JP2007179888A - Direct current high voltage vacuum apparatus - Google Patents

Direct current high voltage vacuum apparatus Download PDF

Info

Publication number
JP2007179888A
JP2007179888A JP2005377439A JP2005377439A JP2007179888A JP 2007179888 A JP2007179888 A JP 2007179888A JP 2005377439 A JP2005377439 A JP 2005377439A JP 2005377439 A JP2005377439 A JP 2005377439A JP 2007179888 A JP2007179888 A JP 2007179888A
Authority
JP
Japan
Prior art keywords
dust
electrode
vacuum apparatus
voltage vacuum
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377439A
Other languages
Japanese (ja)
Other versions
JP4673212B2 (en
Inventor
Ryozo Takeuchi
良三 武内
Yutaka Morita
森田  裕
Yoshiaki Tsuburaya
喜明 円谷
Masaki Kondo
正樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi Medical Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi Medical Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005377439A priority Critical patent/JP4673212B2/en
Publication of JP2007179888A publication Critical patent/JP2007179888A/en
Application granted granted Critical
Publication of JP4673212B2 publication Critical patent/JP4673212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct current high voltage vacuum apparatus capable of operating without impairing withstand voltage performance even in the case where dust remains or enters in a vacuum container. <P>SOLUTION: The direct current high voltage vacuum apparatus has a casing formed by an insulation wall, an evacuated sealed space formed in the casing, electrodes provided in the sealed space to which direct current is applied and a dust capture container for capturing dust in the sealed space; and the dust capturing container is provided at a position free from effect of an electric field formed by the electrodes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は真空容器内に設けられた電極に直流高電圧を印加するように構成された直流高電圧真空装置に関する。   The present invention relates to a direct-current high-voltage vacuum apparatus configured to apply a direct-current high voltage to an electrode provided in a vacuum vessel.

一般的に真空容器内では、大気中に比して、高電圧に対する絶縁が可能である。真空中では、電極間の1mm当たりの耐電圧は10kV以上であるが、大気中では電極間の1mm当たりの耐電圧は3kV程度である。この性質を利用して多くの高電圧機器に真空容器が用いられている。例えば、真空遮断器、真空断路機などの電力機器、ブラウン管等がある。最近では、計測用電子顕微鏡や医療用X線管などにも利用されている。ブラウン管、計測用電子顕微鏡及び医療用X線管では、直流電圧の絶縁に真空容器が用いられている。   Generally, in a vacuum vessel, it is possible to insulate against a high voltage as compared with the atmosphere. In vacuum, the withstand voltage per mm between the electrodes is 10 kV or more, but in the atmosphere, the withstand voltage per mm between the electrodes is about 3 kV. Utilizing this property, vacuum containers are used in many high voltage devices. For example, there are power devices such as a vacuum circuit breaker and a vacuum disconnector, a cathode ray tube, and the like. Recently, it is also used for measurement electron microscopes and medical X-ray tubes. In a cathode ray tube, a measuring electron microscope, and a medical X-ray tube, a vacuum container is used for insulation of a DC voltage.

真空を用いた絶縁は、電界の局部集中があると大幅に耐電圧性能が低下する。電極に突起があると、電界の局部集中を引き起こし、そこからの電子放出に起因する耐電圧性能の低下が発生する。従って、電極の突起は避けるべきである。特に直流電圧を印加する場合には、電極の極性が変化しないので、陽極に突起があれば連続的に電子を放出し、直ちに絶縁不良を発生する危険性が高い。電界の局部集中を防止するためには、電極に突起を設けなければよい。そのために、電極を、表面が鏡面となるように研磨する、所謂、鏡面研磨を徹底する。   Insulation using a vacuum significantly reduces the withstand voltage performance when there is local concentration of the electric field. If there is a protrusion on the electrode, local concentration of the electric field is caused, and the withstand voltage performance is reduced due to electron emission from the electric field. Therefore, electrode protrusions should be avoided. In particular, when a DC voltage is applied, the polarity of the electrode does not change. Therefore, if there is a projection on the anode, there is a high risk that electrons will be emitted continuously and an insulation failure will occur immediately. In order to prevent local concentration of the electric field, it is not necessary to provide a protrusion on the electrode. For this purpose, so-called mirror polishing, in which the electrode is polished so that the surface becomes a mirror surface, is thoroughly performed.

真空容器を製造すると内部に微細な塵埃が残留することがある。この塵埃が電極表面に付着すると、電極表面に突起が生成されたのと同様になる。従って、局部的な電界集中から電子放出が起き、電極間の耐電圧性能を低下させる。真空容器内に残留する塵埃をなくすことが理想であるが、工業的に量産する工程のすべてで塵埃を全く無くすことは困難である。真空容器の製造をクリーンルームなどの清浄な環境にて行うことにより、製造工程における塵埃の残留を極力排除することができるが、製品として稼動中に金属同士の摺動などによって微細な塵埃が発生することもある。更には、長期間の運転後に修理が必要になると、真空容器を分解しなければならない。このような場合にも、真空容器内に塵埃が混入することもある。   When a vacuum container is manufactured, fine dust may remain inside. When this dust adheres to the electrode surface, it becomes the same as a projection formed on the electrode surface. Accordingly, electron emission occurs due to local electric field concentration, and the withstand voltage performance between the electrodes is lowered. It is ideal to eliminate the dust remaining in the vacuum vessel, but it is difficult to eliminate the dust at all in the industrial mass production process. Although vacuum containers are manufactured in a clean environment such as a clean room, it is possible to eliminate dust residue in the manufacturing process as much as possible, but fine dust is generated due to sliding of metals during operation as a product. Sometimes. Furthermore, if repair is required after a long period of operation, the vacuum vessel must be disassembled. Even in such a case, dust may be mixed in the vacuum container.

真空容器内の塵埃は、高電圧電極と低電圧電極の間を往復する。塵埃が一方の電極に接触すると電極から塵埃へ瞬時に電荷が注入され、塵埃はその電極と同電位になる。こうして一方の電極と同電位となった塵埃と対向電極の間に静電気力が働く。この力と重力との合力によって塵埃が対向電極へと飛行する。塵埃には重力が働くから、塵埃が下方の電極から上方の電極へ飛行するには大きな静電力が必要になる。この静電気力は電極間の電界によって生成される。   The dust in the vacuum container reciprocates between the high voltage electrode and the low voltage electrode. When dust comes into contact with one electrode, an electric charge is instantaneously injected from the electrode into the dust, and the dust has the same potential as that electrode. Thus, an electrostatic force acts between the dust having the same potential as one of the electrodes and the counter electrode. Dust flies to the counter electrode by the resultant force of this force and gravity. Since gravity acts on the dust, a large electrostatic force is required for the dust to fly from the lower electrode to the upper electrode. This electrostatic force is generated by the electric field between the electrodes.

電界の強さが小さい場合には、塵埃は飛び上がらず電極表面で立ち上がるなどの現象が発生する。電界の強さが大きくなると、塵埃は下方の電極からも飛び上がり、上方の電極へ到達する。こうして電極間を繰返し飛行するようになる。このような塵埃の電極間往復運動は直流電圧特有の現象である。また真空中であるために、塵埃は空気抵抗を受けることなく電極間を往復する。ここまでの現象では、真空容器内を塵埃が飛行するのみであるために、大きな問題ではない。ところが更に電界の強さが大きくなると、プラス側の電極に塵埃が接触した瞬間に電極上に突起が生成されたのと同様になる。塵埃の先端から電界によって電子が放出されるようになる。電子放出が盛んになると終には電極間の短絡が発生する。   When the strength of the electric field is small, a phenomenon such as dust does not fly up and rises on the electrode surface occurs. When the strength of the electric field increases, the dust also jumps from the lower electrode and reaches the upper electrode. In this way, it will fly repeatedly between electrodes. Such reciprocation of dust between electrodes is a phenomenon peculiar to DC voltage. Moreover, since it is in a vacuum, dust reciprocates between electrodes without receiving air resistance. The phenomenon so far is not a big problem because dust only flies inside the vacuum vessel. However, when the strength of the electric field is further increased, the projection is formed on the electrode at the moment when dust contacts the positive electrode. Electrons are emitted from the tip of the dust by an electric field. When electron emission becomes active, a short circuit occurs between the electrodes.

従って、直流高電圧真空容器内に残留、発生または混入などで生じた塵埃を電極表面の突起にならないようにすれば良い。   Therefore, it is only necessary to prevent dust generated due to residual, generation, or mixing in the DC high-voltage vacuum vessel from becoming protrusions on the electrode surface.

本発明の目的は、真空容器において塵埃が残留または混入しても耐電圧性能を損なうことなく運転できる直流高電圧真空装置を提供することにある。   An object of the present invention is to provide a direct-current high-voltage vacuum apparatus that can be operated without impairing the withstand voltage performance even if dust remains or enters the vacuum container.

本発明による直流高電圧真空装置は、絶縁壁によって形成されたケーシングと、該ケーシング内に形成された真空排気された密閉空間と、該密閉空間内に配置され直流が印加される電極と、上記密閉空間内の塵埃を捕捉する塵埃捕捉容器と、を有し、該塵埃捕捉容器は上記電極によって形成される電界の影響を受けない位置に配置されている。   A direct current high voltage vacuum apparatus according to the present invention includes a casing formed by an insulating wall, a vacuum exhausted sealed space formed in the casing, an electrode disposed in the sealed space to which direct current is applied, and A dust trapping container for trapping dust in the sealed space, and the dust trapping container is disposed at a position not affected by the electric field formed by the electrode.

本発明によると、真空容器において塵埃が残留または混入しても耐電圧性能を損なうことなく運転できる。   According to the present invention, operation can be performed without impairing the withstand voltage performance even if dust remains or enters the vacuum container.

図1に本発明による直流高電圧真空容器の一実施例を示す。図1は直流高電圧真空容器の概略を示すものであり、電極を強調して表示している。実際の直流高電圧真空容器には他の構成要素が設けられているが、ここでは省略している。   FIG. 1 shows an embodiment of a DC high voltage vacuum vessel according to the present invention. FIG. 1 schematically shows a direct-current high-voltage vacuum vessel, with electrodes highlighted. Other components are provided in the actual DC high-voltage vacuum vessel, but are omitted here.

直流高電圧真空容器は、ケーシング3と1対の電極1、2とリング状の塵埃捕捉容器5とを有する。重力の方向は、図1にて上から下に向かう方向であるとする。従って、電極1は天井側、電極2は底面側にある。   The DC high-voltage vacuum vessel has a casing 3, a pair of electrodes 1 and 2, and a ring-shaped dust trapping vessel 5. The direction of gravity is assumed to be a direction from top to bottom in FIG. Therefore, the electrode 1 is on the ceiling side and the electrode 2 is on the bottom side.

ケーシング3はガラスやセラミックス等の絶縁壁によって形成されている。ケーシング3の内部は、真空排気された密閉空間4である。ケーシング3の外側6は、空気、絶縁油、絶縁性ガス等が充填されている。   The casing 3 is formed of an insulating wall such as glass or ceramics. The inside of the casing 3 is a sealed space 4 that is evacuated. The outer side 6 of the casing 3 is filled with air, insulating oil, insulating gas and the like.

電極1、2は互いに対向するように配置されている。一方の電極には高電圧が印加され他方の電極には低電圧が印加される。電極1、2は、それぞれ、半径方向内端の内端部1-a、2-aと、それを支持する支柱1-b、2-bと、支柱に接続された外部端子1-c、2-cとを有する。外部端子1-c、2-cの外端はケーシング3の外側に配置されている。   The electrodes 1 and 2 are disposed so as to face each other. A high voltage is applied to one electrode and a low voltage is applied to the other electrode. The electrodes 1 and 2, respectively, have inner end portions 1-a and 2-a at radially inner ends, support posts 1-b and 2-b that support the end portions, and external terminals 1-c connected to the support posts, 2-c. The outer ends of the external terminals 1-c and 2-c are arranged outside the casing 3.

塵埃捕捉容器5は密閉空間4の底面に配置されている。本例では、塵埃捕捉容器5は底面側の電極2の外部端子2-cに埋め込まれるように配置されている。   The dust container 5 is disposed on the bottom surface of the sealed space 4. In this example, the dust trapping container 5 is disposed so as to be embedded in the external terminal 2-c of the electrode 2 on the bottom surface side.

電極1、2間に直流高電圧が印加されると、密閉空間4内に電界が生成される。ケーシング3内の塵埃は、高電圧電極1と低電圧電極2の間を往復する。このような塵埃の電極間の飛行は、上述のように、直流高電圧が加わる真空容器内で発生する現象である。   When a DC high voltage is applied between the electrodes 1 and 2, an electric field is generated in the sealed space 4. The dust in the casing 3 reciprocates between the high voltage electrode 1 and the low voltage electrode 2. Such a flight between dust electrodes is a phenomenon that occurs in a vacuum vessel to which a DC high voltage is applied, as described above.

塵埃がプラス側の電極に接触すると、瞬時に、塵埃の先端から電子が放出する危険性がある。しかしながら、本例では、ケーシング3の底面に塵埃捕捉容器5を設ける。電極間を飛行している塵埃は重力により、塵埃捕捉容器5を捕捉される。塵埃捕捉容器5内の電界は略無視できる程度である。塵埃は、一旦、塵埃捕捉容器5に入ると、再び電極間を飛行することがなくなる。   When dust comes into contact with the positive electrode, there is a risk that electrons are emitted from the tip of the dust instantly. However, in this example, the dust capturing container 5 is provided on the bottom surface of the casing 3. Dust flying between the electrodes is captured by the dust capturing container 5 by gravity. The electric field in the dust trapping container 5 is almost negligible. Once the dust enters the dust capturing container 5, it does not fly again between the electrodes.

図2を参照して本発明による塵埃捕捉容器5の構造を説明する。図2aは、塵埃捕捉容器5の断面構成を示し、図2bは、塵埃捕捉容器5の平面構成を示す。塵埃捕捉容器5は、内側円筒部5-a、外側円筒部5-b、及び、リング状の底板5-cを有し、これらの3つの部材によってリング状の溝5-eが形成される。このリング状の溝の中央には、電極2が配置されるための貫通孔5-fが形成されている。   The structure of the dust trapping container 5 according to the present invention will be described with reference to FIG. FIG. 2 a shows a cross-sectional configuration of the dust trapping container 5, and FIG. 2 b shows a plan configuration of the dust trapping container 5. The dust trapping container 5 includes an inner cylindrical portion 5-a, an outer cylindrical portion 5-b, and a ring-shaped bottom plate 5-c, and a ring-shaped groove 5-e is formed by these three members. . A through hole 5-f for arranging the electrode 2 is formed in the center of the ring-shaped groove.

リング状の溝5-eの上端に、複数の棒5-dが半径方向に沿って所定の間隔にて配置されている。図2bに示すように、棒5-dによってリング状の溝5-eの開口は部分的に閉じられる。棒と棒の間に窓5-gが形成されている。   At the upper end of the ring-shaped groove 5-e, a plurality of rods 5-d are arranged at predetermined intervals along the radial direction. As shown in FIG. 2b, the opening of the ring-shaped groove 5-e is partially closed by the rod 5-d. A window 5-g is formed between the bars.

棒5-dの断面は、上面に平坦な面が形成されないならどのような形状であってもよく、例えば、円形又は上に凸の三角形であってもよい。   The cross section of the rod 5-d may have any shape as long as a flat surface is not formed on the upper surface, and may be, for example, a circle or a convex triangle.

上から落ちてきた塵埃のうち、棒5-dの間に落下した塵埃は、そのまま下方に落下し、底板5-c上に堆積される。上から落ちてきた塵埃のうち、棒5-dに衝突した塵埃は棒5-dの表面を滑って、棒5-dの間を落下し、底板5-c上に堆積される。こうして底板5-c上に堆積した塵埃は、塵埃捕捉容器5の外部に飛び出すことはない。   Of the dust that has fallen from above, the dust that has fallen between the rods 5-d falls down as it is and is deposited on the bottom plate 5-c. Of the dust that has fallen from above, the dust that collides with the rod 5-d slides on the surface of the rod 5-d, falls between the rods 5-d, and accumulates on the bottom plate 5-c. Thus, the dust deposited on the bottom plate 5-c does not jump out of the dust catching container 5.

窓5-gが小さいと、塵埃捕捉容器5によって塵埃を捕捉する機能が低下するが、捕捉した塵埃が飛び出すことを防止する機能は高くなる。窓5-gが大きいと、塵埃捕捉容器5によって塵埃を捕捉する機能が高まるが、捕捉した塵埃が飛び出すことを防止する機能は低くなる。窓5-gは棒5-dの径と数によって決まる。   If the window 5-g is small, the function of capturing dust by the dust capturing container 5 is lowered, but the function of preventing the captured dust from jumping out is enhanced. When the window 5-g is large, the function of capturing dust by the dust capturing container 5 is enhanced, but the function of preventing the captured dust from jumping out becomes low. The window 5-g is determined by the diameter and number of the rod 5-d.

図3を参照して、棒5-dの径と数について説明する。ここでは、棒5-dとして円柱棒を用いた場合について説明する。図4の横軸は、円柱棒の直径、縦軸は千時間当たりの短絡回数である。図示のように、円柱棒の直径が13mmよりも大きいと、短絡発生回数が増加する。これは、円柱棒の直径が13mmよりも大きくなると、塵埃が円柱棒の上面に付着し、滑って落下しなくなるためである。従って、円柱棒の直径は、12mm以下である必要がある。   With reference to FIG. 3, the diameter and number of the rods 5-d will be described. Here, a case where a cylindrical bar is used as the bar 5-d will be described. The horizontal axis in FIG. 4 is the diameter of the cylindrical rod, and the vertical axis is the number of short circuits per thousand hours. As shown in the figure, when the diameter of the cylindrical bar is larger than 13 mm, the number of occurrences of short circuit increases. This is because when the diameter of the cylindrical rod is larger than 13 mm, dust adheres to the upper surface of the cylindrical rod and does not slide and fall. Therefore, the diameter of the cylindrical rod needs to be 12 mm or less.

次に、円柱棒の数を計算する。円柱棒の直径をd、内側円筒部5-aの外径をD、円柱棒の数をnとする。nは次の式を満たす必要がある。
n<π×D/d
Next, the number of cylindrical bars is calculated. The diameter of the cylindrical rod is d, the outer diameter of the inner cylindrical portion 5-a is D, and the number of cylindrical rods is n. n must satisfy the following equation.
n <π × D / d

少なくとも6本の円柱棒を設ける必要がある場合には、円柱棒の直径dは次の式を満たす必要がある。
d<π×D/6
When it is necessary to provide at least 6 cylindrical rods, the diameter d of the cylindrical rods needs to satisfy the following formula.
d <π × D / 6

内側円筒部5-aの外径Dが一定である場合、円柱棒の直径dと本数nは互いに相反関係にある。円柱棒の直径dが大きくなると本数nは少なくなり、本数nが多くなると、直径dは小さくなる。   When the outer diameter D of the inner cylindrical portion 5-a is constant, the diameter d and the number n of the columnar bars are in a reciprocal relationship with each other. As the diameter d of the cylindrical rod increases, the number n decreases, and as the number n increases, the diameter d decreases.

図4を参照して塵埃捕捉容器を電子顕微鏡の電子銃に設けた例を説明する。絶縁壁からなる真空容器13内に電子銃11と電極12が配置されている。電子銃11は上側に配置され、電極12は下側に配置されている。電子銃11は、電子銃部11-aと電子銃シールド11-bを有し、プラスの高電圧が印加される。電極12は、電子導入筒12-aと外壁12-bを有する。電子銃11と電極12の間に直流高電圧が印加される。電子銃部11-aからの電子は、電子導入筒12-aを通って下方に導かれる。   An example in which a dust trapping container is provided in an electron gun of an electron microscope will be described with reference to FIG. An electron gun 11 and an electrode 12 are arranged in a vacuum vessel 13 made of an insulating wall. The electron gun 11 is disposed on the upper side, and the electrode 12 is disposed on the lower side. The electron gun 11 has an electron gun part 11-a and an electron gun shield 11-b, and a positive high voltage is applied thereto. The electrode 12 has an electron introduction cylinder 12-a and an outer wall 12-b. A high DC voltage is applied between the electron gun 11 and the electrode 12. Electrons from the electron gun unit 11-a are guided downward through the electron introduction cylinder 12-a.

電極12の電子導入筒12-aの周囲に塵埃捕捉容器14が配置されている。塵埃捕捉容器14は図2に示したものと同様であってよい。   A dust trapping container 14 is disposed around the electron introduction cylinder 12-a of the electrode 12. The dust trapping container 14 may be the same as that shown in FIG.

真空容器13内の塵埃は自重により下方に落下し塵埃捕捉容器14に捕捉される。真空容器13内に電界が生成されると、塵埃は下方に落下し塵埃捕捉容器14に捕捉される。一旦塵埃捕捉容器14に捕捉された塵埃はそこから飛び出すことはない。   The dust in the vacuum container 13 falls downward by its own weight and is captured by the dust capturing container 14. When an electric field is generated in the vacuum container 13, the dust falls downward and is captured by the dust capturing container 14. The dust once trapped in the dust trapping container 14 does not jump out of it.

こうして、真空容器13内の塵埃は塵埃捕捉容器14に捕捉されるから、塵埃に起因した短絡を防止することができる。   Thus, since the dust in the vacuum container 13 is captured by the dust capturing container 14, a short circuit due to the dust can be prevented.

図5を参照して塵埃捕捉容器をCT用X線管に設けた例を説明する。CT用X線管は、ガラス製の真空容器23と、その中に配置された回転陽極21と電子銃を含む陰極22とを有する。真空容器23の周囲に複数の塵埃捕捉容器24が設けられている。CT用X線管は、回転するドーナツ状の筒の内部に設置され、ドーナツ状の筒の回転と同じ周期で高速回転する。CT用X線管は水平方向の軸線周りに回転する。CT用X線管内の塵埃は遠心力により回転軸線より半径方向外方向に飛び、真空容器23の周囲に配置された塵埃捕捉容器24に捕捉される。   An example in which a dust trapping container is provided in a CT X-ray tube will be described with reference to FIG. The CT X-ray tube includes a glass vacuum vessel 23, a rotating anode 21 disposed therein, and a cathode 22 including an electron gun. A plurality of dust capturing containers 24 are provided around the vacuum container 23. The CT X-ray tube is installed inside a rotating donut-shaped tube and rotates at a high speed in the same cycle as the rotation of the donut-shaped tube. The CT X-ray tube rotates around a horizontal axis. The dust in the CT X-ray tube jumps radially outward from the rotation axis by centrifugal force and is captured by the dust capturing container 24 disposed around the vacuum container 23.

図6を参照して、CT用X線管に設けられた塵埃捕捉容器24の構造の詳細を説明する。図示のように塵埃捕捉容器24は、周回底板24-aと2枚の側面板24-b,24-cと上部の蓋板24-dとを有し、これらの部材によって空間26が形成される。周回底板24-aと2枚の側面板24-b,24-cは真空容器23に接続され、真空容器23と共に回転する。蓋板24-dと側面板24-b,24-cは互いに分離しており、従って、真空容器23が回転しても蓋板24-dは回転しない。真空容器23内の塵埃は、遠心力によって半径方向外方に移動し、矢印にて示すように、蓋板24-dと側面板24-b,24-cとの隙間から空間26内に捕捉される。一旦空間26内に捕捉された塵埃はそこから外に飛び出ることはない。   With reference to FIG. 6, the detail of the structure of the dust capture container 24 provided in the X-ray tube for CT is demonstrated. As shown in the figure, the dust capturing container 24 has a rotating bottom plate 24-a, two side plates 24-b, 24-c, and an upper cover plate 24-d, and a space 26 is formed by these members. The The rotating bottom plate 24-a and the two side plates 24-b and 24-c are connected to the vacuum vessel 23 and rotate together with the vacuum vessel 23. The lid plate 24-d and the side plates 24-b and 24-c are separated from each other. Therefore, even when the vacuum vessel 23 rotates, the lid plate 24-d does not rotate. The dust in the vacuum vessel 23 moves radially outward by centrifugal force, and is trapped in the space 26 through the gap between the lid plate 24-d and the side plates 24-b, 24-c as indicated by arrows. Is done. The dust once trapped in the space 26 does not jump out from there.

周回底板24-aと蓋板24-dの一部にはX線を取り出すためにガラス25が設けられている。このような構成でも、十分に塵埃を捕捉することができるが、本例では更に、蓋板24-dに蓋板重り24-gが設けられ、蓋板重り24-gの先端に蓋板レール24-fが設けられている。一方、周回底板24-aには蓋板摺動輪24-eが設けられている。蓋板摺動輪24-eの突起は、蓋板レール24-fの凹部内に配置されている。しかしながら、蓋板摺動輪24-eは真空容器23と共に回転するが、回転蓋板レール24-fは静止している。従って、蓋板摺動輪24-eと回転蓋板レール24-fは互いに離れている。こうして本例では、CT用X線管が回転しても塵埃捕捉容器24の蓋板24-dは回転しないので安定的に塵埃を捕捉することができる。   A glass 25 is provided in part of the rotating bottom plate 24-a and the lid plate 24-d to extract X-rays. Even with such a configuration, dust can be sufficiently captured, but in this example, a lid plate weight 24-g is further provided on the lid plate 24-d, and a lid plate rail is provided at the tip of the lid plate weight 24-g. 24-f is provided. On the other hand, a cover plate sliding wheel 24-e is provided on the rotating bottom plate 24-a. The protrusion of the cover plate sliding wheel 24-e is disposed in the recess of the cover plate rail 24-f. However, the lid sliding wheel 24-e rotates together with the vacuum vessel 23, but the rotary lid rail 24-f is stationary. Therefore, the cover plate sliding wheel 24-e and the rotary cover plate rail 24-f are separated from each other. Thus, in this example, the lid plate 24-d of the dust trapping container 24 does not rotate even when the CT X-ray tube rotates, so that dust can be trapped stably.

以上本発明の例を説明したが本発明は上述の例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは当業者に容易に理解されよう。   Although the example of the present invention has been described above, the present invention is not limited to the above-described example, and various modifications can be easily made by those skilled in the art within the scope of the invention described in the claims. It will be understood.

本発明の一実施例になる直流高電圧真空容器を示す断面図である。It is sectional drawing which shows the direct current | flow high voltage vacuum vessel which becomes one Example of this invention. 本発明による塵埃捕捉容器の構造を示す図である。It is a figure which shows the structure of the dust collection container by this invention. 円柱棒の直径と短絡発生回数を示す特性図である。It is a characteristic view which shows the diameter of a cylindrical rod, and the frequency | count of a short circuit occurrence. 本発明の一実施例になる直流高電圧真空容器を電子顕微鏡の電子銃に適用した例を示す断面図である。It is sectional drawing which shows the example which applied the direct-current high voltage vacuum vessel which becomes one Example of this invention to the electron gun of an electron microscope. 本発明の一実施例になる直流高電圧真空容器をCT用X線管に適用した例を示す断面図である。It is sectional drawing which shows the example which applied the DC high voltage vacuum vessel which becomes one Example of this invention to the X-ray tube for CT. 本発明の一実施例になる直流高電圧真空容器の塵埃捕捉容器をCT用X線管に適用した例を示す断面図である。It is sectional drawing which shows the example which applied the dust trapping container of the DC high voltage vacuum container which becomes one Example of this invention to the X-ray tube for CT.

符号の説明Explanation of symbols

1、2…電極、3…ケーシング、4…密閉空間、5…塵埃捕捉容器、6…外側 1, 2 ... Electrode, 3 ... Casing, 4 ... Sealed space, 5 ... Dust trap, 6 ... Outside

Claims (6)

絶縁壁によって形成されたケーシングと、該ケーシング内に形成された真空排気された密閉空間と、該密閉空間内に配置され直流が印加される電極と、上記密閉空間内の塵埃を捕捉する塵埃捕捉容器と、を有し、該塵埃捕捉容器は上記電極によって形成される電界の影響を受けない位置に配置されていることを特徴とする直流高電圧真空装置。   A casing formed by an insulating wall, an evacuated sealed space formed in the casing, an electrode disposed in the sealed space to which direct current is applied, and a dust trap for trapping dust in the sealed space A direct current high voltage vacuum apparatus, wherein the dust trapping container is disposed at a position not affected by an electric field formed by the electrode. 請求項1記載の直流高電圧真空装置において、上記電極は上側の電極と下側の電極を有し、上記塵埃捕捉容器は上記下側の電極の周囲に且つ上記ケーシングの底部に設けられていることを特徴とする直流高圧真空装置。   2. The DC high-voltage vacuum apparatus according to claim 1, wherein the electrode has an upper electrode and a lower electrode, and the dust trapping container is provided around the lower electrode and at the bottom of the casing. A DC high-pressure vacuum apparatus characterized by that. 請求項2記載の直流高電圧真空装置において、上記塵埃捕捉容器は、内側円筒部と外側円筒部とリング状の底板とを有し、これらの3つの部材によってリング状の溝が形成され、該リング状の溝の中央には、上記下側の電極が配置されるための貫通孔が形成され、上記リング状の溝の上端に、複数の棒が半径方向に沿って所定の間隔にて配置されていることを特徴とする直流高電圧真空装置。   The DC high-voltage vacuum apparatus according to claim 2, wherein the dust trapping container has an inner cylindrical portion, an outer cylindrical portion, and a ring-shaped bottom plate, and a ring-shaped groove is formed by these three members, A through-hole for arranging the lower electrode is formed in the center of the ring-shaped groove, and a plurality of bars are arranged at predetermined intervals along the radial direction at the upper end of the ring-shaped groove. DC high voltage vacuum apparatus characterized by being made. 請求項1記載の直流高電圧真空装置において、上記電極の一方は電子銃であり、上記電極の他方は筒状の電極であり、上記塵埃捕捉容器は上記筒状の電極の周囲に配置されていることを特徴とする直流高電圧真空装置。   2. The DC high-voltage vacuum apparatus according to claim 1, wherein one of the electrodes is an electron gun, the other of the electrodes is a cylindrical electrode, and the dust trapping container is disposed around the cylindrical electrode. A DC high-voltage vacuum apparatus characterized by 請求項1記載の直流高電圧真空装置において、上記ケーシングは水平な軸線周りに回転可能な管球であり、上記塵埃捕捉容器は、上記管球の周囲に設けられていることを特徴とする直流高電圧真空装置。   2. The DC high-voltage vacuum apparatus according to claim 1, wherein the casing is a tube that can rotate around a horizontal axis, and the dust trapping container is provided around the tube. High voltage vacuum equipment. 請求項5記載の直流高電圧真空装置において、上記塵埃捕捉容器は、上記管球に設けられ上記管球と共に回転する外周面部材及び該外周面の両側の側面部材と、該外周面部材及び側面部材によって形成される容器を覆うように設けられ固定された内周面部材と、上記内周面部材と上記側面部材の間に形成された開口と、を有し、上記管球内の塵埃が遠心力によって上記開口を経由して上記塵埃捕捉容器内に入るように構成されていることを特徴とする直流高電圧真空装置。   6. The DC high-voltage vacuum apparatus according to claim 5, wherein the dust trapping container includes an outer peripheral surface member provided on the tube and rotating together with the tube, side members on both sides of the outer peripheral surface, the outer peripheral surface member and the side surface. An inner peripheral surface member provided and fixed so as to cover a container formed by the member, and an opening formed between the inner peripheral surface member and the side surface member, and dust in the tube A direct-current high-voltage vacuum apparatus configured to enter the dust trapping container through the opening by centrifugal force.
JP2005377439A 2005-12-28 2005-12-28 DC high voltage vacuum equipment Expired - Fee Related JP4673212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377439A JP4673212B2 (en) 2005-12-28 2005-12-28 DC high voltage vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377439A JP4673212B2 (en) 2005-12-28 2005-12-28 DC high voltage vacuum equipment

Publications (2)

Publication Number Publication Date
JP2007179888A true JP2007179888A (en) 2007-07-12
JP4673212B2 JP4673212B2 (en) 2011-04-20

Family

ID=38304859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377439A Expired - Fee Related JP4673212B2 (en) 2005-12-28 2005-12-28 DC high voltage vacuum equipment

Country Status (1)

Country Link
JP (1) JP4673212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067907B2 (en) 2008-02-18 2011-11-29 Hitachi High-Technologies Corporation Charged particle accelerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157939A (en) * 1983-02-28 1984-09-07 Hitachi Ltd Rotary anode x-ray tube
JPS6158125A (en) * 1984-08-30 1986-03-25 三菱電機株式会社 Vacuum breaker
JPS61158636A (en) * 1984-12-28 1986-07-18 株式会社東芝 Vacuum valve
JPS62126523A (en) * 1985-11-27 1987-06-08 Hitachi Ltd Cathode-ray tube
JPH07265684A (en) * 1994-03-31 1995-10-17 Komatsu Electron Metals Co Ltd Vacuum pump system and control method for vacuum pump system
JP2002256419A (en) * 2001-03-01 2002-09-11 Shin Meiwa Ind Co Ltd Arc evaporation source, firing method therefor, and method for controlling reflectance of vapor deposited film therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157939A (en) * 1983-02-28 1984-09-07 Hitachi Ltd Rotary anode x-ray tube
JPS6158125A (en) * 1984-08-30 1986-03-25 三菱電機株式会社 Vacuum breaker
JPS61158636A (en) * 1984-12-28 1986-07-18 株式会社東芝 Vacuum valve
JPS62126523A (en) * 1985-11-27 1987-06-08 Hitachi Ltd Cathode-ray tube
JPH07265684A (en) * 1994-03-31 1995-10-17 Komatsu Electron Metals Co Ltd Vacuum pump system and control method for vacuum pump system
JP2002256419A (en) * 2001-03-01 2002-09-11 Shin Meiwa Ind Co Ltd Arc evaporation source, firing method therefor, and method for controlling reflectance of vapor deposited film therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067907B2 (en) 2008-02-18 2011-11-29 Hitachi High-Technologies Corporation Charged particle accelerator
US8659243B2 (en) 2008-02-18 2014-02-25 Hitachi High-Technologies Corporation Charged particle accelerator

Also Published As

Publication number Publication date
JP4673212B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
KR101901185B1 (en) X-ray device and ct equipment having x-ray device
US7122759B2 (en) Compact earthing switch for gas-insulated switchgear assemblies
US20110204030A1 (en) Retainer, vacuum interrupter, and electrical switching apparatus including the same
CA1043844A (en) Rotary-anode x-ray tube with grounded rotor
US3071667A (en) Vacuum-type circuit interrupter
JP4581018B2 (en) Apparatus for small high voltage insulator for X-ray tube and vacuum tube, and method for assembling the same
JP4673212B2 (en) DC high voltage vacuum equipment
WO2018042690A1 (en) Gas-insulated switchgear and method for capturing metal impurities inside gas-insulated switchgear
CN111480212B (en) High-voltage power switch and method for electromagnetically shielding a vacuum interrupter in an insulator
JPS5844662A (en) X-ray tube with encircling ceramic case
Ejiri et al. Late breakdowns caused by microparticles after vacuum arc interruption
US6495786B1 (en) Vacuum exhaust element of vacuum switch
CN215377303U (en) Direct current GIS and isolating switch thereof
Lech DISASSEMBLABLE VACUUM CHAMBER AS AN INNOVATIVE TEST STAND DESIGNED FOR RESEARCH ON IMPROVING THE OPERATIONAL PARAMETERS OF POWER SWITCHING APPARATUS
JP2015122280A (en) Electro static charge removal mechanism and time-of-flight type mass spectrometer using the same
US7750284B2 (en) Mesotube with header insulator
US20050041780A1 (en) X-rays emitter and X-ray apparatus and method of manufacturing an X-ray emitter
EP3724906B1 (en) Method for reconditioning of vacuum interrupters
KR102456575B1 (en) A small sized X-ray head having inorganic insulator
JP2009261111A (en) Switchgear
US3716737A (en) X-ray pulse tube
RU2273118C2 (en) Neutron generator
JP4260036B2 (en) High voltage generator
RU38081U1 (en) ELECTRON BEAM GUN
JP2712945B2 (en) High voltage processing socket for cathode ray tube and high voltage processing method for cathode ray tube using the socket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees