JP2007181874A - Manufacturing method of aluminum alloy casting material - Google Patents

Manufacturing method of aluminum alloy casting material Download PDF

Info

Publication number
JP2007181874A
JP2007181874A JP2006002927A JP2006002927A JP2007181874A JP 2007181874 A JP2007181874 A JP 2007181874A JP 2006002927 A JP2006002927 A JP 2006002927A JP 2006002927 A JP2006002927 A JP 2006002927A JP 2007181874 A JP2007181874 A JP 2007181874A
Authority
JP
Japan
Prior art keywords
stainless steel
steel container
aluminum alloy
temperature
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006002927A
Other languages
Japanese (ja)
Other versions
JP4084821B2 (en
Inventor
Yukio Sakakibara
幸夫 榊原
Yasuo Sugiura
泰夫 杉浦
Hide Iwazawa
秀 岩澤
Akio Kawabe
昭雄 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EPSILON JAPAN CO Ltd
Shizuoka Prefecture
Original Assignee
EPSILON JAPAN CO Ltd
Shizuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EPSILON JAPAN CO Ltd, Shizuoka Prefecture filed Critical EPSILON JAPAN CO Ltd
Priority to JP2006002927A priority Critical patent/JP4084821B2/en
Publication of JP2007181874A publication Critical patent/JP2007181874A/en
Application granted granted Critical
Publication of JP4084821B2 publication Critical patent/JP4084821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an aluminum alloy casting material capable of providing a material suitable for a semi-solid molding process simply at low costs without using a large manufacturing apparatus. <P>SOLUTION: The manufacturing method of the aluminum alloy casting material is used to produce the material suitable for the semi-solid molding by pouring an aluminum alloy molten metal into a cylindrical stainless container 1, on condition that the temperature of the aluminum alloy molten metal poured in the stainless steel container 1 is 640°C or lower; the temperature of the stainless steel container 1 is 300°C or lower, and the inner diameter of which is 5 cm or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミニウム合金溶湯をステンレス容器内に注湯することにより、半溶融成形に適した素材を得るアルミニウム合金鋳造素材の製造方法に関するものである。   The present invention relates to a method for producing an aluminum alloy casting material that obtains a material suitable for semi-melt molding by pouring molten aluminum alloy into a stainless steel container.

半溶融成形法は、固相と液相とが共存状態となった半溶融素材(例えばアルミニウム合金鋳造素材)を金型内に充填した後、冷却固化して製品を得る方法であり、一般に、液状のものから冷却固化して半溶融素材を得るレオキャスティング法と、凝固したものを再加熱して半溶融素材を得るチクソキャスティング法とに大別される。かかる半溶融成形法は、固液共存域より成形し得ることから、冷却速度を速め、製品の機械的性質を向上させ得るという効果があり、近年注目されるに至っている。   The semi-molten molding method is a method of filling a mold with a semi-molten material (for example, an aluminum alloy casting material) in which a solid phase and a liquid phase coexist, and then cooling and solidifying to obtain a product. It is roughly divided into a rheocasting method in which a liquid material is cooled and solidified to obtain a semi-molten material, and a thixocasting method in which the solidified material is reheated to obtain a semi-molten material. Since such a semi-melt molding method can be molded from the solid-liquid coexistence region, it has the effect of increasing the cooling rate and improving the mechanical properties of the product, and has been attracting attention in recent years.

然るに、冷却速度が速くなれば、当然、成形時の凝固も速くなることから、素材を短時間で金型内に充填しないと、成形が困難となる虞がある。従って、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得る半溶融素材が半溶融成形に適しており、そのような特性を得るには、粒状化した固相(初晶)を持つ半溶融素材とする必要である。   However, if the cooling rate is increased, the solidification at the time of molding is naturally increased. Therefore, molding may be difficult unless the material is filled in the mold in a short time. Therefore, the fluidity (that is, the filling property) to the mold is good, and the semi-molten material that can be filled in the mold in a short time is suitable for the semi-melt molding. It is necessary to use a semi-molten material with a granulated solid phase (primary crystal).

かかる半溶融素材を得るべく、従来は溶湯を機械的や電磁的に撹拌して、発生する樹枝状晶(デンドライト)を剪断することにより等軸晶で粒状化した初晶を得る方法や粒状化迄はいかないが、樹枝状晶を分断させながら凝固させることによって内部歪を発生させるか、材料に塑性加工を加えることにより内部歪を発生させ、それらの材料を再加熱して半溶融状態にするとき、歪による再結晶現象を利用して固相を粒状化させる方法が提案されている。具体的には、溶湯を内在したステンレス容器の外側から電磁撹拌させながら半溶融状態にしたり、連続鋳造装置のジャケット部の外側から電磁力を加えて溶湯を強制撹拌しながらビレットを製造し、再加熱によって半溶融状態にする方法で半溶融成形法に適したアルミニウム合金鋳造素材(半溶融素材)を得ていたのである。尚、かかる先行技術は、文献公知発明に係るものでないため、記載すべき先行技術文献情報はない。   In order to obtain such a semi-molten material, conventionally, the molten metal is mechanically or electromagnetically stirred, and the generated dendritic crystals (dendrites) are sheared to obtain an equiaxed primary crystal or granulation. Although it does not go, internal strain is generated by solidifying while splitting the dendrites, or internal strain is generated by plastic processing of the material, and those materials are reheated to be in a semi-molten state. In some cases, a method of granulating a solid phase using a recrystallization phenomenon due to strain has been proposed. Specifically, a billet is manufactured while electromagnetically stirring from the outside of the stainless steel container in which the molten metal is contained, or being forcedly stirred by applying electromagnetic force from the outside of the jacket portion of the continuous casting apparatus. The aluminum alloy casting material (semi-molten material) suitable for the semi-molten forming method was obtained by the method of making it into a semi-molten state by heating. In addition, since this prior art does not relate to the literature known invention, there is no prior art document information to be described.

しかしながら、上記従来のアルミニウム合金鋳造素材の製造方法においては、撹拌にて樹枝状の固相を剪断する必要があったため、撹拌のための装置(電磁撹拌装置など)が必要となり、製造装置が大がかりなものとなって製造コストが嵩んでしまうという問題があった。しかして、本出願人は、結晶核が凝固に伴って成長する際、所定の条件下で冷却をコントロールすることにより固相が粒状化することを見出し、半溶融成形法に適したアルミニウム合金鋳造素材をより簡易に且つ低コストで製造すべく鋭意検討するに至った。   However, in the above-described conventional method for producing an aluminum alloy casting material, it is necessary to shear the dendritic solid phase by stirring, so a stirring device (such as an electromagnetic stirring device) is required, and the manufacturing device is large. There is a problem that the manufacturing cost increases. Therefore, the present applicant has found that when the crystal nucleus grows as it solidifies, the solid phase becomes granulated by controlling the cooling under a predetermined condition, and the aluminum alloy casting suitable for the semi-melt molding method. We have intensively studied to manufacture the material more easily and at low cost.

本発明は、このような事情に鑑みてなされたもので、大がかりな製造装置を用いることなく、簡易に且つ低コストで半溶融成形法に適した素材を得ることができるアルミニウム合金鋳造素材の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and manufacture of an aluminum alloy casting material that can easily and inexpensively obtain a material suitable for a semi-melt forming method without using a large-scale manufacturing apparatus. It is to provide a method.

請求項1記載の発明は、アルミニウム合金溶湯を円筒状のステンレス容器内に注湯することにより、半溶融成形に適した素材を得るアルミニウム合金鋳造素材の製造方法において、前記ステンレス容器に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器の温度が300℃以下及びその内径が5インチ以下の条件とされたことを特徴とする。   The invention according to claim 1 is a method for producing an aluminum alloy casting material in which a material suitable for semi-molten forming is obtained by pouring molten aluminum alloy into a cylindrical stainless steel container. The temperature of the molten aluminum alloy is 640 ° C. or less, the temperature of the stainless steel container is 300 ° C. or less, and the inner diameter is 5 inches or less.

請求項2記載の発明は、アルミニウム合金溶湯を円筒状のステンレス容器内に注湯することにより、半溶融成形に適した素材を得るアルミニウム合金鋳造素材の製造方法において、前記ステンレス容器に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器の温度が400℃以下及びその内径が6インチ、且つ、その肉厚が7mm以上の条件とされたことを特徴とする。   The invention according to claim 2 is a method for producing an aluminum alloy casting material in which a material suitable for semi-molten forming is obtained by pouring molten aluminum alloy into a cylindrical stainless steel container. The temperature of the molten aluminum alloy is 640 ° C. or less, the temperature of the stainless steel container is 400 ° C. or less, the inner diameter is 6 inches, and the wall thickness is 7 mm or more.

請求項1及び請求項2の発明によれば、単にステンレス容器に注湯するアルミニウム合金溶湯の温度、当該ステンレス容器の大きさ(内径)及びその温度を所定条件に設定するだけで、等軸晶で粒状化した初晶を得ることができるので、大がかりな製造装置を用いることなく、簡易に且つ低コストで半溶融成形法に適したアルミニウム合金鋳造素材を得ることができる。   According to the first and second aspects of the invention, the equiaxed crystal can be obtained simply by setting the temperature of the molten aluminum alloy poured into the stainless steel container, the size (inner diameter) of the stainless steel container and the temperature thereof to predetermined conditions. Therefore, an aluminum alloy casting material suitable for the semi-melt molding method can be obtained easily and at a low cost without using a large-scale production apparatus.

以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態に係るアルミニウム合金鋳造素材の製造方法は、所定条件下にてアルミニウム合金溶湯をステンレス容器内に注湯するものであり、図1に示すように、加熱により得られた保持炉2内のアルミニウム合金溶湯を、内径D及び肉厚Lとされた円筒状のステンレス容器1内に導入して半溶融成形法に適したアルミニウム合金鋳造素材を得ようとするものである。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The method for producing an aluminum alloy casting material according to the present embodiment is for pouring molten aluminum alloy into a stainless steel container under a predetermined condition. As shown in FIG. 1, in the holding furnace 2 obtained by heating. This aluminum alloy molten metal is introduced into a cylindrical stainless steel container 1 having an inner diameter D and a wall thickness L to obtain an aluminum alloy casting material suitable for the semi-melt molding method.

製造過程における所定条件は、内径Dが5インチ以下のステンレス容器1を用いる場合、当該ステンレス容器1に注湯されるアルミニウム合金溶湯の温度が640℃以下とされるとともに、ステンレス容器1の温度が300℃以下である。即ち、注湯するアルミニウム合金溶湯の温度と、ステンレス容器の温度及び内径とを上記条件とすれば、単に保持炉2内のアルミニウム合金溶湯をステンレス容器1に充填させるだけで、等軸晶で粒状化した初晶を持った素材が得られるのである。   In the manufacturing process, when the stainless steel container 1 having an inner diameter D of 5 inches or less is used, the temperature of the molten aluminum alloy poured into the stainless steel container 1 is 640 ° C. or less, and the temperature of the stainless steel container 1 is It is 300 degrees C or less. That is, assuming that the temperature of the molten aluminum alloy to be poured and the temperature and inner diameter of the stainless steel container are the above conditions, the aluminum alloy molten metal in the holding furnace 2 is simply filled into the stainless steel container 1 and is equiaxed and granular. A material with a transformed primary crystal is obtained.

また、内径Dが6インチのステンレス容器1を用いる場合は、当該ステンレス容器1に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器1の温度が400℃以下、且つ、ステンレス容器1の肉厚Lが7mm以上である。即ち、この場合も、注湯するアルミニウム合金溶湯の温度と、ステンレス容器の温度、内径及び肉厚を上記条件とすれば、単に保持炉2内のアルミニウム合金溶湯をステンレス容器1に充填させだけで、等軸晶で粒状化した初晶を持った素材が得られるのである。然るに、上記製法にて得られたアルミニウム合金鋳造材(半溶融素材)を一旦自然凝固させて保存するとともに、再加熱して半溶融状態とした後、金型のキャビティ内に押圧しつつ充填させ、製品を得るものとしている。   When the stainless steel container 1 having an inner diameter D of 6 inches is used, the temperature of the molten aluminum alloy poured into the stainless steel container 1 is 640 ° C. or less, the temperature of the stainless steel container 1 is 400 ° C. or less, and the stainless steel container The wall thickness L of 1 is 7 mm or more. That is, also in this case, if the temperature of the molten aluminum alloy and the temperature, inner diameter and thickness of the stainless steel container are set as the above conditions, the molten aluminum alloy in the holding furnace 2 is simply filled in the stainless steel container 1. A material having an equiaxed granulated primary crystal can be obtained. However, the aluminum alloy cast material (semi-molten material) obtained by the above manufacturing method is once naturally solidified and stored, and after reheating to a semi-molten state, it is filled while pressing into the mold cavity. Trying to get the product.

以下に、本実施形態の技術的優位性を立証し得る実験について説明する。かかる実験結果においては、実施例及び比較例に係るアルミニウム合金鋳造素材をそれぞれ所定条件下にて製造し、自然冷却させた後、半溶融温度領域まで再加熱したときの組織を顕微鏡写真にて比較したものである。   Hereinafter, an experiment that can prove the technical superiority of the present embodiment will be described. In such experimental results, the aluminum alloy casting materials according to the example and the comparative example were each manufactured under predetermined conditions, naturally cooled, and then compared with micrographs when reheated to a semi-melting temperature range. It is a thing.

まず、内径Dが3インチのステンレス容器を用いた場合における当該ステンレス容器の温度の影響について実験した。勿論、他の条件については略同一(特に、注湯温度は635℃以下)としてある。
(実施例1)ステンレス容器の温度が300℃、その肉厚Lが10mm
(実施例2)ステンレス容器の温度が300℃、その肉厚Lが6mm
(実施例3)ステンレス容器の温度が300℃、その肉厚Lが4mm
(実施例4)ステンレス容器の温度が300℃、その肉厚Lが0.5mm
(比較例1)ステンレス容器の温度が400℃、その肉厚Lが4mm
(比較例2)ステンレス容器の温度が400℃、その肉厚Lが2mm
(比較例3)ステンレス容器の温度が400℃、その肉厚Lが0.5mm
(比較例4)ステンレス容器の温度が500℃、その肉厚Lが10mm
(比較例5)ステンレス容器の温度が500℃、その肉厚Lが6mm
First, an experiment was conducted on the influence of the temperature of the stainless steel container when a stainless steel container having an inner diameter D of 3 inches was used. Of course, other conditions are substantially the same (in particular, the pouring temperature is 635 ° C. or less).
(Example 1) The temperature of the stainless steel container is 300 ° C., and the thickness L is 10 mm.
(Example 2) The temperature of the stainless steel container is 300 ° C, and the wall thickness L is 6 mm.
(Example 3) The temperature of the stainless steel container is 300 ° C, and the wall thickness L is 4 mm.
(Example 4) The temperature of the stainless steel container is 300 ° C, and the thickness L is 0.5 mm.
(Comparative example 1) The temperature of the stainless steel container is 400 ° C., and the thickness L is 4 mm.
(Comparative example 2) The temperature of the stainless steel container is 400 ° C., and the thickness L is 2 mm.
(Comparative example 3) The temperature of the stainless steel container is 400 ° C., and the thickness L is 0.5 mm.
(Comparative example 4) The temperature of the stainless steel container is 500 ° C., and the thickness L is 10 mm.
(Comparative example 5) The temperature of the stainless steel container is 500 ° C., and the thickness L is 6 mm.

上記実施例1〜実施例4、及び比較例1〜比較例5における顕微鏡写真を図2及び図3に示す。尚、実施例1が図2(a)、実施例2が同図(b)、実施例3が同図(c)及び実施例4が同図(d)でそれぞれ示されており、比較例1が図3(a)、比較例2が同図(b)、比較例3が同図(c)、比較例4が同図(d)及び比較例5が同図(e)でそれぞれ示されている。   The micrographs in Examples 1 to 4 and Comparative Examples 1 to 5 are shown in FIGS. Example 1 is shown in FIG. 2 (a), Example 2 is shown in FIG. 2 (b), Example 3 is shown in FIG. 2 (c), and Example 4 is shown in FIG. 1 is shown in FIG. 3A, Comparative Example 2 is shown in FIG. 3B, Comparative Example 3 is shown in FIG. 3C, Comparative Example 4 is shown in FIG. 3D, and Comparative Example 5 is shown in FIG. Has been.

これら顕微鏡写真によれば、固相(図中相対的に白い箇所)の形状を比較することができ、実施例1〜実施例4のものは、等軸晶で粒状化した固相(初晶)が得られたことが分かる一方、比較例1〜比較例5のものは、アメーバー(いびつな形)状の固相であることが分かる。従って、実施例1〜実施例4のものは、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材であると認められる。   According to these micrographs, the shapes of solid phases (relatively white portions in the figure) can be compared, and those of Examples 1 to 4 are solid phase (primary crystals) granulated with equiaxed crystals. ) Was obtained, while those of Comparative Examples 1 to 5 were found to be amoeba-shaped solid phases. Therefore, it is recognized that Examples 1 to 4 are aluminum alloy casting materials that have good fluidity (that is, fillability) into the mold and can be filled in the mold in a short time.

同様に、ステンレス容器の温度及び肉厚Lを他の条件下にて行った同様の実験結果を以下の表1に示す。尚、表中の丸印は、図1の如く等軸晶で粒状化した固相(初晶)が得られたものであり、バツ印は、図2の如くアメーバー(いびつな形)状の固相となったものである。   Similarly, Table 1 below shows the results of similar experiments in which the temperature and wall thickness L of the stainless steel container were performed under other conditions. The circles in the table indicate the solid phase (primary crystal) that is granulated with equiaxed crystals as shown in FIG. 1, and the crosses indicate the amoeba (rough shape) as shown in FIG. It became a solid phase.

上記表からも分かるように、内径Dが3インチのステンレス容器を用いた場合、ステンレス容器の温度を300℃以下としてアルミニウム合金溶湯を注湯すれば、等軸晶で粒状化した固相(初晶)が形成され、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材を得ることができる。   As can be seen from the above table, when a stainless steel container having an inner diameter D of 3 inches is used, if the temperature of the stainless steel container is set to 300 ° C. or less and the molten aluminum alloy is poured, a solid phase (initial Crystal) is formed, the fluidity (that is, the filling property) to the mold is good, and an aluminum alloy casting material that can be filled in the mold in a short time can be obtained.

次に、内径Dが4インチのステンレス容器を用いた場合における当該ステンレス容器の温度の影響について実験した。勿論、他の条件については略同一(特に、注湯温度は635℃以下)としてある。
(実施例5)ステンレス容器の温度が300℃、その肉厚Lが10mm
(実施例6)ステンレス容器の温度が300℃、その肉厚Lが7mm
(実施例7)ステンレス容器の温度が300℃、その肉厚Lが5mm
(実施例8)ステンレス容器の温度が300℃、その肉厚Lが0.5mm
(比較例6)ステンレス容器の温度が400℃、その肉厚Lが10mm
(比較例7)ステンレス容器の温度が400℃、その肉厚Lが0.5mm
(比較例8)ステンレス容器の温度が500℃、その肉厚Lが5mm
Next, it experimented about the influence of the temperature of the said stainless steel container when the internal diameter D used the stainless steel container of 4 inches. Of course, other conditions are substantially the same (in particular, the pouring temperature is 635 ° C. or less).
(Example 5) The temperature of the stainless steel container is 300 ° C., and the thickness L is 10 mm.
(Example 6) The temperature of the stainless steel container is 300 ° C, and the wall thickness L is 7 mm.
(Example 7) The temperature of the stainless steel container is 300 ° C, and the wall thickness L is 5 mm.
(Example 8) The temperature of the stainless steel container is 300 ° C, and the wall thickness L is 0.5 mm.
(Comparative Example 6) The temperature of the stainless steel container is 400 ° C, and the wall thickness L is 10 mm.
(Comparative example 7) The temperature of the stainless steel container is 400 ° C., and the thickness L is 0.5 mm.
(Comparative Example 8) The temperature of the stainless steel container is 500 ° C., and the thickness L is 5 mm.

上記実施例5〜実施例8、及び比較例6〜比較例8における顕微鏡写真を図4及び図5に示す。尚、実施例5が図4(a)、実施例6が同図(b)、実施例7が同図(c)及び実施例8が同図(d)でそれぞれ示されており、比較例6が図5(a)、比較例7が同図(b)及び比較例8が同図(c)でそれぞれ示されている。   The micrographs in Examples 5 to 8 and Comparative Examples 6 to 8 are shown in FIGS. Example 5 is shown in FIG. 4 (a), Example 6 is shown in FIG. 4 (b), Example 7 is shown in FIG. 4 (c), and Example 8 is shown in FIG. 6 is shown in FIG. 5A, Comparative Example 7 is shown in FIG. 5B, and Comparative Example 8 is shown in FIG.

これら顕微鏡写真によれば、固相(図中相対的に白い箇所)の形状を比較することができ、実施例5〜実施例8のものは、等軸晶で粒状化した固相(初晶)が得られたことが分かる一方、比較例6〜比較例8のものは、アメーバー(いびつな形)状の固相であることが分かる。従って、実施例5〜実施例8のものは、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材であると認められる。   According to these micrographs, the shapes of solid phases (relatively white portions in the figure) can be compared, and those of Examples 5 to 8 are solid phase (primary crystals) granulated with equiaxed crystals. On the other hand, it can be seen that those in Comparative Examples 6 to 8 are amoeba-like solid phases. Therefore, it is recognized that Examples 5 to 8 are aluminum alloy casting materials that have good fluidity (that is, fillability) into the mold and can be filled in the mold in a short time.

同様に、ステンレス容器の温度及び肉厚Lを他の条件下にて行った実験結果を以下の表2に示す。尚、表中の丸印は、図4の如く等軸晶で粒状化した固相(初晶)が得られたものであり、バツ印は、図5の如くアメーバー(いびつな形)状の固相となったものである。   Similarly, Table 2 below shows the results of experiments in which the temperature and wall thickness L of the stainless steel container were performed under other conditions. The circles in the table indicate the solid phase (primary crystal) granulated with equiaxed crystals as shown in FIG. 4, and the crosses are in the shape of an amoeba (irregular shape) as shown in FIG. It became a solid phase.

上記表からも分かるように、内径Dが4インチのステンレス容器を用いた場合、ステンレス容器の温度を300℃以下としてアルミニウム合金溶湯を注湯すれば、等軸晶で粒状化した固相(初晶)が形成され、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材を得ることができる。   As can be seen from the above table, when a stainless steel container having an inner diameter D of 4 inches is used and the temperature of the stainless steel container is set to 300 ° C. or less and the molten aluminum alloy is poured, a solid phase (initial Crystal) is formed, the fluidity (that is, the filling property) to the mold is good, and an aluminum alloy casting material that can be filled in the mold in a short time can be obtained.

次に、内径Dが5インチのステンレス容器を用いた場合における当該ステンレス容器の温度の影響について実験した。勿論、他の条件については略同一(特に、注湯温度は635℃以下)としてある。
(実施例9)ステンレス容器の温度が300℃、その肉厚Lが10mm
(実施例10)ステンレス容器の温度が300℃、その肉厚Lが5mm
(実施例11)ステンレス容器の温度が300℃、その肉厚Lが0.5mm
(比較例9)ステンレス容器の温度が400℃、その肉厚Lが10mm
(比較例10)ステンレス容器の温度が400℃、その肉厚Lが5mm
(比較例11)ステンレス容器の温度が400℃、その肉厚Lが0.5mm
Next, an experiment was conducted on the influence of the temperature of the stainless steel container when a stainless steel container having an inner diameter D of 5 inches was used. Of course, other conditions are substantially the same (in particular, the pouring temperature is 635 ° C. or less).
(Example 9) The temperature of the stainless steel container is 300 ° C., and the wall thickness L is 10 mm.
(Example 10) The temperature of the stainless steel container is 300 ° C, and the wall thickness L is 5 mm.
(Example 11) The temperature of the stainless steel container is 300 ° C, and the wall thickness L is 0.5 mm.
(Comparative Example 9) The temperature of the stainless steel container is 400 ° C., and the thickness L is 10 mm.
(Comparative Example 10) The temperature of the stainless steel container is 400 ° C., and the thickness L is 5 mm.
(Comparative Example 11) The temperature of the stainless steel container is 400 ° C., and the wall thickness L is 0.5 mm.

上記実施例9〜実施例11、及び比較例9〜比較例11における顕微鏡写真を図6及び図7に示す。尚、実施例9が図6(a)、実施例10が同図(b)及び実施例11が同図(c)でそれぞれ示されており、比較例9が図7(a)、比較例10が同図(b)及び比較例11が同図(c)でそれぞれ示されている。   The micrographs in Examples 9 to 11 and Comparative Examples 9 to 11 are shown in FIGS. Example 9 is shown in FIG. 6A, Example 10 is shown in FIG. 6B, and Example 11 is shown in FIG. 6C. Comparative Example 9 is shown in FIG. 10 (b) and Comparative Example 11 are shown in FIG.

これら顕微鏡写真によれば、固相(図中相対的に白い箇所)の形状を比較することができ、実施例9〜実施例11のものは、等軸晶で粒状化した固相(初晶)が得られたことが分かる一方、比較例9〜比較例11のものは、アメーバー(いびつな形)状の固相であることが分かる。従って、実施例9〜実施例11のものは、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材であると認められる。   According to these micrographs, the shapes of solid phases (relatively white portions in the figure) can be compared, and those of Examples 9 to 11 are solid phase (primary crystals) granulated with equiaxed crystals. ) Was obtained, while those of Comparative Examples 9 to 11 were found to be amoeba (irregular) solid phases. Therefore, the examples 9 to 11 have good fluidity (that is, filling property) into the mold, and are recognized as aluminum alloy casting materials that can be filled in the mold in a short time.

同様に、ステンレス容器の温度及び肉厚Lを他の条件下にて行った実験結果を以下の表3に示す。尚、表中の丸印は、図6の如く等軸晶で粒状化した固相(初晶)が得られたものであり、バツ印は、図7の如くアメーバー(いびつな形)状の固相となったものである。   Similarly, Table 3 below shows the results of experiments in which the temperature and thickness L of the stainless steel container were performed under other conditions. The circles in the table indicate the solid phase (primary crystal) that is granulated with equiaxed crystals as shown in FIG. It became a solid phase.

上記表からも分かるように、内径Dが5インチのステンレス容器を用いた場合、ステンレス容器の温度を300℃以下としてアルミニウム合金溶湯を注湯すれば、等軸晶で粒状化した固相(初晶)が形成され、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材を得ることができる。   As can be seen from the above table, when a stainless steel container having an inner diameter D of 5 inches is used, if the temperature of the stainless steel container is set to 300 ° C. or less and the molten aluminum alloy is poured, a solid phase (initial Crystal) is formed, the fluidity (that is, the filling property) to the mold is good, and an aluminum alloy casting material that can be filled in the mold in a short time can be obtained.

次に、内径Dが6インチのステンレス容器を用いた場合における当該ステンレス容器の温度の影響について実験した。勿論、他の条件については略同一(特に、注湯温度は635℃以下)としてある。
(実施例12)ステンレス容器の温度が常温、その肉厚Lが7mm
(実施例13)ステンレス容器の温度が400℃、その肉厚Lが10mm
(実施例14)ステンレス容器の温度が400℃、その肉厚Lが7mm
(比較例12)ステンレス容器の温度が常温、その肉厚Lが5mm
(比較例13)ステンレス容器の温度が400℃、その肉厚Lが5mm
(比較例14)ステンレス容器の温度が500℃、その肉厚Lが10mm
Next, an experiment was conducted on the influence of the temperature of the stainless steel container when a stainless steel container having an inner diameter D of 6 inches was used. Of course, other conditions are substantially the same (in particular, the pouring temperature is 635 ° C. or less).
(Example 12) The temperature of the stainless steel container is normal temperature and the wall thickness L is 7 mm.
(Example 13) The temperature of the stainless steel container is 400 ° C., and the thickness L is 10 mm.
(Example 14) The temperature of a stainless steel container is 400 ° C, and the thickness L is 7 mm.
(Comparative example 12) The temperature of the stainless steel container is normal temperature, and the thickness L is 5 mm.
(Comparative example 13) The temperature of the stainless steel container is 400 ° C., and the thickness L is 5 mm.
(Comparative Example 14) The temperature of the stainless steel container is 500 ° C., and the thickness L is 10 mm.

上記実施例12〜実施例14、及び比較例12〜比較例14における顕微鏡写真を図8及び図9に示す。尚、実施例12が図8(a)、実施例13が同図(b)及び実施例14が同図(c)でそれぞれ示されており、比較例12が図9(a)、比較例13が同図(b)及び比較例14が同図(c)でそれぞれ示されている。   The micrographs in Examples 12 to 14 and Comparative Examples 12 to 14 are shown in FIGS. Example 12 is shown in FIG. 8 (a), Example 13 is shown in FIG. 8 (b), and Example 14 is shown in FIG. 8 (c). Comparative example 12 is shown in FIG. 9 (a), Comparative example. 13 is shown in the same figure (b) and the comparative example 14 is shown in the same figure (c).

これら顕微鏡写真によれば、固相(図中相対的に白い箇所)の形状を比較することができ、実施例12〜実施例14のものは、等軸晶で粒状化した固相(初晶)が得られたことが分かる一方、比較例12〜比較例14のものは、アメーバー(いびつな形)状の固相であることが分かる。従って、実施例12〜実施例14のものは、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材であると認められる。   According to these micrographs, the shapes of solid phases (relatively white portions in the figure) can be compared, and those of Examples 12 to 14 are solid phase (primary crystals) granulated with equiaxed crystals. ) Was obtained, while those of Comparative Examples 12 to 14 were found to be amoeba-like solid phases. Therefore, it is recognized that Examples 12 to 14 are aluminum alloy casting materials that have good fluidity (that is, fillability) into the mold and can be filled in the mold in a short time.

同様に、ステンレス容器の温度及び肉厚Lを他の条件下にて行った実験結果を以下の表4に示す。尚、表中の丸印は、図8の如く等軸晶で粒状化した固相(初晶)が得られたものであり、バツ印は、図9の如くアメーバー(いびつな形)状の固相となったものである。   Similarly, Table 4 below shows the results of an experiment in which the temperature and thickness L of the stainless steel container were measured under other conditions. The circles in the table are obtained by obtaining a solid phase (primary crystal) granulated with equiaxed crystals as shown in FIG. 8, and the crosses are in an amoeba (rough shape) as shown in FIG. It became a solid phase.

上記表からも分かるように、内径Dが6インチのステンレス容器を用いた場合、ステンレス容器の温度を400℃以下とし、且つ、当該ステンレス容器の肉厚を7mm以上のものを用いてアルミニウム合金溶湯を注湯すれば、等軸晶で粒状化した固相(初晶)が形成され、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材を得ることができる。   As can be seen from the above table, when a stainless steel container having an inner diameter D of 6 inches is used, the temperature of the stainless steel container is set to 400 ° C. or less, and the thickness of the stainless steel container is 7 mm or more. Is poured, a solid phase (primary crystal) granulated with equiaxed crystals is formed, the fluidity (that is, the filling property) to the mold is good, and the mold can be filled in a short time. An aluminum alloy casting material can be obtained.

次に、内径Dが3インチのステンレス容器を用いた場合における注湯温度(注湯するアルミニウム合金溶湯の温度)の影響について実験した。勿論、他の条件については略同一としてある。
(実施例15)ステンレス容器の温度が100℃、注湯温度が635℃
(比較例15)ステンレス容器の温度が100℃、注湯温度が680℃
(比較例16)ステンレス容器の温度が100℃、注湯温度が665℃
(比較例17)ステンレス容器の温度が100℃、注湯温度が645℃
Next, it experimented about the influence of the pouring temperature (temperature of the molten aluminum alloy to pour) in the case of using a stainless steel container having an inner diameter D of 3 inches. Of course, other conditions are substantially the same.
(Example 15) The temperature of the stainless steel container is 100 ° C, and the pouring temperature is 635 ° C.
(Comparative example 15) The temperature of the stainless steel container is 100 ° C, and the pouring temperature is 680 ° C.
(Comparative Example 16) Stainless steel container temperature is 100 ° C, pouring temperature is 665 ° C
(Comparative example 17) The temperature of the stainless steel container is 100 ° C, and the pouring temperature is 645 ° C.

上記実施例15、及び比較例15〜比較例17における顕微鏡写真を図10に示す。尚、実施例15が同図(a)で示されており、比較例15が同図(b)、比較例16が同図(c)及び比較例17が同図(d)でそれぞれ示されている。   The micrographs in Example 15 and Comparative Examples 15 to 17 are shown in FIG. In addition, Example 15 is shown by the same figure (a), the comparative example 15 is shown by the same figure (b), the comparative example 16 is shown by the same figure (c), and the comparative example 17 is shown by the same figure (d). ing.

これら顕微鏡写真によれば、固相(図中相対的に白い箇所)の形状を比較することができ、実施例15のものは、等軸晶で粒状化した固相(初晶)が得られたことが分かる一方、比較例15〜比較例17のものは、樹枝状の固相であることが分かる。従って、実施例15のものは、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材であると認められる。   According to these photomicrographs, the shapes of the solid phase (relatively white portions in the figure) can be compared, and in Example 15, a solid phase (primary crystal) granulated with equiaxed crystals is obtained. On the other hand, it can be seen that those in Comparative Examples 15 to 17 are dendritic solid phases. Therefore, it is recognized that Example 15 is an aluminum alloy casting material that has good fluidity (that is, filling property) into the mold and can be filled in the mold in a short time.

同様に、ステンレス容器の温度及び肉厚Lを他の条件下にて行った実験結果を以下の表5に示す。尚、表中の丸印は、図10(a)の如く等軸晶で粒状化した固相(初晶)が得られたものであり、バツ印は、同図(b)〜(d)の如く樹枝状の固相となったものである。   Similarly, Table 5 below shows the results of experiments in which the temperature and thickness L of the stainless steel container were performed under other conditions. The circles in the table indicate solid phases (primary crystals) granulated with equiaxed crystals as shown in FIG. 10 (a), and the crosses indicate the same figures (b) to (d). It becomes a dendritic solid phase like this.

上記表からも分かるように、ステンレス容器の温度を300℃以下とし、且つ、注湯温度を640℃以下としてアルミニウム合金溶湯を注湯すれば、等軸晶で粒状化した固相(初晶)が形成され、金型への流動性(即ち、充填性)が良好であり、短時間で金型内に充填され得るアルミニウム合金鋳造素材を得ることができる。   As can be seen from the above table, if the temperature of the stainless steel container is set to 300 ° C. or lower and the pouring temperature is set to 640 ° C. or lower and the molten aluminum alloy is poured, a solid phase (primary crystal) granulated with equiaxed crystals. Is formed, the fluidity (that is, the filling property) to the mold is good, and an aluminum alloy casting material that can be filled in the mold in a short time can be obtained.

上記実験における実施例1〜実施例15から明らかなように、ステンレス容器に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器の温度が300℃以下及びその内径が5インチ以下の条件、或いは、ステンレス容器に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器の温度が400℃以下及びその内径が6インチ、且つ、その肉厚が7mm以上の条件に設定した後、単に保持炉2内のアルミニウム合金溶湯をステンレス容器1に充填させるだけで、等軸晶で粒状化した初晶を得ることができるので、大がかりな製造装置を用いることなく、簡易に且つ低コストで半溶融成形法に適したアルミニウム合金鋳造素材を得ることができる。   As is clear from Examples 1 to 15 in the above experiment, the temperature of the molten aluminum alloy poured into the stainless steel container is 640 ° C. or less, the temperature of the stainless steel container is 300 ° C. or less, and its inner diameter is 5 inches or less. Conditions were set such that the temperature of the molten aluminum alloy poured into the stainless steel container was 640 ° C. or less, the temperature of the stainless steel container was 400 ° C. or less, the inner diameter was 6 inches, and the wall thickness was 7 mm or more. Then, by simply filling the stainless steel container 1 with the molten aluminum alloy in the holding furnace 2, it is possible to obtain a primary crystal granulated with equiaxed crystals, so that it is simple and low without using a large-scale manufacturing apparatus. An aluminum alloy casting material suitable for the semi-melt molding method can be obtained at a low cost.

ここで、本発明においては、上記の如く本製法にて得られたアルミニウム合金鋳造材(半溶融素材)を一旦自然凝固させて保存するとともに、再加熱して半溶融状態とした後、金型のキャビティ内に押圧しつつ充填させ、製品を得るもの(チクソキャスティング)の他、当該本製法にて得られたアルミニウム合金鋳造材(半溶融素材)を金型のキャビティ内に押圧しつつ充填させ、製品を得る(レオキャスティング)ものの両者に適用することができる。即ち、当該条件において容器に注湯されたアルミニウム合金溶湯を半溶融温度領域まで冷却し、そのまま保持した場合においても、自然冷却および固化した後、再加熱した場合と同様に結果が得られることから、チクソキャスティング及びレオキャスティングに拘わらず、上記製造条件とすれば、半溶融成形法に適したアルミニウム合金鋳造素材を得ることができるのである。   Here, in the present invention, the aluminum alloy cast material (semi-molten material) obtained by the production method as described above is once naturally solidified and stored, and is reheated to be in a semi-molten state, and then the mold is molded. In addition to what is filled into the cavity of the mold to obtain a product (thixocasting), the aluminum alloy cast material (semi-molten material) obtained by the production method is filled into the mold cavity while being pressed. It can be applied to both obtaining products (reocasting). That is, even when the molten aluminum alloy poured into the container under the above conditions is cooled to the semi-molten temperature range and kept as it is, the result is obtained in the same manner as when reheated after natural cooling and solidification. Regardless of thixocasting and rheocasting, an aluminum alloy casting material suitable for the semi-melt molding method can be obtained under the above production conditions.

ステンレス容器に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器の温度が300℃以下及びその内径が5インチ以下の条件、或いはステンレス容器に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器の温度が400℃以下及びその内径が6インチ、且つ、その肉厚が7mm以上の条件にて、半溶融成形に適した素材を得るアルミニウム合金鋳造素材の製造方法であれば、他の製造工程等を付加したもの等にも適用することができる。   The temperature of the molten aluminum alloy poured into the stainless steel container is 640 ° C. or less, the temperature of the stainless steel container is 300 ° C. or less and the inner diameter is 5 inches or less, or the temperature of the molten aluminum alloy poured into the stainless steel container is An aluminum alloy casting material manufacturing method for obtaining a material suitable for semi-melt molding under conditions of 640 ° C. or lower, a temperature of the stainless steel container of 400 ° C. or lower, an inner diameter of 6 inches, and a wall thickness of 7 mm or more. If so, the present invention can also be applied to those to which other manufacturing processes are added.

本発明の実施形態に係るアルミニウム合金鋳造素材の製造方法を説明するための模式図The schematic diagram for demonstrating the manufacturing method of the aluminum alloy casting raw material which concerns on embodiment of this invention. 本発明の実施例1〜実施例4の顕微鏡写真Micrographs of Examples 1 to 4 of the present invention 本発明の比較例1〜比較例5の顕微鏡写真Micrographs of Comparative Examples 1 to 5 of the present invention 本発明の実施例5〜実施例8の顕微鏡写真Micrographs of Examples 5 to 8 of the present invention 本発明の比較例6〜比較例8の顕微鏡写真Micrographs of Comparative Examples 6 to 8 of the present invention 本発明の実施例9〜実施例11の顕微鏡写真Micrographs of Examples 9 to 11 of the present invention 本発明の比較例9〜比較例11の顕微鏡写真Micrographs of Comparative Examples 9 to 11 of the present invention 本発明の実施例12〜実施例14の顕微鏡写真Micrographs of Examples 12 to 14 of the present invention 本発明の比較例12〜比較例14の顕微鏡写真Micrographs of Comparative Examples 12 to 14 of the present invention 本発明の実施例15及び比較例15〜比較例17の顕微鏡写真Micrographs of Example 15 and Comparative Examples 15 to 17 of the present invention

符号の説明Explanation of symbols

1 ステンレス容器
2 保持炉
D 内径
L 肉厚
1 Stainless steel container 2 Holding furnace D Inner diameter L Thickness

Claims (2)

アルミニウム合金溶湯を円筒状のステンレス容器内に注湯することにより、半溶融成形に適した素材を得るアルミニウム合金鋳造素材の製造方法において、
前記ステンレス容器に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器の温度が300℃以下及びその内径が5インチ以下の条件とされたことを特徴とするアルミニウム合金鋳造素材の製造方法。
In the method for producing an aluminum alloy casting material, by pouring molten aluminum alloy into a cylindrical stainless steel container, a material suitable for semi-melt molding is obtained.
Manufacturing of an aluminum alloy casting material characterized in that the temperature of the molten aluminum alloy poured into the stainless steel container is 640 ° C. or lower, the temperature of the stainless steel container is 300 ° C. or lower, and its inner diameter is 5 inches or less. Method.
アルミニウム合金溶湯を円筒状のステンレス容器内に注湯することにより、半溶融成形に適した素材を得るアルミニウム合金鋳造素材の製造方法において、
前記ステンレス容器に注湯されるアルミニウム合金溶湯の温度が640℃以下、当該ステンレス容器の温度が400℃以下及びその内径が6インチ、且つ、その肉厚が7mm以上の条件とされたことを特徴とするアルミニウム合金鋳造素材の製造方法。
In the method for producing an aluminum alloy casting material, by pouring molten aluminum alloy into a cylindrical stainless steel container, a material suitable for semi-melt molding is obtained.
The temperature of the molten aluminum alloy poured into the stainless steel container is 640 ° C. or less, the temperature of the stainless steel container is 400 ° C. or less, the inner diameter is 6 inches, and the wall thickness is 7 mm or more. A method for producing an aluminum alloy casting material.
JP2006002927A 2006-01-10 2006-01-10 Method for producing aluminum alloy casting material Active JP4084821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002927A JP4084821B2 (en) 2006-01-10 2006-01-10 Method for producing aluminum alloy casting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002927A JP4084821B2 (en) 2006-01-10 2006-01-10 Method for producing aluminum alloy casting material

Publications (2)

Publication Number Publication Date
JP2007181874A true JP2007181874A (en) 2007-07-19
JP4084821B2 JP4084821B2 (en) 2008-04-30

Family

ID=38338365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002927A Active JP4084821B2 (en) 2006-01-10 2006-01-10 Method for producing aluminum alloy casting material

Country Status (1)

Country Link
JP (1) JP4084821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155262A (en) * 2008-12-26 2010-07-15 Asanuma Giken:Kk Apparatus of manufacturing aluminum alloy casting material
US9586261B2 (en) 2012-06-12 2017-03-07 Toshiba Kikai Kabushiki Kaisha Apparatus for producing semi-solidified metal, method for producing semi-solidified metal, and semi-solidified metal
JP7351470B1 (en) 2023-06-20 2023-09-27 株式会社浅沼技研 Method of forming semi-molten metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155262A (en) * 2008-12-26 2010-07-15 Asanuma Giken:Kk Apparatus of manufacturing aluminum alloy casting material
US9586261B2 (en) 2012-06-12 2017-03-07 Toshiba Kikai Kabushiki Kaisha Apparatus for producing semi-solidified metal, method for producing semi-solidified metal, and semi-solidified metal
JP7351470B1 (en) 2023-06-20 2023-09-27 株式会社浅沼技研 Method of forming semi-molten metal

Also Published As

Publication number Publication date
JP4084821B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP2019510636A (en) Continuous semi-solid die casting manufacturing method and manufacturing system
JP4084821B2 (en) Method for producing aluminum alloy casting material
CN1480275A (en) Method and equipment for preparing semisolid fused mass of ferrous material
JP3919810B2 (en) Method for producing semi-solid metal slurry, molding method and molded product
JP3246296B2 (en) Forming method of semi-molten metal
CN1301166C (en) Preparation method of high speed steel blank and its equipment
JPH10158756A (en) Method for molding semi-molten metal
JP2010155262A (en) Apparatus of manufacturing aluminum alloy casting material
JP3491468B2 (en) Method for forming semi-solid metal
JPH08257722A (en) Casting method by die casting
JP2013052421A (en) Casting apparatus and casting method
JP5035508B2 (en) Solidified aluminum alloy and method for producing the same
JPH09279266A (en) Method for precast forming metal
JP2003126950A (en) Molding method of semi-molten metal
KR101072764B1 (en) Pressure casting method of magnesium alloy and metal products thereof
JPH08325652A (en) Method for molding semisolid metal
JP3536559B2 (en) Method for forming semi-solid metal
JP2013066919A (en) Method for manufacturing aluminum alloy casting material
JP4748688B2 (en) Method for preparing semi-solid metal slurry
JP2008068321A (en) Sod (slurry on demand) casting method and filling material
JP3339333B2 (en) Method for forming molten metal
JPH0987773A (en) Method for molding half-molten metal
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JP4179206B2 (en) Method for producing semi-solid metal and method for forming the same
JP3246319B2 (en) Forming method of semi-molten metal

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070614

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Ref document number: 4084821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250