JP2007187134A - Hydrocarbon adsorbing material purge controller for internal combustion engine - Google Patents

Hydrocarbon adsorbing material purge controller for internal combustion engine Download PDF

Info

Publication number
JP2007187134A
JP2007187134A JP2006007765A JP2006007765A JP2007187134A JP 2007187134 A JP2007187134 A JP 2007187134A JP 2006007765 A JP2006007765 A JP 2006007765A JP 2006007765 A JP2006007765 A JP 2006007765A JP 2007187134 A JP2007187134 A JP 2007187134A
Authority
JP
Japan
Prior art keywords
purge
hydrocarbon
adsorbent
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007765A
Other languages
Japanese (ja)
Other versions
JP4657111B2 (en
Inventor
Akira Tomimatsu
亮 冨松
Koichi Hoshi
幸一 星
Toshiki Anura
敏樹 案浦
Futaba Kanehira
二葉 兼平
Koichi Oda
浩一 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Denso Corp
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Boshoku Corp
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Boshoku Corp, Denso Corp, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2006007765A priority Critical patent/JP4657111B2/en
Publication of JP2007187134A publication Critical patent/JP2007187134A/en
Application granted granted Critical
Publication of JP4657111B2 publication Critical patent/JP4657111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an HC adsorbing material purge controller for an internal combustion engine capable of reducing deterioration of fuel economy when purge control is unnecessary. <P>SOLUTION: The internal combustion engine provided with an HC adsorbing material adsorbing HC remaining in an intake system during engine stoppage, is provided with a purge executing means for introducing purge air to the HC adsorbing material and discharging the HC into intake air, an HC discharge amount estimating means for estimating an HC discharge amount discharged from the HC adsorbing material, a determining means for determining whether or not the HC discharge amount acquired by the HC discharge amount estimating means exceeds a predetermined value, and a purge execution stopping means for stopping purge execution by the purge executing means when it is determined that the HC discharge amount from the HC adsorbing material is less than the predetermined value by the determining means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関から排出される炭化水素(以下「HC」と称す)の排出量を低減する内燃機関の炭化水素吸着材パージ制御装置に関する。   The present invention relates to a hydrocarbon adsorbent purge control device for an internal combustion engine that reduces the amount of hydrocarbon (hereinafter referred to as “HC”) discharged from the internal combustion engine.

一般に、近年の自動車では、HCの排出量を低減するために、エンジンの燃焼改善によって未燃HC量を減少させると共に、排気系に三元触媒等の触媒を設置してエンジンから排出されるHCを浄化するようにしている。   In general, in recent automobiles, in order to reduce the amount of HC emitted, the amount of unburned HC is reduced by improving the combustion of the engine, and a catalyst such as a three-way catalyst is installed in the exhaust system to discharge HC from the engine. To purify.

ところで、エンジン停止後、サージタンク等の吸気通路内には、前回の運転時に噴射された燃料の一部が吹き返し等により残留したり、また、エンジン停止中は、燃料噴射弁から燃料が僅かずつ漏れて吸気通路内に拡散することがある。このように吸気通路内に拡散した燃料(HC)がそのまま大気に放出されるのを防止する目的で、吸気系内に残留する炭化水素を吸着する炭化水素吸着材を備える内燃機関が知られている。   By the way, after the engine is stopped, a part of the fuel injected during the previous operation remains in the intake passage such as the surge tank due to blow-back or the like, and when the engine is stopped, the fuel is little by little from the fuel injection valve. It may leak and diffuse into the intake passage. There is known an internal combustion engine including a hydrocarbon adsorbent that adsorbs hydrocarbons remaining in the intake system in order to prevent the fuel (HC) diffused in the intake passage from being released into the atmosphere as it is. Yes.

一方、エンジン停止後に吸気通路内に拡散し炭化水素吸着材に吸着された燃料(HC)は、次回のエンジン始動時に気筒内に吸入される。しかし、クランキング開始直後は、気筒判別が完了するまで、燃料噴射弁の燃料噴射が開始されず、気筒内で燃焼が発生しないため、気筒内に吸入されたHCは、燃焼することなく排気管に排出される。しかも、冷間始動時は、排気系の触媒が未活性状態であるため、排気中のHCを十分に浄化することができない。この結果、炭化水素吸着材に吸着されていたHCがそのまま大気中に排出されてしまうおそれがある。   On the other hand, the fuel (HC) diffused into the intake passage and stopped by the hydrocarbon adsorbent after the engine is stopped is sucked into the cylinder at the next engine start. However, immediately after the start of cranking, the fuel injection of the fuel injection valve is not started until the cylinder discrimination is completed, and combustion does not occur in the cylinder. Therefore, the HC sucked into the cylinder is not combusted in the exhaust pipe. To be discharged. In addition, at the time of cold start, since the exhaust system catalyst is in an inactive state, HC in the exhaust cannot be sufficiently purified. As a result, the HC adsorbed on the hydrocarbon adsorbent may be discharged into the atmosphere as it is.

そこで、特許文献1には、機関停止中に内燃機関の吸気通路内に残留するHCを炭化水素吸着材で吸着し、触媒の活性後及び/又は排出ガスセンサの活性後に、炭化水素吸着材に吸着したHCを炭化水素放出制御手段で吸入空気中に放出させるようにした炭化水素吸着材パージ制御技術が開示されている。   Therefore, in Patent Document 1, HC remaining in the intake passage of the internal combustion engine while the engine is stopped is adsorbed by the hydrocarbon adsorbent and adsorbed by the hydrocarbon adsorbent after the activation of the catalyst and / or after the activation of the exhaust gas sensor. A hydrocarbon adsorbent purge control technique is disclosed in which the released HC is released into the intake air by the hydrocarbon release control means.

特開2002−39025号公報JP 2002-39025 A

上記特許文献1に開示の技術によれば、炭化水素吸着材から放出されたHCが気筒内で十分に燃焼されずに排気管に排出されても、そのHCは活性状態にある触媒で浄化される。また、一般に、触媒よりも先に活性化する排出ガスセンサ(空燃比センサ、酸素センサ等)による空燃比の検出に基づく空燃比フィードバック制御により、HCの放出量に応じて燃料噴射量が減量補正されるので、内燃機関から排出されるHC量が低減される。   According to the technique disclosed in Patent Document 1, even if HC released from the hydrocarbon adsorbent is not sufficiently burned in the cylinder and discharged to the exhaust pipe, the HC is purified by the catalyst in the active state. The In general, the fuel injection amount is corrected to decrease in accordance with the amount of HC released by air-fuel ratio feedback control based on detection of the air-fuel ratio by an exhaust gas sensor (air-fuel ratio sensor, oxygen sensor, etc.) that is activated prior to the catalyst. Therefore, the amount of HC discharged from the internal combustion engine is reduced.

しかしながら、特許文献1に開示の炭化水素吸着材パージ制御技術では、炭化水素吸着材におけるHC吸着量が低下した後、換言すると、炭化水素吸着材のHC吸着能力が回復した後においても、炭化水素吸着材へのパージ空気の導入が継続されており、その分吸気抵抗を生じさせている。この結果、エンジン始動後の短時間に必要とされる炭化水素吸着材パージ制御のための炭化水素吸着材へのパージ空気の導入が、エンジンの運転中に継続され、その吸気抵抗分燃費の悪化を来たしているのである。   However, in the hydrocarbon adsorbent purge control technique disclosed in Patent Document 1, after the amount of HC adsorption in the hydrocarbon adsorbent decreases, in other words, even after the HC adsorption capacity of the hydrocarbon adsorbent recovers, The introduction of purge air to the adsorbent continues, and intake resistance is generated accordingly. As a result, the introduction of purge air into the hydrocarbon adsorbent for hydrocarbon adsorbent purge control, which is required for a short time after the engine is started, is continued during engine operation, resulting in a deterioration in fuel consumption due to the intake resistance. Have come.

本発明は、このような従来の問題を解消し、パージ制御不要時における燃費の悪化を低減することのできる内燃機関の炭化水素吸着材パージ制御装置を提供することを目的としている。   An object of the present invention is to provide a hydrocarbon adsorbent purge control device for an internal combustion engine that can solve such a conventional problem and can reduce deterioration of fuel consumption when purge control is unnecessary.

上記課題を解決する本発明の一形態に係る内燃機関の炭化水素吸着材パージ制御装置は、機関停止中に吸気系内に残留する炭化水素を吸着する炭化水素吸着材を備える内燃機関において、機関始動後の所定条件時に、該炭化水素吸着材にパージ空気を導入し炭化水素を吸入空気中に放出させるパージ実行手段と、炭化水素吸着材から放出される炭化水素放出量を推定する炭化水素放出量推定手段と、該炭化水素放出量推定手段により得られた炭化水素放出量が所定値を超えるか否かを判定する判定手段と、該判定手段により炭化水素吸着材からの炭化水素放出量が所定値以下と判定されたとき、前記パージ実行手段によるパージ実行を停止するパージ実行停止手段と、を備えることを特徴とする。   A hydrocarbon adsorbent purge control device for an internal combustion engine according to an aspect of the present invention that solves the above-described problems is an internal combustion engine that includes a hydrocarbon adsorbent that adsorbs hydrocarbons remaining in an intake system while the engine is stopped. Purge execution means for introducing purge air into the hydrocarbon adsorbent and releasing hydrocarbons into the intake air at a predetermined condition after start-up, and hydrocarbon release for estimating the amount of hydrocarbon released from the hydrocarbon adsorbent Amount estimation means, determination means for determining whether the hydrocarbon release amount obtained by the hydrocarbon release amount estimation means exceeds a predetermined value, and the hydrocarbon release amount from the hydrocarbon adsorbent by the determination means Purge execution stop means for stopping purge execution by the purge execution means when it is determined that the value is equal to or less than a predetermined value.

この形態によれば、炭化水素吸着材から放出される炭化水素放出量を推定する炭化水素放出量推定手段により得られた炭化水素放出量が判定手段により所定値以下と判定されると、パージ実行停止手段によりパージ実行手段によるパージ実行が停止される。この結果、炭化水素吸着材に吸着された炭化水素を吸入空気中に放出させるべく炭化水素吸着材に導入されるパージ空気の導入が停止されるので、吸気抵抗が生ぜず、燃費の悪化が低減される。   According to this aspect, when the hydrocarbon release amount obtained by the hydrocarbon release amount estimation means for estimating the hydrocarbon release amount released from the hydrocarbon adsorbent is determined to be equal to or less than the predetermined value by the determination means, the purge is executed. The purge execution by the purge execution means is stopped by the stop means. As a result, the introduction of purge air introduced to the hydrocarbon adsorbent to release the hydrocarbon adsorbed on the hydrocarbon adsorbent into the intake air is stopped, so intake resistance does not occur and fuel consumption deterioration is reduced. Is done.

ここで、前記炭化水素放出量推定手段は、吸入空気流量センサにより検出される筒内吸入空気量と燃料噴射弁からの燃料噴射量とにより求まる供給空燃比、および空燃比センサにより検出される排気空燃比により求まる炭化水素吸着材パージ空燃比と、パージ空気流量センサにより検出されるパージ空気流量とに基づき、炭化水素放出量を推定するものであることが好ましい。   Here, the hydrocarbon emission amount estimation means is a supply air-fuel ratio determined by a cylinder intake air amount detected by an intake air flow rate sensor and a fuel injection amount from a fuel injection valve, and an exhaust gas detected by an air-fuel ratio sensor. It is preferable that the hydrocarbon release amount is estimated based on the hydrocarbon adsorbent purge air-fuel ratio determined by the air-fuel ratio and the purge air flow rate detected by the purge air flow rate sensor.

この形態によれば、供給空燃比が吸入空気流量センサにより検出される筒内吸入空気量の検出値と設定値である燃料噴射量とにより求められると共に、排気空燃比が空燃比センサにより検出される検出値により求められるので、これらによる炭化水素吸着材パージ空燃比がより精度よく求められる。そして、この炭化水素吸着材パージ空燃比を算出する一要素であるパージ空気流量がパージ空気流量センサによる検出値として求められるので、炭化水素放出量の推定もまたより精度よく行うことができる。   According to this aspect, the supply air-fuel ratio is obtained from the detected value of the cylinder intake air amount detected by the intake air flow rate sensor and the fuel injection amount that is the set value, and the exhaust air-fuel ratio is detected by the air-fuel ratio sensor. Therefore, the hydrocarbon adsorbent purge air-fuel ratio can be determined more accurately. Since the purge air flow rate, which is one element for calculating the hydrocarbon adsorbent purge air-fuel ratio, is obtained as a detection value by the purge air flow rate sensor, the hydrocarbon discharge amount can be estimated more accurately.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように、内燃機関であるエンジン10の吸気管12には、スロットル弁14が設けられ、このスロットル弁14の下流側にサージタンク16が設けられている。このサージタンク16には、エンジン10の各気筒に空気を導入する吸気マニホールド18が連通され、各気筒の吸気マニホールド18の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。これら吸気管12、サージタンク16及び吸気マニホールド18によって吸気通路が構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, a throttle valve 14 is provided in an intake pipe 12 of an engine 10 that is an internal combustion engine, and a surge tank 16 is provided downstream of the throttle valve 14. The surge tank 16 communicates with an intake manifold 18 for introducing air into each cylinder of the engine 10, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 18 of each cylinder. . The intake pipe 12, the surge tank 16, and the intake manifold 18 constitute an intake passage.

また、サージタンク16には、その底部に炭化水素吸着材としてのHC吸着材22が設けられ、エンジン停止中に吸気通路内に残留するHCをこのHC吸着材22で吸着するようにされている。このHC吸着材22は、活性炭又はHC吸着作用を有する触媒成分(例えばPd等の貴金属)で形成されている。或は、HC吸着材22を、アルミナ層にPd等を担持させて形成したり、ゼオライトで形成したりしても良い。勿論、HC吸着材22を、活性炭、ゼオライト、触媒成分のうちの2種類以上を組み合わせて形成するようにしても良い。   Further, the surge tank 16 is provided with an HC adsorbent 22 as a hydrocarbon adsorbent at the bottom thereof, so that the HC remaining in the intake passage when the engine is stopped is adsorbed by the HC adsorbent 22. . The HC adsorbent 22 is formed of activated carbon or a catalyst component having an HC adsorption action (for example, a noble metal such as Pd). Alternatively, the HC adsorbent 22 may be formed by supporting Pd or the like on an alumina layer, or may be formed of zeolite. Of course, the HC adsorbent 22 may be formed by combining two or more of activated carbon, zeolite, and catalyst components.

本実施形態では、サージタンク16の底部に凹部24を形成し、この凹部24内にHC吸着材22の大半を収容することで、HC吸着材22でサージタンク16の流路断面積が狭められないようにされている。更に、吸気管12のスロットルバルブ14の上流側とサージタンク16の凹部24との間には、HC吸着材22にパージ空気を導入するパージ空気導入管26が接続され、このパージ空気導入管26の途中には、例えば、電磁弁で構成されるバルブ28が設けられている。このバルブ28が閉弁されると、HC吸着材22へのパージ空気の導入が停止されて、HC吸着材22にHCを吸着させた状態や放出が完了された状態が保持される。一方、バルブ28を開弁すると、HC吸着材22にパージ空気が導入されると共に、そのパージ空気がHC吸着材22内の多数の隙間を通ってサージタンク16内に流入し、HC吸着材22からHCが吸入空気中に放出される。   In this embodiment, the recess 24 is formed at the bottom of the surge tank 16, and most of the HC adsorbent 22 is accommodated in the recess 24, so that the cross-sectional area of the surge tank 16 is narrowed by the HC adsorbent 22. Not to be. Further, a purge air introduction pipe 26 for introducing purge air into the HC adsorbent 22 is connected between the upstream side of the throttle valve 14 of the intake pipe 12 and the recess 24 of the surge tank 16. In the middle of this, for example, a valve 28 constituted by an electromagnetic valve is provided. When the valve 28 is closed, the introduction of purge air to the HC adsorbent 22 is stopped, and the state in which the HC adsorbent 22 has adsorbed HC and the state in which the release has been completed is maintained. On the other hand, when the valve 28 is opened, purge air is introduced into the HC adsorbent 22 and the purge air flows into the surge tank 16 through a large number of gaps in the HC adsorbent 22. HC is released into the intake air.

また、吸気管12のスロットルバルブ14の上流側には、エンジン10に導入される空気流量を計測する吸入空気流量センサ30が設けられると共に、パージ空気導入管26のバルブ28の下流側には、パージ空気流量を計測するパージ空気流量センサ32が設けられている。   An intake air flow rate sensor 30 for measuring the flow rate of air introduced into the engine 10 is provided on the upstream side of the throttle valve 14 of the intake pipe 12, and on the downstream side of the valve 28 of the purge air introduction pipe 26, A purge air flow sensor 32 for measuring the purge air flow rate is provided.

一方、エンジン10の排気管34には、排出ガス中のHCやNOx等を浄化する三元触媒等の触媒36が設けられ、この触媒36の上流側に排出ガスの空燃比を検出する空燃比センサ38が設けられている。   On the other hand, the exhaust pipe 34 of the engine 10 is provided with a catalyst 36 such as a three-way catalyst for purifying HC and NOx in the exhaust gas, and an air-fuel ratio for detecting the air-fuel ratio of the exhaust gas upstream of the catalyst 36. A sensor 38 is provided.

エンジンの電子制御回路(以下「ECU」と称す)40は、マイクロコンピュータを主体として構成され、エンジンの回転速度や負荷に対応させて燃料噴射量や点火時期を制御すると共に、ROM(記憶媒体)に記憶された吸着材パージ制御プログラムを周期的に実行することで、エンジン停止中にHC吸着材22に吸着されたHCを空燃比センサ38及び触媒36の活性後に吸入空気中に放出すると共に、HC吸着材22から放出されるHC放出量に基づいて、吸着材パージ制御の停止時期を判定する。   An engine electronic control circuit (hereinafter referred to as “ECU”) 40 is mainly composed of a microcomputer, controls the fuel injection amount and ignition timing in accordance with the engine speed and load, and is a ROM (storage medium). The HC adsorbed on the HC adsorbent 22 while the engine is stopped is released into the intake air after the air-fuel ratio sensor 38 and the catalyst 36 are activated. Based on the amount of HC released from the HC adsorbent 22, the timing for stopping the adsorbent purge control is determined.

以下、本発明の実施形態による吸着材パージ制御プログラムの処理手順の一例を図2および図3に示すフローチャートを参照して説明する。本プログラムは、例えばイグニッションスイッチ(図示せず)のオン後に実行される。本プログラムが起動されると、まず、ステップS201で、パージ制御が実行中か否かが判定される。このパージ制御の実行は、空燃比センサ38が活性状態であるか否かの判定に基づき、空燃比センサ38が活性状態にあるときに実行されるものである。空燃比センサ38が未活性の期間は、排出ガスの空燃比が検出できず空燃比フィードバック制御を実施できないからである。なお、空燃比センサ38が活性状態であるか否かは、例えば冷却水温や始動後の経過時間に基づき判定することができる。パージ制御の実行の際には、バルブ28が開状態に保持され、HC吸着材22にパージ空気が導入されると共に、そのパージ空気がHC吸着材22内の多数の隙間を通ってサージタンク16内に流入し、HC吸着材22からHCが吸入空気中に放出される。   Hereinafter, an example of the processing procedure of the adsorbent purge control program according to the embodiment of the present invention will be described with reference to the flowcharts shown in FIGS. This program is executed, for example, after an ignition switch (not shown) is turned on. When this program is activated, it is first determined in step S201 whether purge control is being executed. The execution of the purge control is executed when the air-fuel ratio sensor 38 is in an active state based on the determination as to whether the air-fuel ratio sensor 38 is in an active state. This is because during the period when the air-fuel ratio sensor 38 is inactive, the air-fuel ratio of the exhaust gas cannot be detected and the air-fuel ratio feedback control cannot be performed. Note that whether or not the air-fuel ratio sensor 38 is in an active state can be determined based on, for example, the coolant temperature or the elapsed time after startup. When the purge control is executed, the valve 28 is kept open, purge air is introduced into the HC adsorbent 22, and the purge air passes through a large number of gaps in the HC adsorbent 22 and the surge tank 16. And HC is discharged from the HC adsorbent 22 into the intake air.

そして、ステップS201で、パージ制御が実行中であると判定されると、ステップS202に進み、HC吸着材22からの単位時間当たりのHC放出量Fpが推定される。このHC放出量の推定については、サブルーチンとして実行される図3に示すフローチャートを参照して後で説明する。   If it is determined in step S201 that the purge control is being executed, the process proceeds to step S202, and the HC release amount Fp per unit time from the HC adsorbent 22 is estimated. The estimation of the HC release amount will be described later with reference to the flowchart shown in FIG. 3 executed as a subroutine.

次いで、ステップS203に進み、ステップS202で求めたHC吸着材22からの単位時間当たりのHC放出量Fpが所定値C以上か否かが判定される。ここで、所定値Cは、HC吸着材22におけるHC吸着率に基づいて設定されている。すなわち、HC吸着材22の最大HC吸着能力を100%とするとき、HC吸着率が例えば、数%である場合に、HC吸着材22から単位時間当たりに放出されるHC量に相当する値である。パージ実行の結果として、HC吸着材22におけるHC吸着率が減少すると、単位時間当たりに放出されるHC量も次第に減少するので、このHC放出量Fpが所定値Cを下回った状態でパージを実行しても効果的なHC脱離作用は余り期待できず、パージ空気導入管26内にパージ空気を導入する分、吸気抵抗となるのみである。さらに、HC吸着材22におけるHC吸着率が、HC放出量Fpが所定値Cを下回る程度に減少した状態では、HC吸着能力が回復したと見なせる。   Next, the process proceeds to step S203, and it is determined whether or not the HC release amount Fp per unit time from the HC adsorbent 22 obtained in step S202 is equal to or greater than a predetermined value C. Here, the predetermined value C is set based on the HC adsorption rate in the HC adsorbent 22. That is, when the maximum HC adsorption capacity of the HC adsorbent 22 is 100%, the value corresponding to the amount of HC released from the HC adsorbent 22 per unit time when the HC adsorption rate is, for example, several percent. is there. As a result of the purge execution, when the HC adsorption rate in the HC adsorbent 22 decreases, the amount of HC released per unit time also gradually decreases, so the purge is executed in a state where the HC release amount Fp is below a predetermined value C. Even so, an effective HC desorption action cannot be expected so much, and only the intake resistance is provided for the amount of purge air introduced into the purge air introduction pipe 26. Furthermore, in the state where the HC adsorption rate in the HC adsorbent 22 is reduced to the extent that the HC release amount Fp falls below the predetermined value C, it can be considered that the HC adsorption capacity has been recovered.

そこで、ステップS203における判定で、HC吸着材22からの単位時間当たりのHC放出量Fpが所定値Cを下回るときはステップS204に進み、パージ制御を停止する。すなわち、バルブ28が閉じられ、パージ空気導入管26内へのパージ空気の導入が停止される。   Therefore, when the determination in step S203 shows that the HC release amount Fp per unit time from the HC adsorbent 22 is less than the predetermined value C, the process proceeds to step S204, and the purge control is stopped. That is, the valve 28 is closed and the introduction of purge air into the purge air introduction pipe 26 is stopped.

ここで、上述したステップS202におけるHC放出量の推定ルーチンにつき、図3のフローチャートを参照して説明する。このHC放出量推定ルーチンでは、まず、ステップS301において、供給空燃比(以下、供給A/Fと称す)が取得される。この供給A/Fは、吸入空気流量センサ30により検出される検出値としての筒内吸入空気量Gaと燃料噴射弁20から噴射される燃料噴射量Fjとにより、
「供給A/F=Ga/Fj・・・(1)」
として演算により求められる。なお、燃料噴射量Fjはエンジン10の回転速度および負荷に対応させて予め実験等により求められ、ECU40のROMに記憶されているマップから、設定値として求められる。
Here, the estimation routine of the HC release amount in step S202 described above will be described with reference to the flowchart of FIG. In this HC release amount estimation routine, first, in step S301, a supply air-fuel ratio (hereinafter referred to as supply A / F) is acquired. This supply A / F is determined by the in-cylinder intake air amount Ga as a detection value detected by the intake air flow rate sensor 30 and the fuel injection amount Fj injected from the fuel injection valve 20.
“Supply A / F = Ga / Fj (1)”
Is obtained by calculation. The fuel injection amount Fj is obtained in advance by experiments or the like corresponding to the rotational speed and load of the engine 10, and is obtained as a set value from a map stored in the ROM of the ECU 40.

次に、ステップS302において、排気空燃比(以下、排気A/Fと称す)が取得される。この排気A/Fは空燃比センサ38により検出される検出値として求められる。そして、ステップS303に進み、HC吸着材パージ空燃比(以下、HC吸着材パージA/Fと称す)が下式(2)により算出される。
「HC吸着材パージA/F=排気A/F−供給A/F・・・(2)」
そして、ステップS304において、パージ空気流量センサ32により検出される検出値として求められているパージ空気流量Gpが取得される。さらにステップS305に進み、このステップS304で取得されたパージ空気流量GpとステップS303で算出されたHC吸着材パージA/Fとにより、HC吸着材22からの単位時間当たりのHC放出量Fpが下式(3)により算出される。
「HC吸着材パージA/F=Gp/Fp → Fp=Gp/(HC吸着材パージA/F)・・・(3)」
このように、本実施の形態では、供給A/Fが吸入空気流量センサ30により検出される筒内吸入空気量Gaの検出値と設定値である燃料噴射量Fjとにより求められると共に、排気A/Fが空燃比センサ38により検出される検出値により求められるので、これらによるHC吸着材パージA/Fがより精度よく求められる。そして、このHC吸着材パージA/Fを算出する一要素であるパージ空気流量Gpがパージ空気流量センサ32による検出値として求められるので、HC放出量Fpの推定もまたより精度よく行うことができる。
Next, in step S302, an exhaust air-fuel ratio (hereinafter referred to as exhaust A / F) is acquired. The exhaust A / F is obtained as a detection value detected by the air-fuel ratio sensor 38. In step S303, the HC adsorbent purge air-fuel ratio (hereinafter referred to as HC adsorbent purge A / F) is calculated by the following equation (2).
“HC adsorbent purge A / F = exhaust A / F−supply A / F (2)”
In step S304, the purge air flow rate Gp obtained as a detection value detected by the purge air flow rate sensor 32 is acquired. Further, the process proceeds to step S305, and the HC release amount Fp per unit time from the HC adsorbent 22 is reduced by the purge air flow rate Gp acquired in step S304 and the HC adsorbent purge A / F calculated in step S303. Calculated by equation (3).
“HC adsorbent purge A / F = Gp / Fp → Fp = Gp / (HC adsorbent purge A / F) (3)”
Thus, in the present embodiment, the supply A / F is obtained from the detected value of the cylinder intake air amount Ga detected by the intake air flow rate sensor 30 and the fuel injection amount Fj that is the set value, and the exhaust A Since / F is obtained from the detection value detected by the air-fuel ratio sensor 38, the HC adsorbent purge A / F by these is obtained more accurately. Since the purge air flow rate Gp, which is one element for calculating the HC adsorbent purge A / F, is obtained as a detected value by the purge air flow rate sensor 32, the HC release amount Fp can be estimated more accurately. .

ここで、図2のフローチャートに戻るに、上述のステップS202におけるHC放出量の推定ルーチン(ステップS301ないし305)で得られたHC吸着材22からの単位時間当たりのHC放出量Fpが所定値C以上であるとステップS203で判定されると、このルーチンは一旦終了され、バルブ28を開弁して、パージ空気導入管26を介して所定のパージ空気流量GpがHC吸着材22に導入され、HC吸着材22からHCが放出されるパージ制御が継続される。   Here, returning to the flowchart of FIG. 2, the HC release amount Fp per unit time from the HC adsorbent 22 obtained in the HC release amount estimation routine (steps S301 to S305) in step S202 described above is a predetermined value C. If it is determined in step S203 that it is above, this routine is once ended, the valve 28 is opened, and a predetermined purge air flow rate Gp is introduced into the HC adsorbent 22 through the purge air introduction pipe 26. Purge control for releasing HC from the HC adsorbent 22 is continued.

また、前述のように、ステップS203における判定で、HC吸着材22からの単位時間当たりのHC放出量Fpが所定値Cを下回るときはステップS204に進み、パージ制御が停止されるべくバルブ28が閉じられるが、このバルブ28はパージ制御が停止されるべく一旦閉じられた後は、エンジン始動後の同一運転期間中、閉じ状態が維持されても良い。この期間中には、HC吸着材22へのHC吸着はほとんどないからである。   Further, as described above, when the HC release amount Fp per unit time from the HC adsorbent 22 is below the predetermined value C in the determination in step S203, the process proceeds to step S204, and the valve 28 is set so that the purge control is stopped. Although the valve 28 is closed, the valve 28 may be kept closed during the same operation period after the engine is started once the purge control is stopped to stop the purge control. This is because there is almost no HC adsorption to the HC adsorbent 22 during this period.

なお、本実施形態においては、空燃比センサ38が活性状態であるときにパージ制御を実行するようにしたが、これは空燃比センサ38と触媒36の両方が活性状態になってから実行するようにしてもよい。その場合は、HC吸着材22から放出したHCが気筒内で十分に燃焼されずに排気管34に排出されても、そのHCを活性状態の触媒36で浄化することができるからである。   In this embodiment, the purge control is executed when the air-fuel ratio sensor 38 is in the active state. However, this is executed after both the air-fuel ratio sensor 38 and the catalyst 36 are in the active state. It may be. In this case, even if the HC released from the HC adsorbent 22 is not sufficiently burned in the cylinder and discharged to the exhaust pipe 34, the HC can be purified by the active catalyst 36.

以上説明した本実施形態によれば、HC吸着材22から放出されるHC放出量を推定するHC放出量推定手段により得られたHC放出量が判定手段により所定値以下と判定されると、パージ実行停止手段によりパージ実行手段によるパージ実行が停止されるので、HC吸着材22に吸着されたHCを吸入空気中に放出させるべくHC吸着材22に導入されるパージ空気の導入が停止され、吸気抵抗が生ぜず、燃費の悪化が低減される。   According to the present embodiment described above, when the HC release amount obtained by the HC release amount estimation means for estimating the HC release amount released from the HC adsorbent 22 is determined to be equal to or less than the predetermined value by the determination means, the purge is performed. Since the purge execution by the purge execution unit is stopped by the execution stop unit, the introduction of the purge air introduced into the HC adsorbent 22 in order to release the HC adsorbed by the HC adsorbent 22 into the intake air is stopped. No resistance is generated and fuel consumption is reduced.

本発明の一実施の形態の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of one embodiment of this invention. 本発明の実施形態の制御の一形態を示すフローチャートである。It is a flowchart which shows one form of control of embodiment of this invention. 本発明の実施形態の制御の一形態を示すフローチャートである。It is a flowchart which shows one form of control of embodiment of this invention.

符号の説明Explanation of symbols

10 エンジン
20 燃料噴射弁
22 HC吸着材
26 パージ空気導入管
28バルブ
30 吸入空気流量センサ
32 パージ空気流量センサ
36 触媒
38 空燃比センサ
40 ECU
DESCRIPTION OF SYMBOLS 10 Engine 20 Fuel injection valve 22 HC adsorption material 26 Purge air introduction pipe 28 Valve 30 Intake air flow rate sensor 32 Purge air flow rate sensor 36 Catalyst 38 Air fuel ratio sensor 40 ECU

Claims (2)

機関停止中に吸気系内に残留する炭化水素を吸着する炭化水素吸着材を備える内燃機関において、
機関始動後の所定条件時に、該炭化水素吸着材にパージ空気を導入し炭化水素を吸入空気中に放出させるパージ実行手段と、
炭化水素吸着材から放出される炭化水素放出量を推定する炭化水素放出量推定手段と、 該炭化水素放出量推定手段により得られた炭化水素放出量が所定値を超えるか否かを判定する判定手段と、
該判定手段により炭化水素吸着材からの炭化水素放出量が所定値以下と判定されたとき、前記パージ実行手段によるパージ実行を停止するパージ実行停止手段と、
を備えることを特徴とする内燃機関の炭化水素吸着材パージ制御装置。
In an internal combustion engine provided with a hydrocarbon adsorbent that adsorbs hydrocarbons remaining in the intake system while the engine is stopped,
Purge execution means for introducing purge air into the hydrocarbon adsorbent and releasing hydrocarbons into the intake air at a predetermined condition after engine startup;
A hydrocarbon release amount estimation means for estimating a hydrocarbon release amount released from a hydrocarbon adsorbent, and a determination for determining whether or not the hydrocarbon release amount obtained by the hydrocarbon release amount estimation means exceeds a predetermined value Means,
A purge execution stop means for stopping the purge execution by the purge execution means when the determination means determines that the hydrocarbon release amount from the hydrocarbon adsorbent is equal to or less than a predetermined value;
A hydrocarbon adsorbent purge control device for an internal combustion engine, comprising:
前記炭化水素放出量推定手段は、吸入空気流量センサにより検出される筒内吸入空気量と燃料噴射弁からの燃料噴射量とにより求まる供給空燃比、および空燃比センサにより検出される排気空燃比により求まる炭化水素吸着材パージ空燃比と、パージ空気流量センサにより検出されるパージ空気流量とに基づき、炭化水素放出量を推定するものであることを特徴とする請求項1に記載の内燃機関の炭化水素吸着材パージ制御装置。
The hydrocarbon emission amount estimation means is based on the supply air-fuel ratio determined by the in-cylinder intake air amount detected by the intake air flow rate sensor and the fuel injection amount from the fuel injection valve, and the exhaust air-fuel ratio detected by the air-fuel ratio sensor. 2. The carbonization of an internal combustion engine according to claim 1, wherein the hydrocarbon release amount is estimated based on a determined hydrocarbon adsorbent purge air-fuel ratio and a purge air flow rate detected by a purge air flow rate sensor. Hydrogen adsorbent purge control device.
JP2006007765A 2006-01-16 2006-01-16 Hydrocarbon adsorbent purge control device for internal combustion engine Expired - Fee Related JP4657111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007765A JP4657111B2 (en) 2006-01-16 2006-01-16 Hydrocarbon adsorbent purge control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007765A JP4657111B2 (en) 2006-01-16 2006-01-16 Hydrocarbon adsorbent purge control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007187134A true JP2007187134A (en) 2007-07-26
JP4657111B2 JP4657111B2 (en) 2011-03-23

Family

ID=38342461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007765A Expired - Fee Related JP4657111B2 (en) 2006-01-16 2006-01-16 Hydrocarbon adsorbent purge control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4657111B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182632A (en) * 1999-10-14 2001-07-06 Nippon Soken Inc Fuel vapor processing system and its diagnostic device
JP2002039025A (en) * 2000-07-25 2002-02-06 Denso Corp Device for reducing volume of hydrocarbon emitted from internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182632A (en) * 1999-10-14 2001-07-06 Nippon Soken Inc Fuel vapor processing system and its diagnostic device
JP2002039025A (en) * 2000-07-25 2002-02-06 Denso Corp Device for reducing volume of hydrocarbon emitted from internal combustion engine

Also Published As

Publication number Publication date
JP4657111B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4506874B2 (en) Exhaust gas purification device for internal combustion engine
JP5861720B2 (en) Control device for internal combustion engine
US10072553B2 (en) Deterioration diagnosis apparatus for selective catalytic reduction catalyst
JP4344953B2 (en) Exhaust gas purification device for internal combustion engine
EP3098423B1 (en) Control apparatus for an internal combustion engine
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
JP2009167852A (en) Exhaust emission control system of hydrogen engine
JP4636273B2 (en) Exhaust gas purification device for internal combustion engine
JP2007315233A (en) Exhaust emission control system of internal combustion engine
JP2008151025A (en) Control device of internal combustion engine
JP2007309196A (en) Evaporated fuel processing control device of internal combustion engine
JP4292671B2 (en) Hydrocarbon emission reduction device for internal combustion engine
JP6534941B2 (en) Abnormality diagnosis device for exhaust purification mechanism
JP6439749B2 (en) Exhaust gas purification device for internal combustion engine
JP2016109026A (en) Exhaust emission control device for internal combustion engine
JP4657111B2 (en) Hydrocarbon adsorbent purge control device for internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
JP4161429B2 (en) Lean combustion internal combustion engine
JP2008144656A (en) Exhaust emission control device for internal combustion engine
JP2012207630A (en) Exhaust emission control apparatus of internal combustion engine
JP4910656B2 (en) Exhaust gas purification device for internal combustion engine
JP2007255209A (en) Exhaust emission control device of internal combustion engine
JP4435028B2 (en) Exhaust gas purification device for internal combustion engine
JP4622192B2 (en) Combustion control device for internal combustion engine
KR102365178B1 (en) Exhaust system of turbo gasoline direct injection engine and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20090130

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090130

A977 Report on retrieval

Effective date: 20100811

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20140107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees