JP2007187606A - Vibrating gyroscope - Google Patents

Vibrating gyroscope Download PDF

Info

Publication number
JP2007187606A
JP2007187606A JP2006007246A JP2006007246A JP2007187606A JP 2007187606 A JP2007187606 A JP 2007187606A JP 2006007246 A JP2006007246 A JP 2006007246A JP 2006007246 A JP2006007246 A JP 2006007246A JP 2007187606 A JP2007187606 A JP 2007187606A
Authority
JP
Japan
Prior art keywords
output
frequency signal
angular velocity
signal
detuning frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007246A
Other languages
Japanese (ja)
Other versions
JP4098810B2 (en
Inventor
Riichi Suzuki
利一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2006007246A priority Critical patent/JP4098810B2/en
Publication of JP2007187606A publication Critical patent/JP2007187606A/en
Application granted granted Critical
Publication of JP4098810B2 publication Critical patent/JP4098810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibrating gyroscope removing detuning frequency noise without using a high order filter increasing a cost. <P>SOLUTION: The vibrating gyroscope electrically detects vibration due to Colrioli's force of an oscillator 11, synchronously detects the detection signal by using a drive signal resonating the oscillator 11, and obtains angle speed output S1 passing the detection output through a low pass filter 19. The vibrating gyroscope is provided with: a detuning frequency signal generator 21 for generating a signal S2 of a detuning frequency being a difference of a resonant frequency between a drive direction and a detection direction of the oscillator 11; a synchronous detection circuit 24 for sychronously detecting an angle speed output S0 by the detuning frequency signal S2; an integrator 25 for integrating output S4 of the synchronous detection circuit 24; a gain regulation circuit 22 for inputting the detuning frequency signal S2 and outputting to regulate the gain of the detuning frequency signal S2 by output S5 of the integrator 25; and a subtracting unit 23 for outputting as the angle speed output S0 by subtracting output S3 of the gain regulation circuit 22 from the angle speed output S1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は入力角速度を検出する振動ジャイロに関する。   The present invention relates to a vibrating gyroscope that detects an input angular velocity.

図3Aは振動ジャイロにおいて用いられる振動子の一構成例を示したものであり、圧電体よりなる振動子11はこの例では角柱状をなすものとされ、その一端が基台12に固定支持されている。振動子11の側面には図3Aでは図示を省略しているが、図3Bに示したように互いに対向する側面にそれぞれ駆動電極13が配置され、これら側面と直交する側面に検出電極14がそれぞれ配置されている。
駆動電極13に駆動信号を供給することにより振動子11は共振駆動され、この状態で振動子11の軸回りに角速度が入力すると、振動子11にはコリオリ力により駆動振動方向と直交方向の振動が発生し、この振動が検出電極13から電気的に取り出される。
FIG. 3A shows an example of the configuration of a vibrator used in a vibrating gyroscope. A vibrator 11 made of a piezoelectric body is formed in a prismatic shape in this example, and one end thereof is fixedly supported on a base 12. ing. Although not shown in FIG. 3A on the side surface of the vibrator 11, the drive electrodes 13 are respectively disposed on the side surfaces facing each other as shown in FIG. 3B, and the detection electrodes 14 are respectively disposed on the side surfaces orthogonal to these side surfaces. Has been placed.
By supplying a drive signal to the drive electrode 13, the vibrator 11 is resonantly driven. When an angular velocity is input around the axis of the vibrator 11 in this state, the vibrator 11 vibrates in a direction orthogonal to the drive vibration direction due to Coriolis force. This vibration is electrically extracted from the detection electrode 13.

図4は振動ジャイロの一般的な回路構成を示したものであり、図中、15は駆動信号を生成する駆動回路を示す。
検出電極14から取り出された検出信号はバッファ16に入力されてインピーダンス変換され、このインピーダンス変換された検出信号が同期検波回路17に入力される。コリオリ力による振動子11の振動変位は駆動信号に対して90度位相が遅れて発生するため、検出信号は駆動信号に対し、90度位相が遅れており、よって同期検波回路17は駆動信号の位相を90度遅らせた信号によって入力された検出信号を同期検波する。なお、図4中、18は駆動信号の位相を90度遅らせて同期検波回路17に入力する位相回路を示す。
FIG. 4 shows a general circuit configuration of the vibrating gyroscope. In the figure, reference numeral 15 denotes a drive circuit that generates a drive signal.
The detection signal extracted from the detection electrode 14 is input to the buffer 16 and subjected to impedance conversion, and the detection signal subjected to impedance conversion is input to the synchronous detection circuit 17. Since the vibration displacement of the vibrator 11 due to the Coriolis force occurs 90 degrees behind the drive signal, the detection signal is 90 degrees behind the drive signal. The detection signal input by the signal delayed in phase by 90 degrees is synchronously detected. In FIG. 4, reference numeral 18 denotes a phase circuit that delays the phase of the drive signal by 90 degrees and inputs it to the synchronous detection circuit 17.

同期検波回路17の検波出力は正又は負いずれかの波形となり、ローパスフィルタ19で平滑化されて直流電圧となる。ローパスフィルタ19の出力は増幅器20で増幅され、角速度出力となる。
ところで、振動子11の駆動方向の共振周波数FDとコリオリ力による振動を検出する検出方向の振動子11の共振周波数FEとの差(|FD−FE|)である離調周波数FRはローパスフィルタ19によって決定される角速度出力の周波数(検出角速度の周波数帯域)より高く設定されるものの、例えば外乱等によって離調相当周波数の振動が振動子11に加わると、離調周波数FRの比較的大きな角速度出力が発生することが知られており、つまり上述したような振動ジャイロでは外乱等の影響によって離調周波数の角速度が出力されてしまうといった欠点があった。
The detection output of the synchronous detection circuit 17 has either a positive or negative waveform, and is smoothed by the low-pass filter 19 to become a DC voltage. The output of the low-pass filter 19 is amplified by the amplifier 20 and becomes an angular velocity output.
By the way, the detuning frequency FR, which is the difference (| FD−FE |) between the resonance frequency FD in the driving direction of the vibrator 11 and the resonance frequency FE in the detection direction for detecting vibration due to the Coriolis force, is a low-pass filter 19. Is set higher than the frequency of the angular velocity output determined by (frequency band of the detected angular velocity), but when vibration of a detuning equivalent frequency is applied to the vibrator 11 due to a disturbance or the like, for example, an angular velocity output having a relatively large detuning frequency FR. In other words, the vibration gyro as described above has a drawback that the angular velocity of the detuning frequency is output due to the influence of disturbance or the like.

これに対して、離調周波数を十分離す(十分大きくする)ことによって離調周波数の角速度出力(離調周波数ノイズ)を除去する方法や出力段でローパスフィルタによって離調周波数ノイズを除去する方法が一般的に知られている。また、特許文献1には検出回路にバンドパスフィルタを設けることによって離調周波数ノイズを除去することが記載されている。
特開2003−21516号公報
On the other hand, there are a method of removing angular frequency output (detuned frequency noise) of the detuned frequency by sufficiently separating the detuned frequency (enlarge enough) and a method of removing the detuned frequency noise by a low-pass filter at the output stage Generally known. Japanese Patent Application Laid-Open No. H10-228561 describes that detuning frequency noise is removed by providing a bandpass filter in the detection circuit.
JP 2003-21516 A

しかしながら、離調周波数を十分に大きくすると、駆動方向の振動と検出方向の振動の周波数が離れるため、共振による感度増大効果が得られず、従って出力感度が非常に小さくなり、SN比の大幅な低下を招くことになる。また、出力段でローパスフィルタによって離調周波数ノイズを除去するためには非常に高次のフィルタが必要になり、つまりコストがかかり、その分振動ジャイロが高価となる。
一方、特許文献1に記載されている方法では同期検波前の検出信号(振幅変調信号)の、中心周波数(駆動方向の共振周波数)FDから離調周波数FR離れた信号をバンドパスフィルタで除去するものとなっているが、フィルタで除去するため、上述したローパスフィルタで離調周波数ノイズを除去する方法と同様、高次のフィルタが必要になり、コストがかかるものとなる。
However, if the detuning frequency is sufficiently increased, the vibration frequency in the driving direction and the vibration frequency in the detection direction are separated from each other, so that the effect of increasing the sensitivity due to resonance cannot be obtained. It will cause a decline. Further, in order to remove the detuning frequency noise by the low-pass filter at the output stage, a very high-order filter is required, that is, the cost is increased, and the vibration gyro is correspondingly expensive.
On the other hand, in the method described in Patent Document 1, a signal separated from the center frequency (resonance frequency in the driving direction) FD of the detection signal (amplitude modulation signal) before synchronous detection is removed by a bandpass filter. However, since it is removed by a filter, a high-order filter is required as in the method of removing the detuning frequency noise by the low-pass filter described above, and the cost is increased.

この発明の目的はこのような状況に鑑み、コストのかかる高次のフィルタを用いることなく、角速度出力に発生する離調周波数ノイズを除去できるようにした振動ジャイロを提供することにある。   In view of such circumstances, an object of the present invention is to provide a vibrating gyroscope capable of removing detuning frequency noise generated in an angular velocity output without using an expensive high-order filter.

請求項1の発明によれば、振動子のコリオリ力による振動を電気的に検出して、その検出信号を、振動子を共振駆動する駆動信号を用いて同期検波し、その検波出力をローパスフィルタに通すことによって角速度出力S1を得る構成の振動ジャイロにおいて、振動子の駆動方向の共振周波数とコリオリ力による振動を検出する検出方向の共振周波数との差である離調周波数の信号を生成する離調周波数信号発生器と、角速度出力S0を離調周波数信号発生器で生成された離調周波数信号で同期検波する同期検波回路と、その同期検波回路の出力を積分する積分器と、離調周波数信号発生器から離調周波数信号が入力され、その入力された離調周波数信号のゲインを上記積分器の出力で調整して出力するゲイン調整回路と、上記角速度出力S1からゲイン調整回路の出力を差し引いて上記角速度出力S0として出力する減算器とが設けられる。
請求項2の発明では請求項1の発明において、離調周波数信号発生器が上記角速度出力S1を入力信号とするフェーズロックドループによって構成される。
According to the first aspect of the present invention, the vibration due to the Coriolis force of the vibrator is electrically detected, the detection signal is synchronously detected using the drive signal for resonantly driving the vibrator, and the detection output is low-pass filtered. In the vibration gyro configured to obtain the angular velocity output S1 by passing through, a separation frequency signal that generates a detuning frequency signal that is the difference between the resonance frequency in the driving direction of the vibrator and the resonance frequency in the detection direction in which vibration due to the Coriolis force is detected. A harmonic frequency signal generator, a synchronous detection circuit that synchronously detects the angular velocity output S0 with the detuning frequency signal generated by the detuning frequency signal generator, an integrator that integrates the output of the synchronous detection circuit, and a detuning frequency A gain adjustment circuit that receives a detuned frequency signal from the signal generator, adjusts the gain of the input detuned frequency signal with the output of the integrator, and outputs the angular velocity output S1. A subtractor for outputting as the angular velocity output S0 is provided by subtracting the output of Luo gain adjustment circuit.
In the invention of claim 2, in the invention of claim 1, the detuned frequency signal generator is constituted by a phase-locked loop having the angular velocity output S1 as an input signal.

この発明によれば、角速度出力に生じる離調周波数ノイズをコストのかかる高次のフィルタを用いることなく、除去することができ、よって良好な性能を有し、かつ安価な振動ジャイロを得ることができる。   According to the present invention, detuning frequency noise generated in the angular velocity output can be removed without using a costly high-order filter, and thus a vibration gyro having good performance and low cost can be obtained. it can.

この発明の実施形態を図面を参照して実施例により説明する。
図1はこの発明による振動ジャイロの一実施例の構成を示したものであり、図4と対応する部分には同一符号を付し、その詳細な説明を省略する。
この例では図4に示した構成に加え、離調周波数信号発生器21とゲイン調整回路22と減算器23と同期検波回路24と積分器25とが設けられる。
離調周波数信号発生器21は同期検波回路17、ローパスフィルタ19及び増幅器20を介して図4に示した従来の振動ジャイロと同様、出力される角速度出力S1に発生する離調周波数ノイズと同じ周波数の離調周波数信号S2を生成する。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an embodiment of a vibrating gyroscope according to the present invention. Parts corresponding to those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
In this example, a detuning frequency signal generator 21, a gain adjustment circuit 22, a subtracter 23, a synchronous detection circuit 24, and an integrator 25 are provided in addition to the configuration shown in FIG.
The detuned frequency signal generator 21 has the same frequency as the detuned frequency noise generated in the output angular velocity output S1 through the synchronous detection circuit 17, the low-pass filter 19 and the amplifier 20 as in the conventional vibration gyro shown in FIG. The detuning frequency signal S2 is generated.

離調周波数信号発生器21で生成された離調周波数信号S2はゲイン調整回路22に入力され、ゲイン調整回路22は離調周波数信号S2のゲインを調整して、その調整した信号を出力S3として出力する。減算器23には角速度出力S1とゲイン調整回路22の出力S3とが入力され、減算器23は角速度出力S1からゲイン調整回路22の出力S3を差し引いた結果を角速度出力S0として出力する。
同期検波回路24は角速度出力S0を離調周波数信号発生器21で生成された離調周波数信号S2で同期検波するもので、その検波出力S4は積分器25に入力されて積分される。積分器25の出力S5はゲイン調整回路22に入力され、この積分器25の出力S5で前述の、離調周波数信号S2のゲイン調整が行われる。
The detuning frequency signal S2 generated by the detuning frequency signal generator 21 is input to the gain adjustment circuit 22, and the gain adjustment circuit 22 adjusts the gain of the detuning frequency signal S2, and uses the adjusted signal as an output S3. Output. The subtracter 23 receives the angular velocity output S1 and the output S3 of the gain adjustment circuit 22, and the subtracter 23 outputs the result of subtracting the output S3 of the gain adjustment circuit 22 from the angular velocity output S1 as the angular velocity output S0.
The synchronous detection circuit 24 synchronously detects the angular velocity output S0 with the detuned frequency signal S2 generated by the detuned frequency signal generator 21, and the detected output S4 is input to the integrator 25 and integrated. The output S5 of the integrator 25 is input to the gain adjustment circuit 22, and the gain adjustment of the detuning frequency signal S2 described above is performed by the output S5 of the integrator 25.

積分器25の初期値(出力S5)は0であり、よってゲイン調整回路22におけるゲイン調整の初期値は0であって、ゲイン調整回路22の出力S3は0となり、角速度出力S0=S1となる。角速度出力S0は離調周波数信号S2で同期検波されるが、角速度出力S1に含まれる離調周波数成分が0であれば、検波出力S4=0となり、積分器25の出力S5=0となる。よって、ゲイン調整回路22のゲインは0となり、出力S3=0となる。
一方、角速度出力S1が離調周波数成分を含む場合、積分器25の初期値は0であってゲイン調整回路22の出力S3の初期状態は0のため、角速度出力S0=S1となり、角速度出力S0は離調周波数成分を含む。角速度出力S0に離調周波数成分が含まれると、同期検波回路24の検波出力S4は正または負の全波整流波形となり、この検波出力S4が積分されて積分器25の出力S5がある値となる。よって、ゲイン調整回路22のゲインは0からある値となり、ゲイン調整回路22の出力S3はある値を持つ。つまり、出力S3はゲイン調整された離調周波数信号となり、減算器23で角速度出力S0=S1−S3が行われる。
The initial value (output S5) of the integrator 25 is 0. Therefore, the initial value of gain adjustment in the gain adjustment circuit 22 is 0, the output S3 of the gain adjustment circuit 22 is 0, and the angular velocity output S0 = S1. . The angular velocity output S0 is synchronously detected by the detuned frequency signal S2, but if the detuned frequency component included in the angular velocity output S1 is 0, the detected output S4 = 0, and the output S5 = 0 of the integrator 25 is obtained. Therefore, the gain of the gain adjustment circuit 22 is 0, and the output S3 = 0.
On the other hand, when the angular velocity output S1 includes a detuning frequency component, the initial value of the integrator 25 is 0, and the initial state of the output S3 of the gain adjustment circuit 22 is 0. Therefore, the angular velocity output S0 = S1, and the angular velocity output S0. Includes a detuning frequency component. When the angular velocity output S0 includes a detuning frequency component, the detection output S4 of the synchronous detection circuit 24 becomes a positive or negative full-wave rectified waveform, and this detection output S4 is integrated to obtain a value with a certain output S5 of the integrator 25. Become. Therefore, the gain of the gain adjustment circuit 22 becomes a certain value from 0, and the output S3 of the gain adjustment circuit 22 has a certain value. That is, the output S3 becomes a gain-adjusted detuning frequency signal, and the subtractor 23 performs angular velocity output S0 = S1-S3.

このように、この例では角速度出力S0の離調周波数成分が0になるように、ゲイン調整回路22のゲイン調整が行われ、出力S3が制御されるものとなっており、これにより角速度出力S0から離調周波数成分が除去され、つまり離調周波数ノイズが除去された角速度出力S0が得られるものとなっている。
上記のような構成において、離調周波数信号発生器21は角速度出力S1を入力信号とするフェーズロックドループ(PLL)で構成するのが好ましい。図2は離調周波数信号発生器21を位相比較器(PC)21a,ループフィルタ(LPF)21b,電圧制御発振器(VCO)21cからなるフェーズロックドループで構成した場合を示したものであり、電圧制御発振器21cは正弦波出力とし、予め離調周波数±数Hzに設定しておく。
Thus, in this example, the gain adjustment circuit 22 performs the gain adjustment so that the detuning frequency component of the angular velocity output S0 becomes 0, and the output S3 is controlled, whereby the angular velocity output S0 is controlled. Thus, the angular velocity output S0 from which the detuning frequency component is removed, that is, the detuning frequency noise is removed is obtained.
In the above configuration, the detuning frequency signal generator 21 is preferably configured by a phase locked loop (PLL) having the angular velocity output S1 as an input signal. FIG. 2 shows a case where the detuned frequency signal generator 21 is constituted by a phase locked loop including a phase comparator (PC) 21a, a loop filter (LPF) 21b, and a voltage controlled oscillator (VCO) 21c. The controlled oscillator 21c has a sine wave output and is set in advance to a detuning frequency ± several Hz.

このように離調周波数信号発生器21をフェーズロックドループで構成すれば、角速度出力S1に離調周波数成分が含まれている場合に、その離調周波数成分の位相と離調周波数信号S2の位相とが同位相になるように制御される。
また、例えば製造ばらつきや温度変化等の要因によって離調周波数が変動しても、その変動に対して電圧制御発振器21cの制御範囲内で自動的に追従するため、そのような離調周波数の変動があっても離調周波数ノイズの除去性能を一定に保つことができる。
なお、振動ジャイロの振動子の形状は図3に示したような形状に限らず、他の形状であってもよく、いずれの形状の振動子を用いる場合であってもこの発明を適用することができる。さらに、振動子及びその駆動/検出系としては圧電体に駆動/検出用の電極を設けた構造に限らず、エリンバなどの恒弾性材料に駆動用と検出用の圧電素子を貼り付けた構造のものであってもよい。
If the detuning frequency signal generator 21 is configured in a phase-locked loop as described above, when the angular velocity output S1 includes a detuning frequency component, the phase of the detuning frequency component and the phase of the detuning frequency signal S2 are included. Are controlled in phase with each other.
Further, even if the detuning frequency fluctuates due to factors such as manufacturing variations and temperature changes, such fluctuations in the detuning frequency automatically follow the fluctuation within the control range of the voltage controlled oscillator 21c. Even if there is, detuning frequency noise removal performance can be kept constant.
Note that the shape of the vibrator of the vibrating gyroscope is not limited to the shape shown in FIG. 3, and may be any other shape, and the present invention can be applied to any shape of vibrator. Can do. Further, the vibrator and its drive / detection system are not limited to the structure in which the drive / detection electrode is provided on the piezoelectric body, but the structure in which the drive and detection piezoelectric elements are attached to a constant elastic material such as an elimber. It may be a thing.

この発明による振動ジャイロの一実施例を示すブロック図。The block diagram which shows one Example of the vibration gyro by this invention. 図1における離調周波数信号発生器の一構成例を説明するための図。The figure for demonstrating one structural example of the detuning frequency signal generator in FIG. 振動ジャイロの振動子の一構成を説明するための図。The figure for demonstrating one structure of the vibrator | oscillator of a vibration gyro. 振動ジャイロの従来構成を示すブロック図。The block diagram which shows the conventional structure of a vibration gyro.

Claims (2)

振動子のコリオリ力による振動を電気的に検出して、その検出信号を、上記振動子を共振駆動する駆動信号を用いて同期検波し、その検波出力をローパスフィルタに通すことによって角速度出力S1を得る構成の振動ジャイロにおいて、
上記振動子の駆動方向の共振周波数とコリオリ力による振動を検出する検出方向の共振周波数との差である離調周波数の信号を生成する離調周波数信号発生器と、
角速度出力S0を上記離調周波数信号発生器で生成された離調周波数信号で同期検波する同期検波回路と、
その同期検波回路の出力を積分する積分器と、
上記離調周波数信号発生器から離調周波数信号が入力され、その入力された離調周波数信号のゲインを上記積分器の出力で調整して出力するゲイン調整回路と、
上記角速度出力S1から上記ゲイン調整回路の出力を差し引いて上記角速度出力S0として出力する減算器とを設けたことを特徴とする振動ジャイロ。
The vibration due to the Coriolis force of the vibrator is electrically detected, the detection signal is synchronously detected using a drive signal for resonance driving the vibrator, and the angular velocity output S1 is obtained by passing the detection output through a low-pass filter. In the vibration gyro of the structure to obtain,
A detuning frequency signal generator that generates a signal of a detuning frequency that is a difference between a resonance frequency in the driving direction of the vibrator and a resonance frequency in a detection direction for detecting vibration due to Coriolis force;
A synchronous detection circuit for synchronously detecting the angular velocity output S0 with the detuned frequency signal generated by the detuned frequency signal generator;
An integrator for integrating the output of the synchronous detection circuit;
A gain adjustment circuit that receives a detuned frequency signal from the detuned frequency signal generator, adjusts the gain of the input detuned frequency signal with the output of the integrator, and
A vibration gyro comprising: a subtractor that subtracts the output of the gain adjustment circuit from the angular velocity output S1 and outputs the result as the angular velocity output S0.
請求項1記載の振動ジャイロにおいて、
上記離調周波数信号発生器は上記角速度出力S1を入力信号とするフェーズロックドループによって構成されていることを特徴とする振動ジャイロ。
The vibrating gyroscope according to claim 1,
The detuning frequency signal generator is constituted by a phase-locked loop having the angular velocity output S1 as an input signal.
JP2006007246A 2006-01-16 2006-01-16 Vibrating gyro Active JP4098810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007246A JP4098810B2 (en) 2006-01-16 2006-01-16 Vibrating gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007246A JP4098810B2 (en) 2006-01-16 2006-01-16 Vibrating gyro

Publications (2)

Publication Number Publication Date
JP2007187606A true JP2007187606A (en) 2007-07-26
JP4098810B2 JP4098810B2 (en) 2008-06-11

Family

ID=38342865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007246A Active JP4098810B2 (en) 2006-01-16 2006-01-16 Vibrating gyro

Country Status (1)

Country Link
JP (1) JP4098810B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090627A1 (en) * 2010-12-27 2012-07-05 日立オートモティブシステムズ株式会社 Sensor module and sensor system
CN104596495A (en) * 2013-10-31 2015-05-06 精工爱普生株式会社 Angular velocity sensor, electronic apparatus, and moving object
US9791276B2 (en) 2013-10-30 2017-10-17 Seiko Epson Corporation Circuit for physical quantity detection device, physical quantity detection device, electronic apparatus, and moving object
US10113874B2 (en) 2013-12-05 2018-10-30 Seiko Epson Corporation Detection device, sensor, electronic apparatus and moving object

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090627A1 (en) * 2010-12-27 2012-07-05 日立オートモティブシステムズ株式会社 Sensor module and sensor system
US9279827B2 (en) 2010-12-27 2016-03-08 Hitachi Automotive Systems, Ltd. Sensor module and sensor system
US9791276B2 (en) 2013-10-30 2017-10-17 Seiko Epson Corporation Circuit for physical quantity detection device, physical quantity detection device, electronic apparatus, and moving object
US10520316B2 (en) 2013-10-30 2019-12-31 Seiko Epson Corporation Circuit for physical quantity detection device, physical quantity detection device, electronic apparatus, and moving object
CN104596495A (en) * 2013-10-31 2015-05-06 精工爱普生株式会社 Angular velocity sensor, electronic apparatus, and moving object
JP2015087286A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Angular velocity sensor, electronic equipment, and mobile body
US10113874B2 (en) 2013-12-05 2018-10-30 Seiko Epson Corporation Detection device, sensor, electronic apparatus and moving object

Also Published As

Publication number Publication date
JP4098810B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
WO2010150736A1 (en) Angular velocity sensor, and synchronous detection circuit used therein
EP2647952B1 (en) Mems device automatic-gain control loop for mechanical amplitude drive
US7849744B2 (en) Driving device, physical quantity measurement device, and electronic instrument
US8183944B2 (en) Method and system for using a MEMS structure as a timing source
EP2351982B1 (en) Angular velocity sensor
KR20130072224A (en) Rate sensor with quadrature rejection
JP4310571B2 (en) Capacitance detection type vibration gyro and capacitance change detection method
JP4536016B2 (en) Vibrating gyro
JP4098810B2 (en) Vibrating gyro
JP2006329637A (en) Angular velocity detector
JP2013527920A (en) Sensor
JP4535989B2 (en) Vibrating gyro
US8656775B2 (en) Vibratory gyro-sensor and vibratory gyro circuit
JP2011058860A (en) Angular-velocity detecting apparatus
JP2008256668A (en) Angular velocity sensor
JP2005043098A (en) Physical quantity detector
JP4763565B2 (en) Phase compensation synchronous detection circuit, vibration gyro
JP6561702B2 (en) Physical quantity detection system, electronic device and moving object
JP2011002295A (en) Angular velocity detection device
JP2006010408A (en) Vibratory gyro
JP4600031B2 (en) Angular velocity detector
JP2007114136A (en) Ring laser gyroscope
JP2007327781A (en) Vibration sensor
JP2006250643A (en) Abnormality detection device for angular velocity sensor
JP5210194B2 (en) Vibrating gyro

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent or registration of utility model

Ref document number: 4098810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250