JP2007186743A - Member coated with multilayered film - Google Patents

Member coated with multilayered film Download PDF

Info

Publication number
JP2007186743A
JP2007186743A JP2006004435A JP2006004435A JP2007186743A JP 2007186743 A JP2007186743 A JP 2007186743A JP 2006004435 A JP2006004435 A JP 2006004435A JP 2006004435 A JP2006004435 A JP 2006004435A JP 2007186743 A JP2007186743 A JP 2007186743A
Authority
JP
Japan
Prior art keywords
film
titanium
layer
gas
titanium carbonitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004435A
Other languages
Japanese (ja)
Inventor
Yuzo Fukunaga
有三 福永
Akira Tanaka
彰 田中
Masayuki Imai
真之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006004435A priority Critical patent/JP2007186743A/en
Publication of JP2007186743A publication Critical patent/JP2007186743A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member coated with a multi-layered film, which has improved cracking resistance and abrasion resistance. <P>SOLUTION: The member coated with the multi-layered film comprises: a single-layer film made from any one compound of a carbide, a nitride, a carbonitride, an oxide, a carboxide, a nitroxide and carbonitroxide of one or more elements selected from the group consisting of metals belonging to the groups 4a, 5a and 6a of the periodic table, or a multilayer film made from two or more of the above compounds, directly formed on a substrate; and at least two or more unit layers coated on the above film, while the unit layer comprises a titanium carbonitride layer and a titanium boronitride layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、耐摩耗性と耐クラック性の優れた多層膜被覆部材に関する。   The present invention relates to a multilayer coating member having excellent wear resistance and crack resistance.

被覆部材の耐摩耗性等の改良を課題とした技術が、特許文献1から特許文献3に開示されている。特許文献1、2には、炭窒化チタン層と硼窒化チタン層との多層構造の皮膜を有し、炭窒化チタン層の配向性は、(422)面と(311)面の配向性指数がともに1.3以上、3以下であり、特許文献2は、中間層として硼窒化チタンをTiBxNyとして、x、yが原子%であり、0.001<x/(x+y)<0.04の関係を有する硼窒化チタン皮膜が開示され、特許文献3は、膜厚3〜30μmのアスペクト比5以上の柱状結晶からなる炭窒化チタン層を有した被覆超硬合金工具に関する技術を開示されている。   Techniques aimed at improving the wear resistance of the covering member are disclosed in Patent Documents 1 to 3. Patent Documents 1 and 2 have a multi-layered film of a titanium carbonitride layer and a titanium boronitride layer, and the orientation of the titanium carbonitride layer has an orientation index of (422) plane and (311) plane. Both are 1.3 or more and 3 or less, and Patent Document 2 discloses that titanium boronitride is TiBxNy as an intermediate layer, x and y are atomic%, and 0.001 <x / (x + y) <0.04. A titanium boronitride film having a thickness of 3 to 30 μm is disclosed, and Patent Document 3 discloses a technique related to a coated cemented carbide tool having a titanium carbonitride layer formed of a columnar crystal having an aspect ratio of 5 or more with a film thickness of 3 to 30 μm.

特開平11−140647号公報JP-A-11-140647 US2005/0042482A1US2005 / 0042482A1 特開2000−141107号公報JP 2000-141107 A

本願発明は、耐クラック性と耐摩耗性を改善した多層膜被覆部材を提供することである。   This invention is providing the multilayer film coating | coated member which improved crack resistance and abrasion resistance.

本願発明は、基体の直上に周期律表の4a、5a、6a族金属から選ばれる1種以上の元素の炭化物、窒化物、炭窒化物、酸化物、炭酸化物、窒酸化物および炭窒酸化物のいずれか1種の単層皮膜又は2種以上からなる多層皮膜を有し、該皮膜上に炭窒化チタンと硼窒化チタンの層を単位層とし、該単位層を少なくとも2単位層以上被覆していることを特徴とする多層膜被覆部材である。上記構成を採用することにより、耐クラック性と耐摩耗性に優れた多層膜被覆部材を実現する。即ち、炭窒化チタンの結晶粒界に沿って伝播したクラックが硼窒化チタンにより遮断され、耐クラック性を向上させる。更に、耐摩耗性に優れる炭窒化チタンと膜硬度の硬い硼窒化チタンを2単位以上の積層構造にすることにより、更に耐摩耗性に優れた多層膜被覆部材が得られる。   The present invention relates to a carbide, nitride, carbonitride, oxide, carbonate, nitride oxide and carbonitride oxidation of one or more elements selected from the group 4a, 5a and 6a metals of the periodic table immediately above the substrate. A single-layer film or a multilayer film composed of two or more kinds of materials, and a layer of titanium carbonitride and titanium boronitride as a unit layer on the film and covering at least two unit layers It is the multilayer film covering member characterized by having carried out. By adopting the above configuration, a multilayer coating member having excellent crack resistance and wear resistance is realized. That is, the crack propagated along the grain boundary of titanium carbonitride is blocked by titanium boronitride, and the crack resistance is improved. Furthermore, a multilayer film-coated member having further excellent wear resistance can be obtained by forming a laminated structure of two or more units of titanium carbonitride having excellent wear resistance and titanium boronitride having a high film hardness.

本願発明の多層膜被覆部材は、該単位層を構成する硼窒化チタンがTixByN、但しx、yは重量%であり、0.01≦y/(x+y)≦0.9であることを特徴とする多層膜被覆部材である。また、該単位層の炭窒化チタンが柱状組織であり、更に、(422)面又は(311)面からの等価X線回折強度比PRが最大であることにより、耐摩耗性に優れた多層膜被覆部材が得られる。   The multilayer film covering member of the present invention is characterized in that the titanium boronitride constituting the unit layer is TixByN, where x and y are% by weight, and 0.01 ≦ y / (x + y) ≦ 0.9. The multilayer film covering member. In addition, the titanium carbonitride of the unit layer has a columnar structure, and the equivalent X-ray diffraction intensity ratio PR from the (422) plane or the (311) plane is maximized, so that the multilayer film has excellent wear resistance. A covering member is obtained.

本願発明は、耐クラック性と耐摩耗性を改善した多層膜被覆部材を提供することができた。本願発明の単位層を被覆した多層膜被覆部材を切削工具に適用した場合、耐久特性の優れた多層膜被覆工具を得ることができた。   The present invention could provide a multilayer coating member with improved crack resistance and wear resistance. When the multilayer coating member coated with the unit layer of the present invention was applied to a cutting tool, a multilayer coating tool having excellent durability characteristics could be obtained.

本願発明は、炭窒化チタンと硼窒化チタン多層膜を2単位層以上被覆することによって、炭窒化チタンの結晶粒界に沿って伝わるクラックの伝播が硼窒化チタンにより遮断され、耐クラック性が向上する。また、少なくとも2単位層以上被覆することでクラック伝播の遮断効果が有効に作用し、良好な耐クラック性と耐摩耗性を実現する。炭窒化チタン膜は、膜厚方向に柱状結晶が成長するため、耐摩耗性と靭性のバランスに優れた特性を示す。しかし、炭窒化チタン膜単独では、基体に対して垂直方向の結晶粒界であることから、例えば、切削工具として使用した場合、切削時の切刃の食い付き時や断続切削時の機械的衝撃により皮膜にクラックが発生し、炭窒化チタン膜の結晶粒界に沿ってクラックの伝播が起こる。このため、クラックの成長が容易になり、刃先の欠損が発生しやすくなるという不都合がある。そこで、本願発明は、膜硬度が硬い硼窒化チタンとの積層を行い、2単位層以上被覆することによって、クラックの伝播を遮断して、耐クラック性が格段に改善されるのである。   In the present invention, by coating two or more unit layers of titanium carbonitride and titanium boronitride multilayer film, propagation of cracks along the crystal grain boundary of titanium carbonitride is blocked by titanium boronitride, and crack resistance is improved. To do. Further, by covering at least two unit layers or more, the effect of blocking the propagation of cracks acts effectively, realizing good crack resistance and wear resistance. Since the titanium carbonitride film grows columnar crystals in the film thickness direction, the titanium carbonitride film exhibits excellent characteristics in a balance between wear resistance and toughness. However, since the titanium carbonitride film alone is a grain boundary in a direction perpendicular to the substrate, for example, when used as a cutting tool, the mechanical impact at the time of cutting edge biting or intermittent cutting during cutting As a result, a crack is generated in the film, and the crack propagates along the crystal grain boundary of the titanium carbonitride film. For this reason, there is an inconvenience that the growth of cracks becomes easy and the chipping of the cutting edge is likely to occur. Therefore, in the present invention, by laminating with titanium boronitride having a high film hardness and covering two or more unit layers, the propagation of cracks is blocked and the crack resistance is remarkably improved.

本願発明の多層膜被覆部材において、該単位層を構成する硼窒化チタンは、TixByN、但しx、yは重量%が、0.01≦y/(x+y)≦0.9、であることにより、単位層の硼窒化チタンの皮膜硬度が向上して、機械的衝撃によるクラックの伝播が抑えられ、耐クラック性と耐摩耗性に優れることから、好ましい形態である。また、上記の関係にあるとき、硼窒化チタンは、結晶粒径が細かく層状組織になる傾向がある。従って、積層構造を形成する硼窒化チタンが、炭窒化チタンの結晶粒界に生じるクラックを遮断する効果を示す。一方、y/(x+y)<0.01の場合、硼窒化チタンの硼素含有量が少なく、結晶性が高くなり、膜厚方向に長く成長し易くなるため、耐クラック性が劣る場合がある。また、y/(x+y)>0.9の場合、単位層の硼窒化チタンが脆くなり、靭性が劣る場合がある。   In the multilayer film-coated member of the present invention, the titanium boronitride constituting the unit layer is TixByN, where x and y are weight percentages 0.01 ≦ y / (x + y) ≦ 0.9, This is a preferred embodiment because the film hardness of the unit layer titanium boronitride is improved, the propagation of cracks due to mechanical impact is suppressed, and the crack resistance and wear resistance are excellent. Further, when the above relationship is established, titanium boronitride tends to have a fine grain size and a layered structure. Therefore, the titanium boronitride forming the laminated structure has an effect of blocking cracks generated at the crystal grain boundaries of titanium carbonitride. On the other hand, when y / (x + y) <0.01, the boron content of titanium boronitride is small, the crystallinity becomes high, and the film tends to grow long in the film thickness direction, so that the crack resistance may be inferior. Further, when y / (x + y)> 0.9, the titanium boronitride of the unit layer becomes brittle and the toughness may be inferior.

本願発明の多層膜被覆部材において、該単位層を構成する炭窒化チタンが、柱状組織であることにより、炭化チタンの耐摩耗性と靭性のバランスが最も優れることから、多層膜被覆部材の特性が最も優れると考えられる。ここで、柱状組織とは、単位層を構成する炭窒化チタンの粒径が、炭窒化チタンの膜厚に対して1倍以下のものとする。皮膜の単位層数の測定と柱状組織の有無、粒径の測定は、走査電子顕微鏡((株)日立製作所製S−2300型、以下SEMと記す。)の写真により測定した。単位層数は、皮膜を垂直に破断して、倍率30k倍で撮影し、単位層数を数えた。粒径の測定は、同様に写真から求めた。測定方法は、測定する膜の中心に基体と平行に長さT(μm)の直線を引き、直線上に有る柱状組織の柱の数を結晶粒子数Dとして測定し、TをDで割ったものを、平均結晶粒径とした。炭化チタンが柱状組織でない場合、多層膜の耐摩耗性と靭性が劣り、例えば工具として使用した場合、容易に摩耗し、チッピングが発生し、多層膜の耐久性が劣る。
単位層を構成する炭窒化チタンは、(422)面又は(311)面からの等価X線回折強度比PRが最大であることにより、炭窒化チタンの粒径が細かくなることから、微細化効果により耐摩耗性が向上する。炭窒化チタンのX線回折は、炭窒化チタンの膜組成に近い物質のJCPDSファイル(Powder Diffraction File Published by JCPDS International Center for Diffraction Data)のデーターを用いて同様の方法で測定した。即ち、炭窒化チタンのX線回折はJCPDSファイルに記載がないため、TiCとTiNのX線回折データー(JCPDSファイルNo.29−1361とNo.38−1420)及び皮膜を実測して得たX線回折パターンから求めた表1の面指数と2θ値を基準にして同定した。
In the multilayer coating member of the present invention, since the titanium carbonitride constituting the unit layer has a columnar structure, the balance between wear resistance and toughness of titanium carbide is the best, so the characteristics of the multilayer coating member are It is considered the best. Here, the columnar structure means that the particle size of titanium carbonitride constituting the unit layer is one time or less than the film thickness of titanium carbonitride. The measurement of the number of unit layers of the film, the presence or absence of a columnar structure, and the measurement of the particle size were measured by a photograph of a scanning electron microscope (S-2300, manufactured by Hitachi, Ltd., hereinafter referred to as SEM). The number of unit layers was obtained by breaking the film vertically and photographing at a magnification of 30k, and counting the number of unit layers. The measurement of the particle size was similarly determined from the photograph. In the measurement method, a straight line having a length T (μm) is drawn in parallel with the substrate at the center of the film to be measured, the number of columns of the columnar structure on the straight line is measured as the number D of crystal grains, and T is divided by D. This was the average crystal grain size. When titanium carbide is not a columnar structure, the wear resistance and toughness of the multilayer film are inferior. For example, when used as a tool, it wears easily, chipping occurs, and the durability of the multilayer film is inferior.
The titanium carbonitride composing the unit layer has a finer particle size because the particle size of the titanium carbonitride becomes fine due to the maximum equivalent X-ray diffraction intensity ratio PR from the (422) plane or the (311) plane. Improves wear resistance. X-ray diffraction of titanium carbonitride was measured by the same method using data of a JCPDS file (Powder Diffraction File Published by JCPDS International Center for Diffraction Data) of a substance close to the film composition of titanium carbonitride. That is, since X-ray diffraction of titanium carbonitride is not described in the JCPDS file, X-ray diffraction data of TiC and TiN (JCPDS files No. 29-1361 and No. 38-1420) and X obtained by actually measuring the film Identification was made based on the surface index and 2θ values in Table 1 obtained from the line diffraction pattern.

Figure 2007186743
Figure 2007186743

ここでX線回折パターンはX線源にCuKα線(λ=0.15405nm)を用い、試料の工具表面平坦部の皮膜部分を測定面として、2θ−θ走査法により2θ=10〜145度の範囲で測定した。バックグランドは装置に内蔵されたソフトにより除去した。また、炭窒化チタンの格子定数が0.42〜0.44nmの範囲で変動するため、表1の2θ値を基準にして測定したX線回折ピークに現れているTiC、TiN、WC(JCPDSファイルNo.25−1047)等のピークとの位置関係も考慮して炭窒化チタンのX線回折ピークを決定した。等価X線回折強度比PR(hkl)は炭窒化チタンの(hkl)面からのX線回折ピーク強度を定量的に評価するために式1により定義した。 Here, the X-ray diffraction pattern uses CuKα 1 line (λ = 0.15405 nm) as the X-ray source, and the film portion of the flat part of the tool surface of the sample is measured as 2θ = 10 to 145 degrees by the 2θ-θ scanning method. It measured in the range of. The background was removed by software built in the device. Further, since the lattice constant of titanium carbonitride varies in the range of 0.42 to 0.44 nm, TiC, TiN, WC (JCPDS file) appearing in the X-ray diffraction peak measured with reference to the 2θ value in Table 1 The X-ray diffraction peak of titanium carbonitride was determined in consideration of the positional relationship with peaks such as No. 25-1047). The equivalent X-ray diffraction intensity ratio PR (hkl) was defined by Equation 1 in order to quantitatively evaluate the X-ray diffraction peak intensity from the (hkl) plane of titanium carbonitride.

Figure 2007186743
Figure 2007186743

この値は、表1に記載された等方粒子のX線回折ピーク強度I0(hkl)に対する実測した皮膜のX線回折ピーク強度I(hkl)の相対強度を示している。PR(hkl)値が大きい程(hkl)面からのX線回折ピーク強度が他のX線回折ピーク強度よりも強く、皮膜の(hkl)面が基体と平行方向に強く配向していることを示している。ここでΣは(111)、(200)、(220)、(311)、(222)、(422)、(420)、(511)の8個の(hkl)で和を取ることを示している。   This value indicates the relative intensity of the measured X-ray diffraction peak intensity I (hkl) of the film with respect to the X-ray diffraction peak intensity I0 (hkl) of the isotropic particles described in Table 1. The larger the PR (hkl) value, the stronger the X-ray diffraction peak intensity from the (hkl) plane is than the other X-ray diffraction peak intensities, and the (hkl) plane of the coating is strongly oriented in the direction parallel to the substrate. Show. Here, Σ indicates the sum of eight (hkl) of (111), (200), (220), (311), (222), (422), (420), and (511). Yes.

単位層の炭窒化チタンと硼窒化チタン層の硼素含有量であるy値は、測定試料を17度又は5度斜め研磨し、各皮膜部分の組成をエネルギー分散形X線分析装置(以下、EDXと記す。)を用いて測定した。SEMに付属のEDXの測定領域は約2μm弱と大きいため、硼窒化チタン層単独もしくは、炭窒化チタンと硼窒化チタン層の厚さが約2μm以上の時は硼窒化チタン層単独の膜中の硼素含有量を測定できるが、硼窒化チタン層単独もしくは、炭窒化チタンと硼窒化チタン層の膜厚が約2μm未満であるときは膜単独の硼素含有量を測定することは難しい。この時は、スポット径1μmの電子線を基体表面に略平行に長さ10μm走査し、その間の平均値を求めることにより、多層膜領域全体の平均硼素量を測定することが出来る。これを用いて単位層を構成する膜厚比で按分することにより炭窒化チタンと硼窒化チタン層単独の硼素含有量を計算することができる。また、上記分析を、膜表面部、膜中間部及び膜下面部の3点で測定した。また、この場合も、透過電子顕微鏡(以下、TEMと記す。)を用いることによって各膜単独の硼素含有量を分析することができる。   The y value, which is the boron content of the titanium carbonitride and boronitride layers of the unit layer, is determined by subjecting the measurement sample to 17 ° or 5 ° slant polishing, and determining the composition of each coating portion by an energy dispersive X-ray analyzer (hereinafter referred to as EDX). ) And measured. Since the measurement area of the EDX attached to the SEM is as large as about 2 μm or less, when the thickness of the titanium boronitride layer alone or the titanium carbonitride and titanium boronitride layers is about 2 μm or more, Although the boron content can be measured, it is difficult to measure the boron content of the film alone when the film thickness of the titanium boronitride layer alone or the titanium carbonitride and titanium boronitride layers is less than about 2 μm. At this time, an average amount of boron in the entire multilayer film region can be measured by scanning an electron beam having a spot diameter of 1 μm for a length of 10 μm substantially parallel to the surface of the substrate and obtaining an average value therebetween. Using this, the boron content of the titanium carbonitride and the titanium boronitride layer alone can be calculated by proportionally dividing by the film thickness ratio constituting the unit layer. Moreover, the said analysis was measured at three points, a film | membrane surface part, a film | membrane intermediate part, and a film | membrane lower surface part. Also in this case, the boron content of each film can be analyzed by using a transmission electron microscope (hereinafter referred to as TEM).

単位層の炭窒化チタンと硼窒化チタンの膜厚は、炭窒化チタンの平均膜厚をa(μm)、硼窒化チタンの膜厚をb(μm)とした場合、0.1<b/(a+b)<0.9の関係の場合が好ましく、0.12<b/(a+b)<0.7の関係の場合が更に好ましい。0.15<b/(a+b)<0.5の関係の場合が最も好ましい。0.1<b/(a+b)<0.9の場合、クラックを遮断する硼窒化チタン膜の膜厚が十分であり、クラック遮断効果が優れることから、耐クラック性と耐摩耗性に優れた多層膜被覆部材が得られる。b/(a+b)≦0.1の場合、クラックを遮断する硼窒化チタン膜の膜厚が薄いことから、遮断効果が得られない。また、b/(a+b)≧0.9の場合、硼窒化チタン膜の膜厚が厚いことから、皮膜が脆くなりチッピングや欠損等の問題が起きる。0.12<b/(a+b)<0.7の場合、更にクラック遮断効果があがる。0.15<b/(a+b)<0.5の場合、最もクラック遮断効果があり、例えば、工具として使用した場合、耐クラック性と耐摩耗性に優れた多層膜被覆工具が得られる。   The thicknesses of titanium carbonitride and titanium boronitride in the unit layer are 0.1 <b / (when the average thickness of titanium carbonitride is a (μm) and the thickness of titanium boronitride is b (μm). The relationship of a + b) <0.9 is preferable, and the relationship of 0.12 <b / (a + b) <0.7 is more preferable. The case of the relationship of 0.15 <b / (a + b) <0.5 is most preferable. In the case of 0.1 <b / (a + b) <0.9, the thickness of the titanium boronitride film that blocks cracks is sufficient, and the crack blocking effect is excellent, so that the crack resistance and wear resistance are excellent. A multilayer coating member is obtained. In the case of b / (a + b) ≦ 0.1, since the titanium boronitride film that blocks cracks is thin, the blocking effect cannot be obtained. Further, when b / (a + b) ≧ 0.9, the film thickness of the titanium boronitride film is large, so that the film becomes brittle and problems such as chipping and chipping occur. In the case of 0.12 <b / (a + b) <0.7, the crack blocking effect is further improved. In the case of 0.15 <b / (a + b) <0.5, the most effective crack blocking effect is obtained. For example, when used as a tool, a multilayer coated tool having excellent crack resistance and wear resistance can be obtained.

本願発明の多層膜被覆部材は、2単位層以上被覆した多層膜被覆部より上層側に酸化アルミニウムまたは酸化ジルコニウムを被覆することにより、被膜の特性をあげることができる。ここで用いる酸化アルミニウム膜として、κ型酸化アルミニウム単層膜またはα型酸化アルミニウム単層膜を用いることができる。また、κ型酸化アルミニウムとα型酸化アルミニウムとの混合膜でもよい。また、κ型酸化アルミニウム及び/又はα型酸化アルミニウムと、γ型酸化アルミニウム、θ型酸化アルミニウム、σ型酸化アルミニウム、χ型酸化アルミニウムの少なくとも一種とからなる混合膜でもよい。また、酸化アルミニウムと酸化シリコン等に代表される他の酸化物との混合膜でもよい。本発明の多層膜被覆部材は、例えば、化学蒸着(以下、熱CVDと記す。)法又はプラズマを付加した化学蒸着(以下、PACVDと記す。)法等の通常の成膜方法を用いて作製することができる。用途は切削工具に限るものではなく、多層膜を被覆した耐摩耗材、金型または溶湯部品等でもよい。   In the multilayer film-coated member of the present invention, the characteristics of the film can be improved by coating aluminum oxide or zirconium oxide on the upper layer side of the multilayer film coated portion coated with two or more unit layers. As the aluminum oxide film used here, a κ-type aluminum oxide single layer film or an α-type aluminum oxide single layer film can be used. Alternatively, a mixed film of κ-type aluminum oxide and α-type aluminum oxide may be used. Alternatively, a mixed film composed of κ-type aluminum oxide and / or α-type aluminum oxide and at least one of γ-type aluminum oxide, θ-type aluminum oxide, σ-type aluminum oxide, and χ-type aluminum oxide may be used. Alternatively, a mixed film of aluminum oxide and another oxide typified by silicon oxide or the like may be used. The multilayer film-coated member of the present invention is produced using a normal film forming method such as a chemical vapor deposition (hereinafter referred to as thermal CVD) method or a chemical vapor deposition (hereinafter referred to as PACVD) method with plasma. can do. The application is not limited to cutting tools, but may be wear-resistant materials, molds or molten metal parts coated with a multilayer film.

(実施例1)
重量%でWC:72%、TiC:8%、(TaNb)C:11%、Co:9%の組成よりなる超硬合金製インサート工具をCVD製膜装置内にセットし、その表面に、熱CVD法により被覆を行った。基体直上の皮膜であるTiN皮膜、Ti(CN)皮膜は、熱CVD法によって被覆した。その被覆条件は、TiN皮膜をH2キャリアーガス、N2ガスとTiCl4ガスとを原料ガスに用いて所定の温度条件において所定の膜厚に被覆した。Ti(CN)皮膜を、H2キャリアーガス、TiCl4ガスとCH3CNガスとを原料ガスに用に用いて所定の温度条件において所定の膜厚に被覆した。表2、表3にTiN皮膜及びTi(CN)皮膜の温度条件と膜厚を示す。
Example 1
A cemented carbide insert tool having a composition of WC: 72%, TiC: 8%, (TaNb) C: 11%, Co: 9% by weight% is set in the CVD film forming apparatus, and heat is applied to the surface. Coating was performed by the CVD method. The TiN film and Ti (CN) film, which are films directly on the substrate, were coated by a thermal CVD method. The coating condition was that the TiN film was coated to a predetermined film thickness under a predetermined temperature condition using H2 carrier gas, N2 gas and TiCl4 gas as source gases. The Ti (CN) film was coated to a predetermined film thickness under a predetermined temperature condition using H2 carrier gas, TiCl4 gas and CH3CN gas as source gases. Tables 2 and 3 show the temperature conditions and film thicknesses of the TiN film and Ti (CN) film.

Figure 2007186743
Figure 2007186743

Figure 2007186743
Figure 2007186743

次に、(TiB)N皮膜とTi(CN)皮膜とを単位層としたとき、これを所定の回数繰り返し積層した。(TiB)N皮膜は、H2キャリアーガス、TiCl4ガスとBCl3ガスとN2ガスとを原料ガスに用いて所定の温度条件において所定の膜厚に被覆した。Ti(CN)膜は、H2キャリアーガス、TiCl4ガスとCH3CNガスとを原料ガスに用いて所定の温度条件において所定の膜厚に被覆した。表2、表3に(TiB)N皮膜及びTi(CN)皮膜の温度条件、積層の繰り返し回数と積層構造の膜厚を示す。上記の基体直上の皮膜と単位層の積層構造を有する皮膜により、本発明例1から9を作製した。
従来例10から12は、単位層の積層構造が本発明例と異なる構成した。従来例10は、(TiB)N皮膜の単層とし、膜厚は6.0μm厚さで形成した。従来例11は、Zr(CN)皮膜とTi(CN)皮膜とを単位層としたとき、これを10回繰り返して積層した。単位層の総膜厚は8.0μmとした。従来例12は、AlN皮膜とTi(CN)皮膜とを単位層としたとき、これを10回繰り返して積層した。単位層の総膜厚は8.0μmとした。上記の本発明例1から9、従来例10から12は、上層皮膜の積層は行わなかった。
Next, when a (TiB) N film and a Ti (CN) film were used as unit layers, they were repeatedly laminated a predetermined number of times. The (TiB) N film was coated to a predetermined film thickness under a predetermined temperature condition using H2 carrier gas, TiCl4 gas, BCl3 gas, and N2 gas as source gases. The Ti (CN) film was coated to a predetermined film thickness under a predetermined temperature condition using H2 carrier gas, TiCl4 gas and CH3CN gas as source gases. Tables 2 and 3 show the temperature conditions of the (TiB) N film and Ti (CN) film, the number of repetitions of lamination, and the film thickness of the laminated structure. Invention Examples 1 to 9 were produced from the above-mentioned film directly on the substrate and a film having a laminated structure of unit layers.
Conventional examples 10 to 12 are different from the examples of the present invention in the laminated structure of the unit layers. Conventional Example 10 was a single layer of (TiB) N film, and the film thickness was 6.0 μm. In Conventional Example 11, when a Zr (CN) film and a Ti (CN) film were used as unit layers, this was repeated 10 times. The total thickness of the unit layer was 8.0 μm. In Conventional Example 12, when an AlN film and a Ti (CN) film were used as unit layers, this was repeated 10 times. The total thickness of the unit layer was 8.0 μm. In the above Invention Examples 1 to 9 and Conventional Examples 10 to 12, the upper film was not laminated.

表3に本発明例1から9、従来例10の硼素含有量をEDXで測定した結果を示す。本発明例1から9の単位層における硼窒化チタンのx値、y値は、0.01≦y/(x+y)≦0.9の関係であった。一方、従来例11、12は、硼素が含有量されなかった。また、Ti(CN)皮膜の結晶構造とPR値の結果を表3に併記する。表3より、本発明例1から9のTi(CN)皮膜の結晶構造は、柱状組織であり、最強PRは、(311)面又は(422)面であった。一方、従来例10から12は、結晶構造は、柱状組織であったが、最強PRは、(220)面であった。
本発明例1から9、従来例10から12の切削工具各10個を用いて、切削条件1に示す条件で衝撃回数を3000回に設定した切削後に、工具のすくい面のクラックを倍率200倍の光学顕微鏡により観察した。観察結果を表4に示す。
(切削条件1)
被削材:SCM437(A)4つ溝入り
工具形状:WNMG080412
切削速度:200m/min
送り:0.40mm/回転
切り込み:2.5mm
切削液:水溶性液を使用
Table 3 shows the results of measuring the boron contents of Invention Examples 1 to 9 and Conventional Example 10 by EDX. The x and y values of titanium boronitride in the unit layers of Invention Examples 1 to 9 were in a relationship of 0.01 ≦ y / (x + y) ≦ 0.9. On the other hand, Conventional Examples 11 and 12 did not contain boron. Table 3 also shows the crystal structure of the Ti (CN) film and the PR value. From Table 3, the crystal structures of the Ti (CN) films of Invention Examples 1 to 9 were columnar structures, and the strongest PR was the (311) plane or the (422) plane. On the other hand, in the conventional examples 10 to 12, the crystal structure was a columnar structure, but the strongest PR was the (220) plane.
Using 10 cutting tools of Invention Examples 1 to 9 and Conventional Examples 10 to 12, respectively, the number of impacts was set to 3000 under the conditions shown in Cutting Condition 1, and then the rake face crack of the tool was magnified 200 times. Were observed with an optical microscope. The observation results are shown in Table 4.
(Cutting condition 1)
Work material: SCM437 (A) with 4 grooves Tool shape: WNMG080412
Cutting speed: 200 m / min
Feed: 0.40mm / rotation Cut: 2.5mm
Cutting fluid: Uses water-soluble fluid

Figure 2007186743
Figure 2007186743

表4より、本発明例1から9は、すくい面にクラックの発生がなく欠損も見られなかった。本発明例1から9は、耐摩耗性に優れる炭窒化チタンと膜硬度の硬い硼窒化チタンを、少なくとも2単位層以上被覆しているから、炭窒化チタンの結晶粒界に沿って伝播したクラックが硼窒化チタンにより遮断され、耐クラック性が向上した。また、単位層を構成する硼窒化チタンのx値、y値が0.01≦y/(x+y)≦0.9、であることから、硼窒化チタンは、結晶粒径が細かく層状組織になり、炭窒化チタンの結晶粒界を遮断して、クラック伝播を遮断する効果を示した。硼窒化チタンと炭窒化チタンとの積層構造において、炭窒化チタンが柱状組織であり、更に(422)面又は(311)面からの等価X線回折強度比PRが最大であることにより、耐クラック性に優れた。
従来例10は、全ての工具のすくい面にクラックが発生し、10試料中8試料でクラックが原因と見られる欠損が起きた。従来例11は、10試料中8試料でクラックが発生し、10試料中6試料でクラックが原因と見られる欠損が起きた。従来例12は、10試料中4試料でクラックが発生し、10試料中4試料でクラックが原因と見られる欠損が起きた。
From Table 4, Examples 1 to 9 of the present invention showed no cracks on the rake face and no defects. In Invention Examples 1 to 9, since titanium carbonitride having excellent wear resistance and titanium boronitride having a high film hardness are coated at least two unit layers, cracks propagated along the crystal grain boundary of titanium carbonitride Was blocked by titanium boronitride, and the crack resistance was improved. In addition, since the x and y values of titanium boronitride constituting the unit layer are 0.01 ≦ y / (x + y) ≦ 0.9, titanium boronitride has a fine crystal grain size and a layered structure. The effect of blocking the propagation of cracks by blocking the grain boundaries of titanium carbonitride was demonstrated. In the laminated structure of titanium boronitride and titanium carbonitride, the titanium carbonitride has a columnar structure, and the equivalent X-ray diffraction intensity ratio PR from the (422) plane or the (311) plane is maximum, thereby preventing cracking. Excellent in properties.
In Conventional Example 10, cracks occurred on the rake face of all the tools, and defects that could be caused by cracks occurred in 8 of 10 samples. In Conventional Example 11, cracks occurred in 8 samples out of 10 samples, and defects that could be caused by cracks occurred in 6 samples out of 10 samples. In Conventional Example 12, cracks occurred in 4 samples out of 10 samples, and defects that could be caused by cracks occurred in 4 samples out of 10 samples.

(実施例2)
実施例1と同様の超硬合金製テスト基板と超硬合金製インサート工具を用いて、その表面に、熱CVD法により被覆を行い、表5、表6に示す本発明例13〜21を作製した。基体直上の皮膜は実施例1に準じるものとし、膜厚と温度条件を表5に示した。単位層皮膜も実施例1に準じるものとし、温度条件と単位層数を表5、表6に示した。
(Example 2)
Using the same cemented carbide test substrate and cemented carbide insert tool as in Example 1, the surface was coated by the thermal CVD method to produce Invention Examples 13 to 21 shown in Tables 5 and 6. did. The film directly on the substrate was in accordance with Example 1, and the film thickness and temperature conditions are shown in Table 5. The unit layer film also conforms to Example 1, and the temperature conditions and the number of unit layers are shown in Tables 5 and 6.

Figure 2007186743
Figure 2007186743

Figure 2007186743
Figure 2007186743

次いで、上層皮膜であるTiN皮膜、Ti(CN)皮膜、α型酸化アルミニウム皮膜の熱CVD法により連続して被覆した。その被覆条件は、TiN皮膜を、1000度でH2キャリヤーガス、TiCl4ガスとN2ガスで0.5μm厚さに形成し、Ti(NO)膜は、CO2とCOの混合ガスを追加し、0.3μm厚さに形成し、α型酸化アルミニウム皮膜は、Al金属小片を詰め350度に保温した小筒中にH2ガスを流量310ml/分とHClガス130ml/分とを流すことにより発生させたAlCl3ガスとH2ガス2(l/分)とCO2とCOの混合ガス100〜400ml/分とを成膜装置内に流し、1000度で反応させることにより、膜厚2μm厚さに形成した。上記の下層皮膜、中間層皮膜と上層皮膜により、本発明例13〜21を作製した。硼窒化チタンの硼素含有量による影響を明らかにするため、比較例22、23を作製した。比較例22の基体直上皮膜と上層皮膜は、本発明例13〜21と同一の条件で形成した。単位層皮膜は、温度条件を800度とした。また、(TiB)N皮膜はH2キャリアーガス、TiCl4ガスと極微量のBCl3ガスとN2ガスを用いた。比較例23の単位層皮膜は、温度条件を900度とした。また、(TiB)N皮膜はH2キャリアーガス、TiCl4ガスとBCl3ガスとNH3ガスを用いた。
炭窒化チタンの(422)面又は(311)面からの等価X線回折強度比PRが最大であることの影響を明らかにするため比較例24、25を作製した。比較例24の基体直上皮膜であるTiC皮膜とTi(CN)皮膜は、温度条件を1000度とした。TiC皮膜は、H2キャリアーガスとTiCl4ガスとCH4ガスを原料ガスに用い、膜厚を3μm厚として形成した。比較例25の基体直上であるTiN皮膜、Ti(CN)皮膜のうち、Ti(CN)皮膜はH2キャリアーガス、TiCl4ガスとCH4ガスとN2ガスを原料ガスに用い、膜厚3μm厚さで形成した。また、単位層皮膜であるTi(CN)皮膜は、H2キャリアーガス、TiCl4ガスとCH4ガスとN2ガスを原料ガスに用いた。比較例26は、基体直上皮膜と単位層皮膜とをイオンプレーティング(以下、IPと記す。)法で被覆した。その後、CVD装置に入れ替えて上層皮膜を被覆した。比較例27は、基体直上皮膜と単位層皮膜とを、PACVD法で被覆した。基体直上皮膜と単位層皮膜を構成するTi(CN)膜は、H2キャリアーガス、TiCl4ガス、CH4ガスとN2ガスを原料ガスに用いた。その後、CVD装置に入れ替えて上層皮膜を被覆した。従来例28の基体直上皮膜を構成するTi(CN)膜は、H2キャリアーガス、TiCl4ガス、CH4ガスとN2ガスを原料ガスに用いた。また、単位層皮膜は(TiB)N皮膜を4μm厚さに形成した。
Subsequently, a TiN film, a Ti (CN) film, and an α-type aluminum oxide film, which are upper layer films, were continuously coated by a thermal CVD method. The coating conditions were as follows: a TiN film was formed to a thickness of 0.5 μm with H 2 carrier gas, TiCl 4 gas and N 2 gas at 1000 ° C., and a mixed gas of CO 2 and CO was added to the Ti (NO) film. The α-type aluminum oxide film formed to a thickness of 3 μm is formed of AlCl 3 gas generated by flowing H 2 gas at a flow rate of 310 ml / min and HCl gas 130 ml / min into a small tube filled with Al metal pieces and kept at 350 ° C. And H2 gas 2 (l / min) and a mixed gas of CO2 and CO of 100 to 400 ml / min were flowed into the film forming apparatus and reacted at 1000 degrees to form a film thickness of 2 μm. Invention Examples 13 to 21 were produced by the above lower layer film, intermediate layer film and upper layer film. Comparative examples 22 and 23 were produced in order to clarify the influence of the boron content of titanium boronitride. The film directly on the substrate and the upper film of Comparative Example 22 were formed under the same conditions as in Invention Examples 13-21. The unit layer film had a temperature condition of 800 degrees. For the (TiB) N film, H2 carrier gas, TiCl4 gas, and a very small amount of BCl3 gas and N2 gas were used. The unit layer film of Comparative Example 23 had a temperature condition of 900 degrees. For the (TiB) N film, H2 carrier gas, TiCl4 gas, BCl3 gas, and NH3 gas were used.
Comparative Examples 24 and 25 were prepared in order to clarify the influence of the equivalent X-ray diffraction intensity ratio PR from the (422) plane or the (311) plane of titanium carbonitride. The temperature condition of the TiC film and the Ti (CN) film, which are the film directly on the substrate of Comparative Example 24, was 1000 degrees. The TiC film was formed by using H2 carrier gas, TiCl4 gas, and CH4 gas as raw material gas and having a thickness of 3 [mu] m. Of the TiN film and Ti (CN) film directly on the substrate of Comparative Example 25, the Ti (CN) film is formed with a film thickness of 3 μm using H2 carrier gas, TiCl4 gas, CH4 gas, and N2 gas as source gases. did. In addition, the Ti (CN) film that is a unit layer film uses H2 carrier gas, TiCl4 gas, CH4 gas, and N2 gas as source gases. In Comparative Example 26, the film directly on the substrate and the unit layer film were coated by an ion plating (hereinafter referred to as IP) method. Then, it replaced with the CVD apparatus and coat | covered the upper film. In Comparative Example 27, the coating directly on the substrate and the unit layer coating were coated by the PACVD method. For the Ti (CN) film constituting the film directly on the substrate and the unit layer film, H2 carrier gas, TiCl4 gas, CH4 gas and N2 gas were used as source gases. Then, it replaced with the CVD apparatus and coat | covered the upper film. For the Ti (CN) film constituting the coating directly on the substrate of Conventional Example 28, H2 carrier gas, TiCl4 gas, CH4 gas and N2 gas were used as source gases. The unit layer film was a (TiB) N film having a thickness of 4 μm.

Figure 2007186743
Figure 2007186743

本発明例13から21、比較例22から27と従来例28の硼素含有量をEDXで測定した結果及び、Ti(CN)皮膜の結晶構造とPR値の結果を表5に示す。表5より、本発明例13〜21の単位層を構成する硼窒化チタンのx値、y値は、0.01≦y/(x+y)≦0.9の関係であった。比較例22は、y/(x+y)値が0.009、比較例23は、0.910を示し、本発明の規定値範囲外であった。本発明例13から21、比較例22から27と従来例28の単位層を構成する炭窒化チタンの結晶構造を表7に示した。表7より、本発明例13から21、比較例26、27は柱状組織を示した。しかし、比較例26、27の柱状組織は、膜厚方向に長い柱状組織ではなく、横幅方向に広かった。比較例24、25、従来例28は、粒状組織であった。また、本発明例13から21と比較例22、23のX線回折におけるPR値の最強面は、(422)又は(311)であった。比較例24から27と従来例28のPR値の最強面は、(220)、(111)、(200)であり、(422)又は(311)ではなかった。   Table 5 shows the results of measuring the boron contents of Invention Examples 13 to 21, Comparative Examples 22 to 27 and Conventional Example 28 by EDX, and the results of the crystal structure and PR value of the Ti (CN) film. From Table 5, the x value and y value of the titanium boronitride constituting the unit layers of Invention Examples 13 to 21 were in a relationship of 0.01 ≦ y / (x + y) ≦ 0.9. In Comparative Example 22, the y / (x + y) value was 0.009, and Comparative Example 23 was 0.910, which was outside the specified value range of the present invention. Table 7 shows the crystal structures of titanium carbonitride constituting the unit layers of Invention Examples 13 to 21, Comparative Examples 22 to 27 and Conventional Example 28. From Table 7, Examples 13 to 21 of the present invention and Comparative Examples 26 and 27 showed columnar structures. However, the columnar structures of Comparative Examples 26 and 27 were not columnar structures long in the film thickness direction but wide in the width direction. Comparative Examples 24 and 25 and Conventional Example 28 had a granular structure. The strongest surface of the PR value in X-ray diffraction of Invention Examples 13 to 21 and Comparative Examples 22 and 23 was (422) or (311). The strongest surfaces of PR values of Comparative Examples 24 to 27 and Conventional Example 28 were (220), (111), and (200), and were not (422) or (311).

本発明例13から21、比較例22から27、従来例28の切削工具各5個を用いて、切削条件2に示す条件で長手連続切削を行った。工具の逃げ面の摩耗量を倍率200倍の光学顕微鏡により観察し、摩耗量が0.30mmに達した時点で切削寿命と判定した。表7に評価結果を併記した。
(切削試験2)
被削材:SCM437(A)
工具形状:WNMG080412
切削速度:220m/min
送り:0.3mm/回転
切り込み:3.0mm
切削液:水溶性液を使用
Using the cutting tools of Invention Examples 13 to 21, Comparative Examples 22 to 27, and Conventional Example 28, five continuous cuttings were performed under the conditions shown in Cutting Condition 2. The amount of wear on the flank face of the tool was observed with an optical microscope with a magnification of 200 times, and when the amount of wear reached 0.30 mm, the cutting life was determined. Table 7 shows the evaluation results.
(Cutting test 2)
Work material: SCM437 (A)
Tool shape: WNMG080412
Cutting speed: 220 m / min
Feeding: 0.3mm / rotation Cutting: 3.0mm
Cutting fluid: Uses water-soluble fluid

表7より、本発明例13から21は、すくい面側のクラックも少なく、耐摩耗性に優れていた。しかし、比較例22、23は摩耗が早く、連続切削寿命が24分、26分と切削工具として劣っていた。比較例22は、単位層の硼窒化チタンのx値、y値による、y/(x+y)値が0.009であった。これより、皮膜の硼素含有量が少なく、クラックの伝播を防ぐ効果や耐クラック性に劣り、切削寿命が短かった。比較例23のy/(x+y)値は、0.910であった。これより、皮膜硬度が硬く脆いことから、クラックの発生初期で皮膜にチッピングが発生し、切削寿命が短かった。比較例24、25は摩耗が早く、連続切削寿命が22分と切削工具として劣っていた。この理由は、炭窒化チタン膜が粒状組織であることから、加工中に発生したクラックの伝播が早く、靭性に劣り、容易にチッピングを起こしたために、切削寿命が短かったものと考えられる。比較例26、27は更に摩耗が早く、連続切削寿命が17分、18分と切削工具として劣っていた。この理由は、X線回折PR値の最強面が(311)面又は(422)面では無いことから結晶粒径が大きく、チッピングが発生したものと考えられる。従来例28も連続切削寿命が12分と切削工具として劣っていた。
From Table 7, Invention Examples 13 to 21 had few cracks on the rake face side and were excellent in wear resistance. However, Comparative Examples 22 and 23 were worn quickly and the continuous cutting life was 24 minutes and 26 minutes, which was inferior as a cutting tool. In Comparative Example 22, the y / (x + y) value according to the x value and y value of titanium boronitride in the unit layer was 0.009. As a result, the boron content of the film was small, the effect of preventing the propagation of cracks and the crack resistance were inferior, and the cutting life was short. The y / (x + y) value of Comparative Example 23 was 0.910. Accordingly, since the film hardness was hard and brittle, chipping occurred in the film at the initial stage of crack generation, and the cutting life was short. In Comparative Examples 24 and 25, the wear was fast and the continuous cutting life was 22 minutes, which was inferior as a cutting tool. This is because the titanium carbonitride film has a granular structure, so that cracks generated during processing propagated quickly, the toughness was poor, and chipping was easily caused, so that the cutting life was short. In Comparative Examples 26 and 27, the wear was quicker, and the continuous cutting life was 17 minutes and 18 minutes, which were inferior as cutting tools. This is probably because the strongest surface of the X-ray diffraction PR value is not the (311) plane or the (422) plane, so that the crystal grain size is large and chipping has occurred. Conventional Example 28 was inferior as a cutting tool with a continuous cutting life of 12 minutes.

Claims (4)

基体の直上に周期律表の4a、5a、6a族金属から選ばれる1種以上の元素の炭化物、窒化物、炭窒化物、酸化物、炭酸化物、窒酸化物および炭窒酸化物のいずれか1種の単層皮膜又は2種以上からなる多層皮膜を有し、該皮膜上に炭窒化チタンと硼窒化チタンの層を単位層とし、該単位層を少なくとも2単位層以上被覆していることを特徴とする多層膜被覆部材。 Any one of carbides, nitrides, carbonitrides, oxides, carbonates, nitrides and carbonitrides of one or more elements selected from Group 4a, 5a, and 6a metals in the periodic table directly above the substrate It has one type of single-layer coating or a multilayer coating consisting of two or more types, and a layer of titanium carbonitride and titanium boronitride is used as a unit layer on the coating, and at least two unit layers are covered. A multilayer coating member characterized by the above. 請求項1に記載の多層膜被覆部材において、該単位層を構成する硼窒化チタンはTixByN、但し、x、yは重量%であり、0.01≦y/(x+y)≦0.9であることを特徴とする多層膜被覆部材。 2. The multilayer film-coated member according to claim 1, wherein titanium boronitride constituting the unit layer is TixByN, where x and y are% by weight, and 0.01 ≦ y / (x + y) ≦ 0.9. A multilayer coating member characterized by the above. 請求項1に記載の多層膜被覆部材において、該単位層の炭窒化チタンが柱状組織であることを特徴とする多層被覆部材。 The multilayer coating member according to claim 1, wherein the titanium carbonitride of the unit layer has a columnar structure. 請求項3に記載の多層膜被覆部材において、該単位層の炭窒化チタンは、(422)面又は(311)面からの等価X線回折強度比PRが最大であることを特徴とする多層被覆部材。 The multilayer coating member according to claim 3, wherein the titanium carbonitride of the unit layer has a maximum equivalent X-ray diffraction intensity ratio PR from the (422) plane or the (311) plane. Element.
JP2006004435A 2006-01-12 2006-01-12 Member coated with multilayered film Pending JP2007186743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004435A JP2007186743A (en) 2006-01-12 2006-01-12 Member coated with multilayered film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004435A JP2007186743A (en) 2006-01-12 2006-01-12 Member coated with multilayered film

Publications (1)

Publication Number Publication Date
JP2007186743A true JP2007186743A (en) 2007-07-26

Family

ID=38342108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004435A Pending JP2007186743A (en) 2006-01-12 2006-01-12 Member coated with multilayered film

Country Status (1)

Country Link
JP (1) JP2007186743A (en)

Similar Documents

Publication Publication Date Title
US9956667B2 (en) Coated cutting tool
US9945029B2 (en) Coated cutting tool and method of manufacturing the same
KR102216097B1 (en) Surface-coated cutting tool and method of manufacturing the same
KR102160349B1 (en) Surface-coated cutting tool and its manufacturing method
JP2017185609A (en) Surface-coated cutting tool and manufacturing method thereof
KR20120073322A (en) Coated tool
JP6519057B2 (en) Method of manufacturing surface coated cutting tool
WO2012144088A1 (en) Surface-coated cutting tool and method for manufacturing same
JP6044861B1 (en) Surface-coated cutting tool and manufacturing method thereof
WO2018037625A1 (en) Surface-coated cutting tool and manufacturing method therefor
JP2006305714A (en) Surface coated cutting tool
KR20130025381A (en) Surface-coated cutting tool
WO2014103507A1 (en) Surface coated member, and manufacturing method for same
JP4099081B2 (en) Surface coated cutting tool
JP6047268B1 (en) Surface coated cutting tool
WO2019176201A1 (en) Surface coated cutting tool and manufacturing method for same
JP2007186743A (en) Member coated with multilayered film
JP7453616B2 (en) surface coated cutting tools
JP3818961B2 (en) Aluminum oxide coated tools
JP3781006B2 (en) Aluminum oxide coated tools
JP7141022B2 (en) surface coated cutting tools