decrease in the scattering speed of the scattering particles, while increasing the transmittance of vacuum ultraviolet light. Improve sufficiently and irradiate the surface of the resin base material with a sufficient amount of vacuum ultraviolet light to activate the surface of the resin base material more efficiently and move the resin base material at a speed of 300 mm / min or more. The treatment is performed while moving at a speed, and the surface of the resin substrate can be efficiently and reliably modified. The oxygen amount is more preferably 4% by volume or less.

ここでいう波長50nm〜100nmの真空紫外光とは、50nm〜100nmの波長領域における少なくとも一部の波長を有する真空紫外光のことをいうが、以下の条件のうちの少なくとも一つの条件を満たしていることが好ましい。
(i)50nm〜100nmの波長領域に少なくとも一つの光強度のピークを有すること、
(ii)50nm〜100nmの波長領域の光の全エネルギーが100nm〜150nmの波
長領域の光の全エネルギーより高いこと、
(iii)50nm〜100nmの波長領域の光の全エネルギーが50nm以下の波長領域の
光の全エネルギーより高いこと
(iv)50nm〜100nmの波長領域の光のエネルギー密度が基材上で0.1μJ/cm
〜10mJ/cm(より好ましくは1μJ/cm〜100μJ/cm)であること。
なお、基材上における前記エネルギー密度が0.1μJ/cmより低くなると処理に要する時間が過度に長くなってしまう傾向にあり、他方、10mJ/cmより高くなると基材が分解されてしまう傾向にある。
Here, the vacuum ultraviolet light having a wavelength of 50 nm to 100 nm means vacuum ultraviolet light having at least a part of wavelengths in the wavelength region of 50 nm to 100 nm, and satisfying at least one of the following conditions: Preferably it is.
(i) having at least one peak of light intensity in a wavelength region of 50 nm to 100 nm;
(ii) the total energy of light in the wavelength region of 50 nm to 100 nm is higher than the total energy of light in the wavelength region of 100 nm to 150 nm;
(iii) The total energy of light in the wavelength region of 50 nm to 100 nm is higher than the total energy of light in the wavelength region of 50 nm or less.
(iv) The energy density of light in the wavelength region of 50 nm to 100 nm is 0.1 μJ / cm on the substrate.
2 to 10 mJ / cm 2 (more preferably 1 μJ / cm 2 to 100 μJ / cm 2 ).
In addition, when the energy density on the substrate is lower than 0.1 μJ / cm 2 , the time required for the treatment tends to be excessively long. On the other hand, when the energy density is higher than 10 mJ / cm 2, the substrate is decomposed. There is a tendency.

また、本発明においては、前記ターゲットの表面に対して平行な面上において前記長軸方向に対して垂直な方向と樹脂基材の移動方向との開口角度が10°以内となるように前記樹脂基材を移動させる。このような開口角度が10°を超えると、飛散粒子を付着させる際に樹脂基材とターゲットとの位置関係が急激に変わり、樹脂基材の表面に付着する飛散粒子の量にムラが生じる。すなわち、前記開口角度で前記樹脂基材を移動させることで、樹脂基材とターゲットとの位置関係が急激に変動することなく、樹脂基材を移動させながらも、その表面に均一に飛散粒子を付着させることができ、十分な処理速度を持って樹脂基材の表面を改質することが可能となる。   In the present invention, the resin may be formed so that an opening angle between a direction perpendicular to the major axis direction and a movement direction of the resin base material is within 10 ° on a plane parallel to the surface of the target. Move the substrate. When such an opening angle exceeds 10 °, the positional relationship between the resin base material and the target changes abruptly when the scattered particles are attached, and the amount of the scattered particles attached to the surface of the resin base material becomes uneven. That is, by moving the resin base material at the opening angle, the positional relationship between the resin base material and the target does not fluctuate rapidly, and while the resin base material is moved, the scattered particles are uniformly distributed on the surface. The surface of the resin base material can be modified with sufficient processing speed.

また、上記本発明の樹脂基材の表面改質方法においては、図1に示すレーザー光Lの入射方向とターゲット13の表面の垂線方向Lとの開口角度θが50〜85°となるようにターゲット13を配置することが好ましい。開口角度θが前記下限未満では、レーザー光を照射する際に照射光形状の長軸方向の幅が短軸方向の幅の1.5倍未満となる傾向にあり、他方、前記上限を超えると照射光形状の長軸方向の幅が短軸方向の幅の10倍を超える傾向にある。すなわち、円形のレーザー光を照射する際に、このように前記ターゲットを配置することで、前記ターゲットの表面上に形成される照射光形状をより効率的に前記略楕円形状とすることができる。 In the surface modification method of a resin base material of the present invention, so that the opening angle θ of the perpendicular direction L 1 of the surface of the incident direction and the target 13 of the laser beam L shown in FIG. 1 is 50 to 85 ° It is preferable to arrange the target 13 on the surface. When the opening angle θ is less than the lower limit, when the laser beam is irradiated, the major axis direction width of the irradiation light tends to be less than 1.5 times the minor axis direction width, and on the other hand, when the upper limit is exceeded. The width in the major axis direction of the irradiation light shape tends to exceed 10 times the width in the minor axis direction. That is, when irradiating a circular laser beam, the target is arranged in this manner, so that the shape of the irradiation light formed on the surface of the target can be more efficiently changed to the substantially elliptical shape.

上記本発明の樹脂基材の表面改質方法においては、前記ターゲットの表面上に形成される照射光形状の重心点と前記樹脂基材の表面との間の距離を10〜100mmとすることが好ましく、10〜50mmとすることがより好ましい。前記距離が10mm未満では、前記ターゲットと前記樹脂基材との距離が近過ぎて、プラズマの影響を受け再アブレート等の現象により前記樹脂基材の表面に均一に飛散粒子を堆積させることが困難となる傾向にあり、他方、100mmを超えると、前記ターゲットと前記樹脂基材との距離が離れ過ぎて前記樹脂基材の表面に飛散粒子を効率よく堆積させることが困難となり、処理速度が減少する傾向にある。   In the resin substrate surface modification method of the present invention, the distance between the center of gravity of the irradiation light shape formed on the surface of the target and the surface of the resin substrate may be 10 to 100 mm. Preferably, the thickness is 10 to 50 mm. If the distance is less than 10 mm, the distance between the target and the resin base material is too short, and it is difficult to deposit scattered particles uniformly on the surface of the resin base material due to the influence of plasma and other phenomena such as reablation. On the other hand, if it exceeds 100 mm, the distance between the target and the resin base material is too long, making it difficult to efficiently deposit scattered particles on the surface of the resin base material, and the processing speed decreases. Tend to.

上記本発明の樹脂基材の表面改質方法においては、前記樹脂基材を移動させる速度が300mm/分以上であることが好ましい。このような速度で樹脂基材を移動させることによって、樹脂基材の表面に飛散粒子を均一に堆積させながらより十分な処理速度で前記樹脂基材を処理することが可能となる傾向にある。また、このような樹脂基材を移動させる速度としては、現在存在するレーザー装置の出力を考慮すると、300mm/分〜10000mm/分であることがより好ましい。   In the resin substrate surface modification method of the present invention, it is preferable that a speed of moving the resin substrate is 300 mm / min or more. By moving the resin base material at such a speed, the resin base material tends to be processed at a more sufficient processing speed while scattering particles are uniformly deposited on the surface of the resin base material. Further, the speed at which such a resin base material is moved is more preferably 300 mm / min to 10000 mm / min in consideration of the output of a laser apparatus that currently exists.

上記本発明の樹脂基材の表面改質方法においては、前記レーザー光が、パルス幅100ピコ秒〜100ナノ秒でかつ照射強度が10W/cm〜1012W/cmであるパルスレーザー光であることが好ましい。このようなパルスレーザー光を採用し、これをターゲットに照射することで、ターゲット表面に高温のプラズマを形成させ、そのプラズマから波長50nm〜100nmの真空紫外光がより効率的に発生する傾向にある。 In the resin substrate surface modification method of the present invention, the laser beam has a pulse width of 100 picoseconds to 100 nanoseconds and an irradiation intensity of 10 6 W / cm 2 to 10 12 W / cm 2. Laser light is preferred. By adopting such pulsed laser light and irradiating the target with this, high temperature plasma is formed on the target surface, and vacuum ultraviolet light having a wavelength of 50 nm to 100 nm tends to be generated more efficiently from the plasma. .

本発明によれば、バッチ方式で樹脂基材の表面改質処理を行う必要がなく、大気圧下において樹脂基材を300mm/分以上という非常に速い移動速度で移動させながら樹脂基材の表面に飛散粒子を均一に堆積させることができ、十分な処理速度で効率よく且つ確実に樹脂基材の表面を改質することが可能な樹脂基材の表面改質方法を提供することが可能となる。   According to the present invention, it is not necessary to perform the surface modification treatment of the resin base material in a batch system, and the surface of the resin base material is moved while moving the resin base material at an extremely high moving speed of 300 mm / min or more under atmospheric pressure. It is possible to provide a method for modifying the surface of a resin substrate that can uniformly deposit scattered particles, and that can efficiently and reliably modify the surface of the resin substrate at a sufficient processing speed. Become.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.

図2は、本発明の樹脂基材の表面改質方法に好適に用いることができる樹脂基材の表面改質装置の一実施形態を示す概略縦断面図である。図2に示す樹脂基材の表面改質装置はいわゆるレーザーアブレーション装置として構成されている。すなわち、図2に示すレーザーアブレーション装置においては、レーザー光源(図示せず)から発せられたレーザー光Lの光路上に反射板10が配置され、反射板10により反射されたレーザー光Lの光路上に集光レンズ11が配置されている。また、集光レンズ11を通過したレーザー光Lの光路上には、ターゲット駆動装置12に接続されてターゲット13が配置されている。また、図2に示すレーザーアブレーション装置においては、樹脂基材駆動装置14に接続されて樹脂基材15が配置されている。更に、図2に示すレーザーアブレーション装置においては、シールドガスを供給するためのガスノズル16が配置されており、装置の上方がガス用シールド17によって覆われている。また、図2においては、Pはターゲット13の表面上に発生するプラズマを示し、aは飛散粒子を示す。   FIG. 2 is a schematic longitudinal sectional view showing an embodiment of a resin substrate surface modification apparatus that can be suitably used in the resin substrate surface modification method of the present invention. The resin substrate surface modification apparatus shown in FIG. 2 is configured as a so-called laser ablation apparatus. That is, in the laser ablation apparatus shown in FIG. 2, the reflecting plate 10 is disposed on the optical path of the laser light L emitted from the laser light source (not shown), and on the optical path of the laser light L reflected by the reflecting plate 10. A condensing lens 11 is disposed on the surface. Further, a target 13 is arranged on the optical path of the laser light L that has passed through the condenser lens 11 so as to be connected to the target driving device 12. Further, in the laser ablation apparatus shown in FIG. 2, a resin base material 15 is disposed so as to be connected to the resin base material driving device 14. Further, in the laser ablation apparatus shown in FIG. 2, a gas nozzle 16 for supplying a shielding gas is disposed, and the upper part of the apparatus is covered with a gas shield 17. In FIG. 2, P represents plasma generated on the surface of the target 13, and a represents scattered particles.

レーザー光Lを発するためのレーザー光源としては特に制限されないが、パルス幅がパルス幅100ピコ秒〜100ナノ秒のパルスレーザー光を照射することができるレーザー光発生装置を好適に用いることができ、例えばYAGレーザー装置、エキシマレーザー装置によって構成され、中でもYAGレーザー装置によって構成されることがより好ましい。なお、本実施形態においては、レーザー光Lをターゲット13に照射した際には、ターゲット13の表面に高温のプラズマPが形成され、そのプラズマPから波長50nm〜100nmの真空紫外光及び飛散粒子aが発生する。   Although it does not restrict | limit especially as a laser light source for emitting the laser beam L, The laser beam generator which can irradiate the pulse laser beam whose pulse width is 100 picoseconds-100 nanoseconds can be used suitably, For example, it is constituted by a YAG laser device or an excimer laser device, and more preferably constituted by a YAG laser device. In the present embodiment, when the target 13 is irradiated with the laser beam L, a high-temperature plasma P is formed on the surface of the target 13, and vacuum ultraviolet light and scattered particles a having a wavelength of 50 nm to 100 nm are generated from the plasma P. Occurs.

また、反射板10としては特に制限されず、公知の反射板(例えば鏡等)を適宜用いることができる。更に、集光レンズ11としては特に制限されないが、ターゲット13に照射されるパルスレーザー光Lの照射強度を10W/cm〜1012W/cmとすることが可能な集光レンズであることが好ましく、10W/cm〜1010W/cmとすることが可能な集光レンズが特に好ましい。本実施形態においては、集光レンズ11は、集光レンズ11のレンズ面とレーザー光Lの光路との開口角度が90°となるようにして配置されている。 Moreover, it does not restrict | limit especially as the reflecting plate 10, A well-known reflecting plate (for example, mirror etc.) can be used suitably. Further, the condensing lens 11 is not particularly limited, but is a condensing lens capable of setting the irradiation intensity of the pulsed laser light L applied to the target 13 to 10 6 W / cm 2 to 10 12 W / cm 2. It is preferable that a condensing lens that can be set to 10 8 W / cm 2 to 10 10 W / cm 2 is particularly preferable. In the present embodiment, the condenser lens 11 is arranged so that the opening angle between the lens surface of the condenser lens 11 and the optical path of the laser light L is 90 °.

ターゲット駆動装置12は、レーザー光Lがターゲット13の表面の同じ位置に繰り返し照射されて穴が掘れないように回転及び平行移動させることを可能とするものである。ターゲット駆動装置12としては特に制限されず、公知の装置を適宜用いることができる。本実施形態においては、ターゲット駆動装置12によりレーザー光Lの照射位置にターゲット13の新鮮な面(レーザー光未照射面)が順次繰り出されるようになっている。   The target driving device 12 enables the laser beam L to be rotated and translated so that the same position on the surface of the target 13 is repeatedly irradiated so as not to dig a hole. The target driving device 12 is not particularly limited, and a known device can be used as appropriate. In the present embodiment, a fresh surface (a laser light non-irradiated surface) of the target 13 is sequentially fed out to the irradiation position of the laser light L by the target driving device 12.

ターゲット13は、前述のレーザー光Lの照射により、樹脂基材15の表面を改質させるために好適な金属原子及び/又は炭素原子を含む飛散粒子を発生する材料からなるものであり、このような材料としては各種の金属、金属化合物及び炭素からなる群から少なくとも一つの材料が選択される。このような金属材料としては、各種の遷移元素金属、典型元素金属、半金属(メタロイド)、又はそれらの合金を用いることができ、例えば、Cu、Al、Ti、Si、Cr、Pt、Au、Ag、Pd、Zr、Mg、Ni、Fe、Co、Zn、Sn、W、Be、Ge、Mn、Mo、Nb、Ta、Hf、それらを主成分とする合金等が挙げられ、中でもCu、Al、Ti、Si、Znが好ましい。なお、ここでいう金属材料は、例えば、シリコン、ゲルマニウム、炭化珪素、砒化ガリウム、InP、ZnTe等の半導体であってもよい。また、金属化合物材料としては、各種の遷移元素金属、典型元素金属又は半金属の酸化物、窒化物、炭化物等が挙げられ、中でも酸化亜鉛、チタニア、アルミナ、マグネシア、ベリリア、窒化アルミニウム、窒化ホウ素、窒化ケイ素、炭化ケイ素、Fe、Cr、W、Mo、V等の金属元素の炭化物が好ましい。なお、ここでいう金属化合物材料は複数の金属元素を含有していてもよく、更に非金属元素を含んでいてもよい。また、炭素材料としては、各種の無定形炭素、グラファイト、ダイアモンド等が挙げられ、中でもグラファイト、無定形炭素が好ましい。さらに、ターゲット13は、このような金属材料、金属化合物材料、炭素材料の複合材料であってもよい。なお、ターゲット13の形状等は特に制限されず、板状、ロッド状等に成形された前記ターゲット材料からなるバルク材や、前記ターゲット材料をテープ上に塗布、蒸着等によって形成したテープ状ターゲット等を用いることができる。   The target 13 is made of a material that generates scattered particles containing metal atoms and / or carbon atoms suitable for modifying the surface of the resin base material 15 by irradiation with the laser beam L described above. As such a material, at least one material is selected from the group consisting of various metals, metal compounds, and carbon. As such a metal material, various transition element metals, typical element metals, metalloids, or alloys thereof can be used, for example, Cu, Al, Ti, Si, Cr, Pt, Au, Ag, Pd, Zr, Mg, Ni, Fe, Co, Zn, Sn, W, Be, Ge, Mn, Mo, Nb, Ta, Hf, alloys containing them as main components, etc., among others, Cu, Al Ti, Si, and Zn are preferable. The metal material here may be, for example, a semiconductor such as silicon, germanium, silicon carbide, gallium arsenide, InP, or ZnTe. Examples of the metal compound material include various transition element metals, oxides, nitrides, and carbides of typical element metals or metalloids. Among them, zinc oxide, titania, alumina, magnesia, beryllia, aluminum nitride, boron nitride , Carbides of metal elements such as silicon nitride, silicon carbide, Fe, Cr, W, Mo, and V are preferable. In addition, the metal compound material here may contain a plurality of metal elements, and may further contain a non-metal element. Examples of the carbon material include various kinds of amorphous carbon, graphite, diamond, etc. Among them, graphite and amorphous carbon are preferable. Furthermore, the target 13 may be a composite material of such a metal material, a metal compound material, and a carbon material. The shape and the like of the target 13 are not particularly limited, and a bulk material made of the target material formed into a plate shape, a rod shape, or the like, a tape-like target formed by applying the target material on a tape, vapor deposition, or the like Can be used.

さらに、ターゲット13は、ターゲット13の表面上に形成されるレーザー光Lによる照射光形状が長軸方向の幅が短軸方向の幅の1.5倍〜10倍の略楕円形状となるように、図1に示すレーザー光Lの入射方向とターゲット13の表面の垂線L方向との開口角度θを50〜85°となるようにして配置することが好ましく、開口角度θが65〜75°となるようにして配置することがより好ましい。開口角度θが前記下限未満では、レーザー光を照射する際に照射光形状の長軸方向の幅が短軸方向の幅の1.5倍未満となる傾向にあり、他方、前記上限を超えると照射光形状の長軸方向の幅が短軸方向の幅の10倍を超える傾向にある。 Further, the shape of the irradiation light of the target 13 with the laser light L formed on the surface of the target 13 is a substantially elliptical shape whose width in the major axis direction is 1.5 to 10 times the width in the minor axis direction. preferably be placed in an opening angle θ of the perpendicular L 1 direction of the surface of the incident direction and the target 13 of the laser beam L shown in FIG. 1 so as to be 50 to 85 °, the opening angle θ is 65 to 75 ° It is more preferable to arrange them as follows. When the opening angle θ is less than the lower limit, when the laser beam is irradiated, the major axis direction width of the irradiation light tends to be less than 1.5 times the minor axis direction width, and on the other hand, when the upper limit is exceeded. The width in the major axis direction of the irradiation light shape tends to exceed 10 times the width in the minor axis direction.

また、樹脂基材駆動装置14としては、前記ターゲット13の表面に対して平行な面上において前記長軸方向に対して垂直な方向と樹脂基材15の移動方向との開口角度が10°以内となるようにして樹脂基材15を移動させることを可能とするものを適宜用いることができる。   Further, as the resin base material driving device 14, the opening angle between the direction perpendicular to the major axis direction and the moving direction of the resin base material 15 is within 10 ° on a plane parallel to the surface of the target 13. What makes it possible to move the resin base material 15 as described above can be used as appropriate.

樹脂基材15としては特に制限されず、得られる製品の用途等によって適宜決定される。このような樹脂基材15を構成する樹脂としては、オレフィン系樹脂{ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、ポリブタジエン、ポリイソプレン、水添ポリブタジエン、水添ポリイソプレン、エチレン−プロピレン−ジエン共重合体、エチレン−ブテン−ジエン共重合体、ポリメチルペンテン等}、ブチルゴム、ポリエステル、ポリカーボーネート、ポリアセタール、ポリアミド、芳香族ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルサルホン、ポリエーテルケトン、ポリフタルアミド、ポリエーテルニトリル、ポリベンズイミダゾール、ポリカルボジイミド、アクリル樹脂{ポリメチル(メタ)アクリレート、ポリ(メタ)アクリルアミド等}、アクリルゴム、フッ素樹脂{ポリ4フッ素化エチレン等}、フッ素ゴム、液晶ポリマー、エポキシ樹脂、メラミン樹脂、ユリア樹脂、ジアリルフタレート樹脂、フェノール樹脂、ポリシラン、シリコーン樹脂(ポリシロキサン等)、シリコーンゴム、ウレタン樹脂、スチレン樹脂{ポリスチレン、スチレン−ブタジエン共重合体、スチレン−水添ブタジエン共重合体等}、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ塩化ビニル、ポリ塩化ビニリデン、エチレン−酢酸ビニル共重合体ケン化物、ポリビニルアルコール、ポリ酢酸ビニル等の重合体(単独重合体又は共重合体)並びにそれらの積層体からなる樹脂基材が挙げられ、中でも表面の高硬度化による耐傷付き性や耐摩耗性の効果が有効なディスク基板、ガラス代替部品、摺動部品、シール部品、表皮材等に用いられる樹脂を主な対象にするという観点から、ポリカーボネート、アクリル樹脂、各種ポリアミド、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリアセタール、フッ素樹脂、各種ポリイミド、フェノール樹脂、フッ素ゴム、エチレン−プロピレン−ジエン共重合体、シリコーンゴム等が好ましい。また、このような樹脂基材は、必要に応じて染料、顔料、繊維状補強物、粒子状補強物、可塑剤、難燃剤、耐熱安定剤、酸化防止剤、耐候性付与剤、帯電防止剤、透明性改良剤等の添加剤を適量含有していてもよい。   It does not restrict | limit especially as the resin base material 15, It determines suitably by the use etc. of the product obtained. Examples of the resin constituting the resin substrate 15 include olefin resins {polyethylene, polypropylene, polybutene, polypentene, ethylene-propylene copolymer, ethylene-butene copolymer, polybutadiene, polyisoprene, hydrogenated polybutadiene, water. Polyisoprene, ethylene-propylene-diene copolymer, ethylene-butene-diene copolymer, polymethylpentene, etc.}, butyl rubber, polyester, polycarbonate, polyacetal, polyamide, aromatic polyamide, polyamideimide, polyetherimide , Polyphenylene ether, polyphenylene sulfide, polyether sulfone, polyether ketone, polyphthalamide, polyether nitrile, polybenzimidazole, polycarbodiimide, acrylic resin Methyl (meth) acrylate, poly (meth) acrylamide, etc.}, acrylic rubber, fluororesin {poly-4-fluorinated ethylene, etc.}, fluororubber, liquid crystal polymer, epoxy resin, melamine resin, urea resin, diallyl phthalate resin, phenol resin, Polysilane, silicone resin (polysiloxane, etc.), silicone rubber, urethane resin, styrene resin {polystyrene, styrene-butadiene copolymer, styrene-hydrogenated butadiene copolymer, etc.], polyethylene terephthalate, polybutylene terephthalate, polyvinyl chloride, Examples of the resin base material include polymers (homopolymers or copolymers) such as polyvinylidene chloride, saponified ethylene-vinyl acetate copolymer, polyvinyl alcohol, and polyvinyl acetate, and laminates thereof. High hardness From the standpoint of focusing mainly on resins used for disk substrates, glass replacement parts, sliding parts, seal parts, skin materials, etc., which are effective in scratch resistance and abrasion resistance, polycarbonate, acrylic resin, various types Polyamide, polyphenylene sulfide, polyphenylene ether, polyacetal, fluororesin, various polyimides, phenol resin, fluororubber, ethylene-propylene-diene copolymer, silicone rubber and the like are preferable. In addition, such resin base materials may be dyes, pigments, fibrous reinforcements, particulate reinforcements, plasticizers, flame retardants, heat stabilizers, antioxidants, weather resistance imparting agents, antistatic agents as necessary. An appropriate amount of additives such as a transparency improver may be contained.

樹脂基材15の形状や厚さは特に制限されず、得られる製品の用途等によってフィルム状、板状、各種形状の成形体等が適宜選択される。なお、樹脂基材15が樹脂フィルムの場合、その厚さは得られる製品の用途等によって適宜選択されるが、一般的には3μm〜1mm程度が好ましく、10μm〜1mm程度がより好ましい。   The shape and thickness of the resin base material 15 are not particularly limited, and a film shape, a plate shape, a molded body having various shapes, and the like are appropriately selected depending on the use of the product to be obtained. In addition, when the resin base material 15 is a resin film, although the thickness is suitably selected according to the use etc. of the product obtained, generally 3 micrometers-about 1 mm are preferable, and about 10 micrometers-1 mm are more preferable.

樹脂基材15とターゲット13との位置的関係は特に限定されず、樹脂基材15の表面にターゲット13の表面から発生した真空紫外光が確実に照射されかつ飛散粒子が効率良く付着するようにターゲット13に対して樹脂基材15を適宜配置することができる。   The positional relationship between the resin base material 15 and the target 13 is not particularly limited so that the surface of the resin base material 15 is reliably irradiated with the vacuum ultraviolet light generated from the surface of the target 13 and the scattered particles adhere efficiently. The resin base material 15 can be appropriately disposed with respect to the target 13.

ガスノズル16は、ガス用シールド17で覆われた領域にシールドガスを供給するものである。このようなガスノズル16は、図示を省略したシールドガスを導入するためのガスボンベに接続されている。このようなシールドガスとしては、水素ガス、ヘリウムガス、ネオンガス等を適宜用いることができ、水素又はヘリウムを用いることが好ましい。前記シールドガスとして水素やヘリウムを用いると、飛散粒子の飛散速度の減少をより効率的に抑えることができる傾向にある。また、このようなシールドガスの中でもヘリウムを用いることがより好ましい。シールドガスとしてヘリウムを用いることで、飛散速度の減少を効率的に抑えることができるとともに波長50nmから100nmの真空紫外光の透過率がより向上する傾向にある。また、ガス用シールド17は特に制限されず、処理を行う際にターゲット13と樹脂基材15の近傍を、酸素量が8容量%以下のシールドガス雰囲気にすることが可能なものであればよい。   The gas nozzle 16 supplies a shielding gas to an area covered with the gas shield 17. Such a gas nozzle 16 is connected to a gas cylinder for introducing shield gas (not shown). As such a shielding gas, hydrogen gas, helium gas, neon gas, or the like can be used as appropriate, and hydrogen or helium is preferably used. When hydrogen or helium is used as the shielding gas, the reduction in the scattering speed of scattered particles tends to be more efficiently suppressed. Moreover, it is more preferable to use helium among such shielding gases. By using helium as the shielding gas, it is possible to efficiently suppress a decrease in the scattering rate and to improve the transmittance of vacuum ultraviolet light having a wavelength of 50 nm to 100 nm. Further, the gas shield 17 is not particularly limited as long as it can make the vicinity of the target 13 and the resin base material 15 into a shield gas atmosphere having an oxygen amount of 8% by volume or less when performing processing. .

このようなシールドガス雰囲気としては、酸素量が6容量%以下(更に好ましくは4容量%以下)のシールドガス雰囲気とすることがより好ましい。前記酸素量が6容量%以下のシールドガス雰囲気下において前記樹脂基材の表面に前記飛散粒子を付着させることで、飛散粒子の飛散速度の減少をより十分に抑えることができるとともに真空紫外光の透過率をより十分に向上させることができ、処理速度をより向上させることが可能となる傾向にある。   As such a shielding gas atmosphere, a shielding gas atmosphere having an oxygen amount of 6% by volume or less (more preferably 4% by volume or less) is more preferable. By adhering the scattered particles to the surface of the resin base material in a shielding gas atmosphere having an oxygen content of 6% by volume or less, a decrease in the scattering speed of the scattered particles can be more sufficiently suppressed and the vacuum ultraviolet light The transmittance can be improved more sufficiently, and the processing speed tends to be improved.

このような装置を用い、ターゲット13の表面にレーザー光Lを照射して波長50nm〜100nmの真空紫外光及び飛散粒子aを発生させ、樹脂基材15の表面に前記真空紫外光を照射しつつ飛散粒子aを付着させることで、バッチ方式で樹脂基材15の表面改質処理を行う必要がなく、大気圧下において樹脂基材15を300mm/分以上という非常に速い移動速度で移動させながら樹脂基材15の表面に飛散粒子aを堆積させることができ、十分な処理速度で効率よく且つ確実に樹脂基材15の表面を改質することができる。   Using such an apparatus, the surface of the target 13 is irradiated with the laser light L to generate vacuum ultraviolet light having a wavelength of 50 nm to 100 nm and scattered particles a, and the surface of the resin substrate 15 is irradiated with the vacuum ultraviolet light. By attaching the scattered particles a, it is not necessary to perform the surface modification treatment of the resin base material 15 in a batch mode, and the resin base material 15 is moved at a very high moving speed of 300 mm / min or more under atmospheric pressure. The scattered particles a can be deposited on the surface of the resin base material 15, and the surface of the resin base material 15 can be modified efficiently and reliably at a sufficient processing speed.

以上、本発明の樹脂基材の表面改質方法の好適な実施形態について説明したが、本発明の樹脂基材の表面改質方法は上記実施形態に限定されるものではない。   As mentioned above, although preferred embodiment of the surface modification method of the resin base material of this invention was described, the surface modification method of the resin base material of this invention is not limited to the said embodiment.

例えば、本実施形態においては、図1に示す開口角度θが50〜85°となるようにしてターゲット13を設置することで樹脂基材15の表面に集光されるレーザー光の形状を調整しているが、本発明においては、集光形状を調整する方法は特に制限されず、特殊なレンズを用いて照射光形状を略楕円形状に調整してもよく、あるいは集光レンズ11の配置の仕方を変更して照射光形状を略楕円形状に調整してもよい。   For example, in this embodiment, the shape of the laser beam condensed on the surface of the resin base material 15 is adjusted by installing the target 13 so that the opening angle θ shown in FIG. 1 is 50 to 85 °. However, in the present invention, the method for adjusting the condensing shape is not particularly limited, and the irradiation light shape may be adjusted to a substantially elliptical shape using a special lens, or the arrangement of the condensing lens 11 may be adjusted. The irradiation light shape may be adjusted to a substantially elliptical shape by changing the way.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1〜22及び比較例1〜7)
図2に示す本発明の樹脂基材の表面改質方法に好適に用いることができる樹脂基材の表面改質装置を用いて、樹脂基材の表面改質を行った。すなわち、スペクトラフィジックス杜製のパルスYAGレーザー装置からの波長1064nm、パルス幅7ns、エネルギー1.84J、繰返し10Hzのレーザー光Lを焦点距離200mmの集光レンズ11を用いて集光してターゲット13の表面上に照射し、樹脂基材15に真空紫外光アシストレーザーアブレーション処理(以下、「VALA処理」という。)を行った。なお、レーザーの照射強度(E)は2.34×10−9W/cmであった。このような照射強度(E)は下記式から求めた。
E=1.84/(3.14×0.13×0.275×7×10−9)=2.34×10−9(W/cm
ターゲット13としては直径40mm、厚さ5mmのディスク状の炭素を使用し、樹脂基材15としてはポリプロピレンの板材(日本ポリケム社製)を使用した。また、ターゲット13の傾斜を変えることによりレーザー光Lの入射角度を変えて、図1に示す開口角度θを30°〜85°の間で変化させた。このようにして各実施例及び各比較例におけるターゲット13の表面上に形成される照射光形状を、長軸方向の幅に対する短軸方向の幅の割合(長軸方向の幅/短軸方向の幅)が表1又は表2に示すような割合となるような楕円形状とした。更に、ターゲット13の傾斜に対し、集光レンズ11を上下させることにより照射光の面積は0.12〜0.16cmとした。また、ターゲット13の表面上に形成される照射光形状の重心点と樹脂基材15の表面との間の距離が30mm離れるような位置に樹脂基材15を配置した。ターゲット13はレーザー照射部ができるだけ新鮮面になるように、ターゲット駆動装置12(モーター)を用いて1分あたり1回転程度の速度で回転させた。更に、樹脂基材駆動装置14としてはパルスモータを用い、ターゲット13の表面に対してほぼ平行な面上において前記長軸方向に対して垂直な方向と樹脂基材15の移動方向との開口角度が0°となるようにして樹脂基材15を移動させた。このときの各実施例及び各比較例における樹脂基材15の移動速度を表1又は表2に示す。
(Examples 1 to 22 and Comparative Examples 1 to 7)
The surface modification of the resin substrate was performed using a resin substrate surface modification apparatus that can be suitably used for the resin substrate surface modification method of the present invention shown in FIG. That is, the laser beam L having a wavelength of 1064 nm, a pulse width of 7 ns, an energy of 1.84 J, and a repetition rate of 10 Hz from a Spectra Physics パ ル ス pulse YAG laser device is condensed by using a condenser lens 11 having a focal length of 200 mm. Irradiation was performed on the surface, and vacuum ultraviolet light assisted laser ablation processing (hereinafter referred to as “VALA processing”) was performed on the resin base material 15. The laser irradiation intensity (E) was 2.34 × 10 −9 W / cm 2 . Such irradiation intensity (E) was obtained from the following equation.
E = 1.84 / (3.14 × 0.13 × 0.275 × 7 × 10 −9 ) = 2.34 × 10 −9 (W / cm 2 )
A disk-shaped carbon having a diameter of 40 mm and a thickness of 5 mm was used as the target 13, and a polypropylene plate (manufactured by Nippon Polychem) was used as the resin base material 15. Moreover, the incident angle of the laser beam L was changed by changing the inclination of the target 13, and the opening angle θ shown in FIG. 1 was changed between 30 ° and 85 °. Thus, the irradiation light shape formed on the surface of the target 13 in each example and each comparative example is the ratio of the width in the minor axis direction to the width in the major axis direction (width in the major axis direction / width in the minor axis direction). The width was an elliptical shape having a ratio as shown in Table 1 or Table 2. Furthermore, the area of the irradiated light was set to 0.12 to 0.16 cm 2 by moving the condenser lens 11 up and down with respect to the inclination of the target 13. In addition, the resin base material 15 was disposed at a position where the distance between the center of gravity of the irradiation light shape formed on the surface of the target 13 and the surface of the resin base material 15 was 30 mm apart. The target 13 was rotated at a speed of about one rotation per minute by using the target driving device 12 (motor) so that the laser irradiation part was as fresh as possible. Further, a pulse motor is used as the resin base material driving device 14, and the opening angle between the direction perpendicular to the major axis direction and the moving direction of the resin base material 15 on a surface substantially parallel to the surface of the target 13. The resin base material 15 was moved so as to be 0 °. Table 1 or Table 2 shows the moving speed of the resin base material 15 in each example and each comparative example.

また、シールドガスとしてはヘリウムを用い、VALA処理の雰囲気を上方置換によりヘリウム雰囲気とした。雰囲気ガス中に含まれる残留酸素濃度は新コスモス電機製デジタル酸素濃度計(XPO−318)で測定した。実施例1〜15及び比較例1〜5においては酸素量が4容量%であるヘリウムガス雰囲気でVALA処理を行い、実施例16〜22及び比較例6〜7においては、表2に示すように酸素量を2〜10容量%の間で変化させてVALA処理を行った。   Helium was used as the shielding gas, and the atmosphere of the VALA treatment was changed to a helium atmosphere by upward replacement. The residual oxygen concentration contained in the atmospheric gas was measured with a digital oximeter (XPO-318) manufactured by Shin Cosmos Electric. In Examples 1 to 15 and Comparative Examples 1 to 5, VALA treatment was performed in a helium gas atmosphere having an oxygen amount of 4% by volume. In Examples 16 to 22 and Comparative Examples 6 to 7, as shown in Table 2. The VALA treatment was performed by changing the oxygen amount between 2 and 10% by volume.

(実施例23〜26)
樹脂基材15として日本ポリプロ社製のPC−6を用い、樹脂基材15の移動速度を表3に示す移動速度とし、図1に示す開口角度θを65°とし、ターゲット13の表面上に形成される照射光形状の重心点と樹脂基材15との間の距離を25mmとし、ターゲット13の表面上に形成される照射光形状の長軸の幅が短軸の幅の約2.1倍(長軸の幅5.5mm、短軸の幅2.6mm)となるようにした以外は実施例1と同様にして樹脂基材にVALA処理を行った。
(Examples 23 to 26)
PC-6 manufactured by Nippon Polypro Co., Ltd. is used as the resin base material 15, the moving speed of the resin base material 15 is set to the moving speed shown in Table 3, the opening angle θ shown in FIG. The distance between the center of gravity of the formed irradiation light shape and the resin substrate 15 is 25 mm, and the width of the major axis of the irradiation light shape formed on the surface of the target 13 is about 2.1, which is the width of the short axis. The resin base material was subjected to VALA treatment in the same manner as in Example 1 except that the width of the long axis was 5.5 mm and the width of the short axis was 2.6 mm.

[塗料の付着性]
〈初期付着性〉
実施例1〜26及び比較例1〜7で得られたVALA処理後の樹脂基材にスプレー塗装を施した後、碁盤目剥離試験を行って塗料の初期付着性を評価した。なお、前記スプレー塗装においては、各実施例及び各比較例で得られたVALA処理後の樹脂基材を1日静置した後、関西ペイント製のメタリックベース塗料SOFLEX420TUC−1C0(#1C0)とクリア塗料SFX500TLをエアスプレー塗装し、90℃の温度条件で20分間焼付けた後、1日放置して塗膜(膜厚45μm)を形成させた。また、碁盤目剥離試験はJIS K5400に準拠して行った。更に、実施例23〜26に関しては、試料をそれぞれ2個準備し、碁盤目剥離試験をそれぞれ2回行った。また、塗料の初期付着性は以下の評価基準にしたがって評価した。得られた結果を表1〜表3に示す。
<付着性の評価基準>
○:剥がれた個数が0である
△:剥がれた個数が1/100〜9/100の範囲である
×:剥がれた個数が10/100以上である。
[Adhesion of paint]
<Initial adhesion>
After spray coating was performed on the resin substrates after VALA treatment obtained in Examples 1 to 26 and Comparative Examples 1 to 7, a cross-cut peel test was performed to evaluate the initial adhesion of the paint. In the spray coating, the VALA-treated resin base material obtained in each of the examples and comparative examples was allowed to stand for one day, and then cleared with Kansai Paint's metallic base paint SOFLEX420TUC-1C0 (# 1C0). The paint SFX500TL was applied by air spraying, baked for 20 minutes at a temperature of 90 ° C., and then left for 1 day to form a coating film (film thickness: 45 μm). Further, the cross-cut peel test was performed according to JIS K5400. Furthermore, regarding Examples 23 to 26, two samples were prepared, respectively, and a cross-cut peel test was performed twice. The initial adhesion of the paint was evaluated according to the following evaluation criteria. The obtained results are shown in Tables 1 to 3.
<Adhesion evaluation criteria>
◯: The number of peeled is 0. Δ: The number of peeled is in the range of 1/100 to 9/100. X: The number of peeled is 10/100 or more.

〈耐水付着性〉
また、実施例23〜26に関して、得られた試料を40℃の温度条件下で10日間水槽内に静置した後、JIS K5400に準拠した碁盤目剥離試験を行って耐水付着性を評価した。なお、試料をそれぞれ2個準備し、碁盤目剥離試験をそれぞれ2回行った。また、評価基準は上記<付着性の評価基準>と同様である。得られた結果を表3に示す。
<Water resistance>
In addition, regarding Examples 23 to 26, the obtained samples were allowed to stand in a water bath at a temperature of 40 ° C. for 10 days, and then subjected to a cross-cut peel test in accordance with JIS K5400 to evaluate water resistance. Two samples were prepared, respectively, and a cross-cut peel test was performed twice. The evaluation criteria are the same as the above <Evaluation criteria for adhesion>. The obtained results are shown in Table 3.

なお、表1は照射光形状が異なる時の基材移動速度と塗料の付着性との関係を示す表であり、表2は処理雰囲気中の酸素容量と塗料の付着性との関係を示す表であり、表3はより好適な処理条件下における基材移動速度と塗料の付着性との関係を示す表である。   Table 1 is a table showing the relationship between the substrate moving speed and the paint adhesion when the irradiation light shapes are different, and Table 2 is a table showing the relationship between the oxygen capacity in the processing atmosphere and the paint adhesion. Table 3 is a table showing the relationship between the base material moving speed and the paint adhesion under more preferable processing conditions.

Figure 2007191758
Figure 2007191758

Figure 2007191758
Figure 2007191758

Figure 2007191758
Figure 2007191758

表1に示す結果からも明らかなように、長軸方向の幅が短軸方向の幅の1.5倍以上とすることで、樹脂基材の移動速度を300mm/分以上という速い速度に設定しても十分に樹脂基材の表面改質が行えることが確認された。また、長軸方向の幅が短軸方向の幅よりも大きいほど処理速度を速くすることができることが確認された。   As is clear from the results shown in Table 1, the moving speed of the resin substrate is set to a high speed of 300 mm / min or more by setting the width in the major axis direction to 1.5 times or more the width in the minor axis direction. Even in this case, it was confirmed that the surface modification of the resin base material can be sufficiently performed. Further, it was confirmed that the processing speed can be increased as the width in the major axis direction is larger than the width in the minor axis direction.

また、表2に示す結果からも明らかなように酸素量が8容量%以下のシールドガス雰囲気で十分に樹脂基材の表面改質が行えることが確認され、酸素量が4容量%以下の場合には600mm/分の処理速度においても十分に樹脂基材の表面改質が行えることが確認された。   In addition, as is clear from the results shown in Table 2, it was confirmed that the surface modification of the resin base material can be sufficiently performed in a shielding gas atmosphere having an oxygen amount of 8% by volume or less, and the oxygen content is 4% by volume or less. It was confirmed that the surface modification of the resin base material can be sufficiently performed even at a processing speed of 600 mm / min.

更に、表3の結果からも明らかなように、本発明の樹脂基材の表面改質方法を採用することで、2700mm/分以上の移動速度で樹脂基材を移動させながらVALA処理を行っても樹脂基材の表面に均一且つ十分に飛散粒子が付着させることができることが確認された。   Further, as is clear from the results in Table 3, by adopting the resin substrate surface modification method of the present invention, VALA treatment was performed while moving the resin substrate at a moving speed of 2700 mm / min or more. It was also confirmed that scattered particles can be uniformly and sufficiently adhered to the surface of the resin base material.

以上説明したように、本発明によれば、バッチ方式で樹脂基材の表面改質処理を行う必要がなく、大気圧下において樹脂基材を300mm/分以上という非常に速い移動速度で移動させながら樹脂基材の表面に飛散粒子を均一に堆積させることができ、十分な処理速度で効率よく且つ確実に樹脂基材の表面を改質することが可能な樹脂基材の表面改質方法を提供することが可能となる。   As described above, according to the present invention, it is not necessary to perform the surface modification treatment of the resin base material in a batch mode, and the resin base material is moved at a very high moving speed of 300 mm / min or more under atmospheric pressure. A method for modifying the surface of a resin substrate that can uniformly deposit scattered particles on the surface of the resin substrate, and that can efficiently and reliably modify the surface of the resin substrate at a sufficient processing speed. It becomes possible to provide.

したがって、本発明の樹脂基材の表面改質方法は、その処理速度を飛躍的に向上させることが可能な方法であるため、樹脂基材に塗装を施す際の前処理方法等として特に有用である。   Therefore, the surface modification method for a resin base material of the present invention is a method that can dramatically improve the processing speed, and thus is particularly useful as a pretreatment method or the like when coating the resin base material. is there.

ターゲットとレーザー光との関係を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the relationship between a target and laser beam. 本発明の樹脂基材の表面改質方法に好適に用いることができる樹脂基材の表面改質装置の一実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows one Embodiment of the surface modification apparatus of the resin base material which can be used suitably for the surface modification method of the resin base material of this invention.

符号の説明Explanation of symbols

10…反射板、11…集光レンズ、12…ターゲット駆動装置、13…ターゲット、14…樹脂基材駆動装置、15…樹脂基材、16…ガスノズル、17…ガス用シールド、L…レーザー光、L…ターゲット表面の垂線、a…飛散粒子、P…プラズマ。
DESCRIPTION OF SYMBOLS 10 ... Reflecting plate, 11 ... Condensing lens, 12 ... Target drive device, 13 ... Target, 14 ... Resin base material drive device, 15 ... Resin base material, 16 ... Gas nozzle, 17 ... Gas shield, L ... Laser beam, L 1 ... perpendicular to the target surface, a ... scattered particles, P ... plasma.

Claims (5)

ターゲットの表面にレーザー光を照射して波長50nm〜100nmの真空紫外光及び飛散粒子を発生させ、樹脂基材の表面に前記真空紫外光を照射しつつ前記飛散粒子を付着させる樹脂基材の表面改質方法であって、
前記ターゲットの表面上に形成される照射光形状が長軸方向の幅が短軸方向の幅の1.5倍〜10倍である略楕円形状となるように前記ターゲットの表面に前記レーザー光を照射しつつ、前記ターゲットの表面に対して平行な面上において前記長軸方向に対して垂直な方向と樹脂基材の移動方向との開口角度が10°以内となるように前記樹脂基材を移動させ、酸素量が8容量%以下のシールドガス雰囲気下において前記樹脂基材の表面に前記真空紫外光を照射しつつ前記飛散粒子を付着させることを特徴とする樹脂基材の表面改質方法。
The surface of the resin base material that irradiates the target surface with laser light to generate vacuum ultraviolet light and scattered particles having a wavelength of 50 nm to 100 nm, and attaches the scattered particles to the surface of the resin base material while irradiating the vacuum ultraviolet light. A reforming method comprising:
The laser light is applied to the surface of the target so that the shape of the irradiation light formed on the surface of the target is a substantially elliptical shape whose width in the major axis direction is 1.5 to 10 times the width in the minor axis direction. While irradiating, the resin base material is adjusted so that the opening angle between the direction perpendicular to the major axis direction and the moving direction of the resin base material is within 10 ° on a plane parallel to the surface of the target. A method for modifying the surface of a resin base material, characterized in that the scattered particles are attached while irradiating the vacuum ultraviolet light on the surface of the resin base material in a shielding gas atmosphere having an oxygen content of 8% by volume or less. .
前記レーザー光の入射方向と前記ターゲットの表面の垂線方向との開口角度が50〜85°となるように前記ターゲットを配置することを特徴とする請求項1に記載の樹脂基材の表面改質方法。   2. The surface modification of a resin base material according to claim 1, wherein the target is disposed so that an opening angle between the incident direction of the laser beam and the perpendicular direction of the surface of the target is 50 to 85 degrees. Method. 前記ターゲットの表面上に形成される照射光形状の重心点と前記樹脂基材の表面との間の距離を10〜100mmとすることを特徴とする請求項1又は2に記載の樹脂基材の表面改質方法。   The distance between the center of gravity of the irradiation light shape formed on the surface of the target and the surface of the resin substrate is 10 to 100 mm, The resin substrate according to claim 1 or 2, Surface modification method. 前記樹脂基材を移動させる速度が300mm/分以上であることを特徴とする請求項1〜3のうちのいずれか一項に記載の樹脂基材の表面改質方法。   The method for modifying the surface of a resin substrate according to any one of claims 1 to 3, wherein a speed at which the resin substrate is moved is 300 mm / min or more. 前記レーザー光が、パルス幅100ピコ秒〜100ナノ秒でかつ照射強度が10W/cm〜1012W/cmであるパルスレーザー光であることを特徴とする請求項1〜4のうちのいずれか一項に記載の樹脂基材の表面改質方法。 5. The laser beam according to claim 1, wherein the laser beam is a pulse laser beam having a pulse width of 100 picoseconds to 100 nanoseconds and an irradiation intensity of 10 6 W / cm 2 to 10 12 W / cm 2 . The surface modification method of the resin base material as described in any one of them.
JP2006011625A 2006-01-19 2006-01-19 Surface modification method for resin base material Expired - Fee Related JP4895092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011625A JP4895092B2 (en) 2006-01-19 2006-01-19 Surface modification method for resin base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011625A JP4895092B2 (en) 2006-01-19 2006-01-19 Surface modification method for resin base material

Publications (2)

Publication Number Publication Date
JP2007191758A true JP2007191758A (en) 2007-08-02
JP4895092B2 JP4895092B2 (en) 2012-03-14

Family

ID=38447696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011625A Expired - Fee Related JP4895092B2 (en) 2006-01-19 2006-01-19 Surface modification method for resin base material

Country Status (1)

Country Link
JP (1) JP4895092B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228743A (en) * 1993-02-02 1994-08-16 Matsushita Electric Ind Co Ltd Vacuum deposition device
JPH07166333A (en) * 1993-12-16 1995-06-27 Matsushita Electric Ind Co Ltd Laser abrasion device
JP2003317557A (en) * 2002-04-25 2003-11-07 Sumitomo Electric Ind Ltd Method for manufacturing wire and apparatus for manufacturing same
JP2004006063A (en) * 2002-04-02 2004-01-08 Sumitomo Electric Ind Ltd Wire and its manufacturing process
JP2004172210A (en) * 2002-11-18 2004-06-17 Toyota Central Res & Dev Lab Inc Wiring method, wiring substrate and device obtained thereby
JP2005126788A (en) * 2003-10-24 2005-05-19 Toyota Central Res & Dev Lab Inc Method for hardening surface of resin molding, and surface-hardened resin molding
JP2006009072A (en) * 2004-06-24 2006-01-12 Toyota Central Res & Dev Lab Inc Method for reforming surface of substrate and device for reforming surface of substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228743A (en) * 1993-02-02 1994-08-16 Matsushita Electric Ind Co Ltd Vacuum deposition device
JPH07166333A (en) * 1993-12-16 1995-06-27 Matsushita Electric Ind Co Ltd Laser abrasion device
JP2004006063A (en) * 2002-04-02 2004-01-08 Sumitomo Electric Ind Ltd Wire and its manufacturing process
JP2003317557A (en) * 2002-04-25 2003-11-07 Sumitomo Electric Ind Ltd Method for manufacturing wire and apparatus for manufacturing same
JP2004172210A (en) * 2002-11-18 2004-06-17 Toyota Central Res & Dev Lab Inc Wiring method, wiring substrate and device obtained thereby
JP2005126788A (en) * 2003-10-24 2005-05-19 Toyota Central Res & Dev Lab Inc Method for hardening surface of resin molding, and surface-hardened resin molding
JP2006009072A (en) * 2004-06-24 2006-01-12 Toyota Central Res & Dev Lab Inc Method for reforming surface of substrate and device for reforming surface of substrate

Also Published As

Publication number Publication date
JP4895092B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
Esrom et al. New approach of a laser-induced forward transfer for deposition of patterned thin metal films
US5531857A (en) Removal of surface contaminants by irradiation from a high energy source
KR100221421B1 (en) Removal of surface contaminants by irradiation
CN103492107A (en) Method for preparing metal particles
JP4155031B2 (en) Substrate surface modification method, modified substrate, and apparatus
JP4895092B2 (en) Surface modification method for resin base material
JP4924804B2 (en) Resin substrate surface modification apparatus and resin substrate surface modification method using the same
JP4757709B2 (en) Laminate for resin glass and method for producing the same
JP5442375B2 (en) Optical element manufacturing method
JP4269886B2 (en) Surface-curing method for resin-molded body and surface-cured resin-molded body
JPH0885819A (en) Pretreatment of material to be worked in laser beam machining
JP4120873B2 (en) Bonding method and bonding pretreatment method
JP2006009072A (en) Method for reforming surface of substrate and device for reforming surface of substrate
JP4247713B2 (en) Coating method and pre-treatment method
JP4269271B2 (en) Infrared light reflecting member and manufacturing method thereof
JPS59162267A (en) Vapor deposition device
JP4214471B2 (en) Substrate surface modification method and apparatus
JPH0681151A (en) Cleaning method of window for container
JP4521657B2 (en) Adhesion method and adhesion pretreatment method
JPH01104776A (en) Precipitation of predetermined fine structure by laser beam
JP4513118B2 (en) Gas barrier resin molded body and method for producing the same
Alloncle et al. Laser-induced forward transfer of 40 nm Chromium film using ultrashort laser pulses
JPH1026699A (en) Debris shield
JP2013010858A (en) Method for bonding polyacetal resin molding
Shinozaki et al. Diamond-like carbon films by pulsed-laser deposition with additional laser irradiation to plume

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees