JP2007191430A - 4-phenoxyquinazoline derivative radioactive compound - Google Patents

4-phenoxyquinazoline derivative radioactive compound Download PDF

Info

Publication number
JP2007191430A
JP2007191430A JP2006011235A JP2006011235A JP2007191430A JP 2007191430 A JP2007191430 A JP 2007191430A JP 2006011235 A JP2006011235 A JP 2006011235A JP 2006011235 A JP2006011235 A JP 2006011235A JP 2007191430 A JP2007191430 A JP 2007191430A
Authority
JP
Japan
Prior art keywords
cancer
compound
pyk
egfr
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006011235A
Other languages
Japanese (ja)
Other versions
JP4945133B2 (en
Inventor
Yoshiaki Omomo
善朗 大桃
Masahiko Hirata
雅彦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm RI Pharma Co Ltd
Original Assignee
Fujifilm RI Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm RI Pharma Co Ltd filed Critical Fujifilm RI Pharma Co Ltd
Priority to JP2006011235A priority Critical patent/JP4945133B2/en
Publication of JP2007191430A publication Critical patent/JP2007191430A/en
Application granted granted Critical
Publication of JP4945133B2 publication Critical patent/JP4945133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tumor-imaging agent containing as an active ingredient a radioactive compound which binds to an epithelial-originated growth factor receptor tyrosine kinase (EGFR-TK) as a target, and to provide an oral radiation medicine. <P>SOLUTION: The radioactive compound represented by the general formula (1) (R<SP>1</SP>is a radioactive iodine atom). The medicine contains the compound. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規な4−フェノキシキナゾリン誘導体、及びこれを含む、腫瘍疾患をイメージングによって検出する放射性薬剤や、体内から腫瘍細胞にダメージを与えうる内用放射線治療薬剤等の医薬に関する。 The present invention relates to a novel 4-phenoxyquinazoline derivative and a medicament containing the same, such as a radiopharmaceutical for detecting a tumor disease by imaging and an internal radiotherapy drug capable of damaging tumor cells from the body.

チロシンキナーゼは、細胞の分化と増殖などの細胞内のシグナル伝達機構に関与し、各種成長因子の結合シグナルを細胞内に伝達する開始因子として重要な役割を果たす酵素である。近年の研究からチロシンキナーゼの遺伝子の一部が変異し、癌化を誘発することが明らかとなっている(非特許文献1)。また、多くの癌において、各種成長因子の結合とは無関係にその活性上昇が認められている(非特許文献2、非特許文献3)。チロシンキナーゼは受容体型と非受容体型に分類され、その阻害剤に抗癌剤としての期待が持たれている(非特許文献4、非特許文献5)。 Tyrosine kinase is an enzyme that plays an important role as an initiation factor that participates in intracellular signal transduction mechanisms such as cell differentiation and proliferation, and transmits binding signals of various growth factors into the cell. Recent studies have revealed that a part of the tyrosine kinase gene is mutated to induce canceration (Non-patent Document 1). In many cancers, increased activity is recognized regardless of the binding of various growth factors (Non-patent Documents 2 and 3). Tyrosine kinases are classified into receptor type and non-receptor type, and their inhibitors are expected as anticancer agents (Non-patent Documents 4 and 5).

受容体型チロシンキナーゼの一つである上皮由来増殖因子受容体チロシンキナーゼ(Epidermal growth factor receptor−tyrosine kinase、EGFR−TK)は、胃癌、食道癌、喉頭癌、大腸癌、膀胱癌、卵巣癌、甲状腺癌、脳腫瘍などのほとんどの上皮系癌において多量に発現し、その活性の上昇が確認されている(非特許文献6、非特許文献7)。従って、EGFR−TK阻害剤は腫瘍治療剤として有用であると考えられる。 Epidermal growth factor receptor tyrosine kinase (EGFR-TK), which is one of the receptor tyrosine kinases, is gastric cancer, esophageal cancer, laryngeal cancer, colon cancer, bladder cancer, ovarian cancer, thyroid gland. It is expressed in a large amount in most epithelial cancers such as cancer and brain tumor, and its activity has been confirmed to increase (Non-patent Documents 6 and 7). Therefore, EGFR-TK inhibitors are considered useful as tumor therapeutic agents.

近年、EGFR−TKを標的とした阻害剤が次々と開発された。第一世代のチロシンキナーゼ阻害剤は、Gazitらにより開発されたチロホスチン誘導体である(非特許文献8)。チロホスチン誘導体は優れたEGFR−TK阻害剤として期待されたが、その後、さらに構造活性相関の研究が進みPD153035が開発された(非特許文献9)。現在、PD153035の誘導体であるZD1839(市販名イレッサ)が、新しい作用機序の抗癌剤として認可を受け、臨床使用が開始されている(非特許文献10)。 In recent years, inhibitors targeting EGFR-TK have been developed one after another. The first generation tyrosine kinase inhibitor is a tyrophostin derivative developed by Gazit et al. Tyrophostin derivative was expected as an excellent EGFR-TK inhibitor, but PD153035 was developed after further research on structure-activity relationship (Non-patent Document 9). Currently, ZD1839 (marketed name Iressa), a derivative of PD153035, has been approved as an anticancer agent with a new mechanism of action, and clinical use has begun (Non-patent Document 10).

一方、EGFR−TKの異常な活性上昇は癌化の初期においても見られ、癌の早期発見に有用であると考えられる。従ってEGFR−TKは癌の特性診断を可能とする分子イメージング薬剤の標的としての条件を満たしていると考えられる。このようなEGFR−TKを標的とした薬剤を放射性化合物とし、イメージング剤へと応用する試みとして4−アニリノキナゾリン骨格を持つ化合物(特許文献1)及び4−(フェニルアミノ)キナゾリン骨格を持つ化合物(特許文献2)があるが、これらはインビトロにおけるEGFR−TK阻害活性は検討されているものの、インビボでの検討はなされておらず、生体内での安定性や、有効性については不明であった。
特表2003−500450 特表2004−525919 蛋白質 核酸 酵素,42,1467〜1469(1997) Int.J.Cancer,66,315〜321(1996) Int.J.Cancer,64,291〜297(1996) J.Med.Chem.,38,3482〜3487(1995) Nature,379,645〜648(1996) Proc.Natl.Acad.Sci.USA.,83,5141〜5144(1986) Methods Enzymol.,201,347〜355(1991) Methods Enzymol.,201,347〜355(1991) Science,265,1093〜1095(1994) Proc.Am.Soc.Clin.Oncol.,19,177a,(2000)
On the other hand, an abnormal increase in the activity of EGFR-TK is also seen in the early stage of canceration, and is considered useful for early detection of cancer. Therefore, it is considered that EGFR-TK satisfies the conditions as a target for molecular imaging agents that enable cancer characteristic diagnosis. A compound having 4-anilinoquinazoline skeleton (Patent Document 1) and a compound having 4- (phenylamino) quinazoline skeleton as an attempt to apply a drug targeting such EGFR-TK as a radioactive compound and application to an imaging agent Although there is (Patent Document 2), although in vitro EGFR-TK inhibitory activity has been studied, it has not been studied in vivo, and the stability and effectiveness in vivo are unknown. It was.
Special table 2003-500450 Special table 2004-525919 Protein Nucleic Acid Enzyme, 42, 1467-1469 (1997) Int. J. et al. Cancer, 66, 315-321 (1996). Int. J. et al. Cancer, 64, 291-297 (1996) J. et al. Med. Chem. , 38, 3482-3487 (1995) Nature, 379, 645-648 (1996). Proc. Natl. Acad. Sci. USA. , 83, 5141-5144 (1986) Methods Enzymol. 201, 347-355 (1991) Methods Enzymol. 201, 347-355 (1991) Science, 265, 1093-1095 (1994) Proc. Am. Soc. Clin. Oncol. , 19, 177a, (2000)

本発明はEGFR−TKを標的として結合する放射性化合物を有効成分として含有する腫瘍イメージング剤や、体内から癌細胞にダメージを与えうる内用放射線治療薬剤を提供することを目的とする。 An object of the present invention is to provide a tumor imaging agent containing a radioactive compound that binds to EGFR-TK as a target as an active ingredient, and an internal radiotherapy agent capable of damaging cancer cells from the body.

本発明者は、EGFR−TKに対して阻害活性を有する化合物について、新規な構造として4−フェノキシキナゾリン誘導体に着目し、この誘導体の放射性ヨウ素化合物を合成した。その作用を検討したところ、インビトロ実験においてEGFR−TKに対する高い阻害活性が認められ、担癌マウスにおけるインビボ体内分布実験において癌に特異的な集積、並びに高い癌対組織比が達成された。 The present inventors focused on a 4-phenoxyquinazoline derivative as a novel structure for a compound having inhibitory activity against EGFR-TK, and synthesized a radioactive iodine compound of this derivative. When the action was examined, a high inhibitory activity against EGFR-TK was observed in in vitro experiments, and cancer-specific accumulation and a high cancer-to-tissue ratio were achieved in in vivo biodistribution experiments in tumor-bearing mice.

また、EGFR−TK発現量の異なる複数の腫瘍細胞株の検討から、EGFR−TK発現量に応じた集積を示すことが明らかになった。これらの結果から、腫瘍疾患の画像化、手術や薬剤による治療効果の判定及び治療に有用であることを見出し、本発明を完成させた。 Moreover, it became clear from the examination of several tumor cell lines from which the EGFR-TK expression level differs that the accumulation according to the EGFR-TK expression level is shown. From these results, it was found useful for imaging of tumor diseases, determination of therapeutic effects by surgery and drugs, and treatment, and the present invention was completed.

すなわち、本発明は、一般式(1) That is, the present invention relates to general formula (1)

(式中、Rは、放射性ヨウ素原子を示す。)で表される放射性化合物、これを含有する医薬、及びその製造法を提供するものである。 (Wherein R 1 represents a radioactive iodine atom), a pharmaceutical containing the same, and a method for producing the same.

別の表現をとる場合、本発明は、
(1)一般式(1)(式中、Rは放射性ヨウ素原子を示す。)で表される放射性化合物、
(2)放射性ヨウ素原子が、I−123、I−124、I−125及びI−131から選ばれたものである上記放射性化合物、
(3)上記(1)、(2)いずれか1項に記載の放射性化合物を含有する医薬、
(4)画像診断用イメージング剤である上記(3)記載の医薬、
(5)腫瘍疾患領域の画像診断用イメージング剤である上記(4)記載の医薬、
(6)シングルフォトン断層撮影法(SPECT)用の腫瘍疾患領域の画像診断用イメージング剤である上記(5)記載の医薬、
(7)ポジトロン放出断層撮影法(PET)用の腫瘍疾患領域の画像診断用イメージング剤である請求項5記載の医薬、
(8)内用放射線治療薬である上記(3)記載の医薬、
(9)一般式(2)
(式中、Rは、ヨウ素原子、トリアルキルスズ基またはトリアルキルシリル基を示す。)で表される4−フェノキシキナゾリン誘導体、
(10)一般式(2)(式中、Rは、ヨウ素原子、トリアルキルスズ基またはトリアルキルシリル基を示す)で表される4−フェノキシキナゾリン誘導体にアルカリ金属放射性ヨウ素化物を反応させることを特徴とする一般式(1)(式中、Rは、放射性ヨウ素原子を示す。)で表される放射性ヨウ素化合物の製造法、
である。
In other words, the present invention
(1) A radioactive compound represented by the general formula (1) (wherein R 1 represents a radioactive iodine atom),
(2) The above radioactive compound wherein the radioactive iodine atom is selected from I-123, I-124, I-125 and I-131,
(3) A medicament containing the radioactive compound according to any one of (1) and (2) above,
(4) The medicament according to (3) above, which is an imaging agent for diagnostic imaging,
(5) The medicament according to (4) above, which is an imaging agent for diagnostic imaging of a tumor disease region,
(6) The medicament according to (5) above, which is an imaging agent for diagnostic imaging of a tumor disease region for single photon tomography (SPECT),
(7) The medicament according to claim 5, which is an imaging agent for diagnostic imaging of a tumor disease region for positron emission tomography (PET),
(8) The medicament according to (3) above, which is an internal radiotherapy drug,
(9) General formula (2)
(Wherein R 2 represents an iodine atom, a trialkyltin group or a trialkylsilyl group), a 4-phenoxyquinazoline derivative represented by:
(10) reacting an alkali metal radioiodide with a 4-phenoxyquinazoline derivative represented by the general formula (2) (wherein R represents an iodine atom, a trialkyltin group or a trialkylsilyl group). A method for producing a radioactive iodine compound represented by the general formula (1), wherein R 1 represents a radioactive iodine atom,
It is.

4−フェノキシキナゾリン骨格を持つ本発明の放射性化合物(1)は、EGFR−TKを標的とする、腫瘍の画像診断及び治療に有用である。 The radioactive compound (1) of the present invention having a 4-phenoxyquinazoline skeleton is useful for tumor diagnostic imaging and treatment targeting EGFR-TK.

一般式(1)中、放射性ヨウ素原子としては、SPECT装置を用いた組織のイメージングに適したI−123、イメージングとともに内用放射線治療にも適したI−131が望ましいが、その他に、基礎実験に広く用いられているI−125、ポジトロン放出核種であるが医療施設内に小型サイクロトロンを設置しなくとも供給が可能なI−124等も使用可能である。 In the general formula (1), as the radioactive iodine atom, I-123 suitable for tissue imaging using a SPECT apparatus and I-131 suitable for internal radiotherapy as well as imaging are desirable. I-125, which is widely used in Japan, is a positron emitting nuclide, but I-124 that can be supplied without installing a small cyclotron in a medical facility can also be used.

本発明の放射性化合物(1)は、例えば次の反応式に従って製造される。 The radioactive compound (1) of the present invention is produced, for example, according to the following reaction formula.

(式中、Rは放射性ヨウ素原子、Rはヨウ素原子、トリアルキルスズ基またはトリアルキルシリル基を示す。) (In the formula, R 1 represents a radioactive iodine atom, and R 2 represents an iodine atom, a trialkyltin group or a trialkylsilyl group.)

すなわち、一般式(2)で表される4−フェノキシキナゾリン誘導体にアルカリ金属放射性ヨウ化物を反応させることにより一般式(1)で表される放射性化合物が製造される。 That is, the radioactive compound represented by the general formula (1) is produced by reacting the 4-phenoxyquinazoline derivative represented by the general formula (2) with an alkali metal radioactive iodide.

一般式(2)中、Rで示されるトリアルキルスズ基としては、トリ(C1−C6アルキル)スズ基が挙げられ、トリブチルスズ基が特に好ましい。トリアルキルシリル基としては、トリ(C1−C6アルキル)シリル基が挙げられ、トリメチルシリル基が特に好ましい。 In the general formula (2), the trialkyltin group represented by R 2 includes a tri (C1-C6 alkyl) tin group, and a tributyltin group is particularly preferable. Examples of the trialkylsilyl group include a tri (C1-C6 alkyl) silyl group, and a trimethylsilyl group is particularly preferable.

一般式(2)の化合物は、例えば次の反応式に従って製造することができる。
The compound of the general formula (2) can be produced, for example, according to the following reaction formula.

(式中、R2aは、ヨウ素原子を示し;R2bは、トリアルキルスズ基又はトリアルキルシリル基を示す。) (In the formula, R 2a represents an iodine atom; R 2b represents a trialkyltin group or a trialkylsilyl group.)

すなわち、モルフォリン(3)に1−ブロモ−3−クロロプロパンを反応させて化合物(4)を得られる。また、6,7−ジエトキシキナゾリン−4(3H)−オン(5)にメチオニンを反応させ、化合物(6)とし、続いて、6位の水酸基のアセチル保護化を行い、化合物(7)を得られる。さらに化合物(7)をクロル化して化合物(8)とし、続いて、3−ヨードフェノール存在下で4位のフェノキシ化を行うことで化合物(9)が得られる。続いて、化合物(9)と化合物(4)を反応させることで化合物(2a)を得られる。得られた化合物(2a)をトリアルキルスズ化又はトリアルキルシリル化することにより化合物(2b)が得られる。 That is, the compound (4) can be obtained by reacting morpholine (3) with 1-bromo-3-chloropropane. In addition, methionine is reacted with 6,7-diethoxyquinazolin-4 (3H) -one (5) to give compound (6), followed by acetyl protection of the 6-position hydroxyl group to give compound (7). can get. Further, the compound (7) is chlorinated to obtain the compound (8), followed by phenoxylation at the 4-position in the presence of 3-iodophenol to obtain the compound (9). Subsequently, compound (2a) is obtained by reacting compound (9) with compound (4). The compound (2b) is obtained by trialkyltinating or trialkylsilylating the obtained compound (2a).

化合物(2)の放射性ヨウ素化に用いられるアルカリ金属放射性ヨウ化物としては、放射性ヨウ素のナトリウム化合物、放射性ヨウ素のカリウム化合物等が挙げられる。 Examples of the alkali metal radioiodide used for the radioiodination of the compound (2) include sodium compounds of radioiodine and potassium compounds of radioiodine.

化合物(2)とアルカリ金属放射性ヨウ化物との反応は、化合物(2)が化合物(2a)である場合と、化合物(2b)である場合とで異なる。すなわち、化合物(2a)とアルカリ金属放射性ヨウ化物との反応は、酸性条件下で加熱することにより、非放射性ヨウ素原子が放射性ヨウ素原子に変換される。化合物(2b)とアルカリ金属放射性ヨウ化物との反応は、酸性条件下で反応させ、さらに酸化剤を反応させることにより行なわれる。酸化剤としてはクロラミン−T、過酸化水素水、過酢酸等が用いられる。 The reaction between the compound (2) and the alkali metal radioactive iodide is different depending on whether the compound (2) is the compound (2a) or the compound (2b). That is, in the reaction between the compound (2a) and the alkali metal radioactive iodide, non-radioactive iodine atoms are converted to radioactive iodine atoms by heating under acidic conditions. The reaction between the compound (2b) and the alkali metal radioactive iodide is carried out by reacting under acidic conditions and further with an oxidizing agent. As the oxidizing agent, chloramine-T, hydrogen peroxide solution, peracetic acid or the like is used.

得られた放射性化合物(1)を放射性医薬品として用いる場合には、未反応の放射性ヨウ素イオン及び不溶性の不純物を、メンブランフィルター、種々の充填剤を充填したカラム、HPLC等により精製することが望ましい。 When the obtained radioactive compound (1) is used as a radiopharmaceutical, it is desirable to purify unreacted radioiodine ions and insoluble impurities by a membrane filter, columns packed with various packing materials, HPLC, or the like.

かくして得られた本発明の放射性化合物(1)は、優れたEGFR−TK阻害活性を有し、また、EGFR発現腫瘍に特異的に集積することから、腫瘍治療薬又は腫瘍診断薬として有用である。例えば7−エトキシ−4−(3−[125I]ヨードフェノキシ)−6−(3−モルフォリノプロポキシ)キナゾリン(以下([125I]−PYKと略す。この非放射性ヨード体をPYKと略す)を、EGFR−TKの亢進した癌細胞を移植した担癌モデルマウスに尾静脈より投与すると、[125I]PYKは、投与1時間後で癌に4.4%集積し、その後、投与6時間後で3.6%、投与12時間後で1.7%、投与24時間後で1.5%と投与後早期における癌への高い取込みとその後の緩やかな消失が確認された。また、他の組織からは、癌よりも早い消失が認められた。その結果、画像コントラストの指標である癌対組織比が上昇した。[125I]PYKの癌対血液、筋肉比は、投与1時間後で6.8、4.6、投与24時間後で、57.0、45.5と良好な値を示した。一方、主要な組織に対する癌対組織比は、投与1時間後ではいずれも低い値であったが、投与24時間後では、癌対肝臓、癌対腎臓、癌対肺比がそれぞれ3.0、4.3、8.5と良好な値を示した。この様に[125I]PYKは、所期の目的である癌集積量の増加と長時間にわたる癌集積の保持に成功し、癌診断薬剤として基本的性質を持つことが確認された。 The thus obtained radioactive compound (1) of the present invention has an excellent EGFR-TK inhibitory activity and accumulates specifically in an EGFR-expressing tumor, so that it is useful as a tumor therapeutic agent or a tumor diagnostic agent. . For example, 7-ethoxy-4- (3- [ 125 I] iodophenoxy) -6- (3-morpholinopropoxy) quinazoline (hereinafter abbreviated as [ 125 I] -PYK. This non-radioactive iodine form is abbreviated as PYK). Is administered from a tail vein to a tumor-bearing model mouse transplanted with cancer cells with enhanced EGFR-TK, [ 125 I] PYK accumulates 4.4% in the cancer 1 hour after administration, and then 6 hours after administration. Later, 3.6%, 1.7% 12 hours after administration, 1.5% 24 hours after administration, high uptake into cancer and subsequent gradual disappearance were confirmed. As a result, the cancer-to-tissue ratio, which is an index of image contrast, increased, and the [ 125I ] PYK cancer-to-blood, muscle ratio was 1 hour after administration. 6.8, 4.6, administration 2 After 5 hours, it showed good values of 57.0 and 45.5, while the ratio of cancer to tissue for major tissues was low at 1 hour after administration, but at 24 hours after administration. The cancer-to-liver, cancer-to-kidney, and cancer-to-lung ratios were 3.0, 4.3, and 8.5, respectively, and [ 125 I] PYK is the intended purpose. It succeeded in increasing the cancer accumulation amount and maintaining the cancer accumulation for a long time, and was confirmed to have basic properties as a cancer diagnostic agent.

本発明放射性化合物(1)を放射性薬剤として用いる場合には、医薬用の担体として、アスコルビン酸等の安定化剤;酸、塩基等のpH調整剤;リン酸緩衝液等の緩衝剤;生理食塩液等の等張剤等を利用することができる。 When the radioactive compound (1) of the present invention is used as a radiopharmaceutical, as a pharmaceutical carrier, a stabilizer such as ascorbic acid; a pH adjusting agent such as acid or base; a buffer such as phosphate buffer; An isotonic agent such as a liquid can be used.

本発明の放射性薬剤は、静脈注射による投与が最適であるが、その他一般的な非経口的手段によって投与が可能である。その投与量は、患者の体重、年齢、性別及びSPECT装置に代表される測定機器等の諸条件によって適宜決められる。一般的に、診断薬の場合、I−123の放射能として37MBq〜370MBq、治療薬の場合I−131の放射能として37MBq〜3700MBqの範囲である。 The radiopharmaceutical of the present invention is optimally administered by intravenous injection, but can be administered by other general parenteral means. The dose is appropriately determined depending on the patient's weight, age, sex, and various conditions such as a measuring instrument represented by a SPECT apparatus. Generally, in the case of diagnostic agents, the radioactivity of I-123 ranges from 37 MBq to 370 MBq, and in the case of therapeutic agents, the radioactivity of I-131 ranges from 37 MBq to 3700 MBq.

次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例により何ら制約されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

実施例1(PYKの合成)
3−モルフォリノプロピルクロライド(4)の合成
1−ブロモ−3−クロロプロパン(3.6g、22.9mmol)をベンゼン(10ml、無水)に加え、次いでモルフォリン(3、3.0g、34.4mmol)をゆっくりと滴下した。その後、室温で1時間撹拌した後、3時間還流(120℃)した。冷後、析出結晶をろ過し、結晶をメチル−t−ブチルエーテル(MTBE)で洗った。有機層を3M 塩酸(20ml)で抽出後、40%水酸化ナトリウム水溶液でアルカリに転溶し、MTBE(30ml)で抽出した。有機層を硫酸ナトリウムで乾燥後溶媒を減圧留去し、残渣をメタノールを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより分離精製し、化合物(4)を無色の液状物として得た。
Example 1 (Synthesis of PYK)
Synthesis of 3-morpholinopropyl chloride (4) 1-Bromo-3-chloropropane (3.6 g, 22.9 mmol) was added to benzene (10 ml, anhydrous) followed by morpholine (3, 3.0 g, 34.4 mmol). ) Was slowly added dropwise. Thereafter, the mixture was stirred at room temperature for 1 hour and then refluxed (120 ° C.) for 3 hours. After cooling, the precipitated crystals were filtered, and the crystals were washed with methyl-t-butyl ether (MTBE). The organic layer was extracted with 3M hydrochloric acid (20 ml), then dissolved in alkali with 40% aqueous sodium hydroxide solution, and extracted with MTBE (30 ml). The organic layer was dried over sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was separated and purified by silica gel column chromatography using methanol as an eluting solvent to obtain compound (4) as a colorless liquid.

Yield;42.8% MS;m/z 163 found 163
H−NMR(CDCl);3.71(t,J=6.0Hz,4H,molpholino),3.61(t,J=7.3Hz,2H,propyl),2.48(t,J=7.3Hz,2H,propyl),2.44(t,J=6.0Hz,4H,molpholino),1.95(m,J=7.3Hz,2H,propyl)
Yield; 42.8% MS; m / z 163 found 163
1 H-NMR (CDCl 3 ); 3.71 (t, J = 6.0 Hz, 4H, morpholino), 3.61 (t, J = 7.3 Hz, 2H, propyl), 2.48 (t, J = 7.3 Hz, 2H, propyl), 2.44 (t, J = 6.0 Hz, 4H, morpholino), 1.95 (m, J = 7.3 Hz, 2H, propyl)

7−エトキシ−6−ヒドロキシキナゾリン−4(3H)−オン(6)の合成
化合物(5)6,7−ジエトキシキナゾリン−4(3H)−オン(9.2g、39.4mmol)をメタンスルホン酸(60ml)に少量ずつ溶解した。次いで、D,L−メチオニン(7.05g、47.3mmol)を加え、4時間還流(100℃)した。その後、反応液を室温まで冷却し、氷冷水(200ml)を加え、氷浴中で40%水酸化ナトリウム水溶液で中和した。析出した結晶をろ取水洗し、さらに少量のメタノールで洗い乾燥させ化合物(6)を得た。これは精製せずに次の実験に用いた。
Synthesis of 7-ethoxy-6-hydroxyquinazolin-4 (3H) -one (6) Compound (5) 6,7-diethoxyquinazolin-4 (3H) -one (9.2 g, 39.4 mmol) ) Was dissolved little by little in methanesulfonic acid (60 ml). Then, D, L-methionine (7.05 g, 47.3 mmol) was added and refluxed (100 ° C.) for 4 hours. Thereafter, the reaction solution was cooled to room temperature, ice-cold water (200 ml) was added, and neutralized with a 40% aqueous sodium hydroxide solution in an ice bath. The precipitated crystals were collected by filtration, washed with water, further washed with a small amount of methanol, and dried to obtain compound (6). This was used in the next experiment without purification.

6−アセトキシ−7−エトキシキナゾリン−4(3H)−オン(7)の合成
化合物(6)(7.3g、35.4mmol)をピリジン(6ml)に加え、さらに無水酢酸(40ml)を加えて3時間還流(100℃)した。反応液を室温まで冷却し、氷冷水(150ml)に注ぎ、析出結晶をろ取した。メタノールから再結晶して化合物(7)を得た。
Synthesis of 6-acetoxy-7-ethoxyquinazolin-4 (3H) -one (7) Compound (6) (7.3 g, 35.4 mmol) was added to pyridine (6 ml) and acetic anhydride (40 ml) was added. ) And refluxed (100 ° C.) for 3 hours. The reaction solution was cooled to room temperature, poured into ice-cold water (150 ml), and the precipitated crystals were collected by filtration. Recrystallization from methanol gave Compound (7).

Yield;61.8% m.p.;258〜260℃ MS;m/z 248 found;248
H−NMR(DMSO);8.07(s,1H,aromatics),7.73(s,1H,aromatics),7.24(s,1H,aromatics),4.19(q,J=7.6Hz,2H,CHCHO),2.30(s,3H,CHCO),1.33(t,J=7.6Hz,3H,CHCHO)
Yield; 61.8% m. p. 258-260 ° C MS; m / z 248 found; 248
1 H-NMR (DMSO); 8.07 (s, 1 H, aromatics), 7.73 (s, 1 H, aromatics), 7.24 (s, 1 H, aromatics), 4.19 (q, J = 7 .6 Hz, 2H, CH 3 CH 2 O), 2.30 (s, 3H, CH 3 CO), 1.33 (t, J = 7.6 Hz, 3H, CH 3 CH 2 O)

6−アセトキシ−4−クロロ−7−エトキシキナゾリン(8)の合成
化合物(7)(2.0g、8.06mmol)を塩化ホスホリル(30ml)に加え、3時間還流(120℃)した。反応液を室温まで冷却した後、氷浴中で氷冷水(200ml)中に投じ、クロロホルムで抽出した。有機層を1M水酸化ナトリウム水溶液(200ml)で2回水洗後、有機層を硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣を酢酸エチルエステルを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより分離精製し、化合物(8)を得た。
Synthesis of 6-acetoxy-4-chloro-7- ethoxyquinazoline (8) Compound (7) (2.0 g, 8.06 mmol) was added to phosphoryl chloride (30 ml) and refluxed (120C) for 3 hours. did. The reaction solution was cooled to room temperature, poured into ice-cold water (200 ml) in an ice bath, and extracted with chloroform. The organic layer was washed twice with 1M aqueous sodium hydroxide solution (200 ml), and the organic layer was dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was separated and purified by silica gel column chromatography using ethyl acetate as an elution solvent to obtain Compound (8).

Yield;89.6% m.p.;110〜114℃ MS;m/z 266 found 266
H−NMR(CDCl);8.93(s,1H,aromatics),7.88(s,1H,aromatics),7.40(s,1H,aromatics),4.25(q,J=7.6Hz,2H,CHCHO),2.39(s,3H,CHCO),1.50(t,J=7.6Hz,3H,CHCHO)
Yield; 89.6% m. p. 110-114 ° C. MS; m / z 266 found 266
1 H-NMR (CDCl 3 ); 8.93 (s, 1 H, aromatics), 7.88 (s, 1 H, aromatics), 7.40 (s, 1 H, aromatics), 4.25 (q, J = 7.6 Hz, 2H, CH 3 CH 2 O), 2.39 (s, 3H, CH 3 CO), 1.50 (t, J = 7.6 Hz, 3H, CH 3 CH 2 O)

7−エトキシ−6−ヒドロキシ−4−(3−ヨードフェノキシ)キナゾリン(9)
3−ヨードフェノール(5.0g、22.7mmol)を加温(50℃)し、溶解させた後、水酸化カリウム(0.42g、7.49mmol)を加えて完全に溶かした。次に化合物(8)(0.56g、2.10mmol)を10分程度かけて加え、一晩還流(90℃)した。反応物をクロロホルムで抽出し、有機層を2回水洗し、硫酸ナトリウムで乾燥後溶媒を減圧留去した。残渣を酢酸エチルエステルを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより分離精製し、化合物(9)を得た。
7-Ethoxy-6-hydroxy-4- (3-iodophenoxy) quinazoline (9)
After 3-iodophenol (5.0 g, 22.7 mmol) was heated (50 ° C.) and dissolved, potassium hydroxide (0.42 g, 7.49 mmol) was added and completely dissolved. Next, compound (8) (0.56 g, 2.10 mmol) was added over about 10 minutes and refluxed (90 ° C.) overnight. The reaction product was extracted with chloroform, the organic layer was washed twice with water, dried over sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was separated and purified by silica gel column chromatography using ethyl acetate as an elution solvent to obtain compound (9).

Yield;71.2% m.p.;214〜216℃ HRMS;m/z 407.9971 found 407.9978
H−NMR(DMSO);10.30(s,1H,OH),8.48(s,1H,aromatics),7.73(t,1H,aromatics),7.68(d,1H,aromatics),7.48(s,1H,aromatics),7.30(m,3H,aromatics),4.25(q,J=7.6Hz,2H,CHCHO)1.44(t,J=7.6Hz,3H,CHCHO)
Yield; 71.2% m. p. 214-216 ° C HRMS; m / z 407.9971 found 407.978
1 H-NMR (DMSO); 10.30 (s, 1 H, OH), 8.48 (s, 1 H, aromatics), 7.73 (t, 1 H, aromatics), 7.68 (d, 1 H, aromatics) ), 7.48 (s, 1H, aromatics), 7.30 (m, 3H, aromatics), 4.25 (q, J = 7.6 Hz, 2H, CH 3 CH 2 O) 1.44 (t, J = 7.6 Hz, 3H, CH 3 CH 2 O)

7−エトキシ−4−(3−ヨードフェノキシ)−6−(3−モルフォリノプロポキシ)キナゾリン(2a)[PYK]の合成
化合物(9)(0.60g、1.47mmol)をジメチルホルムアミド(DMF、無水、15ml)に加え、次いで炭酸カリウム(1.0g、7.24mmol)を加えた。その後、モルフォリノプロピルクロライド(化合物(4)、0.30g、1.83mmol)を加えて、3.5時間還流(90℃)した。反応液を室温まで冷却し、氷冷水(50ml)を加え、酢酸エチルエステルで抽出(50ml×1、20ml×2)した。有機層を硫酸ナトリウムで乾燥後溶媒を減圧留去し、残渣を酢酸エチルエステルを溶出溶媒とするシリカゲルカラムクロマトグラフィーにより分離後、さらに2−プロパノールから再結晶して化合物(2a)を得た。
Synthesis of 7-ethoxy-4- (3-iodophenoxy) -6- (3-morpholinopropoxy) quinazoline (2a) [PYK] Compound (9) (0.60 g, 1.47 mmol) was converted to dimethyl To formamide (DMF, anhydrous, 15 ml) was added followed by potassium carbonate (1.0 g, 7.24 mmol). Thereafter, morpholinopropyl chloride (compound (4), 0.30 g, 1.83 mmol) was added, and the mixture was refluxed (90 ° C.) for 3.5 hours. The reaction solution was cooled to room temperature, ice-cold water (50 ml) was added, and the mixture was extracted with ethyl acetate (50 ml × 1, 20 ml × 2). The organic layer was dried over sodium sulfate and the solvent was distilled off under reduced pressure. The residue was separated by silica gel column chromatography using ethyl acetate as an elution solvent, and then recrystallized from 2-propanol to obtain compound (2a).

Yield;38.1% m.p.;135〜137℃ HRMS;m/z 535.0968 found 535.0966 H−NMR(CDCl); 8.54(s,1H,aromatics),7.59(t,1H,aromatics),7.56(d,1H,aromatics),7.43(s,1H,aromatics),7.18(m,3H,aromatics),4.20(t,J=8.0Hz,2H,propyl),4.17(q,J=7.6Hz,2H,CHCHO),3.66(t,J=5.0Hz,4H,molpholino),2.53(t,J=8.0Hz,2H,propyl),2.43(t,J=5.0Hz,4H,molpholino),2.06(m,J=8.0Hz,2H,propyl),1.49(t,J=7.6Hz,3H,CHCHO) Yield; 38.1% m. p. 135-137 ° C. HRMS; m / z 535.0968 found 535.0966 1 H-NMR (CDCl 3 ); 8.54 (s, 1 H, aromatics), 7.59 (t, 1 H, aromatics), 7. 56 (d, 1H, aromatics), 7.43 (s, 1H, aromatics), 7.18 (m, 3H, aromatics), 4.20 (t, J = 8.0 Hz, 2H, propyl), 4. 17 (q, J = 7.6 Hz, 2H, CH 3 CH 2 O), 3.66 (t, J = 5.0 Hz, 4H, morpholino), 2.53 (t, J = 8.0 Hz, 2H, propyl), 2.43 (t, J = 5.0 Hz, 4H, morpholino), 2.06 (m, J = 8.0 Hz, 2H, propyl), 1.49 (t, J = 7.6 Hz, 3H, CH 3 CH 2 O)

実施例2(7−エトキシ−6−(3−モルフォリノプロポキシ)−4−(3−トリブチルスタニルフェノキシ)キナゾリン(2b)の合成)
化合物(2a)(0.15g、0.28mmol)、ビス(トリブチルチン)(0.49g、0.84mmol),及びテトラキス(トリフェニルホスフィン)−パラジウム(0.02g、0.01mmol)を無水トルエン(25ml)に加え、一晩還流(140℃)した。冷後、セライトを用いてろ過し、ろ液を減圧下で濃縮した。残渣をクロロホルム/メタノール(15/1 v/v)を溶出溶媒とするシリカゲルカラムクロマトグラフィーで分離精製し、化合物(2b)を黄色油状物として得た。
Example 2 (Synthesis of 7-ethoxy-6- (3-morpholinopropoxy) -4- (3-tributylstannylphenoxy) quinazoline (2b))
Compound (2a) (0.15 g, 0.28 mmol), bis (tributyltin) (0.49 g, 0.84 mmol), and tetrakis (triphenylphosphine) -palladium (0.02 g, 0.01 mmol) in anhydrous toluene (25 ml) and refluxed (140 ° C.) overnight. After cooling, the mixture was filtered using celite, and the filtrate was concentrated under reduced pressure. The residue was separated and purified by silica gel column chromatography using chloroform / methanol (15/1 v / v) as an elution solvent to obtain compound (2b) as a yellow oil.

Yield;35.8% HRMS;m/z 699.3058 found 699.3054
H−NMR(CDCl);8.60(s,1H,aromatics),7.60(s,1H,aromatics),7.49−7.15(m,5H,aromatics),4.27(t,J=8.0Hz,2H,propyl),4.25(q,J=7.6Hz,2H,CHCHO),3.75(t,J=5.0Hz,4H,molpholino),2.63(t,J=8.0Hz,2H,propyl),2.54(t,J=5.0Hz,4H,molpholino),2.15(m,J=8.0Hz,2H,propyl),1.55(t,J=7.6Hz,3H,CHCHO),1.42−0.86(m,27H,Bu
Yield; 35.8% HRMS; m / z 699.3058 found 699.3054
1 H-NMR (CDCl 3 ); 8.60 (s, 1 H, aromatics), 7.60 (s, 1 H, aromatics), 7.49-7.15 (m, 5 H, aromatics), 4.27 ( t, J = 8.0 Hz, 2H, propyl), 4.25 (q, J = 7.6 Hz, 2H, CH 3 CH 2 O), 3.75 (t, J = 5.0 Hz, 4H, morpholino) 2.63 (t, J = 8.0 Hz, 2H, propyl), 2.54 (t, J = 5.0 Hz, 4H, morpholino), 2.15 (m, J = 8.0 Hz, 2H, propyl). ), 1.55 (t, J = 7.6 Hz, 3H, CH 3 CH 2 O), 1.42-0.86 (m, 27H, Bu 3 )

実施例3([125I]PYKの合成)
密栓バイアル中で化合物(2b)(50μl、0.5mg/mlエタノール溶液)に0.1M 塩酸(25μl)、[125I]ヨウ化ナトリウム(1.0μl、3.7MBq)、30w/v%過酸化水素水(10μl)を順に加え、室温で15分間反応させた。目的物をHPLCにて分離精製し、各種化合物の対応非標識体のHPLCリテンションタイムと完全に一致することで目的標識体であることを確認した。なお、全ての標識体の放射化学的純度は95%以上、比放射能は約74TBq/mmolであった。
溶出溶媒;メタノール/0.01Mクエン酸水溶液(55/45 v/v)
HPLCリテンションタイム;15.5分 標識率;97.5%
Example 3 (synthesis of [ 125 I] PYK)
Compound (2b) (50 μl, 0.5 mg / ml ethanol solution) in 0.1 mL hydrochloric acid (25 μl), [ 125 I] sodium iodide (1.0 μl, 3.7 MBq), 30 w / v% excess in a sealed vial Hydrogen oxide water (10 μl) was added in order and allowed to react at room temperature for 15 minutes. The target product was separated and purified by HPLC, and it was confirmed that the target product was the target labeled product by completely matching the HPLC retention times of the corresponding unlabeled products of various compounds. In addition, the radiochemical purity of all the labeled bodies was 95% or more, and the specific activity was about 74 TBq / mmol.
Elution solvent: Methanol / 0.01M citric acid aqueous solution (55/45 v / v)
HPLC retention time; 15.5 minutes Labeling rate: 97.5%

実施例4(PYKのEGFR−TKリン酸化阻害能の測定)
合成した新規誘導体について、EGFR−TKリン酸化阻害能を測定した。測定はビオチン化EGFR−TKリン酸化ペプチドを基質として用いるPromega社製の測定キットならびに[γ‐32P]ATPを用いて行った。阻害活性は10μM〜100pMの濃度の薬物存在下でリン酸化能を測定し、50%阻害濃度(IC50)値として求めたのEGFR−TKリン酸化阻害能を測定した。同時に代表的なEGFR−TK選択的阻害剤であるPD153035を用いて比較した。
Example 4 (Measurement of the ability of PYK to inhibit EGFR-TK phosphorylation)
EGFR-TK phosphorylation inhibitory ability was measured about the synthesized new derivative. The measurement was performed using a measurement kit manufactured by Promega and biotinylated EGFR-TK phosphorylated peptide as a substrate and [γ-32P] ATP. The inhibitory activity was determined by measuring the phosphorylation ability in the presence of a drug at a concentration of 10 μM to 100 pM, and measuring the EGFR-TK phosphorylation inhibition ability obtained as a 50% inhibitory concentration (IC50) value. At the same time, comparison was made using PD153035, which is a representative EGFR-TK selective inhibitor.

PTKアッセイ5X緩衝液(5.0μl)、PTKビオチン化ペプチド基質(2.5μl)、2.5mM バナジン酸ナトリウム(2.5μl)、ATP混合溶液{0.5mM ATP、[γ−32P]ATP(7.4kBq)}(2.5μl)及び被験物質の10%DMSO溶液(7.5μl)を加え全量20μlとし、30℃で5分間インキュベートした。続いて、EGFR PTK 緩衝溶液(40mM イミダゾール塩酸塩、40mM β−グリセロリン酸、0.5mg/ml BSA)を(5.0μl)を加え、30℃で15分間インキュベートした。続いて、7.5Mグアニジン塩酸塩(13μl)加え、14000×gで10秒間遠心した。反応液13μlをSAM(登録商標)メンブランにスポットし、2M塩化ナトリウム水溶液(200ml)で30秒間、1回、3分間、2回洗い、次に1%リン酸を含む2M塩化ナトリウム水溶液(200ml)で3分間、2回洗い、最後にイオン交換水(100ml)で30秒間、1回洗った。SAM(登録商標)メンブランを乾燥後、クリアゾルIシンチレーター(ナカライテスク社製)を10ml加え、液体シンチレーションカウンターで放射能を測定した。コントロールは被験物質の代わりに10%DMSO溶液を加えた際の放射能を測定した。被検化合物を添加した際の放射能をコントロールに対するパーセントとして計算し、コントロールの50%を示す濃度をIC50値とした(表1)。 PTK assay 5X buffer (5.0 μl), PTK biotinylated peptide substrate (2.5 μl), 2.5 mM sodium vanadate (2.5 μl), ATP mixed solution {0.5 mM ATP, [γ-32P] ATP ( 7.4 kBq)} (2.5 μl) and a 10% DMSO solution (7.5 μl) of the test substance to make a total volume of 20 μl, and incubated at 30 ° C. for 5 minutes. Subsequently, EGFR PTK buffer solution (40 mM imidazole hydrochloride, 40 mM β-glycerophosphate, 0.5 mg / ml BSA) (5.0 μl) was added and incubated at 30 ° C. for 15 minutes. Subsequently, 7.5 M guanidine hydrochloride (13 μl) was added and centrifuged at 14000 × g for 10 seconds. 13 μl of the reaction solution was spotted on a SAM 2 (registered trademark) membrane, washed with 2M aqueous sodium chloride solution (200 ml) for 30 seconds, once, 3 minutes, twice, and then with 2M aqueous sodium chloride solution containing 1% phosphoric acid (200 ml) ) For 3 minutes twice, and finally washed once with ion-exchanged water (100 ml) for 30 seconds. After drying the SAM 2 (registered trademark) membrane, 10 ml of Clearsol I scintillator (manufactured by Nacalai Tesque) was added, and the radioactivity was measured with a liquid scintillation counter. As a control, the radioactivity when a 10% DMSO solution was added instead of the test substance was measured. The radioactivity when the test compound was added was calculated as a percentage of the control, and the concentration showing 50% of the control was taken as the IC 50 value (Table 1).

PYKは対照に用いたPD153035と同程度の高いEGFR−TKリン酸化阻害活性を示した。また、この結果より、PYKは優れたEGFR−TKリン酸化阻害活性を持ち、新規SPECT用EGFR−TK活性診断用薬剤としての可能性を持つことが確認された。 PYK showed high EGFR-TK phosphorylation inhibitory activity comparable to PD153035 used as a control. Further, from this result, it was confirmed that PYK has an excellent EGFR-TK phosphorylation inhibitory activity and has potential as a novel agent for diagnosing EGFR-TK activity for SPECT.

実施例5(A431膜画分に対する[125I]PYKの結合親和性の検討)
A−431癌細胞膜画分の調製
A−431癌細胞をコンフルエントに達するまで培養後、トリプシン処理によりディシュから回収した後、細胞液を遠心分離(400 x g,5min,室温)した。次いで、氷冷下で沈殿にPBS(−)を2ml加え、シリンジで細胞を破砕した。その後、等量の0.2mMリン酸/0.32Mスクロース緩衝液(pH7.4)を加え、再度遠心分離(800 x g,10min,4℃)し上清を得た。上清を超遠心分離(75000 x g,15min,4℃)し、得られた沈殿に25mM HEPES緩衝液(pH7.4)を加え、25℃,15分間インキュベートした。再度超遠心分離(75000 x g,15min,4℃)を行い、沈殿を細胞膜画分とし、25mM HEPES緩衝液(pH7.4)に懸濁して用いた。タンパク量は、BSAを標準試料としたローリー法で測定した。
Example 5 (Investigation of binding affinity of [ 125 I] PYK to A431 membrane fraction)
Preparation of A-431 cancer cell membrane fraction A-431 cancer cells were cultured until they reached confluence, and then collected from the dish by trypsin treatment, and then the cell solution was centrifuged (400 × g, 5 min, room temperature). Next, 2 ml of PBS (−) was added to the precipitate under ice cooling, and the cells were disrupted with a syringe. Thereafter, an equal amount of 0.2 mM phosphate / 0.32 M sucrose buffer (pH 7.4) was added, and the mixture was centrifuged again (800 × g, 10 min, 4 ° C.) to obtain a supernatant. The supernatant was subjected to ultracentrifugation (75000 × g, 15 min, 4 ° C.), 25 mM HEPES buffer (pH 7.4) was added to the resulting precipitate, and the mixture was incubated at 25 ° C. for 15 minutes. Ultracentrifugation (75000 × g, 15 min, 4 ° C.) was performed again, and the precipitate was used as a cell membrane fraction, which was suspended in 25 mM HEPES buffer (pH 7.4). The amount of protein was measured by the Raleigh method using BSA as a standard sample.

125 I]PYKのEGFR−TKに対する結合親和性
A−431癌細胞膜画分を25mM HEPES緩衝液に懸濁し、EGF添加後25℃ 10分間インキュベートした。次いで、全結合量を測定するためにDMSOを、非特異的結合量を測定するためにPD153035(終濃度10μM)をそれぞれ100μl加えた。さらに、[125I]PYKのDMSO溶液50μl及び終濃度1nM〜200nMとなるように調製した非標識PYKを50μl加えて全量1mlとし、25℃で60分間インキュベートした。反応終了後、直ちに反応液を0.5%ポリエチレンイミン溶液に30分間以上浸したグラスフィルター(GF/B、ワットマン社製)を用いて吸引濾過し0.5%トリトンX−100 0.2mM リン酸緩衝液(pH7.2)3mlでフィルターとチューブを洗浄した。γカウンターでフィルターの放射能を測定し、[125I]PYKとチロシンキナーゼとの全結合量と非特異的結合量を求め、全結合量と非特異的結合量の差を特異的結合量とした。得られた特異的結合量曲線から、Scatchard解析法によりKd値及びBmax値を算出した(図1)。
The binding affinity A-431 cancer cell membrane fraction of [ 125 I] PYK to EGFR-TK was suspended in 25 mM HEPES buffer, and incubated at 25 ° C. for 10 minutes after addition of EGF. Subsequently, DMSO was added to measure the total amount of binding, and 100 μl of PD153035 (final concentration 10 μM) was added to measure the amount of non-specific binding. Further, 50 μl of [ 125 I] PYK in DMSO and 50 μl of unlabeled PYK prepared to a final concentration of 1 nM to 200 nM were added to make a total volume of 1 ml, and incubated at 25 ° C. for 60 minutes. Immediately after completion of the reaction, the reaction solution was suction filtered using a glass filter (GF / B, manufactured by Whatman) immersed in a 0.5% polyethyleneimine solution for 30 minutes or more, and 0.5% Triton X-100 0.2 mM phosphorus. The filter and tube were washed with 3 ml of acid buffer (pH 7.2). The radioactivity of the filter is measured with a γ counter to determine the total binding amount and non-specific binding amount of [ 125 I] PYK and tyrosine kinase, and the difference between the total binding amount and the non-specific binding amount is determined as the specific binding amount. did. From the obtained specific binding amount curve, Kd value and Bmax value were calculated by Scatchard analysis (FIG. 1).

A−431細胞膜画分に対するPYKのKd値は、51.3nM、Bmax値は、27.0pmol/mg proteinであり、PYKはEGFR−TKに対して高い親和性を示すことが確認できた。さらに、結合部位の交叉性を知るうえで重要なHill係数は、1.02となりPYKの結合部位は一つで、他の結合部位に相互作用がないことを確認した。また、本実験に用いたEGFR−TK選択的阻害剤PD153035は、細胞膜内に存在するチロシンキナーゼのATP結合部位に作用することで阻害活性を示すことから、PYKも同部位に結合していると考えられた。 The Kd value of PYK for the A-431 cell membrane fraction was 51.3 nM, the Bmax value was 27.0 pmol / mg protein, and it was confirmed that PYK showed high affinity for EGFR-TK. Furthermore, the Hill coefficient, which is important for knowing the crossover property of the binding site, was 1.02, and it was confirmed that there was one PYK binding site and there was no interaction with other binding sites. In addition, since the EGFR-TK selective inhibitor PD153035 used in this experiment exhibits inhibitory activity by acting on the ATP binding site of tyrosine kinase existing in the cell membrane, PYK is also bound to the same site. it was thought.

実施例6([125I]PYKの体内分布変化)
125I]PYKの詳細な生体内分布とEGFR−TK特異性に関して、担癌マウスを用い、投与1、6、12、24時間後での体内分布を調べた。なお、本実験では、EGFR−TKがよく発現しており担癌モデルマウスとしてよく用いられ、作成の容易なA−431癌細胞を用いた。
Example 6 (Change in distribution of [ 125 I] PYK in the body)
Regarding the detailed biodistribution of [ 125 I] PYK and EGFR-TK specificity, the body distribution was examined using cancer-bearing mice at 1, 6, 12, and 24 hours after administration. In this experiment, A-431 cancer cells, which are well expressed as EGFR-TK and are often used as cancer-bearing model mice, were used.

A−431細胞担癌モデルマウスの作成
A−431癌細胞は、5%FCSならびに、ペニシリン−ストレプトマイシン混合溶液を含むDMEM培養液で5%CO存在下37℃で常法に従い培養した。培地交換は2日に一回行い、コンフルエント状態になるまで培養した後、実験に用いた。コンフルエント状態に達したものをトリプシン処理し、細胞を採取した。細胞は、培養時に使用した培地で最適な濃度に懸濁し、200μl当たり1×10個になるように細胞を調製した。得られた細胞懸濁液200μlを生後4週間のBALB/c−nu系雄性ヌードマウス(20〜25g)の大腿部に皮下注射し、2週間飼育した。
Preparation of A-431 cell-bearing model mouse A-431 cancer cells were cultured in a DMEM culture solution containing 5% FCS and penicillin-streptomycin mixed solution at 37 ° C. in the presence of 5% CO 2 according to a conventional method. The medium was changed once every two days, and after culturing until confluent, it was used for the experiment. Those that reached a confluent state were trypsinized and cells were collected. The cells were suspended at the optimal concentration in the medium used during the culture, and the cells were prepared so as to be 1 × 10 7 cells per 200 μl. 200 μl of the obtained cell suspension was injected subcutaneously into the thigh of a 4-week-old BALB / c-nu male nude mouse (20 to 25 g) and reared for 2 weeks.

125 I]PYKのA431癌組織への集積性
A−431癌細胞担癌マウスに[125I]PYKを尾静脈より投与し、1、6、12、24時間後に屠殺後、癌および各臓器を採取し、重量並びに放射能を測定比較した。測定結果より各臓器1g当たりの放射能を全投与量に対するパーセント(% dose/g tissue)として算出し、[125I]PYKの各種癌への集積について比較検討した(表2)。
Accumulation of [ 125 I] PYK in A431 cancer tissue A-431 cancer cell-bearing mice [ 125 I] PYK was administered from the tail vein and sacrificed 1, 6, 12, 24 hours later, and cancer and organs Were collected, and the weight and radioactivity were measured and compared. From the measurement results, the radioactivity per gram of each organ was calculated as a percentage of the total dose (% dose / g tissue), and the accumulation of [ 125 I] PYK in various cancers was compared (Table 2).

125I]PYKは、投与1時間後で癌に4.4%集積し、その後、投与6時間後で3.6%、投与12時間後で1.7%、投与24時間後で1.5%と投与後早期における癌への高い取込みとその後の緩やかな消失が確認された。また、他の組織からは、癌よりも早い消失が認められた。その結果、画像コントラストの指標である癌対組織比が上昇した。[125I]PYKの癌対血液、筋肉比は、投与1時間後で6.8、4.6、投与24時間後で、57.0、45.5と良好な値を示した(図2A)。一方、主要組織に対する癌対組織比は、投与1時間後ではいずれも低い値であったが、投与24時間後では、癌対肝臓、癌対腎臓、癌対肺比がそれぞれ3.0、4.3、8.5と良好な値を示した(図2B)。 [ 125 I] PYK accumulates 4.4% in the cancer 1 hour after administration, then 3.6% 6 hours after administration, 1.7% 12 hours after administration, 1. 24 hours after administration 1. A high uptake into cancer and early gradual disappearance after 5% were confirmed. In addition, disappearance earlier than cancer was observed from other tissues. As a result, the cancer-to-tissue ratio, which is an index of image contrast, increased. [ 125 I] PYK cancer-to-blood and muscle ratios showed good values of 6.8 and 4.6 at 1 hour after administration, and 57.0 and 45.5 at 24 hours after administration (FIG. 2A). ). On the other hand, the cancer-to-tissue ratio to the main tissue was low at 1 hour after administration, but the cancer-to-liver, cancer-to-kidney, and cancer-to-lung ratios were 3.0, 4 and 24 hours after administration, respectively. .3 and 8.5 were good values (FIG. 2B).

実施例7(in vivoにおける癌集積量がEGFR−TK発現量及びEGFR−TKリン酸化活性と相関すること)
各種癌細胞の培養
各種癌細胞は、75cmディシュ中に1.0×10個添加し、5%CO存在下37℃で常法によって培養した。培地はA−431、A−375、C−6癌細胞はDMEM、Du−145、Me−180、PC−3、NALM−6癌細胞はRPMI1640にA−431は5%FCS、その他の細胞は10%FCSならびに、ペニシリンーストレプトマイシン混合溶液を加えたものを用いた。
Example 7 (in vivo cancer accumulation amount correlates with EGFR-TK expression level and EGFR-TK phosphorylation activity)
Culture of various cancer cells Various cancer cells were added at 1.0 × 10 6 in a 75 cm 2 dish and cultured at 37 ° C. in the presence of 5% CO 2 by a conventional method. Medium is A-431, A-375, C-6 cancer cells are DMEM, Du-145, Me-180, PC-3, NALM-6 cancer cells are RPMI1640, A-431 is 5% FCS, other cells are What added 10% FCS and the penicillin-streptomycin mixed solution was used.

各種癌細胞膜画分の調製
(接着系細胞の場合)
コンフルエントに達するまで培養した各種癌細胞を、トリプシン処理によりディシュから回収した後、細胞液を遠心分離(400 x g,5min,室温)した。次いで、氷冷下で沈殿にPBS(−)を2mL加え、シリンジで細胞を破砕した。その後、等量の0.2mMリン酸/0.32Mスクロース緩衝液(pH7.4)を加え、再度遠心分離(800 x g,10min,4℃)により上清を得た。上清を超遠心分離(75000 x g,15min,4℃)し、得られた沈殿に25mM HEPES緩衝液(pH7.4)を加え、25℃,15分間インキュベートした。再度超遠心分離(75000 x g,15min,4℃)を行い、沈殿を細胞膜画分とし、25mM HEPES緩衝液(pH7.4)に懸濁して用いた。タンパク量は、BSAを標準試料としたローリー法で測定した。
(浮遊系細胞の場合)
トリプシン処理を行わずに細胞をディシュから回収し、以下、接着系細胞と同様の操作を行った。
Preparation of various cancer cell membrane fractions (for adherent cells)
Various cancer cells cultured until they reached confluence were collected from the dish by trypsin treatment, and then the cell solution was centrifuged (400 × g, 5 min, room temperature). Next, 2 mL of PBS (−) was added to the precipitate under ice cooling, and the cells were crushed with a syringe. Thereafter, an equal volume of 0.2 mM phosphate / 0.32 M sucrose buffer (pH 7.4) was added, and a supernatant was obtained by centrifugation again (800 × g, 10 min, 4 ° C.). The supernatant was subjected to ultracentrifugation (75000 × g, 15 min, 4 ° C.), 25 mM HEPES buffer (pH 7.4) was added to the resulting precipitate, and the mixture was incubated at 25 ° C. for 15 minutes. Ultracentrifugation (75000 × g, 15 min, 4 ° C.) was performed again, and the precipitate was used as a cell membrane fraction, which was suspended in 25 mM HEPES buffer (pH 7.4). The amount of protein was measured by the Raleigh method using BSA as a standard sample.
(For floating cells)
The cells were collected from the dish without trypsin treatment, and the same operation as that for the adherent cells was performed.

各種癌細胞におけるEGFR−TK発現量の測定
各種癌細胞膜画分を25mM HEPES緩衝液に懸濁し、EGF添加後25℃ 10分間インキュベートした。次いで、全結合量を測定するためにDMSOを、非特異的結合量を測定するためにPD153035(終濃度10μM)をそれぞれ100μl加えた。さらに、[125I]PYKのDMSO溶液50μl及び終濃度1nM〜200nMとなるように調製した非標識PYKを50μl加えて全量1mlとし、25℃で60分間インキュベートした。反応終了後、直ちに反応液を0.5%ポリエチレンイミン溶液に30分間以上浸したグラスフィルター(GF/B、ワットマン社製)を用いて吸引濾過し0.5%トリトンX−100 0.2mMリン酸緩衝液(pH 7.2)3mlでフィルターとチューブを洗浄した。γカウンターでフィルターの放射能を測定し、[125I]PYKとチロシンキナーゼとの全結合量と非特異的結合量を求め、全結合量と非特異的結合量の差を特異的結合量とした。得られた特異的結合量曲線から、Scatchard解析法によりKd値及びBmax値を算出した(表3)。
Measurement of EGFR-TK expression level in various cancer cells Various cancer cell membrane fractions were suspended in 25 mM HEPES buffer, and incubated at 25C for 10 minutes after addition of EGF. Subsequently, DMSO was added to measure the total amount of binding, and 100 μl of PD153035 (final concentration 10 μM) was added to measure the amount of non-specific binding. Further, 50 μl of [ 125 I] PYK in DMSO and 50 μl of unlabeled PYK prepared to a final concentration of 1 nM to 200 nM were added to make a total volume of 1 ml, and incubated at 25 ° C. for 60 minutes. Immediately after completion of the reaction, the reaction solution was suction filtered using a glass filter (GF / B, manufactured by Whatman) immersed in a 0.5% polyethyleneimine solution for 30 minutes or more, and 0.5% Triton X-100 0.2 mM phosphorus. The filter and tube were washed with 3 ml of acid buffer (pH 7.2). The radioactivity of the filter is measured with a γ counter to determine the total binding amount and non-specific binding amount of [ 125 I] PYK and tyrosine kinase, and the difference between the total binding amount and the non-specific binding amount is determined as the specific binding amount. did. From the obtained specific binding curve, Kd value and Bmax value were calculated by Scatchard analysis (Table 3).

各種癌細胞におけるEGFR−TKリン酸化活性の測定
PTKアッセイ5×緩衝液(5.0μl)、PTKビオチン化ペプチド基質(2.5μl)、2.5mMバナジン酸ナトリウム(2.5μl)、ATP混合溶液{0.5mM ATP、[γ−32P]ATP(18.5kBq)}(2.5μ)を加え、コントロールには1%DMSO溶液を、非特異的なリン酸化の測定には、EGFR−TK選択的阻害剤PD153035(終濃度10μM)7.5μlを加え、30℃、5分間インキュベートした。続いて、各種癌細胞膜画分1μgを加え、30℃、15分間インキュベートした。その後、7.5Mグアニジン塩酸塩(13μl)を加え、14000×gで10秒間遠心した。反応液13μlをSAM(登録商標)メンブランにスポットし、2M塩化ナトリウム水溶液(200ml)で30秒間、1回、3分間、2回洗い、次に1%リン酸を含む2M塩化ナトリウム水溶液(200ml)で3分間、2回洗い、最後にイオン交換水(100ml)で30秒間、1回洗った。SAM(登録商標)メンブランを乾燥後、クリアゾルIシンチレーター(ナカライテスク社製)を10ml加え、液体シンチレーションカウンターで放射能を測定した。コントロールからPD153035を前処置した際の放射能を引いた値をEGFR−TKの特異的なリン酸化活性とし、ユニットに換算して各種癌細胞におけるEGFR−TKリン酸化活性を算出した(表4)。1ユニットは、30℃、1分間に1pmolのリン酸基をAngiotensinIIに転換するための酵素量とした。
Measurement of EGFR-TK phosphorylation activity in various cancer cells PTK assay 5 × buffer (5.0 μl), PTK biotinylated peptide substrate (2.5 μl), 2.5 mM sodium vanadate (2.5 μl), ATP mixed solution {0.5 mM ATP, [γ-32P] ATP (18.5 kBq)} (2.5 μ) is added, 1% DMSO solution is used as a control, and EGFR-TK selection is used to measure nonspecific phosphorylation. Inhibitor PD153035 (final concentration 10 μM) 7.5 μl was added and incubated at 30 ° C. for 5 minutes. Subsequently, 1 μg of various cancer cell membrane fractions were added and incubated at 30 ° C. for 15 minutes. Thereafter, 7.5M guanidine hydrochloride (13 μl) was added and centrifuged at 14000 × g for 10 seconds. 13 μl of the reaction solution was spotted on a SAM 2 (registered trademark) membrane, washed with 2M aqueous sodium chloride solution (200 ml) for 30 seconds, once, 3 minutes, twice, and then with 2M aqueous sodium chloride solution containing 1% phosphoric acid (200 ml). ) For 3 minutes twice, and finally washed once with ion-exchanged water (100 ml) for 30 seconds. After drying the SAM 2 (registered trademark) membrane, 10 ml of Clearsol I scintillator (manufactured by Nacalai Tesque) was added, and the radioactivity was measured with a liquid scintillation counter. The value obtained by subtracting the radioactivity when PD153035 was pretreated from the control was defined as the specific phosphorylation activity of EGFR-TK, and converted into units to calculate the EGFR-TK phosphorylation activity in various cancer cells (Table 4). . One unit was the amount of enzyme for converting 1 pmol of a phosphate group into Angiotensin II at 30 ° C. for 1 minute.

各種癌細胞担癌モデルマウスの作成
各種癌細胞を前述の方法で培養し、コンフルエント状態に達したものをトリプシン処理し、細胞を採取した。細胞は、各種癌細胞の培養時に使用した培地で最適な濃度に懸濁した。各種癌細胞懸濁液200μl当たり1×10個になるように細胞を調製した。得られた細胞懸濁液200μlを生後4週間のBALB/c−nu系雄性ヌードマウス(20〜25g)の大腿部に皮下注射し、A−375癌細胞は2週間、C−6、PC−3癌細胞は3週間、Me−180、Du−145癌細胞は4週間飼育した。
Preparation of various cancer cell-bearing model mice Various cancer cells were cultured by the above-described method, and those that reached a confluent state were trypsinized to collect cells. The cells were suspended at an optimal concentration in the medium used for culturing various cancer cells. Cells were prepared at 1 × 10 7 cells per 200 μl of various cancer cell suspensions. 200 μl of the obtained cell suspension was injected subcutaneously into the thigh of a 4-week-old BALB / c-nu male nude mouse (20-25 g), and A-375 cancer cells were transferred to C-6, PC for 2 weeks. -3 cancer cells were bred for 3 weeks, and Me-180 and Du-145 cancer cells were bred for 4 weeks.

125 I]PYKの各種癌への集積性
各種癌細胞担癌マウスに[125I]PYKを尾静脈より投与し、24時間後に屠殺後、癌および各臓器を採取し、重量並びに放射能を測定比較した。測定結果より各臓器1g当たりの放射能を全投与量に対するパーセント(% dose/g tissue)として算出し、[125I]PYKの各種癌への集積について比較検討した(表5)。
Accumulation of [ 125 I] PYK in various cancers [ 125 I] PYK was administered to various cancer cell-bearing mice from the tail vein, and sacrificed 24 hours later, and the cancer and each organ were collected and weighed. In addition, the radioactivity was measured and compared. From the measurement results, the radioactivity per gram of each organ was calculated as a percentage of the total dose (% dose / g tissue), and the accumulation of [ 125 I] PYK in various cancers was compared (Table 5).

125I]PYKは、各種担癌モデルマウスにおいて主要臓器への集積に大きな差はみられなかった。一方、[125I]PYKの標的組織である癌への集積量は、A−431で、1.51%、Du−145、Me−180、PC−3、A−375、C−6でそれぞれ1.14%、0.70%、0.43%、0.39%、0.11%と癌により様々であった。 [ 125 I] PYK showed no significant difference in accumulation in major organs in various tumor-bearing model mice. On the other hand, the amount of [ 125 I] PYK accumulated in cancer that is the target tissue is A-431, 1.51%, Du-145, Me-180, PC-3, A-375, and C-6, respectively. 1.14%, 0.70%, 0.43%, 0.39%, 0.11% and varied depending on the cancer.

各種担癌モデルマウスにおける[ 125 I]PYKの癌集積量とEGFR−TKリン酸化活性との相関性
次に、各種癌のEGFR−TKリン酸化活性及びEGFR−TK発現量であるBmax値とインビボでの[125I]PYKの癌集積量との相関性を検討した(図3)。
125I]PYKの癌集積量は、Bmax値と高い相関性が認められ(R=0.89)、EGFR−TKリン酸化活性とも同様に良好な値が得られた(R=0.72)。従って、[125I]PYKは、インビボにおいてもEGFR−TKを発現する様々な癌に適用可能であると考えられ、[125I]PYKの癌集積量よりEGFR−TKリン酸化活性を推定可能なことから、EGFR−TKを標的とする分子イメージング薬剤としての可能性が示唆された。
Correlation between [ 125I ] PYK cancer accumulation amount and EGFR-TK phosphorylation activity in various cancer- bearing model mice Next, EGFR-TK phosphorylation activity and EGFR-TK expression level of various cancers The correlation between the Bmax value and the amount of cancer accumulation of [ 125 I] PYK in vivo was examined (FIG. 3).
The amount of cancer accumulation of [ 125 I] PYK was found to be highly correlated with the Bmax value (R 2 = 0.89), and a good value was also obtained for the EGFR-TK phosphorylation activity (R 2 = 0). 72). Therefore, [ 125 I] PYK is considered to be applicable to various cancers expressing EGFR-TK even in vivo, and EGFR-TK phosphorylation activity can be estimated from the amount of cancer accumulation of [ 125 I] PYK. This suggested the possibility as a molecular imaging agent targeting EGFR-TK.

実施例8([125I]PYKのオートラジオグラム)
癌集積量ならびに癌対組織比が最も高かったA−431担癌モデルマウスを用いて投与1、6、12、24時間後におけるオートラジオグラムを作成し、[125I]PYKの画像による評価を行った。
A−431癌細胞懸濁液200μl(1×10個)を生後4週間のBALB/c−nu系雄性ヌードマウス(20〜25g)の背部に皮下注射し、2週間飼育した。そして、[125I]PYKを尾静脈より投与し(1.1MBq/200μl)、1、6、12、24時間後にそれぞれ屠殺し、胴体をドライアイス/ヘキサン中で凍結させた。1時間後に胴体を背骨に沿って縦切りにし、o,c,t compoundで土台に固定させ、−30℃程度で12時間凍結させた。その後、ミクロトームを用いて30μmの凍結切片とし、スライドガラスに貼り付けた。得られた切片をフィルムに密着させ、暗室にて1週間感光させ後、現像液で5分、現像停止液で2分、定着液で10分間現像処理した後、画像処理をして、オートラジオグラムを得た(図4)。
Example 8 (autoradiogram of [ 125 I] PYK)
Autoradiograms were prepared at 1, 6, 12, and 24 hours after administration using A-431 cancer-bearing model mice with the highest cancer accumulation and cancer-to-tissue ratio, and [ 125I ] PYK images were evaluated. went.
200 μl of A-431 cancer cell suspension (1 × 10 7 cells) was subcutaneously injected into the back of 4-week-old BALB / c-nu male nude mice (20-25 g) and reared for 2 weeks. [ 125 I] PYK was administered from the tail vein (1.1 MBq / 200 μl) and sacrificed after 1, 6, 12, and 24 hours, and the trunk was frozen in dry ice / hexane. After 1 hour, the torso was longitudinally cut along the spine, fixed to the base with o, c, t compound, and frozen at about −30 ° C. for 12 hours. Thereafter, a frozen section of 30 μm was prepared using a microtome and attached to a slide glass. The obtained sections were adhered to the film, exposed to light in a dark room for 1 week, developed for 5 minutes with a developing solution, developed for 2 minutes with a developing stop solution, and treated with a fixing solution for 10 minutes. Grams were obtained (Figure 4).

125I]PYK投与1、6時間後のオートラジオグラムでは、明らかな[125I]PYKの癌への集積が確認されたが、主要組織においても高い集積を示した。しかし、投与12時間後においては、臓器が判別できる程度まで非標的組織から[125I]PYKの消失が認められ、また、投与24時間後においては、[125I]PYKの標的組織である癌への高い集積と他の臓器、特に、画像診断薬剤の多くに見られる肝臓、腎臓などの代謝系の臓器や肺・胃といった体積の大きな臓器への高い集積も認められず、鮮明な画像を得ることができた。 In autoradiograms 1 and 6 hours after [ 125 I] PYK administration, clear [ 125 I] PYK accumulation in cancer was confirmed, but high accumulation was also observed in major tissues. However, 12 hours after administration, disappearance of [ 125 I] PYK was observed from the non-target tissue to such an extent that an organ could be discriminated, and 24 hours after administration, cancer that was the target tissue of [ 125 I] PYK. High accumulation in other organs, especially in organs of metabolism such as liver and kidney, and large volume organs such as lung and stomach, which are found in many diagnostic imaging drugs, are not recognized. I was able to get it.

以上のように、検討した各種癌において[125I]PYKは、高い癌集積性と非標的組織からの速やかな消失を示し、良好な癌対組織比が得られた。さらに、A−431担癌モデルマウスのオートラジオグラムでは明瞭な画像が得られたことから、[125I]PYKの臨床への応用が十分可能であることが示唆された。 As described above, [ 125 I] PYK exhibited high cancer accumulation and rapid disappearance from non-target tissues in various cancers examined, and a good cancer-to-tissue ratio was obtained. Furthermore, clear images were obtained from the autoradiogram of the A-431 cancer-bearing model mouse, suggesting that [ 125 I] PYK can be applied to clinical practice sufficiently.

A431癌細胞の膜画分EGFR−TKに対する[125]PYKの結合特性を検討した実験結果を示す図である。It is a figure which shows the experimental result which examined the binding characteristic of [< 125 >] PYK with respect to the membrane fraction EGFR-TK of A431 cancer cell. 125I]PYKの担腫瘍マウス体内分布において、腫瘍と血液または周辺臓器の集積(% dose/g tissue)における比を、癌対臓器比として算出し、その経時的変化を示した図である。In the distribution of [ 125 I] PYK in tumor-bearing mice, the ratio of tumor to blood or surrounding organ accumulation (% dose / g tissue) was calculated as the cancer-to-organ ratio, and shows the change over time. . 各種癌細胞のEGFR−TKリン酸化活性及びEGFR−TK発現量であるBmax値とインビボでの[125I]PYKの癌集積量との相関性を検討した実験結果を示す図である。It is a figure which shows the experimental result which examined the correlation with the cancer accumulation amount of [ 125I ] PYK in vivo, and the Bmax value which is EGFR-TK phosphorylation activity and EGFR-TK expression level of various cancer cells. A−431担癌モデルマウスにおける[125I]PYKのオートラジオグラムを経時的に示した図(写真)である。図において、矢印は腫瘍を示す。It is the figure (photograph) which showed the autoradiogram of [ 125I ] PYK in A-431 cancer bearing model mouse over time. In the figure, the arrow indicates a tumor.

Claims (10)

一般式(1)
(式中、Rは放射性ヨウ素原子を示す。)で表される放射性化合物。
General formula (1)
(Wherein R 1 represents a radioactive iodine atom).
放射性ヨウ素原子が、I−123、I−124、I−125及びI−131から選ばれたものである請求項1記載の放射性化合物。 The radioactive compound according to claim 1, wherein the radioactive iodine atom is selected from I-123, I-124, I-125 and I-131. 請求項1〜2のいずれか1項に記載の放射性化合物を含有する医薬。 The pharmaceutical containing the radioactive compound of any one of Claims 1-2. 画像診断用イメージング剤である請求項3記載の医薬。 The medicament according to claim 3, which is an imaging agent for diagnostic imaging. 腫瘍疾患領域の画像診断用イメージング剤である請求項4記載の医薬。 The medicament according to claim 4, which is an imaging agent for diagnostic imaging of a tumor disease region. シングルフォトン断層撮影法(SPECT)用の腫瘍疾患領域の画像診断用イメージング剤である請求項5記載の医薬。 The medicament according to claim 5, which is an imaging agent for diagnostic imaging of a tumor disease region for single photon tomography (SPECT). ポジトロン放出断層撮影法(PET)用の腫瘍疾患領域の画像診断用イメージング剤である請求項5記載の医薬。 The medicament according to claim 5, which is an imaging agent for diagnostic imaging of a tumor disease region for positron emission tomography (PET). 内用放射線治療薬である請求項3記載の医薬。 The medicament according to claim 3, which is an internal radiotherapy drug. 一般式(2)
(式中、Rは、ヨウ素原子、トリアルキルスズ基またはトリアルキルシリル基を示す。)で表される4−フェノキシキナゾリン誘導体。
General formula (2)
(Wherein R 2 represents an iodine atom, a trialkyltin group or a trialkylsilyl group). A 4-phenoxyquinazoline derivative represented by:
一般式(2)
(式中、Rは、ヨウ素原子、トリアルキルスズ基またはトリアルキルシリル基を示す。)で表される4−フェノキシキナゾリン誘導体にアルカリ金属放射性ヨウ素化物を反応させることを特徴とする一般式(1)
(式中、Rは、放射性ヨウ素原子を示す。)で表される放射性ヨウ素化合物の製造法。
General formula (2)
(Wherein R 2 represents an iodine atom, a trialkyltin group or a trialkylsilyl group). A general formula (characterized by reacting an alkali metal radioiodide with a 4-phenoxyquinazoline derivative represented by the formula ( 1)
(Wherein R 1 represents a radioactive iodine atom).
JP2006011235A 2006-01-19 2006-01-19 4-phenoxyquinazoline derivative radioactive compound Expired - Fee Related JP4945133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011235A JP4945133B2 (en) 2006-01-19 2006-01-19 4-phenoxyquinazoline derivative radioactive compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011235A JP4945133B2 (en) 2006-01-19 2006-01-19 4-phenoxyquinazoline derivative radioactive compound

Publications (2)

Publication Number Publication Date
JP2007191430A true JP2007191430A (en) 2007-08-02
JP4945133B2 JP4945133B2 (en) 2012-06-06

Family

ID=38447409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011235A Expired - Fee Related JP4945133B2 (en) 2006-01-19 2006-01-19 4-phenoxyquinazoline derivative radioactive compound

Country Status (1)

Country Link
JP (1) JP4945133B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500450A (en) * 1999-06-01 2003-01-07 ハダシット、メディカル、リサーチ、サーヴィセズ、アンド、デヴェロップメント、リミテッド Novel compounds that bind to epidermal growth factor receptor for positron emission tomography
WO2004014383A1 (en) * 2002-08-09 2004-02-19 Astrazeneca Ab Combination of zd6474, an inhibitor of the vascular endothelial growth factor receptor, with radiotherapy in the treatment of cancer
JP2004525919A (en) * 2001-03-12 2004-08-26 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ エルサレム Radiolabeled irreversible inhibitor of epidermal growth factor receptor tyrosine kinase and its use in radioimaging and radiotherapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500450A (en) * 1999-06-01 2003-01-07 ハダシット、メディカル、リサーチ、サーヴィセズ、アンド、デヴェロップメント、リミテッド Novel compounds that bind to epidermal growth factor receptor for positron emission tomography
JP2004525919A (en) * 2001-03-12 2004-08-26 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブリュー ユニバーシティー オブ エルサレム Radiolabeled irreversible inhibitor of epidermal growth factor receptor tyrosine kinase and its use in radioimaging and radiotherapy
WO2004014383A1 (en) * 2002-08-09 2004-02-19 Astrazeneca Ab Combination of zd6474, an inhibitor of the vascular endothelial growth factor receptor, with radiotherapy in the treatment of cancer

Also Published As

Publication number Publication date
JP4945133B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5347164B2 (en) Nitro-imidazole hypoxia contrast agent
US9701678B2 (en) Small-molecule HSP90 inhibitors
US10676476B2 (en) Small-molecule HSP90 inhibitors
Kawamura et al. Evaluation of limiting brain penetration related to P-glycoprotein and breast cancer resistance protein using [11 C] GF120918 by PET in mice
WO2015199205A1 (en) 2-(3-pyridinyl)-1h-benzimidazole derivative compound and medicine containing same
Struthers et al. Charge dependent substrate activity of C3′ and N3 functionalized, organometallic technetium and rhenium-labeled thymidine derivatives toward human thymidine kinase 1
Jain et al. 68Ga labeled Erlotinib: A novel PET probe for imaging EGFR over-expressing tumors
WO2021055641A1 (en) Fibroblast activation protein (fap)-targeted imaging and therapy of cancers and other fibrotic and inflammatory diseases
JP2019528244A (en) 18F-labeled triazole containing PSMA inhibitor
Zhang et al. Discovery of highly potent and selective CRBN-recruiting EGFRL858R/T790M degraders in vivo
Effendi et al. Design, synthesis, and biological evaluation of radioiodinated benzo [d] imidazole-quinoline derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging
Kwon et al. Novel multifunctional 18F-labelled PET tracer with prostate-specific membrane antigen-targeting and hypoxia-sensitive moieties
KR20150109540A (en) A mitochondria-targeted anti-tumor composition
JP4945133B2 (en) 4-phenoxyquinazoline derivative radioactive compound
Ishikawa et al. Synthesis and characterization of radioiodinated 3-phenethyl-2-indolinone derivatives for SPECT imaging of survivin in tumors
Chadha et al. Synthesis, Biological Evaluation and Molecular Docking Studies of High‐Affinity Bone Targeting N, N'‐Bis (alendronate) Diethylenetriamene‐N, N'‐Triacetic Acid: A Bifunctional Bone Scintigraphy Agent
JP2017511348A (en) Inhibitor of Bcr-Abl diploid, its preparation method and its use
Wang et al. Radiosynthesis and evaluation of N5-(2-18F-fluoropropanyl) ornithine as a potential agent for tumor PET imaging
CA3064761A1 (en) Radiolabeled and fluorescent parp inhibitors for imaging and radiotherapy
Wu et al. Synthesis and evaluation of [99m Tc] TcAMD3465 as a SPECT tracer for CXCR4 receptor imaging
Hirata et al. Synthesis and evaluation of radioiodinated phenoxyquinazoline and benzylaminoquinazoline derivatives as new EGF receptor tyrosine kinase imaging ligands for tumor diagnosis using SPECT
EP3676256A1 (en) Novel barbituric acid derivatives, their preparation and use thereof as leukocyte transmigration inhibitors and for treating inflammatory diseases, autoimmune diseases and cancer
JP2010202591A (en) Radiation therapeutic agent for internal use in proliferative disease
JP2015193545A (en) 2-(3-pyridinyl)-1h-benzimidazole derivative compound, and radioactive pharmaceuticals containing the same
Vermeulen Development and evaluation of HDAC and Hsp90 PET ligands

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees