JP2007187545A - Method of evaluating fiber orientation direction and contour of anisotropic fiber sheet, and device for stacking anisotropic fiber sheet - Google Patents
Method of evaluating fiber orientation direction and contour of anisotropic fiber sheet, and device for stacking anisotropic fiber sheet Download PDFInfo
- Publication number
- JP2007187545A JP2007187545A JP2006005671A JP2006005671A JP2007187545A JP 2007187545 A JP2007187545 A JP 2007187545A JP 2006005671 A JP2006005671 A JP 2006005671A JP 2006005671 A JP2006005671 A JP 2006005671A JP 2007187545 A JP2007187545 A JP 2007187545A
- Authority
- JP
- Japan
- Prior art keywords
- fiber sheet
- anisotropic
- anisotropic fiber
- imaging
- contour
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本発明は、異方性繊維シートの繊維配向方向および輪郭の評価方法に関し、さらに詳しくは、例えば、一方向繊維シートを積層する際の繊維配向方向およびシートエッジの、自動評価に特に有効な方法に関する。 The present invention relates to a method for evaluating the fiber orientation direction and contour of an anisotropic fiber sheet, and more specifically, for example, a method that is particularly effective for automatic evaluation of, for example, the fiber orientation direction and sheet edge when laminating unidirectional fiber sheets About.
炭素繊維やガラス繊維を強化繊維として用いたCFRP(炭素繊維強化プラスチック)、GFRP(ガラス繊維強化プラスチック)に代表されるFRP(繊維強化プラスチック)は軽量でかつ高い耐久性を有するため、自動車や航空機などの各種構成部材としての適用されている。 Since FRP (fiber reinforced plastic) represented by CFRP (carbon fiber reinforced plastic) and GFRP (glass fiber reinforced plastic) using carbon fiber or glass fiber as a reinforced fiber is lightweight and has high durability, automobiles and aircraft It is applied as various constituent members.
これらFRPの代表的な製造方法としては、プリプレグを用いたオートクレーブ成形法が知られている。かかる成形法では、強化繊維にマトリックス樹脂を予め含浸させたプリプレグと呼ばれる中間基材を成形型上に積み重ねた後、フィルム材料で真空シールしてオートクレーブ中で加熱・加圧して複合材料を成形する。しかしながら、プリプレグに含浸されているマトリックス樹脂は硬化剤を含有した熱硬化性樹脂であるため硬化反応が徐々に進行してしまうことから、可使時間が短かく冷凍保管設備が必要であることから使用するにあたっての制約が大きかった。 As a typical method for producing these FRPs, an autoclave molding method using a prepreg is known. In such a molding method, an intermediate base material called a prepreg in which a reinforcing fiber is impregnated with a matrix resin in advance is stacked on a mold, and then vacuum-sealed with a film material and heated and pressurized in an autoclave to form a composite material. . However, since the matrix resin impregnated in the prepreg is a thermosetting resin containing a curing agent, the curing reaction gradually proceeds, so that the pot life is short and a freezing storage facility is required. The restrictions on use were great.
そこで、近年では従来のプリプレグを用いたオートクレーブ成形より容易に成形できる方法として、RTM成形方法や真空RTM成形方法が注目されている。RTM成形方法はプリフォーム(あらかじめ腑形した強化繊維シートの積層体)を型に設置し、マトリックス樹脂を注入した後硬化させる方法であり、真空RTM成形方法は、前記RTM方法において、樹脂注入前に型内を減圧することにより含浸を促進する方法である。このRTM成形方法や真空RTM成形方法では、マトリックス樹脂の注入直前に樹脂と硬化剤を混合させれば良く、マトリックス樹脂を樹脂と硬化剤に分けて常温で保管しておけるため、大がかりな冷凍保管設備は不要である。また、成形時にオートクレーブ等の大型設備も必要としないといった利点もある。 Therefore, in recent years, RTM molding methods and vacuum RTM molding methods have attracted attention as methods that can be more easily molded than conventional autoclave molding using prepregs. The RTM molding method is a method in which a preform (a laminate of reinforcing fiber sheets pre-shaped) is placed in a mold, and a matrix resin is injected and then cured, and the vacuum RTM molding method is the same as that in the RTM method before resin injection. In this method, the impregnation is accelerated by reducing the pressure inside the mold. In this RTM molding method or vacuum RTM molding method, the resin and the curing agent may be mixed immediately before the injection of the matrix resin, and the matrix resin can be stored at room temperature by dividing it into the resin and the curing agent. No equipment is required. In addition, there is an advantage that large equipment such as an autoclave is not required at the time of molding.
前記RTM成形方法や真空RTM成形方法を、自動車や航空機などの各種構成部材に適用する場合、強化繊維の特性をより効果的に引き出すためには、一方向織物等に代表される異方性繊維シートを用い各々の異方性繊維シートの繊維配向方向を所定の角度で、また上下にずれなく積層しプリフォームする必要がある。このことは、FRP構造体の品質上および製作工程上および商品認可の上で非常に重要であるが、これには熟練と人手を要することから、RTM成形方法や真空RTM成形方法における各工程中において、生産性向上が求められる工程であった。 When the RTM molding method or the vacuum RTM molding method is applied to various components such as automobiles and aircrafts, anisotropic fibers represented by unidirectional woven fabrics and the like are used in order to bring out the properties of the reinforcing fibers more effectively. It is necessary to laminate and preform the fiber orientation direction of each anisotropic fiber sheet at a predetermined angle and without shifting up and down using a sheet. This is very important in terms of the quality of the FRP structure, the manufacturing process, and the product approval. However, this requires skill and manpower, so during each process in the RTM molding method and the vacuum RTM molding method. However, it was a process that required improvement in productivity.
特許文献1には、シート材料の方向と位置を正確に制御する積層装置として、柄を有するシートを撮像テーブルに配置し、撮像テーブル上方からカメラで撮像し、積層するシートの柄を検出して、その情報を元に繊維配向方向と位置を合わせて積層する装置が開示されている。しかし、この方法では、柄の無い繊維シートの繊維配向方向や輪郭を評価できず、繊維配向方向や位置を合わせて積層することができないという問題がある。
In
例えば、炭素繊維シートの繊維配向方向と位置を正確に評価して積層しようとしても、炭素繊維は一様に黒いので、通常の光源照射では、カメラで繊維配向方向や位置に対応した柄を評価することができず、繊維配向方向や位置を合わせて積層することができない。 For example, even if you attempt to accurately evaluate and laminate the fiber orientation direction and position of the carbon fiber sheet, the carbon fiber is uniformly black, so with a normal light source irradiation, the pattern corresponding to the fiber orientation direction and position is evaluated with a camera. It cannot be done, and the fiber orientation direction and position cannot be matched and laminated.
また、予め重ねた2枚の炭素繊維シートに対して、後からそれぞれの繊維配向方向と位置を正確に評価しようとしても、通常の光源照射では、2枚の異方性繊維シートを見分けるに十分なコントラストを生じさせることができないため、カメラで繊維配向方向や位置を評価することができず、繊維配向方向や位置を合わせて積層できているか検査することもできない。
本発明は、上記従来の問題点を解決し、異方性繊維シートが柄の無いものであっても、繊維配向方向および/または輪郭を正確に評価することができる方法と、異方性繊維シートの繊維配向方向や位置を合わせて積層することのできる積層装置を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and a method capable of accurately evaluating the fiber orientation direction and / or the contour even if the anisotropic fiber sheet has no handle, and the anisotropic fiber It aims at providing the lamination apparatus which can laminate | stack according to the fiber orientation direction and position of a sheet | seat.
上記課題を解決ため本発明は次の(1)〜(9)を特徴とするものである。
(1)異方性繊維シートに対し、前記異方性繊維シートの一部分を照射する光源と、前記異方性繊維シート表面を撮像する撮像手段とを用いて、前記異方性繊維シート表面を近似する平面に対して平行になるように光源を移動し、前記撮像視野の前記異方性繊維シート上を移動する明部の軌跡を検出し、検出した前記明部の軌跡から前記異方性繊維シートの繊維配向方向を判別する異方性繊維シートの繊維配向方向の判別方法。
(2)異方性繊維シートに対し、前記異方性繊維シートの一部分を照射する光源と、前記異方性繊維シート表面を撮像する撮像手段とを用いて、前記撮像手段を、前記異方性繊維シートの輪郭の少なくとも一部が、前記撮像手段の撮像視野に含まれるように配置し、前記異方性繊維シート表面を近似する平面に対し平行になるように光源を移動し、前記撮像視野の前記異方性繊維シート上を移動する明部を連続的に撮像し、前記明部の移動領域内での不連続部分を検出することで前記撮像視野に含まれる前記異方性繊維シートの輪郭を検知する異方性繊維シートの輪郭検知方法。
(3)異方性繊維シートに対し、前記異方性繊維シートの一部分を照射する光源と、前記異方性繊維シート表面を撮像する撮像手段とを用いて、前記撮像手段を、前記異方性繊維シートの輪郭の少なくとも一部が、前記撮像手段の撮像視野に含まれるように配置し、前記異方性繊維シート表面を近似する平面に対し平行になるように光源を移動して、前記撮像視野の前記異方性繊維シート上を移動する明部を連続的に撮像すると共に、前記撮像視野の前記異方性繊維シート上を移動する明部の軌跡を検出し、検出した前記明部の軌跡から該異方性繊維シートの繊維配向方向を判別すると共に、前記明部の移動領域内での不連続部分を検出することで前記撮像撮像視野に含まれる前記異方性繊維シートの輪郭を検知する異方性繊維シートの繊維配向方向および輪郭の評価方法。
(4)繊維配向方向を異にして、重なり配置された2以上の異方性繊維シートに対し、光源と、前記異方性繊維シート表面を撮像する撮像手段とを用いて、前記撮像手段を、少なくとも1の前記異方性繊維シートの輪郭の一部と、少なくとも2の前記異方性繊維シートの表面が、前記撮像手段の撮像視野に含まれるように配置し、前記2以上の異方性繊維シート表面を近似する平面に対し平行になるように光源を移動し、前記撮像視野の前記2以上の異方性繊維シート上を移動する明部を連続的に撮像し、前記撮像視野の前記異方性繊維シート上を移動する明部の軌跡を検出し、検出した前記明部の軌跡から前記各異方性繊維シートの繊維配向方向の判別と、前記明部の移動領域内での不連続部分を検出することで前記撮像視野に含まれる前記異方性繊維シートの輪郭の検知を行う2以上の異方性繊維シートの各シートの繊維配向方向および輪郭の評価方法。
(5)前記(1)に記載の異方性繊維シートの繊維配向方向の判別方法により得た情報を基に、積層方向を制御することを特徴とする異方性繊維シートの積層方法。
(6)前記(2)に記載の異方性繊維シートの輪郭の検知方法により得た情報を基に、積層位置を制御することを特徴とする(5)に記載の異方性繊維シートの積層方法。
(7)前記(4)に記載の2以上の異方性繊維シートの各シートの繊維配向方向および輪郭の評価により得た情報を基に、積層時における、繊維配向方向および位置の微調整を行うことを特徴とする異方性繊維シートの積層方法。
(8)光源と、前記光源の移動手段と、前記光源の移動により照射される領域をカバーする撮像手段を少なくとも含む1ないし複数のセンシング機構と前記センシング機構により連続して撮像された像の明部の移動を画像処理により検出するデータ処理機構とを有することを特徴とする、異方性繊維シートの繊維配向方向および輪郭の評価装置。
(9)前記(8)に記載の異方性繊維シートの繊維配向方向および輪郭の評価装置と、該評価装置のデータ処理機構からの出力に基づき異方性繊維シートの積層時に、繊維配向方向および/または積層位置の制御をする制御機構を有することを特徴とする繊維シートの積層装置。
In order to solve the above problems, the present invention is characterized by the following (1) to (9).
(1) Using a light source that irradiates a part of the anisotropic fiber sheet to the anisotropic fiber sheet and an imaging unit that images the surface of the anisotropic fiber sheet, the surface of the anisotropic fiber sheet is The light source is moved so as to be parallel to the approximate plane, the locus of the bright part moving on the anisotropic fiber sheet in the imaging field is detected, and the anisotropy is detected from the detected locus of the bright part. A method for discriminating the fiber orientation direction of an anisotropic fiber sheet for discriminating the fiber orientation direction of the fiber sheet.
(2) For the anisotropic fiber sheet, using the light source that irradiates a part of the anisotropic fiber sheet and the imaging unit that images the anisotropic fiber sheet surface, The optical fiber sheet is arranged so that at least a part of the contour of the sheet is included in the imaging field of view of the imaging means, the light source is moved so as to be parallel to a plane approximating the anisotropic fiber sheet surface, and the imaging The anisotropic fiber sheet included in the imaging field of view by continuously capturing images of bright parts moving on the anisotropic fiber sheet in the field of view and detecting discontinuous parts in the moving region of the bright parts An anisotropic fiber sheet contour detection method for detecting the contour of a sheet.
(3) For the anisotropic fiber sheet, using the light source that irradiates a part of the anisotropic fiber sheet and the imaging unit that images the anisotropic fiber sheet surface; The optical fiber sheet is arranged so that at least a part of its contour is included in the imaging field of view of the imaging means, and the light source is moved so as to be parallel to a plane approximating the anisotropic fiber sheet surface, The bright part moving on the anisotropic fiber sheet in the imaging field of view is continuously imaged, the locus of the bright part moving on the anisotropic fiber sheet in the imaging field of view is detected, and the detected bright part The orientation of the anisotropic fiber sheet included in the imaging imaging field of view is determined by determining the fiber orientation direction of the anisotropic fiber sheet from the trajectory and detecting the discontinuous portion in the moving region of the bright part. Fiber of anisotropic fiber sheet to detect Evaluation method countercurrent direction and contour.
(4) With respect to two or more anisotropic fiber sheets that are overlapped with different fiber orientation directions, the imaging means is used by using a light source and an imaging means for imaging the anisotropic fiber sheet surface. A part of the contour of at least one anisotropic fiber sheet and a surface of at least two anisotropic fiber sheets are arranged so as to be included in an imaging field of view of the imaging means, and the two or more anisotropic The light source is moved so as to be parallel to a plane approximating the surface of the conductive fiber sheet, and the bright part moving on the two or more anisotropic fiber sheets in the imaging field is continuously imaged. Detecting the locus of the bright part moving on the anisotropic fiber sheet, determining the fiber orientation direction of each anisotropic fiber sheet from the detected locus of the bright part, and within the movement region of the bright part Before being included in the field of view by detecting discontinuities 2 above evaluation method of the fiber orientation direction and the contour of each sheet of the anisotropic fiber sheet performs edge detection of the anisotropic fiber sheet.
(5) A method for laminating an anisotropic fiber sheet, wherein the laminating direction is controlled based on information obtained by the method for determining the fiber orientation direction of the anisotropic fiber sheet according to (1).
(6) Based on the information obtained by the method for detecting the contour of the anisotropic fiber sheet according to (2), the stacking position is controlled, and the anisotropic fiber sheet according to (5) Lamination method.
(7) Based on the information obtained by evaluating the fiber orientation direction and contour of each of the two or more anisotropic fiber sheets according to (4), fine adjustment of the fiber orientation direction and position at the time of lamination is performed. A method for laminating anisotropic fiber sheets, which is performed.
(8) Brightness of an image continuously picked up by one or more sensing mechanisms including at least a light source, moving means for the light source, and imaging means for covering an area irradiated by the movement of the light source, and the sensing mechanism. And a data processing mechanism for detecting the movement of the part by image processing.
(9) The fiber orientation direction during the lamination of the anisotropic fiber sheets based on the output from the fiber orientation direction and contour of the anisotropic fiber sheet according to (8) and the data processing mechanism of the evaluation device And / or a fiber sheet laminating device having a control mechanism for controlling a laminating position.
なお、本発明において、異方性繊維シートとは、織物、編物、不織布、皮革、布帛、紙などの中で、表面層が繊維状で方向性を持つシートを言う。具体例としてFRPに用いられる強化繊維基材があるが、この限りではない。 In the present invention, the anisotropic fiber sheet refers to a sheet having a fiber-like surface layer and directionality among woven fabrics, knitted fabrics, non-woven fabrics, leathers, fabrics, papers and the like. As a specific example, there is a reinforcing fiber base material used for FRP, but it is not limited thereto.
また、本発明において、異方性繊維シート表面を近似する平面とは、シートの評価しようとする領域を間に挟む、平行な平面のうち、平面間の距離が所定値以下の2平面の中央の平面を言う。ここでいう所定値とは、前記2平面間の距離は必要とする精度を考慮し適宜設定するべきものであるため所定値としたものであるが、100mm角の撮像視野において繊維配向方向±1°以内の精度を必要とする場合であれば、通常13mm以下であれば、本発明の評価が可能となる。4mm以下であれば、精度の点でさらに好ましい。なお、一の平面で近似しきれない場合は、複数の領域に分割して近似する平面を設定しても良い。 Further, in the present invention, the plane approximating the surface of the anisotropic fiber sheet is the center of two planes whose distance between the planes is a predetermined value or less among the parallel planes sandwiching the region to be evaluated of the sheet. Say no plane. The predetermined value here is a predetermined value because the distance between the two planes should be set appropriately in consideration of the required accuracy, but the fiber orientation direction ± 1 in a 100 mm square imaging field of view. If accuracy within ± ° is required, evaluation of the present invention is possible if it is usually 13 mm or less. If it is 4 mm or less, it is more preferable in terms of accuracy. If the approximation cannot be achieved with one plane, a plane that is approximated by dividing into a plurality of regions may be set.
また、本発明において、異方性繊維シート表面を近似する平面に平行になるように光源を移動するとは、光源の重心の移動方向が、異方性繊維シート表面を近似する平面に平行であることを言う。
また、本発明において、繊維配向方向の判別とは、異方性繊維シートの繊維配向方向が基準の方向と成す角度を数値として取得することを言う。
In the present invention, when the light source is moved so as to be parallel to the plane approximating the anisotropic fiber sheet surface, the moving direction of the center of gravity of the light source is parallel to the plane approximating the anisotropic fiber sheet surface. Say that.
Moreover, in this invention, discrimination | determination of a fiber orientation direction means acquiring the angle which the fiber orientation direction of an anisotropic fiber sheet makes with a reference | standard direction as a numerical value.
また、本発明において、輪郭の検知とは、異方性繊維シートの輪郭を構成する線を表す座標を2次元の数値の羅列として取得することを言う。 Further, in the present invention, the detection of the contour means that coordinates representing a line constituting the contour of the anisotropic fiber sheet are acquired as an array of two-dimensional numerical values.
また、本発明において、評価とは、繊維配向方向の判別および/または輪郭の検知を行うことを包括的に表すものとする。 Moreover, in this invention, evaluation shall comprehensively represent performing discrimination of a fiber orientation direction and / or detection of a contour.
本発明によれば、異方性繊維シートの繊維配向方向及び輪郭を確実に評価できる。そして、本発明の評価方法を用いた繊維シートの積層装置は、異方性繊維シートの繊維配向方向及び輪郭を確実に評価することが可能となるため、繊維シートの積層を安定にし、FRP構造体の生産における強化繊維シートの積層工程の生産歩留まりの向上や品質向上が容易になり、また商品認可基準をより確実に満足することが可能となる。更には、工程の自動化が可能になり人手を減らすことができる。 ADVANTAGE OF THE INVENTION According to this invention, the fiber orientation direction and outline of an anisotropic fiber sheet can be evaluated reliably. And the fiber sheet laminating apparatus using the evaluation method of the present invention makes it possible to reliably evaluate the fiber orientation direction and the contour of the anisotropic fiber sheet. It becomes easy to improve the production yield and quality of the lamination process of the reinforcing fiber sheets in the production of the body, and more reliably satisfy the product approval standards. Furthermore, it is possible to automate the process and reduce manpower.
次に本発明の好ましい実施の形態を図面に基づいて説明する。図1は、本発明の異方性繊維シートの繊維配向方向及び輪郭の評価方法の一実施形態を示す模式図である。照射装置3により光源31を矢印で示す方向32に移動させ、撮像手段4で撮像視野41の画像を撮像し、画像処理装置へ送信する状況を示している。
Next, preferred embodiments of the present invention will be described with reference to the drawings.
本発明においては、このように撮像することで、異方性繊維シートの表面に照射された明部の移動の軌跡から異方性繊維シートの繊維配向方向を判別することができる。また、明部の不連続部分を検出することで異方性繊維シートの輪郭を検知することができる。また、前期繊維配向方向の判別と輪郭の検知とを同時に評価することができる。その原理を説明するために、図1において異方性繊維シート1の、ある一部分繊維に、90°の角度で光源から照射した状況を、図2に示す。図2の場合に光33が撮像手段へ集光される状況を、図3に示す。また、図1において異方性繊維シート1のある一部分に、0°の角度で光源から照射した状況を、図4に示す。図4の場合に光34が撮像手段へ集光されない状況を、図5に示す。
In the present invention, by imaging in this way, the fiber orientation direction of the anisotropic fiber sheet can be determined from the locus of movement of the bright portion irradiated on the surface of the anisotropic fiber sheet. Moreover, the outline of an anisotropic fiber sheet is detectable by detecting the discontinuous part of a bright part. In addition, the determination of the fiber orientation direction and the detection of the contour can be evaluated simultaneously. In order to explain the principle, FIG. 2 shows a situation where a part of the fibers of the
図2の状況では、繊維21と90°の角度で光33が照射されるため、図3に示すように繊維21の表面で撮像手段4の方向への反射が起り、明るく撮像される。また、図4の状況では、繊維22と0°の角度で光34が照射されるため、図5に示すように繊維22の表面で撮像手段4の方向へ反射が起らず、暗く撮像される。すなわち、繊維配向方向と照射方向との角度に応じて、異方性繊維シートの表面の明暗が変化し、特に照射方向に対して90°の角度近辺で配置される繊維は明部として撮像される。
In the situation of FIG. 2, the light 33 is irradiated at an angle of 90 ° with the
次に、図1において、撮像視野41に対して繊維配向方向が90°の角度の異方性繊維シート11の表面を移動する明部51の撮像を、図6に示す。また、図1において撮像視野41に対して繊維配向方向が45°の角度の異方性繊維シート12の表面を移動する明部53の撮像を、図7に示す。
Next, in FIG. 1, the imaging of the
図6の状況では、照射方向と90°の角度をもつ異方性繊維シート11の表面部分が明部51として撮像される。光源31は、異方性繊維シート11の表面(を近似する平面)と平行に動くため、照射方向と異方性繊維シート11の繊維配向方向とは、光源31の位置にかかわらず常に一定である。よって、光源31の移動に追従して、明部41が、繊維配向に沿って移動する。この明部の軌跡52を検出し、異方性繊維シート11の繊維配向方向を判別できる。また、明部51が、異方性繊維シート11の端部で不連続になるので、光源31の移動に追従して移動する明部51の不連続部分を検出し、異方性繊維シート11の輪郭を検知できる。すなわち、異方性繊維シートの繊維配向方向および輪郭を評価できる。
In the situation of FIG. 6, the surface portion of the
図7の状況でも、照射方向と90°の角度を持つ異方性繊維シート12の表面部分が明部53として撮像される。図6の状況と同様に、異方性繊維シートの繊維配向方向および輪郭を評価できる。
Also in the situation of FIG. 7, the surface portion of the
次に、図1において、照射装置が図6とは異なる向きである場合を、図8に示す。 Next, FIG. 8 shows a case where the irradiation apparatus is in a different direction from FIG. 6 in FIG.
図8の状況では、図6とは向きの異なる照射装置6において、光源61は方向62に移動する。しかし、図6と同様に、照射方向と90°の角度をもつ異方性繊維シート11の表面部分が明部51として撮像され、異方性繊維シートの繊維配向方向および輪郭を評価できる。なお、この図では照射装置6が図6の向きから半時計回りに傾いているが、この限りではなく、明部が生じる限りどのように傾いても評価できる。すなわち、撮像視野に対して異方性繊維シートがどのような角度でも、また、配光装置および光源の移動方向が変化しても、光源の移動方向が、異方性繊維シートの表面(を近似する平面)に対して平行であり、明部が生じる限り、異方性繊維シートの繊維配向および輪郭を評価できる。なお、撮像視野41は、繊維配向方向の判別を行う場合には、異方性繊維シートの表面の少なくとも一部分を含むどの範囲でも良いが、輪郭の検知を行う場合には、異方性繊維シートの輪郭の少なくとも一部分を含むように選ぶ必要がある。また、重なり配置された2以上の異方性繊維シートの繊維配向方向の判別および/または輪郭の検知を行う場合には、少なくとも1の異方性繊維シートの輪郭一部と、少なくとも2の前期異方性繊維シートの表面を含むように選ぶ必要がある。
In the situation of FIG. 8, the
次に、図1において、異方性繊維シートが曲面である場合を図9に、図9のA−A’断面図を図10に示す。 Next, in FIG. 1, the case where the anisotropic fiber sheet is a curved surface is shown in FIG. 9, and the A-A 'sectional view of FIG. 9 is shown in FIG.
図9の状況では、異方性繊維シート7が曲面であるため、照射方向と異方性繊維シート7の繊維配向方向とが成す角度が、光源31の位置によって変わる。よって、図6の状況と同様には、光源の移動に追従して明部が繊維配向に沿って移動せず、この明部の軌跡を検出し、異方性繊維シートの繊維配向方向および/または輪郭を評価できない。しかし、平面71で曲面を近似することで、この平面71に対して、図6の状況と同様に、異方性繊維シート7の繊維配向方向および/または輪郭を評価できる。さらに詳しく、この近似平面71は、図10に示すように、異方性繊維シート7を間に挟む互いに平行な平面のうち、平面間の距離が所定値以下の2平面72の中央の平面である。ここでいう所定値とは、前記2平面間の距離は必要とする精度を考慮し適宜設定するべきものであるため所定値としたものであるが、100mm角の撮像視野において繊維配向方向±1°以内の精度を必要とする場合であれば、通常13mm以下であれば、前記評価ができる。4mm以下であれば、精度の点でさらに好ましい。
In the situation of FIG. 9, since the
次に、図9において、曲面である異方性繊維シートを複数の平面で近似した場合を図11に、図11のA−A’断面図を図12に示す。 Next, in FIG. 9, the case where the anisotropic fiber sheet which is a curved surface is approximated by a plurality of planes is shown in FIG. 11, and the A-A 'sectional view of FIG. 11 is shown in FIG.
図9、図10に示す撮像視野全体を一括した近似では、曲面の曲がりが所定値以上になる場合には、前記平面間の距離も所定値以上になり、実際の繊維配向方向と近似した平面の繊維配向方向が大きくかけはなれて、前記評価ができなくなるが、図11に示すように、曲面を複数の領域に分割し、それぞれの曲面に対して前記近似を行うことで、それぞれの曲面での曲がりを所定値以下に抑え、図6の状況と同様に、異方性繊維シートの繊維配向および輪郭を評価できるので、この限りではない。さらに詳しく、この複数の近似平面73は、図12に示すように、分割した領域のそれぞれで異方性繊維シート7を間に挟む、互いに並行な平面のうち、平面間の距離が所定値以下である2平面72の中央の平面である。
9 and 10, when the entire imaging field of view is approximated collectively, if the curvature of the curved surface is greater than or equal to a predetermined value, the distance between the planes is also greater than or equal to the predetermined value, and the plane approximated to the actual fiber orientation direction However, as shown in FIG. 11, by dividing the curved surface into a plurality of regions and performing the approximation on each curved surface, However, this is not the case because the bending and the contour of the anisotropic fiber sheet can be evaluated in the same manner as in the situation of FIG. More specifically, as shown in FIG. 12, the plurality of
次に、図1において、2以上の異方性繊維シートの表面を移動する明部の撮像を、図13に示す。 Next, in FIG. 1, the imaging of the bright part which moves the surface of two or more anisotropic fiber sheets is shown in FIG.
図13に示す状況では、照射方向と90°の角度をもつ異方性繊維シート11の表面部分が明部51として撮像され、おなじく照射方向と90°の角度をもつ異方性繊維シート12の表面部分が明部53として撮像される。光源31は、異方性繊維シート11および12の表面(を近似する平面)と平行に動くため、照射方向と異方性繊維シートの繊維配向方向とは、光源31の位置にかかわらず常に一定である。よって、光源31の移動に追従して、明部51および53が、繊維配向に沿って移動する。これらの明部の軌跡52および54を検出し、各異方性繊維シートの繊維配向方向を判別できる。また、明部51または53が、異方性繊維シート11または12の端部で不連続になるので、光源31の移動に追従して移動する明部51または53の不連続部分を検出し、異方性繊維シート11と12の輪郭を検知できる。すなわち、2以上の異方性繊維シートの繊維配向および輪郭を評価できる。
In the situation shown in FIG. 13, the surface portion of the
以上では、照射装置を1つとして説明してきたが、図14に示すように2つまたは、この場合に限らず2以上あっても、異方性繊維シートの繊維配向方向および輪郭を評価できる。 In the above description, the irradiation apparatus has been described as one, but the fiber orientation direction and the contour of the anisotropic fiber sheet can be evaluated even when there are two or two or more as shown in FIG.
このような本発明の評価方法を用いて、好適な繊維シートの積層装置を実現することができる。すなわち、例えば照射装置と光源の移動手段を設け、光源の移動により照射される領域をカバーする撮像手段を少なくとも含む1ないし複数のセンシング機構と、このセンシング機構により連続して撮像された像の明部の移動を画像処理により検出するデータ処理機構とを有する評価装置からの出力に基づき、異方性繊維シートの積層時に繊維配向方向および/または積層位置を制御する制御機構を有する、あらかじめ定めた仕様に従い自動かつ精密に繊維シートを積層可能な、繊維シートの積層装置である。 Using such an evaluation method of the present invention, a suitable fiber sheet laminating apparatus can be realized. That is, for example, an irradiation device and a light source moving unit are provided, and one or a plurality of sensing mechanisms including at least an imaging unit that covers an area irradiated by the movement of the light source, and the brightness of images continuously captured by the sensing mechanism A control mechanism for controlling the fiber orientation direction and / or the stacking position when laminating anisotropic fiber sheets based on an output from an evaluation apparatus having a data processing mechanism for detecting movement of the image by image processing It is a fiber sheet laminating device that can automatically and precisely laminate fiber sheets according to specifications.
上述した本発明の異方性繊維シートの繊維配向方向及び輪郭の評価方法は、繊維シートの積層装置に限らず、繊維シートの連続搬送ラインのような分野においても好適に用いることができる。 The evaluation method of the fiber orientation direction and the contour of the anisotropic fiber sheet of the present invention described above can be suitably used not only in the fiber sheet laminating apparatus but also in a field such as a fiber sheet continuous conveyance line.
1 異方性繊維シート
11 撮像視野に対して90°の角度の異方性繊維シート
12 撮像視野に対して45°の角度の異方性繊維シート
2 繊維
21 照射方向に対して90°の配向方向の繊維
22 照射方向に対して0°の配向方向の繊維
3 照射装置
31 光源
32 光源の移動方向
33 繊維に90°の角度で照射される光
34 繊維に0°の角度で照射される光
4 撮像手段
41 撮像視野
51 撮像視野に対して90°の角度の異方性繊維シート表面を移動する明部
52 撮像視野に対して90°の角度の異方性繊維シート表面を移動する明部の軌跡
53 撮像視野に対して45°の角度の異方性繊維シート表面を移動する明部
54 撮像視野に対して45°の角度の異方性繊維シート表面を移動する明部の軌跡
6 撮像視野に対して傾いた照射装置
61 撮像視野に対して傾いた照射装置の光源
62 撮像視野に対して傾いた照射装置の光源の移動方向
7 曲面である異方性繊維シート
71 曲面である異方性繊維シート表面を近似する平面
72 曲面である異方性繊維シートを挟む互いに並行な平面のうち平面間の距離が所定値以下の2平面
73 曲面である異方性繊維シート表面を近似する複数の平面
DESCRIPTION OF SYMBOLS 1 Anisotropic fiber sheet 11 Anisotropic fiber sheet 12 of an angle of 90 degrees with respect to an imaging visual field 12 Anisotropic fiber sheet 2 of an angle of 45 degrees with respect to an imaging visual field 2 Fiber 21 An orientation of 90 degrees with respect to the irradiation direction Fiber 22 in the direction Fiber 3 in the orientation direction of 0 ° with respect to the irradiation direction Irradiation device 31 Light source 32 Movement direction 33 of the light source Light 34 that irradiates the fiber at an angle of 90 ° Light that irradiates the fiber at an angle of 0 ° 4 Imaging means 41 Imaging field of view 51 Bright part 52 moving the surface of the anisotropic fiber sheet at an angle of 90 ° with respect to the imaging field of view 52 Bright part moving the surface of the anisotropic fiber sheet at an angle of 90 ° with respect to the imaging field of view Trajectory 53 of the bright portion moving on the anisotropic fiber sheet surface at an angle of 45 ° with respect to the imaging field of view 6 Trajectory 6 of the bright portion moving on the surface of the anisotropic fiber sheet with an angle of 45 ° with respect to the imaging field of view Irradiation device 61 tilted with respect to field of view The light source 62 of the irradiation device tilted with respect to the moving direction of the light source of the irradiation device tilted with respect to the imaging field 7 The anisotropic fiber sheet 71 that is a curved surface The plane 72 that approximates the surface of the anisotropic fiber sheet that is a curved surface A plurality of planes approximating the surface of the anisotropic fiber sheet that is a curved surface with two planes 73 having a distance between planes of a predetermined value or less among planes parallel to each other sandwiching an anisotropic fiber sheet
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006005671A JP2007187545A (en) | 2006-01-13 | 2006-01-13 | Method of evaluating fiber orientation direction and contour of anisotropic fiber sheet, and device for stacking anisotropic fiber sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006005671A JP2007187545A (en) | 2006-01-13 | 2006-01-13 | Method of evaluating fiber orientation direction and contour of anisotropic fiber sheet, and device for stacking anisotropic fiber sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007187545A true JP2007187545A (en) | 2007-07-26 |
Family
ID=38342810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006005671A Pending JP2007187545A (en) | 2006-01-13 | 2006-01-13 | Method of evaluating fiber orientation direction and contour of anisotropic fiber sheet, and device for stacking anisotropic fiber sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007187545A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016208731A1 (en) * | 2015-06-24 | 2016-12-29 | 三菱レイヨン株式会社 | Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and device for inspecting fiber bundle group |
WO2018079649A1 (en) * | 2016-10-26 | 2018-05-03 | 東レ株式会社 | Method and device for measuring width of gap in reinforced fiber laminate |
WO2020094392A1 (en) * | 2018-11-07 | 2020-05-14 | Senvion Gmbh | Method and system for producing a fiber composite component of a wind turbine |
DE102021111430A1 (en) | 2020-06-15 | 2021-12-16 | Toyota Jidosha Kabushiki Kaisha | Laminate condition calculation method, laminate condition calculation device, and laminate condition calculation program |
-
2006
- 2006-01-13 JP JP2006005671A patent/JP2007187545A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11597165B2 (en) | 2015-06-24 | 2023-03-07 | Mitsubishi Chemical Corporation | Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and fiber bundle group inspection device |
JPWO2016208731A1 (en) * | 2015-06-24 | 2017-06-29 | 三菱ケミカル株式会社 | Fiber reinforced resin material, molded product, fiber reinforced resin material manufacturing method and manufacturing apparatus, and fiber bundle group inspection apparatus |
JP2017214590A (en) * | 2015-06-24 | 2017-12-07 | 三菱ケミカル株式会社 | Fiber-reinforced resin material, molded product, method and apparatus for producing fiber-reinforced resin material, and inspection device of fiber bundle group |
US10343352B2 (en) | 2015-06-24 | 2019-07-09 | Mitsubishi Chemical Corporation | Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and fiber bundle group inspection device |
EP3546167A2 (en) | 2015-06-24 | 2019-10-02 | Mitsubishi Chemical Corporation | Method for manufacturing fiber-reinforced resin material, and fiber bundle group inspection device |
WO2016208731A1 (en) * | 2015-06-24 | 2016-12-29 | 三菱レイヨン株式会社 | Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and device for inspecting fiber bundle group |
EP3708325A1 (en) | 2015-06-24 | 2020-09-16 | Mitsubishi Chemical Corporation | Fiber-reinforced resin material |
JP2021028397A (en) * | 2015-06-24 | 2021-02-25 | 三菱ケミカル株式会社 | Fiber-reinforced resin material, molded article, and manufacturing method and manufacturing apparatus of fiber-reinforced resin material |
US11951692B2 (en) | 2015-06-24 | 2024-04-09 | Mitsubishi Chemical Corporation | Fiber-reinforced resin material, molded article, method and device for manufacturing fiber-reinforced resin material, and fiber bundle group inspection device |
WO2018079649A1 (en) * | 2016-10-26 | 2018-05-03 | 東レ株式会社 | Method and device for measuring width of gap in reinforced fiber laminate |
WO2020094392A1 (en) * | 2018-11-07 | 2020-05-14 | Senvion Gmbh | Method and system for producing a fiber composite component of a wind turbine |
CN113039048A (en) * | 2018-11-07 | 2021-06-25 | 西门子歌美飒可再生能源服务股份有限公司 | Method and system for producing a fiber composite component of a wind energy installation |
DE102021111430A1 (en) | 2020-06-15 | 2021-12-16 | Toyota Jidosha Kabushiki Kaisha | Laminate condition calculation method, laminate condition calculation device, and laminate condition calculation program |
US11644429B2 (en) | 2020-06-15 | 2023-05-09 | Toyota Jidosha Kabushiki Kaisha | Laminate state calculation method, laminated state calculation apparatus, and laminated state calculation program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2002245B1 (en) | Inspection system and method | |
EP2896496B1 (en) | Method and system for determining and verifying ply orientation of a composite laminate | |
US8522614B2 (en) | In-line inspection methods and closed loop processes for the manufacture of prepregs and/or laminates comprising the same | |
EP3450965A1 (en) | Automated inspection of foreign materials, cracks and other surface anomalies | |
CN110749554B (en) | Characterization of the ratio of molten chiffon strands in a fibrous material layer | |
US20150231835A1 (en) | Fibre orientation optimisation | |
KR20140101440A (en) | A method for on-line control of a manufacturing process for a multicomponent sheet material | |
JP2007187545A (en) | Method of evaluating fiber orientation direction and contour of anisotropic fiber sheet, and device for stacking anisotropic fiber sheet | |
US8649897B2 (en) | Laying-up method for non-planar composite components | |
US10692204B2 (en) | System and method for high speed surface and subsurface FOD and defect detection | |
US20230280311A1 (en) | Non-transitory computer readable medium storing program for inspecting molded article region, method for inspecting molded article region, and device for inspecting molded article region | |
EP3742111A1 (en) | Method for measuring conditions of resin on prepreg surface and apparatus for measuring said conditions | |
US11426899B2 (en) | Method for arranging semi-finished products | |
Srivastava et al. | Determination of fiber content in 3-D printed composite parts using image analysis | |
WO2022224852A1 (en) | Method for individual recognition of fiber-reinforced plastic | |
US20200198261A1 (en) | System and method for fabricating a composite ply layup | |
JPH11254545A (en) | Method for inspecting fiber reinforced plastic structure | |
WO2018079649A1 (en) | Method and device for measuring width of gap in reinforced fiber laminate | |
CN108827218B (en) | Device and method for detecting implanted angle of Z-pin in composite material laminated plate by infrared | |
EP4327076A1 (en) | Composite component artifact detection | |
CN114055814B (en) | Repairing method of structure-function integrated composite material product | |
US20210237371A1 (en) | Method for manufacturing a part made of composite material comprising at least one step of detecting pieces of protective film | |
Barnett | Discontinuous Recycled and Repurposed Carbon Fiber Reinforced Thermoplastic Organosheet Composites | |
Kite | Aspects of the Manufacture and Performance of a Compression Moulded Carbon Fibre Composite for Automotive Applications | |
US20190389157A1 (en) | Ply location templates for double diaphragm vacuum bagging systems |