JP2007191639A - Method for producing resin composition and resin composition - Google Patents

Method for producing resin composition and resin composition Download PDF

Info

Publication number
JP2007191639A
JP2007191639A JP2006012939A JP2006012939A JP2007191639A JP 2007191639 A JP2007191639 A JP 2007191639A JP 2006012939 A JP2006012939 A JP 2006012939A JP 2006012939 A JP2006012939 A JP 2006012939A JP 2007191639 A JP2007191639 A JP 2007191639A
Authority
JP
Japan
Prior art keywords
resin composition
group
acrylic monomer
mma
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006012939A
Other languages
Japanese (ja)
Other versions
JP4974133B2 (en
Inventor
Yasuji Yamada
保治 山田
Naohide Isogai
尚秀 磯貝
Takeshi Fujita
武士 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Nagoya Institute of Technology NUC
Original Assignee
Nidek Co Ltd
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd, Nagoya Institute of Technology NUC filed Critical Nidek Co Ltd
Priority to JP2006012939A priority Critical patent/JP4974133B2/en
Publication of JP2007191639A publication Critical patent/JP2007191639A/en
Application granted granted Critical
Publication of JP4974133B2 publication Critical patent/JP4974133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition having improved mechanical characteristics and heat resistance while keeping its good transparency (light transmission properties) and a method for producing the resin composition. <P>SOLUTION: The method for producing the resin composition comprises a 1st step for obtaining a mixed solution through mixing of an organic solvent containing inorganic particles of submicrometer orders with an acrylic monomer, a 2nd step for removing the organic solvent from the mixed solution obtained in the 1st step, and a 3rd step for obtaining a resin composition through addition of a material that causes interaction between an organic material and an inorganic material by acting on both an acrylic monomer and inorganic particles in the mixed solution from which the organic solvent has been substantially removed by the 2nd step to cause formation of interaction between the acrylic monomer and the inorganic particles via polymerization reaction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機微粒子が配合されたアクリル系の樹脂組成物及びその製造方法に関する。   The present invention relates to an acrylic resin composition containing inorganic fine particles and a method for producing the same.

ポリメチルメタクリレート(以下、PMMAと記す)等のアクリル樹脂の機械的特性、耐熱性等を向上させる目的で、樹脂中に無機微粒子を配合させた樹脂組成物が知られている。このような樹脂組成物には平均粒子径がサブミクロンオーダの無機微粒子を配合させることによって透光性(透明性)の低下を抑えつつ、その他の特性を向上させるものが知られている。
特開2004−131702号公報
For the purpose of improving the mechanical properties, heat resistance and the like of acrylic resins such as polymethyl methacrylate (hereinafter referred to as PMMA), resin compositions in which inorganic fine particles are blended in the resin are known. Such a resin composition is known to improve other characteristics while suppressing a decrease in translucency (transparency) by blending inorganic fine particles having an average particle size on the order of submicron.
JP 2004-131702 A

上述の無機微粒子が配合された樹脂組成物は、単一成分からなるアクリル樹脂に比べ、機械的特性や耐熱性等の向上は認められるものの、充分な透光性が得られるものではなかった。
上記従来技術の問題点に鑑み、良好な透光性(透明性)を維持しつつ、機械的な特性や耐熱性が向上した樹脂組成物、及びその製造方法を提供することを技術課題とする。
Although the resin composition containing the above-mentioned inorganic fine particles is improved in mechanical properties, heat resistance and the like as compared with an acrylic resin composed of a single component, sufficient translucency is not obtained.
In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a resin composition with improved mechanical properties and heat resistance while maintaining good translucency (transparency), and a method for producing the same. .

本発明者らは鋭意研究を重ねた結果、アクリル系の樹脂にサブミクロンオーダの無機微粒子と、有機、無機の相互に作用する有機無機相互作用材(修飾剤)とが配合された樹脂組成物は、高い透明性を確保しつつ、耐熱性や表面硬度が向上することを見出した。このような樹脂組成物は、サブミクロンオーダーの無機微粒子を含有する有機溶媒とアクリルモノマーとを混合して混合液を得ておき、この混合液から有機溶媒を取り除いた後、アクリルモノマーと無機微粒子の相互に作用する有機無機相互作用材を用いて重合反応させることにより、一段の反応のみで得ることができる。   As a result of intensive studies, the present inventors have found that a resin composition in which an inorganic resin of submicron order and an organic / inorganic interaction material (modifier) interacting with each other are mixed with an acrylic resin. Found that heat resistance and surface hardness were improved while ensuring high transparency. In such a resin composition, an organic solvent containing submicron-order inorganic fine particles and an acrylic monomer are mixed to obtain a mixed liquid, and after removing the organic solvent from the mixed liquid, the acrylic monomer and the inorganic fine particles are mixed. By carrying out the polymerization reaction using the organic-inorganic interaction material that interacts with each other, it can be obtained by only one stage of reaction.

本発明において、使用されるアクリル系の樹脂の原料としては、具体的には以下に挙げるものを使用することができる。なお、表記上「・・・(メタ)アクリレート」とあるのは「・・・アクリレート」または「メタクリレート」を表す。
まず、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、tert−ブチル(メタ) アクリレート、 イソブチル(メタ)アクリレート、n−ペンチル(メタ)アクリレート、tert−ペンチル(メタ)アクリレ−ト、ヘキシル(メタ)アクリレート、2−メチルブチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ブトキシエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、エチレングリコールフェニルエーテルアクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルメタクリレート、イソボニル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート等の直鎖状、分岐鎖状、環状のアルキル(メタ)アクリレート類等を挙げることができ、これらを1種類以上使用して得られる共重合物をアクリル樹脂として使用することができる。
In the present invention, specific examples of the raw material for the acrylic resin used include those listed below. In the description, “... (Meth) acrylate” means “... Acrylate” or “methacrylate”.
First, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, tert-pentyl (meth) acrylate, hexyl (meth) acrylate, 2-methylbutyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, Decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, butoxyethyl (meth) acrylate, isodecyl (meth) acrylate, butoxyethylene glycol (meth) acrylate, methoxytri Tylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, ethylene glycol phenyl ether acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl methacrylate Linear, branched, and cyclic alkyl (meth) acrylates such as isobornyl (meth) acrylate, trifluoroethyl (meth) acrylate, and perfluorooctylethyl (meth) acrylate. A copolymer obtained by using one or more kinds can be used as an acrylic resin.

また、無機微粒子は平均粒径がサブミクロンオーダのものを使用する。好ましくは100nm以下であり、物理的な大きさを有していれば、その下限は特に限定されない。入手可能な無機微粒子の粒径によって定められることとなる。使用可能な無機微粒子としては、後述する有機無機相互作用材によって表面修飾可能な金属酸化物ゾルを挙げることができる。例えば、シリカ(SiO2)、アルミナ(Al23)、ジルコニア(ZrO2)、チタニア(TiO2)、ITO(スズドープ酸化インジウム)、酸化スズ(SnO2)、酸化亜鉛(ZnO)、酸化アンチモン(Sb23、Sb25等)、及びこれらの複合微粒子等を挙げることができる。また、無機微粒子の配合量は、前述したアクリル系樹脂と無機微粒子との混合量に対して、好ましくは1.0重量%〜70重量%、さらに好ましくは15重量%〜45重量%である。無機微粒子が1.0重量%を下回ると、その効果が現れにくい。また、70重量%を超えると、得られた樹脂組成物が脆くなりやすい。
本発明にて用いる有機無機相互作用材は、有機材料に作用させるための有機官能基と、無機材料に作用させるための加水分解基とを持つ材料であればよく、例えば下記の式(1)で表される有機無機相互作用材が使用できる。
Further, inorganic fine particles having an average particle size on the order of submicron are used. Preferably, the lower limit is not particularly limited as long as it is 100 nm or less and has a physical size. It will be determined by the particle size of available inorganic fine particles. Examples of the inorganic fine particles that can be used include metal oxide sols that can be surface-modified with an organic-inorganic interaction material described later. For example, silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), titania (TiO 2 ), ITO (tin-doped indium oxide), tin oxide (SnO 2 ), zinc oxide (ZnO), antimony oxide (Sb 2 O 3 , Sb 2 O 5, etc.), and composite fine particles thereof. The blending amount of the inorganic fine particles is preferably 1.0% by weight to 70% by weight, more preferably 15% by weight to 45% by weight with respect to the mixed amount of the acrylic resin and the inorganic fine particles. If the inorganic fine particles are less than 1.0% by weight, the effect is hardly exhibited. Moreover, when it exceeds 70 weight%, the obtained resin composition tends to become weak.
The organic-inorganic interaction material used in the present invention may be a material having an organic functional group for acting on an organic material and a hydrolyzing group for acting on an inorganic material. For example, the following formula (1) The organic-inorganic interaction material represented by can be used.

Figure 2007191639
(式中、R1は水素またはC1〜C5の直鎖又は側鎖のアルキル基、R2はC1〜C10の直鎖又は側鎖のアルキル基を示す。Yは水酸基、ハロゲン基、エポキシ基、アルコキシシリル基、カルボキシル基、イソシアネート基、クロロシリル基、アシルハライド基、メルカプト基、アミノ基からなる群より選択される)
具体的には、γ−メタクリロキシプロピルトリメトキシシラン(MPS)、グリシジルメタクリレート(MG)、2−メタクリロイルオキシエチルイソシアネート(MOI)、2−アクリロイルオキシエチルイソシアネート(AOI)、2−ヒドロキシエチルメタクリレート等が挙げられる。
Figure 2007191639
(In the formula, R 1 represents hydrogen or a C 1 to C 5 linear or side chain alkyl group, R 2 represents a C 1 to C 10 linear or side chain alkyl group, Y represents a hydroxyl group, a halogen group, (Selected from the group consisting of epoxy group, alkoxysilyl group, carboxyl group, isocyanate group, chlorosilyl group, acyl halide group, mercapto group, amino group)
Specifically, γ-methacryloxypropyltrimethoxysilane (MPS), glycidyl methacrylate (MG), 2-methacryloyloxyethyl isocyanate (MOI), 2-acryloyloxyethyl isocyanate (AOI), 2-hydroxyethyl methacrylate, etc. Can be mentioned.

このような有機無機相互作用材における下限の配合量は、有機物と無機物との間にて相溶性を持たせるために、有機材料側(アクリルモノマー、オリゴマー、ポリマー)、及び無機材料側(金属酸化物)の相互に作用を及ぼすことのできる配合量であればよく、樹脂組成物全量に対して0.01重量%以上であれば、使用可能である。また、上限の配合量は、樹脂組成物の耐熱性や表面硬度等の物性が損なわれない程度であればよい。   The lower compounding amount in such an organic / inorganic interaction material is such that the organic material side (acrylic monomer, oligomer, polymer) and the inorganic material side (metal oxidation) in order to provide compatibility between the organic material and the inorganic material. Compound) may be used as long as it is 0.01% by weight or more based on the total amount of the resin composition. Moreover, the upper limit compounding quantity should just be a grade which physical properties, such as heat resistance and surface hardness of a resin composition, are not impaired.

また、前述したアクリル樹脂の原料となるモノマーに無機微粒子を混合する場合には、無機微粒子を均一に分散させるために、予め無機微粒子を有機溶媒中に分散させておくことが好ましい。有機溶媒はアクリルモノマーと混ぜ合わせることができるとともに、溶媒置換法を用いて、混合液中から有機溶媒を取り除くことができるものであればよい。例えばメチルエチルケトン(以下、MEKと記す)、ベンゼン、トルエン、キシレン、メチルセロソルブ、エチルセロソルブ、n-プロピルセロソルブ、メタノール、エタノール、イソプロピルアルコール、メチルイソブチルケトン等が挙げられる。また、好ましくは疎水性であり、且つアクリルモノマーを溶かすことが可能な有機溶媒である。   In addition, when the inorganic fine particles are mixed with the monomer used as the raw material for the acrylic resin, the inorganic fine particles are preferably dispersed in advance in an organic solvent in order to uniformly disperse the inorganic fine particles. Any organic solvent can be used as long as it can be mixed with an acrylic monomer and can remove the organic solvent from the mixed solution using a solvent substitution method. For example, methyl ethyl ketone (hereinafter referred to as MEK), benzene, toluene, xylene, methyl cellosolve, ethyl cellosolve, n-propyl cellosolve, methanol, ethanol, isopropyl alcohol, methyl isobutyl ketone and the like can be mentioned. Further, it is preferably an organic solvent that is hydrophobic and can dissolve the acrylic monomer.

アクリルモノマーを高分子化させるための重合開始剤としては、過酸化ベンゾイル(BPO)、t-ブチルパーオキシ-2-エチルヘキサノエート、1,1-ジ-t-ブチルパーオキシ-2-メチルシクロヘキサン等の過酸化物系開始剤や2,2'−アゾビス−イソブチロニトリル(AIBN)、2,2'-アゾビス-2,4-ジメチルバレロニトリル等のアゾ系開始剤等の一般的な重合開始剤を使用することができる。   Polymerization initiators for polymerizing acrylic monomers include benzoyl peroxide (BPO), t-butylperoxy-2-ethylhexanoate, 1,1-di-t-butylperoxy-2-methyl General peroxide initiators such as cyclohexane, azo initiators such as 2,2′-azobis-isobutyronitrile (AIBN), 2,2′-azobis-2,4-dimethylvaleronitrile, etc. A polymerization initiator can be used.

次に、本発明の樹脂組成物の製造方法について図面を参考にしつつ説明する。図1は本発明の樹脂組成物の製造方法の流れを示したフローチャートである。
始めにサブミクロンオーダーの無機微粒子が液中に均一に分散された有機溶媒と、アクリルモノマーとを所定量混ぜて混合液を作成する。次に溶媒置換法を用いて、減圧下にて混合液を所定時間加熱して、混合液から有機溶媒を取り除く。その後、有機溶媒が取り除かれた混合液中に、有機無機相互作用材(修飾剤)と重合開始剤とを微量添加した上で、所定温度、所定時間にて重合反応を行って高分子化を行うことにより、目的の樹脂組成物が得られることとなる。この製造工程において、有機無機相互作用材は、アクリルモノマーに対して共有結合し、無機微粒子とは共有結合または相互作用している。
Next, the manufacturing method of the resin composition of this invention is demonstrated, referring drawings. FIG. 1 is a flowchart showing a flow of a method for producing a resin composition of the present invention.
First, a predetermined amount of an organic solvent in which submicron-order inorganic fine particles are uniformly dispersed in a liquid and an acrylic monomer are mixed to prepare a mixed liquid. Next, by using a solvent substitution method, the mixed solution is heated for a predetermined time under reduced pressure to remove the organic solvent from the mixed solution. Thereafter, a small amount of an organic-inorganic interaction material (modifier) and a polymerization initiator are added to the mixed solution from which the organic solvent has been removed, and then a polymerization reaction is performed at a predetermined temperature for a predetermined time to obtain a polymer. By performing, the target resin composition will be obtained. In this manufacturing process, the organic-inorganic interaction material is covalently bonded to the acrylic monomer and is covalently bonded or interacts with the inorganic fine particles.

なお、本発明の樹脂組成物は、このように一段の反応のみにて得ることができるため、製造プロセスも簡単であり、安価に製造することが可能である。また、この樹脂組成物を原料として、射出成型機や押出成型機等を用いることにより、耐熱性や機械的物性が優れたシート状、板状の樹脂組成物(樹脂成型物)を得ることができる。特にこのような組成物は光学用途に好適に用いることができる。さらに、重合前の混合液を用いて、光学部材の表面にスピンコート法等を用いて所定の厚みだけ塗布した後、硬化させることにより、表面硬度や耐熱性を向上させる効果を有するコーティングを行えることとなる。   In addition, since the resin composition of this invention can be obtained only by one step of reaction in this way, a manufacturing process is also simple and can be manufactured cheaply. Further, by using this resin composition as a raw material, an injection molding machine, an extrusion molding machine or the like can be used to obtain a sheet-like or plate-like resin composition (resin molding) having excellent heat resistance and mechanical properties. it can. In particular, such a composition can be suitably used for optical applications. Furthermore, a coating having an effect of improving surface hardness and heat resistance can be performed by applying a predetermined thickness on the surface of the optical member by using a spin coating method or the like using a mixed solution before polymerization, and then curing. It will be.

本発明によれば、複雑なプロセスを介することなく、良好な透光性(透明性)を維持しつつ、機械的な特性や耐熱性を向上させることのできる樹脂組成物を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition which can improve mechanical characteristics and heat resistance can be obtained, maintaining favorable translucency (transparency), without going through a complicated process.

次に、本発明に関する実施例及び比較例を挙げ、説明するが、本発明はこれらに限定されるものではない。   Next, although the Example and comparative example regarding this invention are given and demonstrated, this invention is not limited to these.

(実施例1)
事前準備として、市販されているMMA(メチルメタクリレート Aldrich社製)中の重合禁止剤を取り除くため、MMAの蒸留を行った。
次に、コロイダルシリカ(日産化学工業(株)製MEK-ST固形分SiO2(平均粒径10〜15nm)30% MEK 70%)5.0gと、重合禁止剤が取り除かれたMMAをコロイダルシリカの10倍程度の量とをフラスコに取り、混合液とした後、エバポレータで混合液中のMEKを取り除いた。エバポレータによる溶媒置換条件は、液温40℃〜50℃、内圧0.085MPaとした。ガスクロマトグラフ法を用いて混合液中のMEKの残量が1%以下になったことを確認後、最終的に溶媒置換後の混合液(MEKが取り除かれた混合液)の量が10gとなるようにMMAを調整して、SiO2がこの混合液に対して15重量%(MMA 8.5g,SiO2 1.5g)となるようにし、透明な混合液を得た。
MEKが取り除かれた混合液中に、重合開始剤(過酸化ベンゾイル キシダ化学(株))を微量(MMAに対して0.5mol%)、さらに修飾剤(有機無機相互作用材)としてMOI(カレンズMOI 昭和電工(株))を微量(0.44g)添加した。重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、所定の型枠に入れ、80℃の温浴中で6時間重合を行い、目的の樹脂組成物を得た。さらに、この樹脂組成物をオーブン内に置き、80℃で12時間乾燥させることにより、厚さ2mmの透明な板状の樹脂組成物を得た。
Example 1
As a preliminary preparation, MMA was distilled to remove a polymerization inhibitor in MMA (manufactured by methyl methacrylate Aldrich).
Next, colloidal silica (MEK-ST solid content SiO 2 (average particle size 10 to 15 nm) 30% MEK 70%) manufactured by Nissan Chemical Industries, Ltd. (5.0 g) and MMA from which the polymerization inhibitor has been removed were mixed with colloidal silica. About 10 times the amount was taken in a flask to make a mixed solution, and then MEK in the mixed solution was removed with an evaporator. The solvent replacement conditions by the evaporator were a liquid temperature of 40 ° C. to 50 ° C. and an internal pressure of 0.085 MPa. After confirming that the remaining amount of MEK in the mixed solution is 1% or less using a gas chromatographic method, the amount of the mixed solution after the solvent replacement (mixed solution from which MEK has been removed) finally becomes 10 g. adjust the MMA as, 15 wt% SiO 2 is to this mixture (MMA 8.5g, SiO 2 1.5g) as a to give a clear mixture.
In the mixed solution from which MEK was removed, a small amount of polymerization initiator (benzoyl peroxide Kishida Chemical Co., Ltd.) (0.5 mol% with respect to MMA) and MOI (Karenz MOI as a modifier (organic-inorganic interaction material)) were used. A small amount (0.44 g) of Showa Denko Co., Ltd. was added. The mixed solution to which the polymerization initiator and the modifier were added was stirred for about 30 minutes, then placed in a predetermined mold and polymerized in a warm bath at 80 ° C. for 6 hours to obtain the desired resin composition. Furthermore, this resin composition was placed in an oven and dried at 80 ° C. for 12 hours to obtain a transparent plate-shaped resin composition having a thickness of 2 mm.

得られた板状の樹脂組成物の物性等を測定した。測定は透過率測定、熱的物性測定、機械的物性測定を行った。
(1) 透過率測定:分光光度計((株)島津製作所製、UV2100)を用いて、得られた板状の樹脂組成物の可視領域(380nm〜720nm)の透過率を求めた。
(2) 熱的物性測定:セイコーインスツル(株)製 EXSTAR6000 TG/DTA6300を用い、熱分析を行った。50ml/minの窒素気流下、10℃/minの昇温速度にて、得られた板状の樹脂組成物に対する5%重量減温度、10%重量減温度、熱分解温度の3種類を測定した。
(3) 機械的物性測定:得られた板状の樹脂組成物の鉛筆硬度(表面硬度)をJISK−5600に準じて測定した。
(4) 外観検査:肉眼観察により透明状態を調べた。
結果を表1に示す。
The physical properties and the like of the obtained plate-shaped resin composition were measured. Measurement was performed by measuring transmittance, measuring thermal properties, and measuring mechanical properties.
(1) Transmittance measurement: Using a spectrophotometer (manufactured by Shimadzu Corporation, UV2100), the transmittance in the visible region (380 nm to 720 nm) of the obtained plate-shaped resin composition was determined.
(2) Thermal property measurement: Thermal analysis was performed using EXSTAR6000 TG / DTA6300 manufactured by Seiko Instruments Inc. Three types of 5% weight loss temperature, 10% weight loss temperature, and thermal decomposition temperature of the obtained plate-shaped resin composition were measured at a temperature increase rate of 10 ° C./min under a nitrogen stream of 50 ml / min. .
(3) Mechanical property measurement: Pencil hardness (surface hardness) of the obtained plate-shaped resin composition was measured according to JISK-5600.
(4) Appearance inspection: The transparent state was examined by visual observation.
The results are shown in Table 1.

(実施例2)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して30重量%(MMA 7.0g,SiO2 3.0g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)、修飾剤としてMOIを微量(0.42g)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Example 2)
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method as described above, and SiO 2 was 30% by weight (MMA 7.0 g, MMA based on the mixed liquid after solvent replacement). SiO 2 was adjusted to 3.0 g).
A small amount of the same polymerization initiator as in Example 1 (0.5 mol% with respect to MMA) and a small amount of MOI (0.42 g) as a modifier were added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(実施例3)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して45重量%(MMA 5.5g,SiO2 4.5g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)、修飾剤としてMOIを微量(0.44g)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Example 3)
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method in the same manner as described above, and SiO 2 was 45% by weight (MMA 5.5 g, MMA based on the mixed liquid after solvent replacement). SiO 2 was adjusted to 4.5 g).
A small amount of the same polymerization initiator as in Example 1 (0.5 mol% with respect to MMA) and a small amount of MOI (0.44 g) as a modifier were added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(実施例4)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して15重量%(MMA 8.5g,SiO2 1.5g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)、修飾剤としてMPS(KBM503 信越化学工業(株))を微量(0.4g)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
Example 4
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method as described above, and SiO 2 was 15% by weight (MMA 8.5 g, SiO 2 1.5 g).
In the mixed solution from which MEK was removed, the same polymerization initiator as in Example 1 was added in a trace amount (0.5 mol% with respect to MMA), and MPS (KBM503 Shin-Etsu Chemical Co., Ltd.) as a modifier was added in a trace amount (0.4 g). did. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(実施例5)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して30重量%(MMA 7.0g,SiO2 3.0g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)、修飾剤としてMPSを微量(0.4g)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Example 5)
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method as described above, and SiO 2 was 30% by weight (MMA 7.0 g, MMA based on the mixed liquid after solvent replacement). SiO 2 was adjusted to 3.0 g).
A small amount of the same polymerization initiator as in Example 1 (0.5 mol% with respect to MMA) and a small amount of MPS (0.4 g) as a modifier were added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(実施例6)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して45重量%(MMA 5.5g,SiO2 4.5g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)、修飾剤としてMPSを微量(0.44g)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Example 6)
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method in the same manner as described above, and SiO 2 was 45% by weight (MMA 5.5 g, MMA based on the mixed liquid after solvent replacement). SiO 2 was adjusted to 4.5 g).
A small amount of the same polymerization initiator as in Example 1 (0.5 mol% with respect to MMA) and a small amount of MPS (0.44 g) as a modifier were added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(実施例7)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して15重量%(MMA 8.5g,SiO2 1.5g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)、修飾剤としてMG(ライトエステルG 共栄社化学(株))を微量(0.44g)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Example 7)
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method as described above, and SiO 2 was 15% by weight (MMA 8.5 g, SiO 2 1.5 g).
In the mixed solution from which MEK was removed, the same amount of the polymerization initiator as in Example 1 (0.5 mol% with respect to MMA) was used, and MG (Light Ester G Kyoeisha Chemical Co., Ltd.) was used as a modifying agent in a trace amount (0.44 g). Added. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(実施例8)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して30重量%(MMA 7.0g,SiO2 3.0g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)、修飾剤としてMGを微量(0.42g)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Example 8)
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method as described above, and SiO 2 was 30% by weight (MMA 7.0 g, MMA based on the mixed liquid after solvent replacement). SiO 2 was adjusted to 3.0 g).
A small amount of the same polymerization initiator as in Example 1 (0.5 mol% with respect to MMA) and a small amount of MG (0.42 g) as a modifier were added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(実施例9)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して45重量%(MMA 5.5g,SiO2 4.5g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)、修飾剤としてMGを微量(0.44g)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
Example 9
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method in the same manner as described above, and SiO 2 was 45% by weight (MMA 5.5 g, MMA based on the mixed liquid after solvent replacement). SiO 2 was adjusted to 4.5 g).
A small amount of the same polymerization initiator as in Example 1 (0.5 mol% with respect to MMA) and a small amount of MG (0.44 g) as a modifier were added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(比較例1)
重合禁止剤を除いたMMA10.0gに、実施例1と同じ重合開始剤のみを微量(MMAに対して0.5mol%)添加した。重合開始剤が添加されたMMA溶液を30分ほど攪拌した後、所定の型枠に入れて80℃の温浴中で6時間重合を行った。その後、オーブン内に置き、80℃で12時間乾燥させることにより、無機微粒子及び修飾剤を含有しない厚さ2mmの透明な板状樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Comparative Example 1)
Only 10.0 g of the same polymerization initiator as in Example 1 was added to 10.0 g of MMA excluding the polymerization inhibitor (0.5 mol% with respect to MMA). The MMA solution to which the polymerization initiator was added was stirred for about 30 minutes, then placed in a predetermined mold and polymerized in a warm bath at 80 ° C. for 6 hours. Thereafter, the plate was placed in an oven and dried at 80 ° C. for 12 hours to obtain a transparent plate-shaped resin composition having a thickness of 2 mm that did not contain inorganic fine particles and a modifier.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(比較例2)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して15重量%(MMA 8.5g,SiO2 1.5g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Comparative Example 2)
After a mixed liquid of colloidal silica and MMA was obtained in the same manner as in Example 1, MEK was removed by the solvent replacement method as described above, and SiO 2 was 15% by weight (MMA 8.5 g, SiO 2 1.5 g).
A small amount (0.5 mol% with respect to MMA) of the same polymerization initiator as in Example 1 was added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(比較例3)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して30重量%(MMA 7.0g,SiO2 3.0g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Comparative Example 3)
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method in the same manner as described above, and SiO 2 was 30% by weight (MMA 7.0 g, SiO 2 was adjusted to 3.0 g).
A small amount (0.5 mol% with respect to MMA) of the same polymerization initiator as in Example 1 was added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

(比較例4)
実施例1と同様にコロイダルシリカとMMAとの混合液を得た後、前述同様に溶媒置換法によりMEKを取り除き、SiO2が溶媒置換後の混合液に対して30重量%(MMA 5.5g,SiO2 4.5g)となるように調整した。
MEKが取り除かれた混合液中に、実施例1と同じ重合開始剤を微量(MMAに対して0.5mol%)添加した。その後、重合開始剤と修飾剤が添加された混合液を30分ほど攪拌した後、80℃の温浴中で6時間重合を行い、さらに80℃で12時間乾燥させることにより、実施例1と同様の厚さ2mmの透明な板状の樹脂組成物を得た。
以上の処理により得られた樹脂組成物に対して、実施例1と同様の方法で物性等の測定を行った。その結果を表1に示す。
(Comparative Example 4)
After obtaining a mixed liquid of colloidal silica and MMA in the same manner as in Example 1, MEK was removed by the solvent replacement method in the same manner as described above, and SiO 2 was 30% by weight (MMA 5.5 g, MMA based on the mixed liquid after solvent replacement). SiO 2 was adjusted to 4.5 g).
A small amount (0.5 mol% with respect to MMA) of the same polymerization initiator as in Example 1 was added to the mixed solution from which MEK was removed. Then, after stirring the mixed liquid to which the polymerization initiator and the modifier were added for about 30 minutes, the polymerization was performed in a warm bath at 80 ° C. for 6 hours, and further dried at 80 ° C. for 12 hours, as in Example 1. A transparent plate-like resin composition having a thickness of 2 mm was obtained.
The physical properties and the like were measured by the same method as in Example 1 for the resin composition obtained by the above treatment. The results are shown in Table 1.

Figure 2007191639
Figure 2007191639

(結果)
表1に示すように、実施例1〜9の樹脂組成物を用いて得られるアクリル系の樹脂組成物は、高い透明性を確保しつつ、耐熱性や表面硬度が向上していることが確認できた。なお、その他の機械的特性(引張強度、引張弾性率等)も向上していると考えられる。
(result)
As shown in Table 1, it is confirmed that the acrylic resin compositions obtained using the resin compositions of Examples 1 to 9 have improved heat resistance and surface hardness while ensuring high transparency. did it. Other mechanical properties (tensile strength, tensile modulus, etc.) are also considered to be improved.

次に、添加する修飾剤の量を変化させた場合について、実施例10〜19及び比較例5〜9として以下に挙げる。なお、実施例11〜20及び比較例5〜9にて得られる樹脂組成物(厚さ2mmの板状の樹脂組成物)は、前述の実施例1と同様の操作によって得られたものである。また、各実施例、比較例における各組成は、表2に示すとおりである。また、得られた板状の樹脂組成物を目視により評価(外観評価)した。この結果も合わせて表2に示す。   Next, about the case where the quantity of the modifier to add is changed, it mentions below as Examples 10-19 and Comparative Examples 5-9. The resin compositions (plate-shaped resin compositions having a thickness of 2 mm) obtained in Examples 11 to 20 and Comparative Examples 5 to 9 were obtained by the same operation as in Example 1 described above. . In addition, each composition in each example and comparative example is as shown in Table 2. Moreover, the obtained plate-shaped resin composition was visually evaluated (appearance evaluation). The results are also shown in Table 2.

Figure 2007191639
Figure 2007191639

(結果)
表2の実施例10,12,14に示すように、無機微粒子の含有量に関わらず、全量に対する修飾剤の重量比率が0.015重量%程度であっても透明性を確保することができた。また、実施例16,18に示すように、修飾剤の種類を変えても全量に対する修飾剤の重量比率0.015重量%程度であっても透明性を確保することができた。このことから、修飾剤添加の下限は0.01重量%程度であると思われる。また、実施例11,13,15,17,19に示すように、修飾剤の添加量が50重量%程度であっても透明性を確保することができる。したがって、修飾剤の添加量の上限は、樹脂組成物の耐熱性や表面硬度等の物性が損なわれない程度であればよい。
(result)
As shown in Examples 10, 12, and 14 of Table 2, transparency can be secured even if the weight ratio of the modifier to the total amount is about 0.015% by weight, regardless of the content of the inorganic fine particles. It was. Further, as shown in Examples 16 and 18, even when the type of modifier was changed, transparency could be ensured even when the weight ratio of the modifier relative to the total amount was about 0.015% by weight. From this, it is considered that the lower limit of addition of the modifier is about 0.01% by weight. Further, as shown in Examples 11, 13, 15, 17, and 19, transparency can be ensured even when the amount of the modifier added is about 50% by weight. Therefore, the upper limit of the addition amount of the modifier may be such that physical properties such as heat resistance and surface hardness of the resin composition are not impaired.

本発明の樹脂組成物の製造の流れを示したフローチャートである。It is the flowchart which showed the flow of manufacture of the resin composition of this invention.

Claims (6)

サブミクロンオーダーの無機微粒子を含有する有機溶媒とアクリルモノマーとを混合して混合液を得る第1ステップと、該第1ステップにより得られた前記混合液から前記有機溶媒を取り除く第2ステップと、該第2ステップにより前記有機溶媒が実質的に除去された混合液中に前記アクリルモノマーと無機微粒子の相互に作用する有機無機相互作用材を添加して、重合反応によって前記アクリルモノマーと無機微粒子との間に相互作用を形成させ樹脂組成物を得る第3ステップと、を有することを特徴とする樹脂組成物の製造方法。 A first step in which an organic solvent containing submicron-order inorganic fine particles and an acrylic monomer are mixed to obtain a mixed solution; a second step in which the organic solvent is removed from the mixed solution obtained by the first step; An organic-inorganic interaction material that interacts with the acrylic monomer and the inorganic fine particles is added to the mixed liquid from which the organic solvent has been substantially removed by the second step, and the acrylic monomer and the inorganic fine particles are reacted by a polymerization reaction And a third step of obtaining a resin composition by forming an interaction between the two, and a method for producing a resin composition. 請求項1の樹脂組成物の製造方法において、前記第2ステップは溶媒置換法によって前記有機溶媒を取り除くことを特徴とする樹脂組成物の製造方法。 The method for producing a resin composition according to claim 1, wherein the organic solvent is removed by a solvent replacement method in the second step. 請求項2の樹脂組成物の製造方法において、前記第3ステップにおける重合反応は前記アクリルモノマーを高分子化させる反応を含むことを特徴とする樹脂組成物の製造方法。 3. The method for producing a resin composition according to claim 2, wherein the polymerization reaction in the third step includes a reaction for polymerizing the acrylic monomer. 請求項2の樹脂組成物の製造方法において、前記有機無機相互作用材は、式(1)
Figure 2007191639
で示される修飾剤(式中、R1は水素またはC1〜C5の直鎖又は側鎖のアルキル基、R2はC1〜C10の直鎖又は側鎖のアルキル基を示す。Yは水酸基、ハロゲン基、エポキシ基、アルコキシシリル基、カルボキシル基、イソシアネート基、クロロシリル基、アシルハライド基、メルカプト基、アミノ基からなる群より選択される)であることを特徴とする樹脂組成物の製造方法。
In the manufacturing method of the resin composition of Claim 2, the said organic-inorganic interaction material is a formula (1).
Figure 2007191639
(Wherein R 1 represents hydrogen or a C 1 to C 5 linear or side chain alkyl group, and R 2 represents a C 1 to C 10 linear or side chain alkyl group. Y Is selected from the group consisting of a hydroxyl group, a halogen group, an epoxy group, an alkoxysilyl group, a carboxyl group, an isocyanate group, a chlorosilyl group, an acyl halide group, a mercapto group, and an amino group). Production method.
請求項1〜4の樹脂組成物の製造方法にて得られることを特徴とする樹脂組成物。 A resin composition obtained by the method for producing a resin composition according to claim 1. アクリルモノマー中に、サブミクロンオーダーの無機微粒子と,前記アクリルモノマーと無機微粒子の相互に作用する有機無機相互作用材とを配合した状態で重合反応させることにより得られることを特徴とする樹脂組成物




A resin composition obtained by a polymerization reaction in a state in which an inorganic fine particle of submicron order and an organic-inorganic interaction material that interacts with the acrylic monomer and the inorganic fine particle are blended in an acrylic monomer.




JP2006012939A 2006-01-20 2006-01-20 Method for producing resin composition and resin composition Active JP4974133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012939A JP4974133B2 (en) 2006-01-20 2006-01-20 Method for producing resin composition and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012939A JP4974133B2 (en) 2006-01-20 2006-01-20 Method for producing resin composition and resin composition

Publications (2)

Publication Number Publication Date
JP2007191639A true JP2007191639A (en) 2007-08-02
JP4974133B2 JP4974133B2 (en) 2012-07-11

Family

ID=38447592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012939A Active JP4974133B2 (en) 2006-01-20 2006-01-20 Method for producing resin composition and resin composition

Country Status (1)

Country Link
JP (1) JP4974133B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014433A1 (en) * 2000-08-11 2002-02-21 Sun Medical Co., Ltd. Polymerizable composition, cured object obtained therefrom, and composite material
JP2003216060A (en) * 2002-01-28 2003-07-30 Sumitomo Bakelite Co Ltd Plastic substrate for indicating element
JP2004169028A (en) * 2002-11-08 2004-06-17 Mitsubishi Chemicals Corp Radiation-curable resin composition and cured product thereof
JP2004256753A (en) * 2003-02-27 2004-09-16 Eiji Nakanishi Monomer containing colloidal silica, hardenable resin composition and resin hardened product of the composition
JP2005003772A (en) * 2003-06-10 2005-01-06 Olympus Corp Composition for optical material and optical element
JP2005075723A (en) * 2003-08-29 2005-03-24 General Electric Co <Ge> Metal oxide nanoparticle, producing method therefor and method for using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014433A1 (en) * 2000-08-11 2002-02-21 Sun Medical Co., Ltd. Polymerizable composition, cured object obtained therefrom, and composite material
JP2003216060A (en) * 2002-01-28 2003-07-30 Sumitomo Bakelite Co Ltd Plastic substrate for indicating element
JP2004169028A (en) * 2002-11-08 2004-06-17 Mitsubishi Chemicals Corp Radiation-curable resin composition and cured product thereof
JP2004256753A (en) * 2003-02-27 2004-09-16 Eiji Nakanishi Monomer containing colloidal silica, hardenable resin composition and resin hardened product of the composition
JP2005003772A (en) * 2003-06-10 2005-01-06 Olympus Corp Composition for optical material and optical element
JP2005075723A (en) * 2003-08-29 2005-03-24 General Electric Co <Ge> Metal oxide nanoparticle, producing method therefor and method for using the same

Also Published As

Publication number Publication date
JP4974133B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5167582B2 (en) Zirconia transparent dispersion, transparent composite, and method for producing transparent composite
JP5540458B2 (en) Inorganic oxide transparent dispersion and resin composition, transparent composite, light emitting device sealing composition, light emitting device, and method for producing transparent composite
US8343392B2 (en) Composite material and production process of dispersant
KR101837829B1 (en) High reflective organic-inorganic hybrid solution and its manufacturing method
WO2010116841A1 (en) Curable composition and cured product thereof
TWI695736B (en) Hollow particle, method for manufacturing the same and use thereof
JP5188045B2 (en) Nano-oxide particles and method for producing the same
EP1918323B1 (en) Production method of a resin composition
JP2023014098A (en) Curable polymer composition and laminate
TWI682809B (en) Zirconium oxide particle dispersion composition and its hardened product
JP5082814B2 (en) Inorganic oxide-containing transparent composite and method for producing the same
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
WO2016182007A1 (en) Polymerizable composition containing zirconium oxide particles and (meth)acrylate, and method for producing same
JP4974133B2 (en) Method for producing resin composition and resin composition
KR101864420B1 (en) High refractive organic-inorganic hybrid solution produced by multi-step grafting process and its manufacturing method
JP6870620B2 (en) Light diffusing agent, light diffusing resin composition and molded article
JP2019183137A (en) Polymerizable composition containing inorganic oxide particle or siloxane compound, manufacturing method of layer using the polymerizable composition, and layer containing inorganic oxide particle or siloxane compound
JP2014189572A (en) Photocurable resin composition
JP6470498B2 (en) Coating liquid for forming transparent film and method for producing substrate with transparent film
KR101945199B1 (en) A curved surface window for protecting a curved surface display and a manufacturing method thereof.
JP2011074328A (en) Titanium oxide dispersion liquid
KR101491974B1 (en) Resin composition of ultraviolet stiffening type for plastic surface treatment and plastic surface treatment method
JP2008308584A (en) Transparent dispersion liquid of inorganic oxide, transparent composite material and method for producing the same
KR101493233B1 (en) Resin composition of ultraviolet stiffening type for plastic surface treatment and plastic surface treatment method
JP2013133444A (en) Coating material for transparent film formation and substrate with transparent film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250