JP2007184208A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2007184208A
JP2007184208A JP2006002896A JP2006002896A JP2007184208A JP 2007184208 A JP2007184208 A JP 2007184208A JP 2006002896 A JP2006002896 A JP 2006002896A JP 2006002896 A JP2006002896 A JP 2006002896A JP 2007184208 A JP2007184208 A JP 2007184208A
Authority
JP
Japan
Prior art keywords
cage
electrode layer
catalyst electrode
pore former
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006002896A
Other languages
Japanese (ja)
Other versions
JP4910395B2 (en
Inventor
Masaki Ando
雅樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006002896A priority Critical patent/JP4910395B2/en
Publication of JP2007184208A publication Critical patent/JP2007184208A/en
Application granted granted Critical
Publication of JP4910395B2 publication Critical patent/JP4910395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell wherein gas permeability is improved in a catalyst electrode. <P>SOLUTION: In this fuel cell at least having a solid electrolyte membrane and a catalyst electrode layer disposed on both sides of the solid electrolyte membrane, the catalyst electrode layer at least has a nano-sized and cage-shaped pore forming material, to the surface of which a water repellent substituent is added, and an electrolyte material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、触媒電極層のガス透過性が向上された燃料電池に関する。   The present invention relates to a fuel cell in which gas permeability of a catalyst electrode layer is improved.

燃料電池の最小発電単位である単位セルは、一般に固体電解質膜の両側に触媒電極層が接合されている膜電極複合体を有し、この膜電極複合体の両側にはガス拡散層が配されている。さらに、その外側にはガス流路を備えたセパレータが配されており、ガス拡散層を介して膜電極複合体の触媒電極層へと供給される燃料ガスおよび酸化剤ガスを通流させるとともに、発電により得られた電流を外部に伝える働きをしている。   A unit cell, which is the minimum power generation unit of a fuel cell, generally has a membrane electrode assembly in which a catalyst electrode layer is bonded to both sides of a solid electrolyte membrane, and gas diffusion layers are arranged on both sides of the membrane electrode complex. ing. Furthermore, a separator having a gas flow path is arranged outside thereof, and the fuel gas and the oxidant gas supplied to the catalyst electrode layer of the membrane electrode composite are passed through the gas diffusion layer, It works to transmit the current obtained by power generation to the outside.

上記燃料電池に用いられる触媒電極層では、固体電解質膜に用いられるものと同様な電解質と、触媒が担持された導電性物質とを、反応に必要な水素ガスや酸素ガスが拡散可能な程度に開孔を有する状態に混錬することにより、反応に寄与する電解質、触媒、および反応ガスが供給される開孔が互いに接する三相界面を形成するのが一般的である。このような燃料電池の発電効率は、単位体積当たりに上記三相界面をいかに多く形成し、上記三相界面にいかに円滑に反応ガスを供給できるかにより決定される。   In the catalyst electrode layer used in the above fuel cell, an electrolyte similar to that used in the solid electrolyte membrane and a conductive material carrying the catalyst can be diffused so that hydrogen gas and oxygen gas necessary for the reaction can diffuse. By kneading into a state having openings, it is common to form a three-phase interface in which the electrolyte, catalyst, and reaction gas contributing to the reaction are in contact with each other. The power generation efficiency of such a fuel cell is determined by how many three-phase interfaces are formed per unit volume and how smoothly the reaction gas can be supplied to the three-phase interfaces.

上述したような触媒電極層においては、反応ガスはカーボン等の上記導電性物質が保有する空隙内および電解質内を移動することにより拡散して三相界面へ到達する。しかしながら上記電解質のガス透過性はあまり高くなく、特にフラッディング発生時など、電解質が保有する水分の量が多い場合などは反応ガスの拡散が妨げられ、反応ガスが三相界面へ到達できないため発電効率の低下を招いていた。フラッディングを抑制し、ガス透過性を向上させるために触媒電極層が含有する電解質の割合を低くすると、触媒電極層におけるイオン伝導性が低下するため、燃料電池の性能も低下してしまう。   In the catalyst electrode layer as described above, the reaction gas diffuses and reaches the three-phase interface by moving in the voids and the electrolyte held by the conductive material such as carbon. However, the gas permeability of the above electrolyte is not so high, especially when the amount of water held by the electrolyte is large, such as when flooding occurs. This prevents the reaction gas from diffusing and prevents the reaction gas from reaching the three-phase interface. Has led to a decline. If the ratio of the electrolyte contained in the catalyst electrode layer is lowered in order to suppress flooding and improve gas permeability, the ionic conductivity in the catalyst electrode layer is lowered, and the performance of the fuel cell is also lowered.

そこで特許文献1では、触媒電極層を形成する触媒担持カーボン粒子等の他の材料と共に水溶性の短繊維を含有する層を形成し、上記水溶性短繊維を水で溶出することにより内部に複数の細孔が形成された触媒電極層が開示されている。特許文献1は上記細孔を利用して反応ガスの拡散性を向上させようとするものである。しかしながらこのような造孔剤を用いて層を形成し、該造孔剤を除去することにより細孔を形成する場合、細孔の大きさは反応ガスの拡散に必要な空隙よりも大幅に大きい場合が多く、このような必要以上の空隙は触媒電極層における導電性やイオン伝導性を低下させると共に触媒電極層の物理的な強度も低下させるものである。また、上記細孔は、触媒電極層と固体電解質膜やガス拡散層とを接合する際に付加される熱や圧力により変形されてつぶれてしまうこともあり、煩雑な工程を経て細孔を形成しても所望のガス拡散性を得られない場合も多い。   Therefore, in Patent Document 1, a layer containing water-soluble short fibers is formed together with other materials such as catalyst-carrying carbon particles that form the catalyst electrode layer, and a plurality of the water-soluble short fibers are eluted inside with water. The catalyst electrode layer in which the pores are formed is disclosed. Patent Document 1 attempts to improve the diffusibility of the reaction gas by using the pores. However, when a layer is formed using such a pore-forming agent and the pore is formed by removing the pore-forming agent, the size of the pore is significantly larger than the gap necessary for the diffusion of the reaction gas. In many cases, such excessive voids reduce the electrical conductivity and ion conductivity in the catalyst electrode layer and also reduce the physical strength of the catalyst electrode layer. The pores may be deformed and collapsed by heat and pressure applied when the catalyst electrode layer is bonded to the solid electrolyte membrane or the gas diffusion layer, and the pores are formed through complicated processes. In many cases, however, the desired gas diffusivity cannot be obtained.

特開平8−180879号公報JP-A-8-180879

本発明は、上記問題点に鑑みてなされたものであり、触媒電極層におけるガス透過性が向上された燃料電池を提供することを主目的とするものである。   The present invention has been made in view of the above problems, and has as its main object to provide a fuel cell with improved gas permeability in the catalyst electrode layer.

上記目的を達成するために、本発明は、固体電解質膜と、上記固体電解質膜の両側に配置された触媒電極層とを少なくとも有する燃料電池において、上記触媒電極層は、表面に撥水性置換基が付加されたナノサイズのかご状造孔材、および電解質材料を少なくとも有することを特徴とする燃料電池を提供する。   To achieve the above object, the present invention provides a fuel cell having at least a solid electrolyte membrane and catalyst electrode layers disposed on both sides of the solid electrolyte membrane, wherein the catalyst electrode layer has a water-repellent substituent on the surface. There is provided a fuel cell comprising at least a nano-sized cage-shaped pore former to which is added, and an electrolyte material.

上記ナノサイズのかご状造孔材を用いて触媒電極層を形成することにより、内部にガスの通り道(ガスパス)を確保できるため、触媒電極層のガス透過性を向上させることができる。また、上記かご状造孔材は、その表面に撥水性の置換基が付加されており、電解質の撥水性の部分に選択的に配置されるため、電解質のイオン伝導性を損なうことなくガス透過性を向上させることができる。   By forming the catalyst electrode layer using the nano-sized cage-shaped pore former, a gas passage (gas path) can be secured in the interior, so that the gas permeability of the catalyst electrode layer can be improved. Further, the cage-shaped pore former has a water-repellent substituent added to the surface thereof, and is selectively placed on the water-repellent portion of the electrolyte, so that the gas permeation can be performed without impairing the ion conductivity of the electrolyte. Can be improved.

本発明においては、上記かご状造孔材は、かご状分子であることが好ましい。分子自体がかご状形状を有するものを用いることによりかご状の形状をより安定に維持することができるため、かご状形状の内部の空間を利用して形成されたガスパスもより安定に維持することができるからである。   In the present invention, the cage pore former is preferably a cage molecule. Since the cage shape can be maintained more stably by using the molecule itself having a cage shape, the gas path formed using the space inside the cage shape can also be more stably maintained. Because you can.

また本発明において、上記かご状造孔材は、径が0.1〜2.0nmの範囲内であることが好ましい。これにより、触媒電極層の物理的強度を損なうことなく、より効率的にガスパスを形成することができる。   In the present invention, the cage-shaped pore former preferably has a diameter in the range of 0.1 to 2.0 nm. Thereby, a gas path can be more efficiently formed without impairing the physical strength of the catalyst electrode layer.

本発明は、触媒電極層の強度やイオン伝導性を低下させることなくガス透過性を向上させることができるといった効果を奏する。   The present invention has an effect that gas permeability can be improved without reducing the strength and ion conductivity of the catalyst electrode layer.

以下、本発明の燃料電池について詳細に説明する。
図1は本発明の燃料電池の構成の一例を示す概略断面図である。図1に示すように、本発明の燃料電池1においては、固体電解質膜2が触媒電極層3により挟持されており、さらにその外側にガス拡散層4、セパレータ5が配されている。
以下、このような本発明の燃料電池を構成する各構成部材について、それぞれ分けて説明する。
Hereinafter, the fuel cell of the present invention will be described in detail.
FIG. 1 is a schematic sectional view showing an example of the configuration of the fuel cell of the present invention. As shown in FIG. 1, in the fuel cell 1 of the present invention, a solid electrolyte membrane 2 is sandwiched between catalyst electrode layers 3, and a gas diffusion layer 4 and a separator 5 are disposed on the outside thereof.
Hereafter, each structural member which comprises such a fuel cell of this invention is each demonstrated separately.

1.触媒電極層
本発明に用いられる触媒電極層は、表面に撥水性置換基が付加されたナノサイズかご状造孔材、および電解質材料を少なくとも有することを特徴とするものである。本発明に用いられるかご状造孔材は従来の造孔剤のように層を形成した後に除去されることなく、上記かご状造孔材を含有したまま触媒電極層は発電に用いられる。そのため、触媒電極層を他の燃料電池構成部材と接合する際に高い熱や圧力が付加されても上記かご状造孔材は押し潰されることなく、その内部の空隙は燃料電池運転中も保持されるので、触媒電極層におけるガス透過性を向上させることができる。
1. Catalyst electrode layer The catalyst electrode layer used in the present invention is characterized by having at least a nano-sized cage-shaped pore-forming material having a water-repellent substituent added on the surface, and an electrolyte material. The cage-shaped pore former used in the present invention is not removed after forming a layer like a conventional pore former, and the catalyst electrode layer is used for power generation while containing the cage-shaped pore former. Therefore, even when high heat or pressure is applied when the catalyst electrode layer is joined to other fuel cell components, the cage-shaped pore former is not crushed, and the internal voids are maintained even during fuel cell operation. Therefore, the gas permeability in the catalyst electrode layer can be improved.

また、上記かご状造孔材はナノサイズであるため、上記かご状造孔材を触媒電極層に添加した場合でも触媒電極層を構成する他の材料の含有量への影響が少ない。すなわち、上記かご状造孔材を触媒電極層に添加した場合でも、触媒担持導電性物質や電解質の含有量は上記かご状造孔材を添加しない場合と比べて大きな差はない。そのため、ガス透過性を向上させる空隙を触媒電極層内に形成した場合でも従来通りの導電性やイオン伝導性を確保することができる。さらに、上記かご状造孔材はナノサイズであるため、このような小さな空隙が触媒電極層内に形成されても触媒電極層の物理的な強度の低下を招くことはない。   Further, since the cage-shaped pore former is nano-sized, even when the cage-shaped pore former is added to the catalyst electrode layer, the influence on the content of other materials constituting the catalyst electrode layer is small. That is, even when the cage-shaped pore former is added to the catalyst electrode layer, the content of the catalyst-carrying conductive material and the electrolyte is not significantly different from the case where the cage-shaped pore former is not added. Therefore, even when voids that improve gas permeability are formed in the catalyst electrode layer, conventional conductivity and ion conductivity can be ensured. Furthermore, since the cage-shaped pore former is nano-sized, even if such a small void is formed in the catalyst electrode layer, the physical strength of the catalyst electrode layer is not reduced.

本発明においては、上述したようなかご状造孔材を用いて電解質のガス透過性を向上させることができるので、従来触媒電極層の電解質として用いることができなかった炭化水素系電解質などのガス遮断性が高い電解質も用いることができる。これにより、触媒電極層を形成する材料の選択性が広がり、触媒電極層の耐熱性や耐圧縮性などの特性の向上やコストの削減が可能となる。   In the present invention, since the gas permeability of the electrolyte can be improved by using the cage-shaped pore former as described above, a gas such as a hydrocarbon-based electrolyte that could not be conventionally used as the electrolyte of the catalyst electrode layer. An electrolyte having a high barrier property can also be used. Thereby, the selectivity of the material for forming the catalyst electrode layer is widened, and it is possible to improve the characteristics such as heat resistance and compression resistance of the catalyst electrode layer and to reduce the cost.

本発明に用いられるかご状造孔材は、三次元のかご状の形状を有しており、その内部に空隙を有するものであれば特に限定されるものではない。例えば、複数の分子が集合してかご状の形状を形成しているものや、1つの分子がかご状の形状を有するものを用いることができる。中でも、上記かご状造孔材はかご状分子(単分子)であることが好ましい。分子自体がかご状の形状を有しているものの方がそのかご状形状を安定的に維持することができるからである。このようなかご状の形状を有する分子としては、下記の化学式に示されるようなかご状シリカ(シルセスキオサン)やゼオライトなどの無機分子等を挙げることができる。上記かご状シリカとしてはSi12、Si1218、Si101510(Rは置換基)等を例示することができる。また、上記ゼオライトとしては、M2/nO・Al・xSiO・yHO(Mは金属カチオン、nは原子価)等を例示することができる。このような無機分子を触媒電極層に用いることにより、上述した効果に加え、電解質の耐熱性を向上させることができるため、触媒電極層の耐久性を向上させることもできる。 The cage-shaped pore former used in the present invention is not particularly limited as long as it has a three-dimensional cage shape and has voids therein. For example, one in which a plurality of molecules are aggregated to form a cage shape or one in which one molecule has a cage shape can be used. Among these, the cage-shaped pore former is preferably a cage molecule (monomolecule). This is because a molecule having a cage shape can maintain the cage shape stably. Examples of molecules having such a cage shape include inorganic molecules such as cage silica (silsesquiosan) and zeolite as shown in the following chemical formula. Examples of the cage silica include Si 8 O 12 R 8 , Si 12 O 18 R 7 , and Si 10 O 15 R 10 (R is a substituent). Moreover, as the zeolite, M 2 / n O · Al 2 O 3 · xSiO 2 · yH 2 O (M is a metal cation, n represents the valence) can be exemplified, and the like. By using such an inorganic molecule for the catalyst electrode layer, in addition to the effects described above, the heat resistance of the electrolyte can be improved, so that the durability of the catalyst electrode layer can also be improved.

Figure 2007184208
Figure 2007184208

本発明においては、ナノサイズのかご状造孔材が用いられる。ここで、ナノサイズのかご状造孔材とは、ナノスケールの径を有するかご状造孔材を意味し、中でも径が0.1〜2.0nmの範囲内、特に0.5〜1.0nmの範囲内のかご状造孔材が好適に用いられる。なお、かご状造孔材の径とは、O−Si−OあるいはO−Al−Oで形成される環の外接球の直径を意味するものとする。例えば、上記化学式(1)のようなかご状造孔材の場合、その径は化学式(1)に示す分子(R部分は除く)の外接球の直径である。また、上記化学式(2)のようなかご状造孔材の場合、その径は化学式(2)に示す分子の外接球の直径である。   In the present invention, a nano-sized cage-shaped pore former is used. Here, the nano-sized cage-shaped pore-forming material means a cage-shaped pore-forming material having a nanoscale diameter, and in particular, the diameter is in the range of 0.1 to 2.0 nm, particularly 0.5 to 1. A cage-shaped pore former within a range of 0 nm is preferably used. The diameter of the cage-shaped pore former means the diameter of the circumscribed sphere of the ring formed of O—Si—O or O—Al—O. For example, in the case of a cage-shaped pore former as represented by the chemical formula (1), the diameter is the diameter of the circumscribed sphere of the molecule (excluding the R portion) represented by the chemical formula (1). Further, in the case of the cage-shaped pore former as in the chemical formula (2), the diameter is the diameter of the circumscribed sphere of the molecule shown in the chemical formula (2).

本発明において、上記かご状造孔材の添加量は、特に限定されるものではなく、用いられるかご状造孔材や電解質の種類などにより適宜調整して用いることができる。例えば、該触媒電極層に含有されるかご状造孔材の重量(質量パーセント)が0.5〜30質量%の範囲内、中でも1〜10質量%の範囲内で添加することができる。   In the present invention, the addition amount of the cage-shaped pore former is not particularly limited, and can be appropriately adjusted depending on the type of cage-shaped pore former or electrolyte used. For example, the weight (mass percent) of the cage-shaped pore former contained in the catalyst electrode layer can be added in the range of 0.5 to 30% by mass, particularly in the range of 1 to 10% by mass.

本発明に用いられるかご状造孔材は、表面に撥水性置換基が付加されており撥水性を有しているため、上記かご状造孔材を電解質の疎水部分に選択的に配置することができ、電解質のイオン伝導性を損なうことなくガス透過性を向上させることができる。燃料電池に用いられる電解質には、親水部分と疎水部分とを有するものが多用されており、上記親水部分は主にイオン伝導に利用されている。そのため、上記かご状造孔材が触媒電極層に添加された際、撥水性を有するかご状造孔材は上記電解質の疎水部分に選択的に配置され、イオン伝導に利用される上記親水部分には影響を与えずに上記疎水部分にガスの通り道を形成することができる。また、上記ガスの通り道は疎水部分に形成されることから、該領域は低温時においても凍結により閉塞される恐れがない。そのため、水が凍結するような低温雰囲気下でも三相界面に反応ガスを供給することができ、低温始動性を向上させることもできる。   Since the cage-shaped pore former used in the present invention has a water-repellent substituent on the surface and has water repellency, the cage-shaped pore former is selectively disposed in the hydrophobic portion of the electrolyte. Gas permeability can be improved without impairing the ionic conductivity of the electrolyte. Many electrolytes used in fuel cells have a hydrophilic portion and a hydrophobic portion, and the hydrophilic portion is mainly used for ion conduction. Therefore, when the cage-shaped pore former is added to the catalyst electrode layer, the cage-shaped pore former having water repellency is selectively disposed in the hydrophobic portion of the electrolyte, and the hydrophilic portion used for ionic conduction. Can form a gas passageway in the hydrophobic portion without affecting. Moreover, since the gas passage is formed in the hydrophobic portion, the region is not likely to be blocked by freezing even at low temperatures. Therefore, the reaction gas can be supplied to the three-phase interface even in a low-temperature atmosphere in which water freezes, and the low-temperature startability can be improved.

上記かご状造孔材の表面に付加する撥水性置換基は、撥水性を有し、かつ、上記かご状造孔材の表面に付加できるものであれば特に限定されるものではない。例えば、アルキル基、特にフッ素化されたアルキル基(トリフルオロプロピル基:−CH−CH−CF等)、末端にフェニル基を有するアルキル基(−CH−CH−CH−CH−CH−Ph等)、シクロヘキシル基を有するアルキル基(シクロブチル、シクロペンチル、シクロオクチル等)などを用いることができる。本発明においては、上記の中でも、触媒電極層の形成に共に用いられる電解質の主鎖との親和性が高い置換基が上記かご状造孔材の表面に付加されていることが好ましい。例えば、ナフィオンなどのフッ素系の樹脂が電解質として用いられる場合は、上記置換基もフッ素系の置換基であることが好ましい。また、炭化水素系の電解質が用いられる場合は、上記置換基にはアルキル基などの炭化水素基が好適に用いられる。 The water-repellent substituent added to the surface of the cage-shaped pore former is not particularly limited as long as it has water repellency and can be added to the surface of the cage-shaped pore former. For example, an alkyl group, particularly a fluorinated alkyl group (trifluoropropyl group: —CH 2 —CH 2 —CF 3 etc.), an alkyl group having a phenyl group at the terminal (—CH 2 —CH 2 —CH 2 —CH) 2- CH 2 -Ph, etc.), an alkyl group having a cyclohexyl group (cyclobutyl, cyclopentyl, cyclooctyl, etc.) and the like can be used. In the present invention, among the above, it is preferable that a substituent having high affinity with the main chain of the electrolyte used together with the formation of the catalyst electrode layer is added to the surface of the cage-shaped pore former. For example, when a fluorine-based resin such as Nafion is used as the electrolyte, the substituent is also preferably a fluorine-based substituent. When a hydrocarbon-based electrolyte is used, a hydrocarbon group such as an alkyl group is preferably used as the substituent.

上述したような表面に撥水性置換基が付加されたかご状造孔材は、市販のものを用いることができ、また、かご状造孔材をフッ素化することなどにより得ることができる。例えば、上記化学式に示したかご状シリカのR部分がトリフルオロプロピル基(−CH−CH−CF)であるものがハイブリッドプラスチックス社よりPOSS(登録商標)FL0577として市販されており、このような市販品を表面に撥水性置換基が付加されたかご状造孔材として用いることができる。上記市販品の場合は、トリフルオロプロピル基の末端のフルオロカーボンにより撥水性が発現される。 As the cage-shaped pore former having a water-repellent substituent added to the surface as described above, a commercially available one can be used, and it can be obtained by fluorinating the cage-shaped pore former. For example, the R portion of the cage silica shown in the above chemical formula is a trifluoropropyl group (—CH 2 —CH 2 —CF 3 ) commercially available from Hybrid Plastics as POSS (registered trademark) FL0577, Such a commercially available product can be used as a cage-shaped pore former having a water-repellent substituent added to the surface. In the case of the above-mentioned commercial product, water repellency is expressed by the fluorocarbon at the terminal of the trifluoropropyl group.

表面に撥水性置換基が付加されたかご状造孔材を合成する場合は、例えば、上記化学式のR部分である撥水性置換基の炭素数を増やす(炭化水素鎖を長くする)ことにより撥水性を向上させることができる。また、上記R部分をフッ素化後に、さらに撥水性置換基におけるフルオロカーボンの割合を増加させて撥水性を向上させることができる。   When synthesizing a cage-shaped pore former having a water-repellent substituent added to the surface, for example, by increasing the number of carbon atoms of the water-repellent substituent that is the R portion of the above chemical formula (lengthening the hydrocarbon chain). Aqueous property can be improved. Further, after the R portion is fluorinated, the ratio of the fluorocarbon in the water-repellent substituent can be further increased to improve the water repellency.

また、かご状造孔材としてゼオライトを用いる場合は、ゼオライトの表面の水酸基をテトラエトキシシラン(TEOS)等で脱水縮合することによりアルキル鎖を付加し、フッ素ガスやフッ素化剤によりフッ素化することによりゼオライトに撥水性を付与することができる。その際の反応式を下記に示す。なお、撥水性の程度は、付加するアルキル鎖の長さやフッ素化の程度により制御することができる。   In addition, when using zeolite as a cage-shaped pore former, an alkyl chain is added by dehydrating and condensing hydroxyl groups on the surface of the zeolite with tetraethoxysilane (TEOS), etc., and fluorinated with fluorine gas or a fluorinating agent. Thus, water repellency can be imparted to the zeolite. The reaction formula at that time is shown below. The degree of water repellency can be controlled by the length of the alkyl chain to be added and the degree of fluorination.

Figure 2007184208
Figure 2007184208

本発明において、触媒電極層を形成する上記かご状造孔材以外の材料は特に限定されるものではなく、従来用いられてきた通常のものを用いることができる。例えば、カーボン粉末やカーボンナノチューブなどの導電性物質上に白金や白金合金などの触媒を担持した触媒担持導電性物質と、固体電解質膜に用いられる、ナフィオン(商品名:Nafion、デュポン株式会社製)などの電解質とから触媒電極層を形成することができる。   In the present invention, materials other than the cage-shaped pore former forming the catalyst electrode layer are not particularly limited, and conventional materials that have been used conventionally can be used. For example, a catalyst-supporting conductive material in which a catalyst such as platinum or a platinum alloy is supported on a conductive material such as carbon powder or carbon nanotube, and Nafion (trade name: Nafion, manufactured by DuPont) used in a solid electrolyte membrane A catalyst electrode layer can be formed from an electrolyte such as

本発明に用いられる触媒電極層は、上記触媒担持導電性物質および電解質を混錬する際に上記表面に撥水性置換基が付加されたナノサイズのかご状造孔材を添加し、通常の触媒電極層と同様な方法により層を形成することにより得ることができる。すなわち、本発明においては煩雑な製造工程を必要とせず、通常の製造工程において上記かご状造孔材を添加することのみにより、ガス透過性が著しく向上された触媒電極層を得ることができる。   When the catalyst electrode layer used in the present invention is kneaded with the catalyst-carrying conductive material and the electrolyte, a nano-sized cage-shaped pore-forming material having a water-repellent substituent added to the surface is added to the catalyst electrode layer. It can be obtained by forming a layer by the same method as the electrode layer. That is, in the present invention, a complicated manufacturing process is not required, and a catalyst electrode layer with significantly improved gas permeability can be obtained only by adding the cage-shaped pore former in a normal manufacturing process.

2.固体電解質膜
本発明に用いられる固体電解質膜としては、プロトン伝導性に優れ、かつ絶縁性を有する材料からなるものであれば特に限定されるものではない。このような固体電解質膜を形成する電解質材料としては、ナフィオン(商品名:Nafion、デュポン株式会社製)などに代表されるようなフッ素系樹脂、アミド系樹脂に代表されるような炭化水素系樹脂等有機系のもの、または、ケイ素酸化物を主成分とするものなどの無機系のもの等を挙げることができる。
2. Solid electrolyte membrane The solid electrolyte membrane used in the present invention is not particularly limited as long as it is made of a material having excellent proton conductivity and insulating properties. Examples of the electrolyte material for forming such a solid electrolyte membrane include fluorine resins such as Nafion (trade name: Nafion, manufactured by DuPont) and hydrocarbon resins such as amide resins. Examples thereof include organic materials such as organic materials, and inorganic materials such as those containing silicon oxide as a main component.

3.ガス拡散層
本発明に用いられるガス拡散層は、ガスの透過性を有し、かつ発生した電気を集電できるものであれば特に限定されるものではなく、従来の燃料電池に用いられるものを使用することができる。一般的には、カーボン繊維から成るカーボンクロスやカーボンペーパーなどの多孔体が好適に用いられる。ガス拡散層の厚さは、燃料電池におけるガス拡散層としての機能を果たせるものであれば特に限定されるものではない。
3. Gas Diffusion Layer The gas diffusion layer used in the present invention is not particularly limited as long as it has gas permeability and can collect generated electricity, and is used for conventional fuel cells. Can be used. In general, a porous body such as carbon cloth or carbon paper made of carbon fiber is preferably used. The thickness of the gas diffusion layer is not particularly limited as long as it can function as a gas diffusion layer in a fuel cell.

本発明に用いられるガス拡散層は、その固体電解質膜側の表面に撥水層が形成されていてもよい。ガス拡散層の表面に撥水層を設けることによりガス拡散層内のフラッディングを防止することができ、ガス拡散層内のガス透過性を向上させることができるからである。このような撥水層はガス拡散層の表面に、ポリテトラフルオロエチレンやポリフッ化ビニリデンなどのフッ素樹脂等の撥水性の材料とカーボンブラックとを混合したインクを塗布し、300〜350℃で焼成することにより形成することができる。また、この場合、上記撥水層に用いられる撥水性の材料に上記かご状造孔材を添加してもよい。これにより、撥水層内にガスの通り道を形成することができるため、撥水層におけるガス透過性を向上させることができる。   The gas diffusion layer used in the present invention may have a water repellent layer formed on the surface thereof on the solid electrolyte membrane side. This is because by providing a water repellent layer on the surface of the gas diffusion layer, flooding in the gas diffusion layer can be prevented and gas permeability in the gas diffusion layer can be improved. Such a water-repellent layer is coated on the surface of the gas diffusion layer with an ink in which a water-repellent material such as polytetrafluoroethylene or polyvinylidene fluoride is mixed with carbon black and baked at 300 to 350 ° C. Can be formed. In this case, the cage-shaped pore former may be added to the water-repellent material used for the water-repellent layer. Thereby, since a gas passage can be formed in the water repellent layer, gas permeability in the water repellent layer can be improved.

5.セパレータ
本発明においては、上記ガス拡散層のさらに外側にセパレータが配置されていることが好ましい。上記セパレータにガス流路を形成することにより、燃料電池への反応ガスの供給および生成水の排出を効率的に行うことができる。また、導電性材料から形成することにより、上記セパレータを集電体としても用いて効率的に集電を行うこともできる。
5). Separator In the present invention, it is preferable that a separator is disposed further outside the gas diffusion layer. By forming the gas flow path in the separator, it is possible to efficiently supply the reaction gas to the fuel cell and discharge the generated water. Moreover, by forming from a conductive material, it is also possible to efficiently collect current using the separator as a current collector.

本発明においてセパレータは、特に限定されるものではなく、一般的な燃料電池に用いられているものを用いることができる。用いることができるセパレータの例としては、ガス拡散層側の面にガス流路が形成されており、反対側の面には、燃料ガスや酸化剤ガスを供給するためのガス供給装置が接続されているものを挙げることができ、さらには冷却水の流路が形成されているものをも含むものである。このようなセパレータを形成する材料としては、カーボンや金属を用いるのが一般的であり、それらを従来のものと同様な厚さに形成して用いることができる。なお、共に用いられるガス拡散層内にガス流路が形成されている場合は、セパレータにはガス流路が形成されている必要はなく、表面が平滑なセパレータを用いることができる。   In the present invention, the separator is not particularly limited, and those used in general fuel cells can be used. As an example of the separator that can be used, a gas flow path is formed on the surface on the gas diffusion layer side, and a gas supply device for supplying fuel gas and oxidant gas is connected to the opposite surface. In addition, those including a cooling water flow path are also included. As a material for forming such a separator, carbon or metal is generally used, and they can be used by forming them in the same thickness as a conventional one. In addition, when the gas flow path is formed in the gas diffusion layer used together, it is not necessary to form the gas flow path in the separator, and a separator having a smooth surface can be used.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

例えば、上記記載においては、主に固体高分子電解質型の燃料電池について説明しているが、本発明はこれに限定されるものではなく、固体酸化物型、りん酸型、溶融炭酸塩型など種々の燃料電池に用いることができる。   For example, in the above description, the solid polymer electrolyte type fuel cell is mainly described, but the present invention is not limited to this, and the solid oxide type, phosphoric acid type, molten carbonate type, etc. It can be used for various fuel cells.

以下に実施例を示して本発明をさらに具体的に説明する。
[実施例]
かご状シリカ(ハイブリッドプラスチックス社製POSS(登録商標)FL0577、1w%)、電解質(ナフィオン(商品名:Nafion、デュポン株式会社製))、白金担持カーボン粒子(白金担持密度:50w%)を重量比1:50:50で用いて触媒電極層を形成し、固体電解質膜(ナフィオン)およびガス拡散層(カーボンペーパー)により挟持して膜電極複合体を製造した。80℃の高加湿雰囲気下において、得られた膜電極複合体の電流電圧特性を調べた。結果を図2に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example]
Weight of cage-like silica (POSS (registered trademark) FL0577 manufactured by Hybrid Plastics, 1w%), electrolyte (Nafion (trade name: Nafion, manufactured by DuPont)), platinum-supported carbon particles (platinum support density: 50w%) A catalyst electrode layer was formed using a ratio of 1:50:50 and sandwiched between a solid electrolyte membrane (Nafion) and a gas diffusion layer (carbon paper) to produce a membrane electrode assembly. The current-voltage characteristics of the obtained membrane electrode composite were examined in a highly humidified atmosphere at 80 ° C. The results are shown in FIG.

[比較例]
かご状シリカを添加しなかったこと以外は上記実施例と同様に膜電極複合体を製造し、電流電圧特性を調べた。結果を図2に示す。
[Comparative example]
A membrane electrode assembly was produced in the same manner as in the above example except that no cage silica was added, and the current-voltage characteristics were examined. The results are shown in FIG.

[評価]
図2から、比較例と比べ、かご状シリカが添加された実施例においては、発電特性が大幅に向上していることが分かる。上記実施例においては、電解質中の疎水部分のみに上記かご状造孔材が添加されているため、シリカのような絶縁体を添加しているにもかかわらず抵抗が増大することなく発電特性を向上させることができた。
[Evaluation]
From FIG. 2, it can be seen that the power generation characteristics are greatly improved in the example in which the cage silica was added, as compared with the comparative example. In the above embodiment, since the cage-shaped pore former is added only to the hydrophobic portion in the electrolyte, the power generation characteristics are increased without increasing the resistance despite the addition of an insulator such as silica. I was able to improve.

本発明の燃料電池の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the fuel cell of this invention. 実施例および比較例において製造した燃料電池の電流電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of the fuel cell manufactured in the Example and the comparative example.

符号の説明Explanation of symbols

1 … 燃料電池
2 … 固体電解質膜
3 … 触媒電極層
4 … ガス拡散層
5 … セパレータ
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Solid electrolyte membrane 3 ... Catalyst electrode layer 4 ... Gas diffusion layer 5 ... Separator

Claims (3)

固体電解質膜と、前記固体電解質膜の両側に配置された触媒電極層とを少なくとも有する燃料電池において、
前記触媒電極層は、表面に撥水性置換基が付加されたナノサイズのかご状造孔材、および電解質材料を少なくとも有することを特徴とする燃料電池。
In a fuel cell having at least a solid electrolyte membrane and a catalyst electrode layer disposed on both sides of the solid electrolyte membrane,
The fuel cell according to claim 1, wherein the catalyst electrode layer includes at least a nano-sized cage-shaped pore former having a water-repellent substituent added to the surface thereof, and an electrolyte material.
前記かご状造孔材は、かご状分子であることを特徴とする請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the cage-shaped pore former is a cage molecule. 前記かご状造孔材は、径が、0.1〜2.0nmの範囲内であることを特徴とする請求項1または請求項2に記載の燃料電池。 The fuel cell according to claim 1 or 2, wherein the cage-shaped pore former has a diameter in a range of 0.1 to 2.0 nm.
JP2006002896A 2006-01-10 2006-01-10 Fuel cell Expired - Fee Related JP4910395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002896A JP4910395B2 (en) 2006-01-10 2006-01-10 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002896A JP4910395B2 (en) 2006-01-10 2006-01-10 Fuel cell

Publications (2)

Publication Number Publication Date
JP2007184208A true JP2007184208A (en) 2007-07-19
JP4910395B2 JP4910395B2 (en) 2012-04-04

Family

ID=38340109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002896A Expired - Fee Related JP4910395B2 (en) 2006-01-10 2006-01-10 Fuel cell

Country Status (1)

Country Link
JP (1) JP4910395B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151564A (en) * 2001-11-14 2003-05-23 Honda Motor Co Ltd Electrode for solid high polymer fuel cell
JP2005026174A (en) * 2003-07-01 2005-01-27 Honda Motor Co Ltd Solid polymer type fuel cell
JP2005100783A (en) * 2003-09-24 2005-04-14 Toyota Motor Corp Electrode for fuel cell, and solid polymer fuel cell equipped with this
JP2006049097A (en) * 2004-08-04 2006-02-16 Seiko Instruments Inc Electrode for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151564A (en) * 2001-11-14 2003-05-23 Honda Motor Co Ltd Electrode for solid high polymer fuel cell
JP2005026174A (en) * 2003-07-01 2005-01-27 Honda Motor Co Ltd Solid polymer type fuel cell
JP2005100783A (en) * 2003-09-24 2005-04-14 Toyota Motor Corp Electrode for fuel cell, and solid polymer fuel cell equipped with this
JP2006049097A (en) * 2004-08-04 2006-02-16 Seiko Instruments Inc Electrode for fuel cell

Also Published As

Publication number Publication date
JP4910395B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US7883820B2 (en) Ion conductive composite membrane using inorganic conductor and method of manufacturing the same
JP5188872B2 (en) Direct oxidation fuel cell
KR101877753B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JP2020145210A (en) Method of manufacturing electrode, electrode manufactured by the same, membrane-electrode assembly including the same, and fuel cell including the same
WO2008030198A1 (en) Electrode composite material
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP2007200762A (en) Membrane electrode assembly for solid polymer fuel cell, and manufacturing method therefor
JP5068014B2 (en) GAS DIFFUSION LAYER FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL USING THE SAME
JPH0888007A (en) Solid polymer fuel cell and its electrode
JP2007012325A (en) Electrode for solid polymer fuel cell, and solid polymer fuel cell using this
JP2002298867A (en) Solid polymer fuel cell
JP5294550B2 (en) Membrane electrode assembly and fuel cell
KR101860499B1 (en) Polymer ion exchnage membrane and method of preparing same
JP5384515B2 (en) Fuel cell electrode having two kinds of hydrophilicity, method for producing the same, membrane electrode assembly including the same, and fuel cell
JP2010073586A (en) Electrolyte membrane-electrode assembly
JP5694638B2 (en) Gas diffusion layer, membrane-electrode assembly and fuel cell
JP2002246034A (en) Gas diffusion electrode body and its producing method, and electrochemical device
CN107112546B (en) Cathode catalyst layer for fuel cell, method for manufacturing same, and membrane electrode assembly for fuel cell including same
KR20110007350A (en) Polymer electrolyte membrane for fuel cell and low-humidified mea
JP4910395B2 (en) Fuel cell
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
JP2008243378A (en) Membrane electrode assembly for fuel cell, and fuel cell using the same
JP4736936B2 (en) Fuel cell assembly
JP2006244789A (en) Fuel cell
JP4872202B2 (en) Fuel cell and fuel cell manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R151 Written notification of patent or utility model registration

Ref document number: 4910395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

LAPS Cancellation because of no payment of annual fees