JP2007187053A - Turbine blade - Google Patents

Turbine blade Download PDF

Info

Publication number
JP2007187053A
JP2007187053A JP2006005026A JP2006005026A JP2007187053A JP 2007187053 A JP2007187053 A JP 2007187053A JP 2006005026 A JP2006005026 A JP 2006005026A JP 2006005026 A JP2006005026 A JP 2006005026A JP 2007187053 A JP2007187053 A JP 2007187053A
Authority
JP
Japan
Prior art keywords
blade
rotor
turbine
intermediate connecting
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006005026A
Other languages
Japanese (ja)
Inventor
Kenju Nakamura
建樹 中村
Takeshi Kudo
健 工藤
Hideo Yoda
秀夫 依田
Tomonori Sakaguchi
友則 坂口
Minoru Yamashita
穣 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006005026A priority Critical patent/JP2007187053A/en
Publication of JP2007187053A publication Critical patent/JP2007187053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbine blade having improved assembling efficiency while securing the contact area of tie bosses. <P>SOLUTION: The turbine blade is inserted into a disc groove 9 of a turbine disc 8 in the direction of a rotor shaft, where the tie bosses 5, 6 contact each other with the re-twist of a blade profile portion 2 during the rotation of a rotor to connect adjacent blades to each other. A cutout portion 28 is provided on the steam outlet side of a contact face 23 with the tie boss 6 on the adjacent blade belly side of the tie boss 5 on the back side. A cutout portion 25 is provided on the steam inlet side of a contact face 22 with the tie boss 5 on the adjacent blade back side of the tie boss 6 on the belly side. The cutout portions 25, 28 are formed so that a gap is formed between the tie bosses 5, 6 of the opposed adjacent blades in view from an inserting direction I of a blade implanted portion 7 when the adjacent blades are turned down in the direction of isolating each other in a range of rattling between the blade implanted portion 7 and the disc groove 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蒸気タービンのタービン動翼に関し、更に詳しくは、タービンディスクにロータ軸方向から組み入れ、ロータ回転時の翼プロフィル部のねじり戻りを隣接翼同士の連結力とするタービン動翼に係る。   The present invention relates to a turbine rotor blade of a steam turbine, and more particularly to a turbine rotor blade that is incorporated into a turbine disk from the axial direction of the rotor and uses a twisting return of a blade profile portion at the time of rotor rotation as a connecting force between adjacent blades.

蒸気タービンの最終段動翼等の長翼では、翼先端部に設けたインテグラルカバー(或いはインテグラルシュラウド)や翼中間部に設けた中間連結部材(一般には「インテグラルスナッバ」又は「タイボス」と称される。以下、本明細書では「タイボス」と称する。)等を回転時の遠心カによるねじり戻り変形(アンツイスト)によって接触させることで、ロータ回転時に隣接翼同士を連結するものがある(特許文献1等参照)。   For long blades such as the last stage rotor blade of a steam turbine, an integral cover (or integral shroud) provided at the tip of the blade or an intermediate connecting member provided at the intermediate portion of the blade (generally “integral snubber” or “tie boss”) (Hereinafter referred to as “tie boss” in the present specification), etc., which are brought into contact with each other by untwisting deformation (untwisting) by a centrifugal force during rotation, thereby connecting adjacent blades during rotor rotation. Yes (see Patent Document 1).

特開平4−5402号公報JP-A-4-5402

火力発電所や原子力発電所等で使用する蒸気タービンの動翼の翼プロフィル部は、翼根元から翼先端にわたってねじれている。ロータが回転すると翼プロフィル部に遠心力が作用するため、遠心力の作用によって翼プロフィル部にねじり戻り変形(アンツイスト)が発生する。また、翼先端から翼根元に向かって翼断面積が大きくなっていることから、同一の材質であれば、翼根元に近いほど翼断面に対するねじり剛性が大きいため、隣接翼の翼中間部に位置するタイボス同士の接触力は、翼先端に設けたインテグラルカバー同士の接触力に比べて遥かに大きい。そのため、翼中間部に設けた連結部材は高い強度と広い接触面を有する事が必要である。   A blade profile portion of a moving blade of a steam turbine used in a thermal power plant or a nuclear power plant is twisted from the blade root to the blade tip. When the rotor rotates, centrifugal force acts on the blade profile portion, and thus the twisting deformation (untwist) occurs in the blade profile portion due to the centrifugal force. In addition, since the blade cross-sectional area increases from the blade tip toward the blade root, the torsional rigidity of the blade cross-section increases as the blade material is closer to the blade root. The contact force between the tie bosses is much greater than the contact force between the integral covers provided at the blade tips. For this reason, the connecting member provided in the blade intermediate portion needs to have high strength and a wide contact surface.

一方、タービンディスクに対してロータ軸方向から組み入れるタービン動翼では、組み入れる際の隣接翼同士のタイボスの干渉を避けるには、ディスク溝の間隙を利用して隣接するタービン動翼同士を離間させる方向に倒した状態でタービンディスクにタービン動翼を挿入していく。この場合、隣り合う翼のタイボスの接触面の幅寸法は、構造上、タービン動翼をディスク溝の間隙を利用して倒した際にタイボスが動く距離の2倍までしか採ることができず、タービン動翼を1本ずつタービンディスクに組み入れるにはタイボスの接触面積を大きく採ることが困難である。それを避けるために、全てのタービン動翼を事前に(または僅かにタービンディスクに挿入した状態で)環状に組み上げ、その後同時にタービンディスクに押し込む組立方法を採用する場合もあるが、極めて大掛かりな組立用の冶具が必要となってしまう。   On the other hand, in order to avoid interference of tie bosses between adjacent blades when the turbine blades are incorporated into the turbine disk from the rotor axial direction, the direction in which the adjacent turbine blades are separated from each other using the gap of the disk groove. The turbine blades are inserted into the turbine disk in a state where it is tilted down. In this case, the width dimension of the contact surface between the tie bosses of adjacent blades can only be taken up to twice the distance that the tie boss moves when the turbine blade is pushed down by utilizing the gap of the disk groove. In order to incorporate the turbine blades one by one into the turbine disk, it is difficult to increase the contact area of the tie bosses. To avoid this, an assembly method in which all the turbine blades are assembled in an annular shape in advance (or slightly inserted into the turbine disk) and then pushed into the turbine disk at the same time may be adopted. Jigs for use are required.

本発明は上記の点に鑑みなされたもので、組立性の向上とタイボスの接触面積の確保を両立させることができるタービン動翼を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a turbine rotor blade capable of achieving both improvement in assemblability and securing of a contact area of a tie boss.

(1)上記目的を達成するために、本発明は、タービンディスク外周部に翼回転方向に間隔をもって複数設けられたディスク溝にロータ軸方向から挿入され係合する翼植え込み部と、この翼植え込み部に固定された翼根部から翼先端部にわたってねじれた翼プロフィル部と、この翼プロフィル部の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対の中間連結部材とを有し、ロータ回転時の翼プロフィル部のねじり戻りによって前記中間連結部材を接触させ隣接翼同士を連結するタービン動翼において、前記背側の中間連結部材は、隣接翼腹側の中間連結部材との接触面の蒸気出口側に、ロータ静止時の状態で前記翼植え込み部の挿入方向に沿った面に沿うかその面よりも前記翼プロフィル部側に退避するように形成した切り欠き部を有する一方、前記腹側の中間連結部材は、隣接翼背側の中間連結部材との接触面の蒸気入口側に、ロータ静止時の状態で前記翼植え込み部の挿入方向に沿った面に沿うかその面よりも前記翼プロフィル部側に退避するように形成した切り欠き部を有しており、前記背側及び腹側の切り欠き部は、前記翼植え込み部と前記ディスク溝のガタの範囲で隣接翼を互いに離間する方向に倒した場合、前記翼植え込み部の挿入方向から見て、対向する隣接翼同士の前記背側及び腹側の中間連結部材の間に間隙が生じるように設けられていることを特徴とする。   (1) To achieve the above object, according to the present invention, there is provided a blade implantation portion that is inserted from a rotor axial direction into a plurality of disk grooves provided at intervals in the blade rotation direction on the turbine disk outer peripheral portion and engaged with the blade implantation portion. A blade profile portion twisted from the blade root portion fixed to the blade portion to the blade tip portion, and a pair of intermediate connecting members provided on the back side and the abdomen side of the blade profile in a predetermined position in the blade length direction. In the turbine rotor blade that connects the adjacent blades by contacting the intermediate connecting member by twisting back the blade profile during rotation, the intermediate connecting member on the back side is a contact surface with the intermediate connecting member on the adjacent blade side. On the steam outlet side, there is a notch formed so as to be along the surface along the insertion direction of the blade implanting portion when the rotor is stationary or to be retracted to the blade profile portion side from the surface. On the other hand, the middle connecting member on the abdomen side is on the steam inlet side of the contact surface with the intermediate connecting member on the back side of the adjacent blade, along the surface along the insertion direction of the blade implanting portion when the rotor is stationary. It has a cutout portion formed so as to retreat to the wing profile portion side from the surface, and the dorsal and ventral cutout portions are within a range of play between the wing implantation portion and the disk groove. When the adjacent wings are tilted away from each other, the gap is provided so that a gap is generated between the dorsal and ventral intermediate connecting members of the adjacent wings when viewed from the insertion direction of the wing implantation portion. It is characterized by being.

(2)上記目的を達成するために、また本発明は、タービンディスク外周部に翼回転方向に間隔をもって複数設けられたディスク溝にロータ軸方向から挿入され係合する翼植え込み部と、この翼植え込み部に固定された翼根部から翼先端部にわたってねじれた翼プロフィル部と、この翼プロフィル部の先端部に設けたインテグラルカバーと、前記翼プロフィル部の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対の中間連結部材とを有し、回転時の翼プロフィル部のねじり戻りによって前記中間連結部材及び前記インテグラルカバーを接触させ隣接翼同士を連結するタービン動翼において、前記背側の中間連結部材は、隣接翼腹側の中間連結部材との接触面の蒸気出口側に、ロータ静止時の状態で前記翼植え込み部の挿入方向に沿った面に沿うかその面よりも前記翼プロフィル部側に退避するように形成した切り欠き部を有する一方、前記腹側の中間連結部材は、隣接翼背側の中間連結部材との接触面の蒸気入口側に、ロータ静止時の状態で前記翼植え込み部の挿入方向に沿った面に沿うかその面よりも前記翼プロフィル部側に退避するように形成した切り欠き部を有しており、前記背側及び腹側の切り欠き部は、前記翼植え込み部と前記ディスク溝のガタの範囲で隣接翼を互いに離間する方向に倒した場合、前記翼植え込み部の挿入方向から見て、対向する隣接翼同士の前記背側及び腹側の中間連結部材の間に間隙が生じるように設けられていることを特徴とする。   (2) In order to achieve the above-mentioned object, the present invention also includes a blade-planting portion that is inserted and engaged from a rotor axial direction in a disk groove provided in the turbine disk outer peripheral portion at intervals in the blade rotation direction, and the blade A blade profile portion twisted from the blade root portion to the blade tip portion fixed to the implantation portion, an integral cover provided at the tip portion of the blade profile portion, and a back side and a stomach of a predetermined position in the blade length direction of the blade profile portion. A turbine rotor blade having a pair of intermediate connecting members provided on each side and connecting the adjacent blades by bringing the intermediate connecting member and the integral cover into contact with each other by twisting back of the blade profile during rotation. The intermediate connecting member on the side is in the steam outlet side of the contact surface with the intermediate connecting member on the side adjacent to the blade, along the insertion direction of the blade implanting portion in a state where the rotor is stationary The ventral intermediate coupling member is a steam inlet on the contact surface with the intermediate coupling member on the back side of the adjacent blade. A notch portion formed so as to be along the surface along the insertion direction of the wing implantation portion or to be retracted to the wing profile portion side from the surface when the rotor is stationary. When the side blades and the ventral side cut-out portions are tilted in a direction in which the adjacent blades are separated from each other within the range of the wing implantation portion and the disk groove, the adjacent blades facing each other when viewed from the insertion direction of the blade implantation portion. It is provided so that a gap may be formed between the intermediate connecting members on the dorsal side and the ventral side.

(3)上記目的を達成するために、また本発明は、タービンディスク外周部に翼回転方向に間隔をもって複数設けられたディスク溝にロータ軸方向から挿入され係合する翼植え込み部と、この翼植え込み部に固定された翼根部から翼先端部にわたってねじれた翼プロフィル部と、この翼プロフィル部の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対の中間連結部材とを有し、回転時の翼プロフィル部のねじり戻りによって前記中間連結部材を接触させ隣接翼同士を連結するタービン動翼において、前記背側の中間連結部材は隣接翼腹側の中間連結部材との接触面の蒸気出口側に、前記腹側の中間連結部材は隣接翼背側の中間連結部材との接触面の蒸気入口側に、それぞれ切り欠き部を有しており、これら切り欠き部は、その壁面が前記翼植え込み部の挿入方向に沿う面との間になす角度の絶対値がロータ静止時の状態で5°以下となるように形成されていることを特徴とする。   (3) In order to achieve the above object, the present invention also includes a blade implanting portion that is inserted from a rotor axial direction into a plurality of disk grooves provided at intervals in the blade rotation direction on the outer peripheral portion of the turbine disk, and engages with the blade. A wing profile portion twisted from the wing root portion fixed to the implantation portion to the wing tip portion, and a pair of intermediate connecting members provided on the back side and the abdomen side of the wing profile direction predetermined position of the wing profile portion, In the turbine rotor blade in which the intermediate connecting member is brought into contact with each other by connecting the blades by twisting back of the blade profile during rotation, the intermediate connecting member on the back side is steam on the contact surface with the intermediate connecting member on the adjacent side of the adjacent blade. On the outlet side, the ventral intermediate connecting member has a notch on the steam inlet side of the contact surface with the intermediate connecting member on the adjacent blade back side. Wherein the absolute value of the angle formed between the surface along the insertion direction of the blade implanted section is formed so as to be 5 ° or less in the state when the rotor stationary.

(4)上記目的を達成するために、また本発明は、タービンディスク外周部に翼回転方向に間隔をもって複数設けられたディスク溝にロータ軸方向から挿入され係合する翼植え込み部と、この翼植え込み部に固定された翼根部から翼先端部にわたってねじれた翼プロフィル部と、この翼プロフィル部の先端部に設けたインテグラルカバーと、前記翼プロフィル部の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対の中間連結部材とを有し、回転時の翼プロフィル部のねじり戻りによって前記中間連結部材及び前記インテグラルカバーを接触させ隣接翼同士を連結するタービン動翼において、前記背側の中間連結部材は隣接翼腹側の中間連結部材との接触面の蒸気出口側に、前記腹側の中間連結部材は隣接翼背側の中間連結部材との接触面の蒸気入口側に、それぞれ切り欠き部を有しており、これら切り欠き部は、その壁面が前記翼植え込み部の挿入方向に沿う面との間になす角度の絶対値がロータ静止時の状態で5°以下となるように形成されていることを特徴とする。   (4) In order to achieve the above object, the present invention also provides a blade-planting portion that is inserted from a rotor axial direction into a plurality of disk grooves provided at intervals in the blade rotation direction on the turbine disk outer peripheral portion and engaged with the blade-growing portion. A blade profile portion twisted from the blade root portion to the blade tip portion fixed to the implantation portion; an integral cover provided at the tip portion of the blade profile portion; A turbine rotor blade having a pair of intermediate connecting members provided on each side and connecting the adjacent blades by bringing the intermediate connecting member and the integral cover into contact with each other by twisting back of the blade profile during rotation. The intermediate connecting member on the side is on the steam outlet side of the contact surface with the intermediate connecting member on the adjacent blade, and the intermediate connecting member on the vent is in contact with the intermediate connecting member on the back side of the adjacent blade. The steam inlet side of each has a notch, and the notch has an absolute value of the angle between the wall surface and the surface along the insertion direction of the wing implantation part when the rotor is stationary. It is formed so that it may become 5 degrees or less.

本発明によれば、組立性を確保しつつ翼中間部に設けた隣接翼同士のタイボスの接触面積を最大限に確保することができる。   According to the present invention, it is possible to ensure the maximum contact area of the tie bosses between adjacent blades provided in the blade intermediate portion while ensuring assemblability.

火カ発電所や原子力発電所等で使用する蒸気タービンの動翼は、翼根元から翼先端にわたってねじれている。蒸気タービンのロータの回転に伴いタービンディスクの円周上に固定したタービン動翼の翼プロフィル部に、翼根元から翼先端に向かって遠心力が作用する。翼プロフィル部がねじれているため、遠心力によって翼プロフィル部にねじり戻り変形(アンツイスト)が発生する。また、翼先端から翼根元に向かって翼断面積が大きくなっていることから、同一の材質であれば、翼先端から翼根元に向かうほど翼断面に対するねじり剛性が高くなる。   Steam turbine rotor blades used in fire power plants, nuclear power plants, and the like are twisted from the blade root to the blade tip. Centrifugal force acts from the blade root toward the blade tip on the blade profile portion of the turbine blade fixed on the circumference of the turbine disk as the rotor of the steam turbine rotates. Since the blade profile portion is twisted, the blade profile portion is twisted back (untwisted) due to centrifugal force. In addition, since the blade cross-sectional area increases from the blade tip toward the blade root, the torsional rigidity with respect to the blade cross-section increases with the same material from the blade tip toward the blade root.

また一般に、蒸気タービンの動翼は、作動流体(蒸気)の流れ及びその乱れ成分によって、広範な周波数範囲で絶えず励振する。これらの励振力に対する翼構造の振動応答には、各振動モードにおける固有振動数や減衰力の大きさが関連する。   Also, in general, the moving blades of a steam turbine are constantly excited over a wide frequency range by the flow of working fluid (steam) and its turbulence components. The vibration response of the wing structure to these excitation forces is related to the natural frequency and the magnitude of the damping force in each vibration mode.

そこで、翼先端部にインテグラルカバー(或いはインテグラルシュラウド)と称する連結部材を設け、タービンの回動時に動翼に作用する遠心力により発生するアンツイストを利用して隣接する翼先端部の連結部材を連結する。こうしてタービン動翼の先端部を拘束することにより、タービン(ロータ)の回転時の翼構造の剛性増加と振動減衰の付加効果が期待できる。これにより、共振応答の大きい低次振動モードの共振を抑制するとともに、共振応答の小さい高次振動モードにおける共振に対する信頼性を向上することができる。   Therefore, a connecting member called an integral cover (or integral shroud) is provided at the blade tip, and the adjacent blade tips are connected using an untwist generated by the centrifugal force acting on the rotor blade when the turbine rotates. Connect the members. By constraining the tip of the turbine rotor blade in this way, it is possible to expect an additional effect of increasing the rigidity of the blade structure and vibration damping during the rotation of the turbine (rotor). Thereby, it is possible to suppress the resonance in the low-order vibration mode having a large resonance response and to improve the reliability with respect to the resonance in the high-order vibration mode having a small resonance response.

しかし、蒸気タービン低圧段の最終段動翼のように、例えば翼長が32インチ以上と長くなると、振動振幅が大きくなり翼先端部のインテグラルカバー付近や翼根元部等に局所的な過大応力が発生し、これらの箇所に損傷が発生する恐れがある。そこで、翼根元部から翼先端部の間の所定位置において腹側と背側とのそれぞれに中間連結部材(一般には「インテグラルスナッバ」又は「タイボス」と称される。以下、「タイボス」と称する。)と称する連結部材を設け、同様にロータ回転時のアンツイストを利用して隣接する翼同士でタイボスを連結し、翼先端部に加え翼中間部を拘束することで応力集中を緩和し、過大応力の発生を抑制することが考えられる。   However, when the blade length becomes longer than 32 inches, for example, as in the last stage moving blade of the steam turbine low-pressure stage, the vibration amplitude increases and local excessive stress is applied to the vicinity of the integral cover at the tip of the blade or the root of the blade. May occur and damage may occur at these locations. Therefore, an intermediate connecting member (generally referred to as “integral snubber” or “tie boss” at each of the ventral side and the back side at a predetermined position between the blade root part and the blade tip part. In the same way, tie bosses are connected between adjacent blades using untwisting at the time of rotor rotation, and stress concentration is reduced by constraining the blade middle part in addition to the blade tip. It is conceivable to suppress the generation of excessive stress.

こうしたタービン動翼では、翼根元と翼先端との間(以下「翼中間部」と称する)にねじりモーメントを加えて該翼中間部断面を一定の角度だけねじるために必要なねじりモーメントは、翼先端部にねじりモーメントを加えて翼先端部断面を同じ角度だけねじるために必要なねじりモーメントに比較して非常に大きい。すなわち、翼先端部付近に設けたインテグラルカバーや翼中間部に設けたタイボスによってロータの回転上昇に伴って生じるアンツイスト角を一定の角度に拘束する場合、翼先端部のアンツイストを拘束するために必要なモーメントに比較して、翼中間部のアンツイストを拘束するために必要なモーメントが非常に大きくなる。このアンツイストを拘束するために必要なモーメントは、連結部材の接触面に作用する反力とその反力の作用点間の腕の長さとの積で示すことができる。よって、翼先端部の連結部材の接触面に作用する反力に比較して翼中間部のタイボスの接触面に作用する反力が非常に大きくなる。そのため、タイボスには広い接触面積と高い強度が要求される。   In such turbine blades, the torsional moment required to apply a torsional moment between the blade root and the blade tip (hereinafter referred to as “blade intermediate part”) and twist the blade intermediate part cross section by a certain angle is Compared to the torsional moment required to twist the blade tip section by the same angle by applying a torsional moment to the tip. In other words, when the untwist angle generated with the rotation of the rotor is constrained to a constant angle by the integral cover provided near the blade tip or the tie boss provided in the middle of the blade, the untwist at the blade tip is restrained. Therefore, the moment necessary for restraining the untwisting of the blade intermediate portion is very large compared to the moment necessary for this. The moment necessary for restraining the untwist can be expressed by the product of the reaction force acting on the contact surface of the connecting member and the length of the arm between the points of action of the reaction force. Therefore, the reaction force acting on the contact surface of the tie boss in the middle portion of the blade is much larger than the reaction force acting on the contact surface of the connecting member at the blade tip portion. Therefore, tie bosses are required to have a wide contact area and high strength.

それに対し、ロータ軸方向から(通常、ロータの中心軸に対し0°〜20°程度の傾斜をもって)タービンディスクのディスク溝に挿入されるタービン動翼の組立においては、タイボス付近は翼先端に比べて翼の弾性変形も小さくディスク溝の間隙を利用して翼を傾斜させた場合の移動量も小さいため、隣接する翼同士のタイボスの干渉を避けるにはタイボスの周方向幅を小さくする必要があり、これが上述した広い接触面積と高い強度を確保することと相反する要求となる。次に説明する本発明の実施の形態では、こうした組立時のタイボスの干渉回避、及びタイボスの広い接触面積と高い強度の確保を両立させることができる。   On the other hand, when assembling a turbine blade inserted into the disk groove of the turbine disk from the rotor axis direction (usually with an inclination of about 0 ° to 20 ° with respect to the central axis of the rotor), the vicinity of the tie boss is compared to the blade tip. The blades are less elastically deformed and the amount of movement when the blades are tilted using the gap in the disk groove is small. Therefore, to avoid interference between the tie bosses between adjacent blades, it is necessary to reduce the circumferential width of the tie bosses. There is a requirement contrary to ensuring a wide contact area and high strength as described above. In the embodiment of the present invention to be described next, it is possible to achieve both avoidance of tie boss interference during assembly and securing of a large contact area and high strength of the tie boss.

以下に図面を用いて本発明の実施の形態を説明する。
図1は本発明の一実施の形態に係るタービン動翼の斜視図、図2は本発明の一実施の形態に係るタービン動翼をロータ径方向外側から見た図、図3は本発明の一実施の形態に係るタービン動翼をタービンディスクに組み入れた状態を表した斜視図である。
図1〜図3に示すように、本実施の形態のタービン動翼(ブレード)1は、タービンディスク8の外周部に翼回転方向に間隔をもって複数設けられたディスク溝9に挿入され係合する翼植え込み部7、翼植え込み部7に固定された翼根部2aから翼先端部2bにわたってねじれた翼プロフィル部2、翼プロフィル部2の先端部2bに設けたインテグラルカバー3,4、及び翼プロフィル部2の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対のタイボス5,6を有している。このタービン動翼1は、蒸気タービンの最終段付近の段落の比較的翼長の長い長翼に適用され、翼プロフィル部2の翼根元部2aから翼先端部2bまでの長さは例えば48インチ程度である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view of a turbine rotor blade according to an embodiment of the present invention, FIG. 2 is a view of the turbine rotor blade according to an embodiment of the present invention as viewed from the outside in the rotor radial direction, and FIG. It is a perspective view showing the state where the turbine rotor blade concerning one embodiment was integrated in the turbine disk.
As shown in FIGS. 1 to 3, the turbine rotor blade (blade) 1 according to the present embodiment is inserted into and engaged with a plurality of disk grooves 9 provided at intervals in the blade rotation direction on the outer peripheral portion of the turbine disk 8. Wing implantation part 7, blade profile part 2 twisted from blade root part 2a fixed to blade implantation part 7 to blade tip part 2b, integral covers 3 and 4 provided on tip part 2b of blade profile part 2, and blade profile It has a pair of tie bosses 5 and 6 provided on the back side and the abdomen side of the portion 2 at a predetermined position in the blade length direction. This turbine rotor blade 1 is applied to a long blade having a relatively long blade length in a stage near the final stage of the steam turbine, and the length from the blade root portion 2a of the blade profile portion 2 to the blade tip portion 2b is, for example, 48 inches. Degree.

本実施の形態においては、翼植え込み部7としていわゆる“逆クリスマスツリー型”のものを用いた場合を図示しているが、タービンディスクにロータ軸方向から挿入し組み入れるものであれば、翼植え込み部の形状等は特に限定されない。また、本タービン動翼1はタービンディスク8に対してロータ軸方向から挿入するものであるが、その挿入方向Iは、ロータ中心軸Cに必ずしも沿うわけではなく、図2に示したようにロータ径方向外側から見てロータ中心軸Cに対して設定角度α(例えば0°〜20°程度)傾斜している場合を含む。   In the present embodiment, a case where a so-called “reverse Christmas tree type” is used as the wing implantation part 7 is illustrated. However, if the wing implantation part is inserted and incorporated into the turbine disk from the rotor axial direction, the wing implantation part is illustrated. The shape and the like are not particularly limited. The turbine rotor blade 1 is inserted into the turbine disk 8 from the rotor axial direction. However, the insertion direction I does not necessarily follow the rotor central axis C, and as shown in FIG. This includes the case where the set angle α (for example, about 0 ° to 20 °) is inclined with respect to the rotor central axis C when viewed from the outside in the radial direction.

上記インテグラルカバー3は翼背側に、インテグラルカバー4は翼腹側に伸延している。タイボス5は翼プロフィル部2の翼長方向所定位置(翼根元部2aと翼先端部2bの間、以下「翼中間部」と称する)における翼背側に、タイボス6は翼中間部の翼腹側にそれぞれ突出している。これらインテグラルカバー3,4及びタイボス5,6は何れも翼プロフィル部2と一体的に形成されている。またタイボス5,6は、翼プロフィル部2の翼長方向ほぼ中央部(翼長の1/2)に設けられることが多いが、翼プロフィル部2のねじり剛性等に応じて翼長方向中央部からずらして設けられることもある。タイボス5,6はまた、ロータ中心軸Cに沿った線上の翼プロフィル部2の前縁(蒸気入口側縁部)と後縁(蒸気出口側縁部)の間のほぼ中央部に設けることが多い。   The integral cover 3 extends on the back side of the blade and the integral cover 4 extends on the side of the blade. The tie boss 5 is on the blade back side of the blade profile portion 2 at a predetermined position in the blade length direction (between the blade root portion 2a and the blade tip portion 2b, hereinafter referred to as “wing intermediate portion”). Each protrudes to the side. The integral covers 3 and 4 and the tie bosses 5 and 6 are all formed integrally with the blade profile portion 2. Further, the tie bosses 5 and 6 are often provided at substantially the central part (1/2 of the blade length) of the blade profile part 2 in the blade length direction, but depending on the torsional rigidity and the like of the blade profile part 2 It may be provided with a staggered position. The tie bosses 5 and 6 may also be provided at a substantially central portion between the leading edge (steam inlet side edge) and the trailing edge (steam outlet side edge) of the blade profile portion 2 on a line along the rotor central axis C. Many.

本実施の形態のタービン動翼1をタービンディスク8に組み入れる場合、翼植え込み部7をタービンディスク8のディスク溝9にロータ軸方向から挿入し嵌め込む。こうしてタービンディスク8の円周方向(回転方向)に間隔をもってタービン動翼1を組み入れていき、タービンディスク8の外周部に植え込まれた数十枚のタービン動翼1で環状の翼列が形成される。なお、図3ではタービンディスク8の一部を抽出して図示してあるが、実際にはタービンディスク8は環状に形成されている。   When the turbine rotor blade 1 of the present embodiment is incorporated into the turbine disk 8, the blade implantation portion 7 is inserted and fitted into the disk groove 9 of the turbine disk 8 from the rotor axial direction. In this way, the turbine rotor blades 1 are incorporated at intervals in the circumferential direction (rotation direction) of the turbine disk 8, and an annular blade row is formed by several tens of turbine rotor blades 1 implanted in the outer peripheral portion of the turbine disk 8. Is done. In FIG. 3, a part of the turbine disk 8 is extracted and illustrated, but actually, the turbine disk 8 is formed in an annular shape.

このように構成したタービンロータでは、ロータの回転上昇に伴って翼プロフィル部2に翼根元2aから翼先端2bに向かって遠心力が作用する。翼プロフィル部2がねじれているため、遠心力によって翼プロフィル部2にアンツイストが発生する。図3中に中央のタービン動翼1の翼先端部に作用するアンツイストモーメントの向きを矢印11、ロータ回転方向に対してタービン動翼1の腹側に隣接するタービン動翼1’の翼先端部に作用するアンツイストモーメントの向きを矢印12で示した。同様にタービン動翼1,1’の翼中間部にそれぞれ作用するアンツイストモーメントの向きを矢印13,矢印14で示した。また、ロータ回転時にタービン動翼1,1’の翼先端部及び翼中間部に作用するアンツイストによってインテグラルカバー3,4及びタイボス5,6を接触させて隣接翼同士を連結した場合、アンツイストモーメントの反作用としてアンツイストモーメントと逆向きのねじりモーメントが翼植え込み部7に作用する。このねじりモーメントの向きを各々矢印15,16で示した。   In the turbine rotor configured as described above, centrifugal force acts on the blade profile portion 2 from the blade root 2a toward the blade tip 2b as the rotor rotates. Since the blade profile portion 2 is twisted, untwisting occurs in the blade profile portion 2 due to centrifugal force. In FIG. 3, the direction of the untwist moment acting on the blade tip of the central turbine blade 1 is indicated by an arrow 11, and the blade tip of the turbine blade 1 'adjacent to the ventral side of the turbine blade 1 with respect to the rotor rotation direction. The direction of the untwist moment acting on the part is indicated by an arrow 12. Similarly, the directions of untwisting moments acting on the blade intermediate portions of the turbine rotor blades 1, 1 ′ are indicated by arrows 13 and 14. Further, when the adjacent blades are connected by bringing the integral covers 3 and 4 and the tie bosses 5 and 6 into contact with each other by an untwist acting on the blade tips and middle portions of the turbine rotor blades 1 and 1 ′ when the rotor rotates. As a reaction of the twist moment, a torsional moment opposite to the untwist moment acts on the wing implantation portion 7. The direction of this torsional moment is indicated by arrows 15 and 16, respectively.

図4は本発明の一実施の形態に係る相隣接するタービン動翼の翼先端部の斜視図、図5は図4中のタービン動翼の翼先端部をロータ半径方向外側から見た平面図である。
図4及び図5に示すように、タービン動翼1のインテグラルカバー4のうちタービン動翼1’のインテグラルカバー3との対向端面である接触面17は、ロータ静止時、タービン動翼1’のインテグラルカバー3のうちタービン動翼1のインテグラルカバー4との対向端面である接触面18との間にギャップ19を有している。これら接触面17,18はほぼ平行であり、ロータ回転方向に沿った線20に対して所定角度傾斜している。
4 is a perspective view of blade tips of adjacent turbine blades according to an embodiment of the present invention, and FIG. 5 is a plan view of the blade tips of the turbine blade in FIG. 4 viewed from the outside in the rotor radial direction. It is.
As shown in FIGS. 4 and 5, of the integral cover 4 of the turbine blade 1, the contact surface 17, which is the end surface facing the integral cover 3 of the turbine blade 1 ′, is the turbine blade 1 when the rotor is stationary. A gap 19 is provided between the integral cover 3 and the contact surface 18 that is the end face of the turbine rotor blade 1 facing the integral cover 4. These contact surfaces 17 and 18 are substantially parallel and are inclined at a predetermined angle with respect to the line 20 along the rotor rotation direction.

翼先端部の剛性を向上させる観点からギャップ19は0に近く、ロータ静止時に接触面17,18が点接触する状態が望ましい。或いは、ギャップ19は、ロータの回転開始直後の低いロータ回転数で接触面17,18が接触し始める程度(例えば数ミリ程度)設けても良い。こうすることで、ロータ回転数の上昇に伴ってタービン動翼1,1’に作用するアンツイストモーメント11,12により、タービン動翼1,1’のインテグラルカバーの接触面17,18が接触し翼先端部のアンツイストが拘束される(図6参照)。つまり、翼先端部では、ロータが回転し始めるのと同時に(或いはロータの極低回転(数十〜数百rpm程度)の間に)ロータ回転向に隣接するタービン動翼同士のインテグラルカバーが接触し、これが翼列を構成する全タービン動翼で行われることで翼列のタービン動翼が環状に連結した状態になる。   From the viewpoint of improving the rigidity of the blade tip, the gap 19 is close to 0, and the contact surfaces 17 and 18 are preferably in point contact when the rotor is stationary. Alternatively, the gap 19 may be provided to such an extent that the contact surfaces 17 and 18 start to come into contact with each other at a low rotor speed immediately after the start of rotation of the rotor (for example, about several millimeters). In this way, the contact surfaces 17 and 18 of the integral cover of the turbine blades 1 and 1 ′ are brought into contact with each other by the untwist moments 11 and 12 acting on the turbine blades 1 and 1 ′ as the rotor speed increases. The untwist at the tip of the wing is restrained (see FIG. 6). In other words, at the blade tip, at the same time as the rotor starts to rotate (or during the extremely low rotation of the rotor (several tens to several hundred rpm)), the integral cover between the turbine rotor blades adjacent to each other in the rotor rotation direction is provided. The contact is made by all the turbine blades constituting the blade row, so that the turbine blades of the blade row are connected in an annular shape.

図7は本発明の一実施の形態に係る相隣接するタービン動翼の翼中間部を切り取って表した斜視図、図8及び図9は図7中のタービン動翼の翼中間部をロータ半径方向外側から見た平面図(断面図)である。
図7〜図9に示すように、タービン動翼1のタイボス6のうちタービン動翼1’のタイボス5との対向端面である接触面22は、ロータ静止時、タービン動翼1’のタイボス5のうちタービン動翼1のタイボス6との対向端面である接触面23との間にギャップ24を有している。インテグラルカバーと同様、ロータの回転上昇に伴ってタービン動翼1,1’に作用するアンツイストモーメント13,14によって、タービン動翼1,1’のタイボスの接触面22,23が接触し、翼中間部のアンツイストが拘束される。
FIG. 7 is a perspective view showing the blade intermediate portions of adjacent turbine blades cut out according to an embodiment of the present invention, and FIGS. 8 and 9 show the blade intermediate portions of the turbine blades in FIG. It is the top view (sectional view) seen from the direction outer side.
As shown in FIGS. 7 to 9, of the tie bosses 6 of the turbine rotor blade 1, the contact surface 22 that is the end surface facing the tie boss 5 of the turbine rotor blade 1 ′ is a tie boss 5 of the turbine rotor blade 1 ′ when the rotor is stationary. Among these, a gap 24 is provided between the turbine rotor blade 1 and the contact surface 23 which is an end surface facing the tie boss 6. As with the integral cover, the contact surfaces 22 and 23 of the tie bosses of the turbine blades 1 and 1 ′ are brought into contact by the untwist moments 13 and 14 acting on the turbine blades 1 and 1 ′ as the rotor rotates and rises. The untwist of the wing middle part is restrained.

また、タービン動翼1の腹側のタイボス6は、隣接翼1’の背側のタイボス5との接触面22の蒸気入口側に切り欠き部25を有している。切り欠き部25は、ロータ静止時の状態で翼植え込み部7の挿入方向Iに沿った面に沿うかそれよりもタービン動翼1の翼プロフィル部2側に退避するように形成されている。一方、タービン動翼1’の背側のタイボス5は、隣接翼1の腹側のタイボス6との接触面23の蒸気出口側に切り欠き部28を有している。切り欠き部28は、ロータ静止時の状態で翼植え込み部7の挿入方向Iに沿った面に沿うかそれよりもタービン動翼1’の翼プロフィル部2側に退避するように形成されている。   Further, the tie boss 6 on the ventral side of the turbine rotor blade 1 has a notch 25 on the steam inlet side of the contact surface 22 with the tie boss 5 on the back side of the adjacent blade 1 ′. The notch 25 is formed so as to retreat to the blade profile portion 2 side of the turbine rotor blade 1 along the surface along the insertion direction I of the blade implantation portion 7 when the rotor is stationary. On the other hand, the tie boss 5 on the back side of the turbine rotor blade 1 ′ has a notch 28 on the steam outlet side of the contact surface 23 with the tie boss 6 on the abdomen side of the adjacent blade 1. The notch 28 is formed so as to retreat to the blade profile portion 2 side of the turbine rotor blade 1 ′ along the surface along the insertion direction I of the blade implantation portion 7 when the rotor is stationary. .

このとき、タービン動翼1,1’(勿論他の動翼も同様)は、図10に示したように、翼植え込み部7とディスク溝9のガタの範囲で最大角度γまで挿入方向Iと直交する方向に倒すことができる。互いに対向するタービン動翼1,1’のタイボス6,5の切り欠き部25,26は、角度γの範囲内でタービン動翼1,1’を互いに離間する方向に倒した場合、翼植え込み部7の挿入方向Iから見て、タイボス5,6の間に間隙が生じるように設けられている。   At this time, the turbine rotor blades 1 and 1 '(of course, the other rotor blades are also the same as the insertion direction I up to the maximum angle γ within the range of the backlash of the blade implantation portion 7 and the disk groove 9 as shown in FIG. Can be tilted in the orthogonal direction. The notch portions 25 and 26 of the tie bosses 6 and 5 of the turbine rotor blades 1 and 1 ′ facing each other, when the turbine rotor blades 1 and 1 ′ are tilted away from each other within the range of the angle γ, 7 is provided such that a gap is formed between the tie bosses 5 and 6 when viewed from the insertion direction I of FIG.

ここで、もう少し具体的に説明すると、翼先端部(インテグラルカバー部)及び翼中間部(タイボス部)は、ロータの回転上昇に伴い翼に作用するアンツイストによってそれぞれ回転方向に隣接するもの同士接触し連結する。接触後は、翼先端部のアンツイスト及び翼中間部のアンツイストが夫々拘束されるため、接触面17,18及び22,23に反力が作用し、この反力がロータの回転上昇に伴って増加する。このことは接触面に作用する面圧(単位面積当たりの反力)についても同様である。そして、先に述べたように翼中間部(タイボス部)の接触面22,23に作用する面圧は接触面17,18に作用する面圧より遥かに高いため、接触面22,23の面積及び剛性を確保することが重要となる。   More specifically, the blade tip portion (integral cover portion) and the blade intermediate portion (tie boss portion) are adjacent to each other in the rotational direction by an untwist acting on the blade as the rotor rotates. Touch and connect. After contact, the untwist at the tip of the blade and the untwist at the middle of the blade are constrained, so that a reaction force acts on the contact surfaces 17, 18, 22 and 23, and this reaction force increases with the rotation of the rotor. Increase. The same applies to the surface pressure (reaction force per unit area) acting on the contact surface. As described above, since the surface pressure acting on the contact surfaces 22 and 23 of the blade intermediate portion (tie boss portion) is much higher than the surface pressure acting on the contact surfaces 17 and 18, the area of the contact surfaces 22 and 23 is reduced. It is important to secure rigidity.

一方、逆クリスマスツリー型の翼植え込み部7を有するタービン動翼1の組立においては、ディスク溝9への挿入の際、隣接翼のタイボス5,6が干渉することを避けるため、翼を植え込み部7とディスク溝9の間隙を利用し、隣り合う翼のうち背側のタービン動翼1を背側に、腹側のタービン動翼1’を腹側に倒した状態で組立てる。この方法で組み立てる場合、タービン動翼1,1’ともに直立させた状態でのタイボス5,6の翼挿入方向Iとの直交方向の干渉幅29は、翼1,1’を互いに離間する方向に角度γだけ倒した際のタイボス5,6の移動距離の2倍が上限である。すなわち、溝底30(図10参照)を中心として翼植え込み部7がディスク溝9内で回転できる最大角度γ(通常1°未満)、タイボス5,6の翼根元部2aからの高さL(通常翼長の1/2程度)から、干渉幅29は2×L×sinγ以下に抑えなければ組立が困難化する。   On the other hand, in assembling the turbine rotor blade 1 having the inverted Christmas tree type wing implantation part 7, the wings are implanted in order to prevent the tie bosses 5 and 6 of adjacent wings from interfering with each other when inserted into the disk groove 9. 7 and the disk groove 9 are used to assemble the adjacent blades with the back turbine blade 1 lying on the back and the abdominal turbine blade 1 'lying on the belly. When assembled by this method, the interference width 29 in the direction perpendicular to the blade insertion direction I of the tie bosses 5 and 6 in a state where both the turbine rotor blades 1 and 1 ′ are upright is in a direction in which the blades 1 and 1 ′ are separated from each other. The upper limit is twice the movement distance of the tie bosses 5 and 6 when the angle γ is defeated. That is, the maximum angle γ (usually less than 1 °) at which the wing implantation portion 7 can rotate within the disk groove 9 around the groove bottom 30 (see FIG. 10), and the height L (from the blade root portion 2a of the tie bosses 5 and 6). If the interference width 29 is not limited to 2 × L × sin γ or less, the assembly becomes difficult.

しかし、以上の条件を満たす場合、翼を1本ずつ組立てるにはタイボス5,6の接触面積を大きく確保することが難しい。周方向の全動翼をロータに挿入する前または僅かにロータに挿入した状態で環状に組上げ、その後同時にロータに押し込む組立方法を採用すればその限りではないが、この場合、極めて大掛かりな組立用の冶具が必要となる。   However, when the above conditions are satisfied, it is difficult to secure a large contact area between the tie bosses 5 and 6 in order to assemble the blades one by one. If the assembly method is not limited as long as it is assembled in a ring shape before it is inserted into the rotor or slightly inserted into the rotor, and then pushed into the rotor at the same time, but in this case, for very large assembly This jig is required.

そこで、例えば、翼の背側に設けられたタイボス5の接触面23の両隣の面26,28のうち蒸気出口側にある面(切り欠き部)28が、ロータ径方向外側から見てロータ中心軸Cに対してなす角度、及び腹側に設けられたタイボス6の接触面22の両隣の面25,27のうち蒸気入口側にある面(切り欠き部)25がロータ径方向外側から見てなす角度をβとした場合、図2に示した挿入方向Iがロータ中心軸Cに対してなす角度αとの差が±5°以内となるように角度βを設定する。このように|α−β|≦5°とした場合、仮にタイボス5,6の接触面22,23の長さを10mm程度とすると、10mm×(±tan5°)=±0.9mm程度となり、ギャップ24の一般的な設計公差と同等の値となる。逆にギャップ29と角度αを一定のまま、角度βをα+5°以上に大きくするとタイボス5,6の剛性が低下する。また、角度αを一定のまま角度βをα−5°以下に小さくすると、ギャップ29が一定の場合には接触面22,23が小さくなってしまい、接触面22,23を一定とするとギャップ29が大きくなって組立に支障をきたす。   Therefore, for example, the surface (notch portion) 28 on the steam outlet side of the surfaces 26 and 28 adjacent to the contact surface 23 of the tie boss 5 provided on the back side of the blade is the rotor center as viewed from the outer side in the rotor radial direction. Of the surfaces 25 and 27 adjacent to the contact surface 22 of the tie boss 6 provided on the ventral side and the angle formed with respect to the axis C, the surface (notch portion) 25 on the steam inlet side is viewed from the outside in the rotor radial direction. When the angle formed is β, the angle β is set so that the difference between the insertion direction I shown in FIG. 2 and the angle α formed with respect to the rotor central axis C is within ± 5 °. Thus, when | α−β | ≦ 5 °, if the length of the contact surfaces 22 and 23 of the tie bosses 5 and 6 is about 10 mm, then 10 mm × (± tan 5 °) = ± 0.9 mm, A value equivalent to a general design tolerance of the gap 24 is obtained. On the contrary, if the angle β is increased to α + 5 ° or more while the gap 29 and the angle α are constant, the rigidity of the tie bosses 5 and 6 is lowered. Further, if the angle β is reduced to α−5 ° or less while the angle α is constant, the contact surfaces 22 and 23 are reduced when the gap 29 is constant, and the gap 29 is determined when the contact surfaces 22 and 23 are constant. Will increase the size of the product and hinder assembly.

つまり、タービンディスクに対してロータ軸方向から組み込みアンツイストを利用して連結部材で隣接翼同士を連結する種類のタービン動翼では、一般的な設計条件下において|α−β|≦5°とすることにより、前述したように角度γの範囲内でタービン動翼1,1’を互いに離間する方向に倒した場合、翼植え込み部7の挿入方向Iから見て、タイボス5,6の間に間隙が生じるようになる。これにより、本実施の形態によれば、組立性を確保しつつ翼中間部に設けた隣接翼同士のタイボスの接触面積を最大限に確保することができる。   That is, in a turbine rotor blade of a type in which adjacent blades are connected to each other by a connecting member using a built-in untwist with respect to the turbine disk from the rotor axial direction, | α−β | ≦ 5 ° under general design conditions Thus, as described above, when the turbine rotor blades 1 and 1 ′ are tilted away from each other within the range of the angle γ, as seen from the insertion direction I of the blade implantation portion 7, A gap is generated. Thereby, according to this Embodiment, the contact area of the tie boss | hub of the adjacent blade | wings provided in the blade intermediate part can be ensured to the maximum, ensuring assembly property.

なお、以上において、翼中間部のタイボス5,6に加え、隣接翼同士の連結部材として翼先端部のインテグラルカバー3,4を設けたタービン動翼を例に挙げて説明したが、翼先端部のインテグラルカバーを有さず翼中間部のタイボスのみを設けたタービン動翼にも本発明は適用可能であり、同様の効果を得ることができる。翼先端部のインテグラルカバーのみを設けたタービン動翼にも適用可能であり同様の効果を得ることができる。   In the above description, the turbine blade provided with the integral cover 3 and 4 at the blade tip as a connecting member between adjacent blades in addition to the tie bosses 5 and 6 at the blade intermediate portion has been described as an example. The present invention can also be applied to a turbine rotor blade provided with only a tie boss at the intermediate portion of the blade without the integral cover of the portion, and the same effect can be obtained. The present invention can also be applied to a turbine rotor blade provided with only an integral cover at the blade tip, and the same effect can be obtained.

図11は本発明のタービン動翼を適用した蒸気タービンの機械構成図である。
図11に示した蒸気タービンは、火力発電所で使用されるものである。図11中、26はロータ、27は静翼(ノズル)、28は外部ケーシング、29は主蒸気を示す。ロータ26の同一円周上に、数十枚のタービン動翼1を設ける。ロータ26の同一円周上におけるタービン動翼の集合を段落と言い、この段落がロータ26の軸方向に複数段設けられている。
FIG. 11 is a mechanical block diagram of a steam turbine to which the turbine rotor blade of the present invention is applied.
The steam turbine shown in FIG. 11 is used in a thermal power plant. In FIG. 11, 26 is a rotor, 27 is a stationary blade (nozzle), 28 is an outer casing, and 29 is main steam. Several tens of turbine rotor blades 1 are provided on the same circumference of the rotor 26. A set of turbine rotor blades on the same circumference of the rotor 26 is referred to as a paragraph, and this paragraph is provided in a plurality of stages in the axial direction of the rotor 26.

このように概略構成された蒸気タービンでは、蒸気発生装置(図示せず)からの主蒸気29が、動翼1に対応して外部ケーシング28に設けた静翼27を通過してロータ26に設けたタービン動翼1に導かれ、これによりロータ26に回転動力が与えられる。この回転動力はロータ26の一端部に設けた発電機に伝えられ、これによりロータ26の回転エネルギーが電気エネルギーに変換されて発電が行われる。本蒸気タービンにおいては、蒸気の下流段へ向かうほどタービン動翼の翼長が長い。すなわち、復水器に最も近い最終段のタービン動翼1が最も翼長が長いため、強度振動上最も厳しい条件下にある。火力発電所に使用される低圧蒸気タービンの最終段の動翼の翼長は、通常30インチから60インチ程度である。そこで、このような蒸気タービンでは、例えば、最終段のタービン動翼1及び最終段の前段のタービン動翼1にインテグラルカバー及びタイボスを設け、その他の段落のタービン動翼1にはタイボスを設けずインテグラルカバーのみを設ける。   In the steam turbine configured in this way, the main steam 29 from the steam generator (not shown) passes through the stationary blade 27 provided in the outer casing 28 corresponding to the moving blade 1 and is provided in the rotor 26. Then, the rotor blades 1 are guided to the rotor blades 1, and thereby the rotational power is given to the rotor 26. This rotational power is transmitted to a generator provided at one end of the rotor 26, whereby the rotational energy of the rotor 26 is converted into electric energy to generate electric power. In the steam turbine, the blade length of the turbine rotor blade is longer toward the downstream stage of the steam. That is, the turbine blade 1 at the final stage closest to the condenser has the longest blade length, so that it is under the severest condition in terms of strength vibration. The blade length of the last stage of the low pressure steam turbine used in the thermal power plant is usually about 30 to 60 inches. Therefore, in such a steam turbine, for example, an integral cover and a tie boss are provided on the last stage turbine blade 1 and the last stage turbine blade 1, and a tie boss is provided on the other stage turbine blade 1. Only install an integral cover.

本発明の一実施の形態に係るタービン動翼の斜視図である。1 is a perspective view of a turbine rotor blade according to an embodiment of the present invention. 本発明の一実施の形態に係るタービン動翼をロータ径方向外側から見た図である。It is the figure which looked at the turbine bucket which concerns on one embodiment of this invention from the rotor radial direction outer side. 本発明の一実施の形態に係るタービン動翼をタービンディスクに組み入れた状態を表した斜視図である。1 is a perspective view showing a state in which a turbine rotor blade according to an embodiment of the present invention is incorporated in a turbine disk. 本発明の一実施の形態に係る相隣接するタービン動翼の翼先端部の斜視図である。1 is a perspective view of blade tip portions of adjacent turbine blades according to an embodiment of the present invention. FIG. 図4中のタービン動翼の翼先端部をロータ半径方向外側から見た平面図である。It is the top view which looked at the blade front-end | tip part of the turbine rotor blade in FIG. 4 from the rotor radial direction outer side. 図5に示したタービン動翼の翼先端部が連結された状態を表す平面図である。FIG. 6 is a plan view illustrating a state in which blade tip portions of the turbine rotor blade illustrated in FIG. 5 are coupled. 本発明の一実施の形態に係る相隣接するタービン動翼の翼中間部を切り取って表した斜視図である。It is the perspective view which cut and represented the blade | wing intermediate part of the turbine rotor blade which adjoins one embodiment of this invention. 図7中のタービン動翼の翼中間部をロータ半径方向外側から見た平面図(断面図)である。FIG. 8 is a plan view (cross-sectional view) of a blade intermediate portion of the turbine rotor blade in FIG. 7 viewed from the outside in the rotor radial direction. 図7中のタービン動翼の翼中間部をロータ半径方向外側から見た平面図(断面図)である。FIG. 8 is a plan view (cross-sectional view) of a blade intermediate portion of the turbine rotor blade in FIG. 7 viewed from the outside in the rotor radial direction. 翼植え込み部とディスク溝の間隙を利用してタービン動翼を倒した状態のタービン動翼根元部近傍の模式図である。FIG. 3 is a schematic view of the vicinity of a turbine rotor blade root portion in a state in which the turbine rotor blade is tilted using a gap between a blade implantation portion and a disk groove. 本発明のタービン動翼を適用した蒸気タービンの機械構成図である。It is a machine block diagram of the steam turbine to which the turbine rotor blade of this invention is applied.

符号の説明Explanation of symbols

1,1’ タービン動翼
2 翼プロフィル部
2a 翼根部
2b 翼先端部
3,4 インテグラルカバー
5,6 タイボス
7 翼植え込み部
8 タービンディスク
9 ディスク溝
22,23 接触面
25,28 切り欠き部
C ロータ中心軸
I 挿入方向
α〜γ 角度
1, 1 'Turbine blade 2 Blade profile part 2a Blade root part 2b Blade tip part 3, 4 Integral cover 5, 6 Tie boss 7 Blade implantation part 8 Turbine disk 9 Disc groove 22, 23 Contact surface 25, 28 Notch C Rotor center axis I Insertion direction α ~ γ Angle

Claims (4)

タービンディスク外周部に翼回転方向に間隔をもって複数設けられたディスク溝にロータ軸方向から挿入され係合する翼植え込み部と、この翼植え込み部に固定された翼根部から翼先端部にわたってねじれた翼プロフィル部と、この翼プロフィル部の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対の中間連結部材とを有し、ロータ回転時の翼プロフィル部のねじり戻りによって前記中間連結部材を接触させ隣接翼同士を連結するタービン動翼において、
前記背側の中間連結部材は、隣接翼腹側の中間連結部材との接触面の蒸気出口側に、ロータ静止時の状態で前記翼植え込み部の挿入方向に沿った面に沿うかその面よりも前記翼プロフィル部側に退避するように形成した切り欠き部を有する一方、
前記腹側の中間連結部材は、隣接翼背側の中間連結部材との接触面の蒸気入口側に、ロータ静止時の状態で前記翼植え込み部の挿入方向に沿った面に沿うかその面よりも前記翼プロフィル部側に退避するように形成した切り欠き部を有しており、
前記背側及び腹側の切り欠き部は、前記翼植え込み部と前記ディスク溝のガタの範囲で隣接翼を互いに離間する方向に倒した場合、前記翼植え込み部の挿入方向から見て、対向する隣接翼同士の前記背側及び腹側の中間連結部材の間に間隙が生じるように設けられている
ことを特徴とするタービン動翼。
A blade planting portion that is inserted from a rotor axial direction into a plurality of disk grooves provided at intervals in the blade rotation direction on the outer periphery of the turbine disk and engaged, and a blade twisted from the blade root portion fixed to the blade implantation portion to the blade tip portion A profile portion and a pair of intermediate connection members provided on the back side and the abdomen side of the blade length direction predetermined position of the blade profile portion, and the intermediate connection member is rotated by twisting back of the blade profile portion when the rotor rotates. In turbine blades that contact and connect adjacent blades,
The intermediate connecting member on the back side is on the steam outlet side of the contact surface with the intermediate connecting member on the adjacent wing belly side, along the surface along the insertion direction of the wing implantation part in the state when the rotor is stationary, or from the surface thereof While also having a notch portion formed to retract to the wing profile portion side,
The middle connecting member on the abdomen side is on the steam inlet side of the contact surface with the intermediate connecting member on the back side of the adjacent wing, along the surface along the insertion direction of the wing implantation part in a state where the rotor is stationary, or from the surface thereof Also has a notch formed to retract to the wing profile part side,
The dorsal and ventral cutouts face each other when viewed from the insertion direction of the wing implantation part when the adjacent wings are tilted away from each other in the range of play of the wing implantation part and the disk groove. A turbine rotor blade characterized by being provided so that a gap is generated between the intermediate connecting members on the back side and the abdomen side of adjacent blades.
タービンディスク外周部に翼回転方向に間隔をもって複数設けられたディスク溝にロータ軸方向から挿入され係合する翼植え込み部と、この翼植え込み部に固定された翼根部から翼先端部にわたってねじれた翼プロフィル部と、この翼プロフィル部の先端部に設けたインテグラルカバーと、前記翼プロフィル部の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対の中間連結部材とを有し、回転時の翼プロフィル部のねじり戻りによって前記中間連結部材及び前記インテグラルカバーを接触させ隣接翼同士を連結するタービン動翼において、
前記背側の中間連結部材は、隣接翼腹側の中間連結部材との接触面の蒸気出口側に、ロータ静止時の状態で前記翼植え込み部の挿入方向に沿った面に沿うかその面よりも前記翼プロフィル部側に退避するように形成した切り欠き部を有する一方、
前記腹側の中間連結部材は、隣接翼背側の中間連結部材との接触面の蒸気入口側に、ロータ静止時の状態で前記翼植え込み部の挿入方向に沿った面に沿うかその面よりも前記翼プロフィル部側に退避するように形成した切り欠き部を有しており、
前記背側及び腹側の切り欠き部は、前記翼植え込み部と前記ディスク溝のガタの範囲で隣接翼を互いに離間する方向に倒した場合、前記翼植え込み部の挿入方向から見て、対向する隣接翼同士の前記背側及び腹側の中間連結部材の間に間隙が生じるように設けられている
ことを特徴とするタービン動翼。
A blade planting portion that is inserted from a rotor axial direction into a plurality of disk grooves provided at intervals in the blade rotation direction on the outer periphery of the turbine disk and engaged, and a blade twisted from the blade root portion fixed to the blade implantation portion to the blade tip portion A profile portion, an integral cover provided at the tip of the blade profile portion, and a pair of intermediate connecting members provided on the back side and the abdomen side of the blade profile in a predetermined position in the blade length direction. In the turbine blade that connects the adjacent blades by contacting the intermediate connecting member and the integral cover by twisting back of the blade profile portion at the time,
The intermediate connecting member on the back side is on the steam outlet side of the contact surface with the intermediate connecting member on the adjacent wing belly side, along the surface along the insertion direction of the wing implantation part in the state when the rotor is stationary, or from the surface thereof While also having a notch portion formed to retract to the wing profile portion side,
The middle connecting member on the abdomen side is on the steam inlet side of the contact surface with the intermediate connecting member on the back side of the adjacent wing, along the surface along the insertion direction of the wing implantation part in a state where the rotor is stationary, or from the surface thereof Also has a notch formed to retract to the wing profile part side,
The dorsal and ventral cutouts face each other when viewed from the insertion direction of the wing implantation part when the adjacent wings are tilted away from each other in the range of play of the wing implantation part and the disk groove. A turbine rotor blade characterized by being provided so that a gap is generated between the intermediate connecting members on the back side and the abdomen side of adjacent blades.
タービンディスク外周部に翼回転方向に間隔をもって複数設けられたディスク溝にロータ軸方向から挿入され係合する翼植え込み部と、この翼植え込み部に固定された翼根部から翼先端部にわたってねじれた翼プロフィル部と、この翼プロフィル部の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対の中間連結部材とを有し、回転時の翼プロフィル部のねじり戻りによって前記中間連結部材を接触させ隣接翼同士を連結するタービン動翼において、
前記背側の中間連結部材は隣接翼腹側の中間連結部材との接触面の蒸気出口側に、前記腹側の中間連結部材は隣接翼背側の中間連結部材との接触面の蒸気入口側に、それぞれ切り欠き部を有しており、
これら切り欠き部は、その壁面が前記翼植え込み部の挿入方向に沿う面との間になす角度の絶対値がロータ静止時の状態で5°以下となるように形成されている
ことを特徴とするタービン動翼。
A blade planting portion that is inserted from a rotor axial direction into a plurality of disk grooves provided at intervals in the blade rotation direction on the outer periphery of the turbine disk and engaged, and a blade twisted from the blade root portion fixed to the blade planting portion to the blade tip portion It has a profile part and a pair of intermediate connecting members provided on the back side and the abdominal side of the blade profile in a predetermined position in the blade length direction, and contacts the intermediate connecting member by twisting back of the blade profile part during rotation. In turbine blades that connect adjacent blades,
The intermediate connecting member on the back side is on the steam outlet side of the contact surface with the intermediate connecting member on the adjacent blade back side, and the intermediate connecting member on the back side is on the steam inlet side on the contact surface with the intermediate connecting member on the adjacent blade back side. Each has a notch,
These notches are formed so that the absolute value of the angle between the wall surface and the surface along the insertion direction of the wing implantation portion is 5 ° or less when the rotor is stationary. Turbine blades.
タービンディスク外周部に翼回転方向に間隔をもって複数設けられたディスク溝にロータ軸方向から挿入され係合する翼植え込み部と、この翼植え込み部に固定された翼根部から翼先端部にわたってねじれた翼プロフィル部と、この翼プロフィル部の先端部に設けたインテグラルカバーと、前記翼プロフィル部の翼長方向所定位置の背側及び腹側にそれぞれ設けた一対の中間連結部材とを有し、回転時の翼プロフィル部のねじり戻りによって前記中間連結部材及び前記インテグラルカバーを接触させ隣接翼同士を連結するタービン動翼において、
前記背側の中間連結部材は隣接翼腹側の中間連結部材との接触面の蒸気出口側に、前記腹側の中間連結部材は隣接翼背側の中間連結部材との接触面の蒸気入口側に、それぞれ切り欠き部を有しており、
これら切り欠き部は、その壁面が前記翼植え込み部の挿入方向に沿う面との間になす角度の絶対値がロータ静止時の状態で5°以下となるように形成されている
ことを特徴とするタービン動翼。
A blade planting portion that is inserted from a rotor axial direction into a plurality of disk grooves provided at intervals in the blade rotation direction on the outer periphery of the turbine disk and engaged, and a blade twisted from the blade root portion fixed to the blade planting portion to the blade tip portion A profile portion, an integral cover provided at the tip of the blade profile portion, and a pair of intermediate connecting members provided on the back side and the abdomen side of the blade profile in a predetermined position in the blade length direction. In the turbine blade that connects the adjacent blades by contacting the intermediate connecting member and the integral cover by twisting back of the blade profile portion at the time,
The intermediate connecting member on the back side is on the steam outlet side of the contact surface with the intermediate connecting member on the adjacent blade back side, and the intermediate connecting member on the back side is on the steam inlet side on the contact surface with the intermediate connecting member on the adjacent blade back side. Each has a notch,
These notches are formed so that the absolute value of the angle between the wall surface and the surface along the insertion direction of the wing implantation portion is 5 ° or less when the rotor is stationary. Turbine blades.
JP2006005026A 2006-01-12 2006-01-12 Turbine blade Pending JP2007187053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005026A JP2007187053A (en) 2006-01-12 2006-01-12 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005026A JP2007187053A (en) 2006-01-12 2006-01-12 Turbine blade

Publications (1)

Publication Number Publication Date
JP2007187053A true JP2007187053A (en) 2007-07-26

Family

ID=38342394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005026A Pending JP2007187053A (en) 2006-01-12 2006-01-12 Turbine blade

Country Status (1)

Country Link
JP (1) JP2007187053A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109272A (en) * 2012-11-30 2014-06-12 General Electric Co <Ge> Tear-drop shaped part-span shroud
JP2014118974A (en) * 2012-12-17 2014-06-30 General Electric Co <Ge> Tapered part-span shroud
JP2014129816A (en) * 2014-02-27 2014-07-10 Mitsubishi Heavy Ind Ltd Moving blade and rotating machine
CN104727858A (en) * 2013-12-20 2015-06-24 通用电气公司 Snubber configurations for turbine rotor blades
JP2015190468A (en) * 2014-03-27 2015-11-02 ゼネラル・エレクトリック・カンパニイ Bucket airfoil for turbomachine
JP2016084780A (en) * 2014-10-28 2016-05-19 三菱重工コンプレッサ株式会社 Shroud cut amount determining method and method for manufacturing rotor
CN106948867A (en) * 2015-12-28 2017-07-14 通用电气公司 Turbine rotor blade with shield
CN107035422A (en) * 2015-12-28 2017-08-11 通用电气公司 Across the turbine rotor blade of shield in band
CN114542192A (en) * 2020-11-25 2022-05-27 三菱重工业株式会社 Steam turbine rotor blade, method for manufacturing steam turbine rotor blade, and method for modifying steam turbine rotor blade

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109272A (en) * 2012-11-30 2014-06-12 General Electric Co <Ge> Tear-drop shaped part-span shroud
JP2014118974A (en) * 2012-12-17 2014-06-30 General Electric Co <Ge> Tapered part-span shroud
CN104727858A (en) * 2013-12-20 2015-06-24 通用电气公司 Snubber configurations for turbine rotor blades
JP2014129816A (en) * 2014-02-27 2014-07-10 Mitsubishi Heavy Ind Ltd Moving blade and rotating machine
JP2015190468A (en) * 2014-03-27 2015-11-02 ゼネラル・エレクトリック・カンパニイ Bucket airfoil for turbomachine
JP2016084780A (en) * 2014-10-28 2016-05-19 三菱重工コンプレッサ株式会社 Shroud cut amount determining method and method for manufacturing rotor
CN106948867A (en) * 2015-12-28 2017-07-14 通用电气公司 Turbine rotor blade with shield
CN107035422A (en) * 2015-12-28 2017-08-11 通用电气公司 Across the turbine rotor blade of shield in band
CN106948867B (en) * 2015-12-28 2021-06-01 通用电气公司 Shrouded turbine rotor blade
CN107035422B (en) * 2015-12-28 2021-10-12 通用电气公司 Turbine rotor blade with midspan shroud
CN114542192A (en) * 2020-11-25 2022-05-27 三菱重工业株式会社 Steam turbine rotor blade, method for manufacturing steam turbine rotor blade, and method for modifying steam turbine rotor blade
JP2022083824A (en) * 2020-11-25 2022-06-06 三菱重工業株式会社 Steam turbine rotor blade, methods for manufacturing and remodeling steam turbine rotor blade
US11739648B2 (en) 2020-11-25 2023-08-29 Mitsubishi Heavy Industries, Ltd. Steam turbine rotor blade and manufacturing method and remodeling method of steam turbine rotor blade
JP7352534B2 (en) 2020-11-25 2023-09-28 三菱重工業株式会社 Steam turbine rotor blade, manufacturing method and modification method of steam turbine rotor blade

Similar Documents

Publication Publication Date Title
JP2007187053A (en) Turbine blade
JP4869616B2 (en) Steam turbine blade, steam turbine rotor, steam turbine using the same, and power plant
JP4058906B2 (en) Steam turbine
JP5230968B2 (en) Rotor blade vibration damper system
RU2515582C2 (en) Steam-turbine engine low-pressure stage working blade
US8540488B2 (en) Turbine blade damping device with controlled loading
US7946823B2 (en) Steam turbine rotating blade
JP4765882B2 (en) Steam turbine blades
US8096775B2 (en) Steam turbine rotating blade for a low pressure section of a steam turbine engine
JP5546816B2 (en) Steam turbine rotor blade for the low pressure section of a steam turbine engine
JP6066948B2 (en) Shroud, blades, and rotating machinery
EP2977547A1 (en) Rotor blade dovetail with rounded bearing surfaces
US7946822B2 (en) Steam turbine rotating blade
KR101561305B1 (en) Turbine moving blade and fixing structure of the same
US7946821B2 (en) Steam turbine rotating blade
JP4299301B2 (en) Turbine blade
CN102317578A (en) Blade union of a turbo machine
JP2006144575A (en) Axial flow type rotary fluid machine
US10364703B2 (en) Annular element of a turbomachine casing
JPH06117201A (en) Assembly method for turbine moving blade
US7946820B2 (en) Steam turbine rotating blade
JP2006112303A (en) Turbine rotor and steam turbine
JP2005127264A (en) Group of moving blades of turbine for driving machine and turbine for driving machine
JP2015075070A (en) Steam turbine
JP6134878B2 (en) Turbine vane damping structure