JP2007179854A - Manufacturing method of metal oxide semiconductor electrode for photoelectric conversion - Google Patents

Manufacturing method of metal oxide semiconductor electrode for photoelectric conversion Download PDF

Info

Publication number
JP2007179854A
JP2007179854A JP2005376513A JP2005376513A JP2007179854A JP 2007179854 A JP2007179854 A JP 2007179854A JP 2005376513 A JP2005376513 A JP 2005376513A JP 2005376513 A JP2005376513 A JP 2005376513A JP 2007179854 A JP2007179854 A JP 2007179854A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide semiconductor
photoelectric conversion
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005376513A
Other languages
Japanese (ja)
Inventor
Munenori Andou
宗徳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2005376513A priority Critical patent/JP2007179854A/en
Publication of JP2007179854A publication Critical patent/JP2007179854A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process in which a porous metal oxide semiconductor layer having a high conversion efficiency can be formed by a treatment of a short time and by using a resin base material, and furthermore to enable manufacturing of an electrode for photoelectric conversion and a photoelectric conversion cell using the metal oxide semiconductor layer. <P>SOLUTION: This is the manufacturing method of the metal oxide semiconductor electrode for photoelectric conversion including a transparent base material equipped with a transparent conductive layer and the metal oxide semiconductor porous material layer, and this is the manufacturing method of the metal oxide semiconductor electrode for photoelectric conversion including a process in which metal oxide semiconductor particles of the average primary particle diameter of 5 nm or more and 500 nm or less are film-formed on the transparent conductive layer so that it is formed into the metal oxide semiconductor porous layer, and a process in which, under a gas atmosphere or a reduced pressure state, an excimer lamp treatment is applied on the metal oxide semiconductor porous layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属酸化物多孔質状の金属酸化物半導体電極を作成する製造工程、および、当該金属酸化物半導体電極を用いた光電変換用電極、光電変換セルに関する。   The present invention relates to a production process for producing a metal oxide semiconductor electrode having a metal oxide porous shape, a photoelectric conversion electrode using the metal oxide semiconductor electrode, and a photoelectric conversion cell.

太陽光発電は単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、テルル化カドミウムやセレン化インジウム銅などの化合物太陽電池が実用化、もしくは研究開発対象となっているが、普及させる上で製造コスト、原材料確保、エネルギーペイバックタイムが長い等の問題点を克服する必要がある。一方、大面積化や低価格を指向した有機材料を用いた太陽電池もこれまでに多く提案されているが変換効率が低く、耐久性も悪いという問題があった。   For solar power generation, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and compound solar cells such as cadmium telluride and indium copper selenide have been put into practical use or are subject to research and development. It is necessary to overcome problems such as manufacturing cost, securing raw materials, and long energy payback time. On the other hand, many solar cells using organic materials aimed at increasing the area and cost have been proposed, but there is a problem that conversion efficiency is low and durability is poor.

こうした状況の中で、色素によって増感された金属酸化物半導体多孔質を用いた光電変換用電極および光電変換セル、ならびにこれを作成するための材料および製造技術が開示された(非特許文献1および特許文献1参照)。提案された電池は、ルテニウム錯体等の増感色素によって分光増感された酸化チタン多孔質層を作用電極としヨウ素を主体とする電解質および対電極から成る色素増感型の光電変換セルである。この方式の第一の利点は酸化チタン等の安価な酸化物半導体を用いるため、安価な光電変換素子を提供できる点であり、第二の利点は用いられるルテニウム錯体が可視光域に幅広く吸収を有していることから比較的高い変換効率が得られる点である。
本明細書において多孔質の意は粒子の集合体、又はそれらがネッキング部を介して高い表面積を保って繋がった状態等、高い表面積を有する成膜状態を広く指す。ネッキングを有さず、成膜状態を粒子の集合体として論じたい場合には特に粒子層、粒子体、粒子等と記す場合がある。
Under such circumstances, a photoelectric conversion electrode and a photoelectric conversion cell using a metal oxide semiconductor porous material sensitized with a dye, and a material and a manufacturing technique for producing the electrode have been disclosed (Non-Patent Document 1). And Patent Document 1). The proposed battery is a dye-sensitized photoelectric conversion cell comprising a titanium oxide porous layer spectrally sensitized with a sensitizing dye such as a ruthenium complex, an electrolyte mainly composed of iodine, and a counter electrode. The first advantage of this method is that an inexpensive oxide semiconductor such as titanium oxide is used, so that an inexpensive photoelectric conversion element can be provided. The second advantage is that the ruthenium complex used has a wide absorption in the visible light range. Therefore, a relatively high conversion efficiency can be obtained.
In the present specification, the term “porous” widely refers to an aggregate of particles, or a film formation state having a high surface area such as a state in which they are connected while maintaining a high surface area via a necking portion. When there is no necking and it is desired to discuss the film formation state as an aggregate of particles, it may be referred to as a particle layer, particle body, particle, or the like.

また、酸化チタンペーストで成膜後焼成してできた酸化チタン多孔質層に、トリピリジルカルボキシレート配位子を有するルテニウム錯体を吸着させた電極を用いてセルを作製し、変換効率10.4%を達成したことが報告されている(非特許文献2参照)。   In addition, a cell was produced using an electrode in which a ruthenium complex having a tripyridylcarboxylate ligand was adsorbed on a titanium oxide porous layer formed by baking after film formation with a titanium oxide paste, and a conversion efficiency of 10.4. % Has been reported (see Non-Patent Document 2).

このような色素増感型光電変換セルの製造上の問題点のひとつとして、高温の焼結プロセスを必要とする問題点がある。酸化チタン多孔質層を形成する際に一般的に用いられる手法は酸化チタン粒子の分散ペーストを塗布して形成した酸化チタン粒子層に400℃以上の温度を与えることによって粒子間にネッキングを生じさせることにより多孔質化させ、電子伝達性を向上させるものである。このため用いることができる基材がガラスのような耐熱性の高い材質に限られるので光電変換セルの基材材料費や製造時に消費するエネルギー費等の製造コストを高価な物にしている。樹脂を基材としてこれが溶解しない温度を与えて酸化チタン多孔質層を作る方法も試みられているが変換効率が低いものにとどまっていた。さらに低温焼成で作成された酸化チタン多孔質層はもろく、セルの耐久性が低いものであった(非特許文献3参照)。低温で焼成する焼結方法は焼結時間も比較的長時間となり、この点からも量産時のプロセスとしては問題があった。   One of the problems in manufacturing such a dye-sensitized photoelectric conversion cell is that it requires a high-temperature sintering process. A commonly used technique for forming a titanium oxide porous layer is to cause necking between particles by applying a temperature of 400 ° C. or higher to the titanium oxide particle layer formed by applying a dispersion paste of titanium oxide particles. This makes it porous and improves the electron transferability. For this reason, since the base material which can be used is restricted to the material with high heat resistance like glass, the manufacturing cost of the base material cost of a photoelectric conversion cell, the energy cost consumed at the time of manufacture, etc. is made expensive. Attempts have also been made to make a porous titanium oxide layer by applying a temperature at which the resin does not dissolve, but the conversion efficiency is low. Furthermore, the titanium oxide porous layer prepared by low-temperature firing was brittle and the cell durability was low (see Non-Patent Document 3). The sintering method for firing at a low temperature also has a relatively long sintering time, and from this point, there is a problem as a mass production process.

樹脂を基材とした場合の金属酸化物多孔質層の製造方法として金属酸化物粒子層に加圧する方法がある(非特許文献4および特許文献2参照)。しかし、加圧処理単独の場合、用いられる圧力が数百kgf/cm2と高圧であるため高圧の油圧装置が必要な上、ロールツーロールなどの連続生産装置では圧力を伝達するロールが磨耗、破壊しやすい、処理速度が遅い等、連続生産には不向きな方法であった。
Nature(第353巻、第737〜740頁、1991年) 米国特許4927721号明細書 J.Am.Chem.Soc.(2001),Vol.123,p.p.1613-1624 ECN contributions 16th European Photovoltaic Solar Enargy Conference and Exhibition, May 1-5,2000 abstract; P.M.Sommeling et.al,”Flexible dye-sensitized nanocristallineTiO2 solar cells” Nanoletters,1,(2001),p.p.97‐100,H.Lindstron,et.al. WO‐0072373号パンフレット
As a method for producing a metal oxide porous layer using a resin as a base material, there is a method in which a metal oxide particle layer is pressurized (see Non-Patent Document 4 and Patent Document 2). However, in the case of pressure treatment alone, since the pressure used is as high as several hundred kgf / cm 2 , a high-pressure hydraulic device is required, and in a continuous production device such as a roll-to-roll, a roll that transmits pressure is worn, This method is not suitable for continuous production because it is easy to break and processing speed is slow.
Nature (Vol.353, 737-740, 1991) US Patent 4927721 J. Am. Chem. Soc. (2001), Vol. 123, pp1613-1624 ECN contributions 16th European Photovoltaic Solar Enargy Conference and Exhibition, May 1-5,2000 abstract; PMSommeling et.al, “Flexible dye-sensitized nanocristallineTiO2 solar cells” Nanoletters, 1, (2001), pp97-100, H. Lindstron, et.al. WO-0072373 pamphlet

色素増感型の光電変換セルの安価なプロセスを可能にするには、短時間の処理で、かつ、安価な樹脂基材を用いて高い変換効率有することのできる多孔質状の金属酸化物半導体層形成の技術が求められていた。   To enable an inexpensive process for a dye-sensitized photoelectric conversion cell, a porous metal oxide semiconductor that can be processed in a short time and has a high conversion efficiency using an inexpensive resin base material There has been a demand for layer forming technology.

本発明の目的は、短時間の処理で、かつ、樹脂基材を用いて、高い変換効率を有した多孔質状の金属酸化物半導体層を形成できる製造工程を提供し、ひいては、当該金属酸化物半導体層を用いた光電変換用電極、光電変換セルの製造をも可能とすることである。   An object of the present invention is to provide a manufacturing process capable of forming a porous metal oxide semiconductor layer having a high conversion efficiency by using a resin base material in a short time, and consequently, the metal oxidation. It is also possible to manufacture a photoelectric conversion electrode and a photoelectric conversion cell using a physical semiconductor layer.

発明者らは、エキシマーランプ処理法を使用することで上記課題を解決することを見出し、本発明に至った。   The inventors have found that the above problems can be solved by using an excimer lamp treatment method, and have reached the present invention.

本発明は、透明導電層を備えた透明基材と金属酸化物半導体多孔質層とを含む光電変換用金属酸化物半導体電極の製造方法であって、平均一次粒子径5nm以上500nm以下の金属酸化物半導体粒子を透明導電層上に成膜して金属酸化物半導体多孔質層とする工程(1)と、気体雰囲気下または減圧状態で金属酸化物半導体多孔質層にエキシマーランプ処理を施す工程(2)とを含むことを特徴とする光電変換用金属酸化物半導体電極の製造方法に関する。
また、工程(2)が誘電体バリア放電エキシマーランプを用いて行われることを特徴とする上記製造方法が好ましい。また、工程(2)が極大波長172nmかつ半値幅30nm以内、極大波長222nmかつ半値幅20nm以内、または極大波長146nm半値幅30nm以内で発光する光源を用いて行われることを特徴とする上記製造方法が好ましい。また、工程(2)が0.1mW/cm2以上1000mW/cm2以下の照射強度で行われることを特徴とする上記製造方法が好ましい。また、被処理体を250℃以下に保ちながら工程(2)を行うことを特徴とする上記製造方法が好ましい。また、金属酸化物半導体多孔質層が、金属酸化物半導体粒子と、下記式(1)の部分構造を含む金属原子錯体とを接触させてなる処理金属酸化物半導体粒子分散体から得られたものであることを特徴とする上記製造方法が好ましい。
式(1)

Figure 2007179854

(式中、Mは、1価から6価の金属原子を示す。A、Bは、それぞれ独立に酸素、窒素、リン、イオウ原子を示し、Xは2価の有機残基を示す。矢印はAおよびBからMへの配位結合またはイオン結合を示す。)
さらに、式(1)の部分構造が、下記式(2)の部分構造である請求項6記載の光電変換用金属酸化物半導体電極の製造方法。
式(2)
Figure 2007179854

(式中、Mは、1価から6価の金属原子を示す。R1, R2, R3は、それぞれ独立に水素原子又は1価の置換基を示す。矢印は、酸素原子からMへの配位結合またはイオン結合を示す。破線は、ジケトナート化合物構造中の非局在結合を示す。)
また、金属酸化物半導体粒子が、酸化チタン、酸化亜鉛、酸化スズおよび酸化ニオブの群から選ばれる少なくとも1種の化合物を含む上記製造方法が好ましい。 The present invention relates to a method for producing a metal oxide semiconductor electrode for photoelectric conversion comprising a transparent substrate provided with a transparent conductive layer and a metal oxide semiconductor porous layer, wherein the metal oxide has an average primary particle size of 5 nm to 500 nm. A step (1) of forming a semiconductor oxide particle on a transparent conductive layer to form a metal oxide semiconductor porous layer, and a step of subjecting the metal oxide semiconductor porous layer to an excimer lamp treatment in a gas atmosphere or under reduced pressure ( 2) and a method for producing a metal oxide semiconductor electrode for photoelectric conversion.
In addition, the production method described above, wherein the step (2) is performed using a dielectric barrier discharge excimer lamp, is preferable. The above-mentioned production method is characterized in that the step (2) is performed using a light source that emits light with a maximum wavelength of 172 nm and a half-value width of 30 nm or less, a maximum wavelength of 222 nm and a half-value width of 20 nm or less, or a maximum wavelength of 146 nm and a half-value width of 30 nm or less. Is preferred. In addition, the above production method is preferable, wherein the step (2) is performed with an irradiation intensity of 0.1 mW / cm 2 or more and 1000 mW / cm 2 or less. Moreover, the said manufacturing method characterized by performing a process (2), keeping a to-be-processed object at 250 degrees C or less is preferable. Also, the metal oxide semiconductor porous layer is obtained from a treated metal oxide semiconductor particle dispersion obtained by bringing a metal oxide semiconductor particle into contact with a metal atom complex containing a partial structure of the following formula (1) The production method described above is preferable.
Formula (1)
Figure 2007179854

(In the formula, M represents a monovalent to hexavalent metal atom. A and B independently represent oxygen, nitrogen, phosphorus and sulfur atoms, and X represents a divalent organic residue. Coordination bond or ionic bond from A and B to M is shown.)
Furthermore, the manufacturing method of the metal oxide semiconductor electrode for photoelectric conversion of Claim 6 whose partial structure of Formula (1) is a partial structure of following formula (2).
Formula (2)
Figure 2007179854

(In the formula, M represents a monovalent to hexavalent metal atom. R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a monovalent substituent. The arrow represents an oxygen atom to M. (The broken line indicates a delocalized bond in the structure of the diketonate compound.)
Moreover, the said manufacturing method in which a metal oxide semiconductor particle contains the at least 1 sort (s) of compound chosen from the group of a titanium oxide, a zinc oxide, a tin oxide, and niobium oxide is preferable.

次に、本発明は、上記の製造方法により得ることができる光電変換用金属酸化物半導体電極、増感色素層、電解質層、および導電性対極を備えた光電変換用半導体セルに関する。   Next, this invention relates to the semiconductor cell for photoelectric conversion provided with the metal oxide semiconductor electrode for photoelectric conversion, the sensitizing dye layer, the electrolyte layer, and the electroconductive counter electrode which can be obtained by said manufacturing method.

本発明において透明電極の金属酸化物半導体粒子層を成膜した透明導電層にエキシマーランプ処理を行うことにより、金属酸化物半導体多孔質層を形成し高い変換効率を得ることのできる金属酸化物半導体電極を作成することができた。電気炉等を用いた外部加熱処理時に比べて処理時間を大幅に減じることができるため、バッチ処理によらない連続処理が可能となる。さらに基材として樹脂基材を用いることでコストを大幅に低減できる。当該製造方法をもちいることによりセルを安価に量産することが可能となった。   In the present invention, a metal oxide semiconductor that can obtain a high conversion efficiency by forming a metal oxide semiconductor porous layer by performing an excimer lamp treatment on the transparent conductive layer on which the metal oxide semiconductor particle layer of the transparent electrode is formed An electrode could be created. Since the processing time can be greatly reduced as compared with the external heat treatment using an electric furnace or the like, continuous processing without batch processing is possible. Furthermore, the cost can be significantly reduced by using a resin base material as the base material. By using this manufacturing method, it became possible to mass-produce cells at low cost.

本発明の光電変換用金属酸化物半導体電極の製造方法は、平均一次粒子径5nm以上500nm以下の金属酸化物半導体粒子を透明導電層上に成膜して金属酸化物半導体多孔質層とする工程(1)と、気体雰囲気下または減圧状態で金属酸化物半導体多孔質層にエキシマーランプ処理を施す工程(2)とを含む。   The method for producing a metal oxide semiconductor electrode for photoelectric conversion of the present invention is a step of forming a metal oxide semiconductor porous layer by depositing metal oxide semiconductor particles having an average primary particle diameter of 5 nm or more and 500 nm or less on a transparent conductive layer. (1) and a step (2) of subjecting the metal oxide semiconductor porous layer to an excimer lamp treatment in a gas atmosphere or under reduced pressure.

(エキシマーランプ処理法による金属酸化物半導体多孔質層の形成方法 工程2)
本発明では、被処理体である透明電極の透明導電層上に塗布法によって成膜された平均一次粒子径5nm以上500nm以下の金属酸化物半導体粒子から成る金属酸化物半導体粒子層および透明導電層に気体雰囲気下、あるいは減圧状態で金属酸化物半導体多孔質層にエキシマーランプ処理を施す工程により
金属酸化物半導体多孔質層を形成する金属酸化物半導体粒子間にネッキングを形成し光電変換用金属酸化物半導体電極を製造することができる。
(Metal oxide semiconductor porous layer forming method by excimer lamp treatment method, step 2)
In the present invention, a metal oxide semiconductor particle layer and a transparent conductive layer comprising metal oxide semiconductor particles having an average primary particle diameter of 5 nm or more and 500 nm or less formed by a coating method on a transparent conductive layer of a transparent electrode that is an object to be processed Metal oxide for photoelectric conversion by forming necking between metal oxide semiconductor particles forming a metal oxide semiconductor porous layer by a process of excimer lamp treatment to the metal oxide semiconductor porous layer in a gas atmosphere or under reduced pressure A semiconductor electrode can be manufactured.

誘電体バリア放電のエキシマーランプは、放電ガスで充填された石英ガラス管の外部壁面に設けられた2箇所の電極間に交流の高電圧を印加した際に生じる放電プラズマの発光を利用している。石英ガラス管は内筒部と外筒部を有し、内筒と外筒の間に放電ガスが封じ込められ、さらに内筒と外筒の間に電圧が生じる様に石英ガラス壁面に放電電極が配置されている。外筒の壁面の電極形状が面構造ではなく、網状構造であるので局部的な放電を管全体に満遍なく生じさせる事ができる。誘電体バリア放電エキシマーランプで生じるプラズマ光は、遠紫外部から真空紫外部に該当する領域の特定波長で発光し半値幅も極大波長を中心に数nm程度の輝線スペクトル的なものなので、特定波長に対応した効果を狙い撃ちする事が可能である。このエキシマーランプは管を平面に並べる事が可能なので、一般的なレーザー光処理と違い、特定波長光の効果を面状の被照射体に対し均質に付与する事に向いている。生じるプラズマ光の波長は充填された放電ガスの種類に依存する。例えば、放電ガスがXe2の場合では極大波長は172nm、KrClの場合では222nm、Kr2の場合では146nmである。 The dielectric barrier discharge excimer lamp uses light emission of discharge plasma generated when an alternating high voltage is applied between two electrodes provided on the outer wall surface of a quartz glass tube filled with a discharge gas. . The quartz glass tube has an inner cylinder part and an outer cylinder part. A discharge gas is contained between the inner cylinder and the outer cylinder, and a discharge electrode is formed on the quartz glass wall so that a voltage is generated between the inner cylinder and the outer cylinder. Has been placed. Since the electrode shape on the wall surface of the outer cylinder is not a plane structure but a network structure, local discharge can be generated uniformly over the entire tube. The plasma light generated by a dielectric barrier discharge excimer lamp emits light at a specific wavelength in the region corresponding to the far ultraviolet region to the vacuum ultraviolet region, and the half-value width is an emission line spectrum of about several nanometers centering on the maximum wavelength. It is possible to aim and shoot effects corresponding to. Since this excimer lamp can arrange the tubes in a plane, it is suitable for uniformly applying the effect of light of a specific wavelength to a planar irradiation object, unlike general laser light processing. The wavelength of the generated plasma light depends on the kind of filled discharge gas. For example, when the discharge gas is Xe 2 , the maximum wavelength is 172 nm, when KrCl is 222 nm, and when Kr 2 is 146 nm.

172nmの誘電体バリア放電エキシマーランプの光が有する光エネルギーは166〜167Kcal/molである(146nmランプで195〜6Kcal/mol、222nmランプで128〜9Kcal/mol)。このエネルギーは常温で安定に存在する有機物の原子間結合エネルギー(50〜200Kcal/mol)に近い。とりわけC=C結合(140.5Kcal/mol)、C=O結合(190.0Kcal/mol)などの二重結合の結合エネルギーに近い。式(1)および式(2)とりわけ式(2)の化合物は、分子構造中の金属原子に配位する部位にこれらの二重結合を含有する構造である為、有効に光エネルギーが作用し、有機成分が分解し、無機金属酸化物に至らしめる効果が大きいと見る事ができる。   The light energy of the light of the 172 nm dielectric barrier discharge excimer lamp is 166 to 167 Kcal / mol (195 to 6 Kcal / mol for the 146 nm lamp, 128 to 9 Kcal / mol for the 222 nm lamp). This energy is close to the interatomic bond energy (50 to 200 Kcal / mol) of an organic substance that exists stably at room temperature. In particular, it is close to the binding energy of double bonds such as C═C bond (140.5 Kcal / mol) and C═O bond (190.0 Kcal / mol). Since the compounds of formula (1) and formula (2), especially formula (2), have a structure containing these double bonds at a site coordinated to a metal atom in the molecular structure, light energy acts effectively. It can be seen that the effect of decomposing organic components to inorganic metal oxides is great.

さらに、式(1)および式(2)の化合物は無機金属酸化物半導体粒子表面に結着しやすく、溶剤剤中で良好な分散剤として作用する。分散性の良い分散体を形成することができるので、この分散体を用いて成膜した際は膜密度の高い。つまり、この分散体によって粒子同士が緊密に接触配置された多孔質膜を形成する事ができるので、エキシマーランプ処理による有機物分解の際、速やかに粒子同士の直接の結合を形成することができる。この効果は、溶剤として含水率10重量%以下の溶剤を用いた方が溶剤中で加水分解が起こらず、安定な分散状態を形成できるので、より際立つ。さらに、溶剤としては、アルコール系溶剤を用いる方が好ましい。エキシマーランプ処理による有機物分解の際、式(1)および式(2)の化合物は金属酸化物を残すので、これが粒子同士の接触部位に新たな結合部位形成(ネッキング形成)に寄与する事になり、電極として、電流が流れやすい状態を提供し、さらに色素増感太陽電池として変換効率の高い太陽電池を提供することに寄与する。   Furthermore, the compounds of the formulas (1) and (2) are easily bound to the surface of the inorganic metal oxide semiconductor particles, and act as a good dispersant in the solvent agent. Since a dispersion having good dispersibility can be formed, the film density is high when a film is formed using this dispersion. That is, a porous film in which particles are in close contact with each other can be formed by this dispersion, so that direct bond between particles can be quickly formed during the decomposition of organic matter by excimer lamp treatment. This effect is more conspicuous when a solvent having a water content of 10% by weight or less is used as the solvent because hydrolysis does not occur in the solvent and a stable dispersion state can be formed. Furthermore, it is preferable to use an alcohol solvent as the solvent. When the organic matter is decomposed by the excimer lamp treatment, the compounds of the formulas (1) and (2) leave a metal oxide, which contributes to the formation of a new binding site (necking formation) at the contact site between the particles. It contributes to providing a solar cell with high conversion efficiency as a dye-sensitized solar cell.

エキシマーランプ処理により有機物が分解し除去される効果は、処理を行った酸化チタン電極と、行っていない酸化チタン電極より掻き取った酸化チタン粉体を熱分析(TGA)で比較することにより、酸化チタンに付着する有機物の残存量の違いとして観察する事ができる。   The organic substance is decomposed and removed by the excimer lamp treatment by comparing the treated titanium oxide electrode with the titanium oxide powder scraped from the untreated titanium oxide electrode by thermal analysis (TGA). It can be observed as a difference in the remaining amount of organic matter adhering to titanium.

基材に樹脂フィルムを用いて光電変換用金属酸化物半導体電極を製造する際、基材が変質しない範囲でこれを加温しながら、エキシマーランプ処理を行うことが、有機物を分解除去する効果が大きく、ひいては色素増感太陽電池を形成した場合の変換効率は大きいため好ましい。基材が変質しない範囲の加温とは、例えば、基材にPETを使用した場合は170℃程度までで、PENの場合200℃程度までである。これ以上の加温は基材の変形を引き起こすなど、製造に支障をきたすことになる。   When manufacturing a metal oxide semiconductor electrode for photoelectric conversion using a resin film as a base material, performing an excimer lamp treatment while heating it within a range where the base material does not change has the effect of decomposing and removing organic matter. The conversion efficiency when forming a dye-sensitized solar cell is large, and hence is preferable. The heating in a range where the base material does not change is, for example, up to about 170 ° C. when PET is used as the base material, and up to about 200 ° C. in the case of PEN. Heating beyond this will cause problems in production, for example, causing deformation of the substrate.

被処理体に対してエキシマーランプ処理を行う方法として、エキシマーランプ処理装置に対してシート状の被処理体が連続的に移動し巻き取り作業を伴って処理する方法は安価に製造する方法として有用である。この際、被処理体が加熱体に密着を保ちながら連続的に位置関係を変化させゆく工夫をすることにより連続的な加熱効果を得ることもできる。   As a method for performing excimer lamp processing on an object to be processed, a method in which a sheet-like object to be processed moves continuously with respect to an excimer lamp processing apparatus and is accompanied by a winding operation is useful as a method for manufacturing at low cost. It is. At this time, it is also possible to obtain a continuous heating effect by devising to continuously change the positional relationship while the object to be processed is kept in close contact with the heating body.

本発明においては、エキシマーランプの処理の前後で、水を含む溶剤や、さらにオルトチタン酸テトライソプロピルを含む無味酸化物前駆体等、および有機、無機の処理剤で被処理体の前処理、後処理を行っても良い。   In the present invention, before and after the excimer lamp treatment, pretreatment of the object to be treated with a solvent containing water, a tasteless oxide precursor containing tetraisopropyl orthotitanate, and an organic or inorganic treatment agent, Processing may be performed.

(金属酸化物半導体粒子層 工程1)
本発明で用いられる平均粒子径5nm以上500nm以下の金属酸化物半導体粒子層の材質は、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニオブ、酸化鉄、酸化ニッケル、酸化コバルト、酸化ストロンチウム、酸化タンタル、酸化アンチモン、酸化ランタノイド、酸化イットリウム、酸化バナジウム等を挙げることができるが、これらがエキシマーランプ処理後、金属酸化物半導体多孔質層を形成し、光励起された状態での電子電導性を有しさらに増感色素を連結することによって可視光および/又は近赤外光領域までの光電変換が可能となるものであればこれに限らない。金属酸化物半導体粒子の材質は複数種の金属酸化物同士の組合せ構成であってもかまわない。金属酸化物半導体多孔質層表面が増感色素によって増感されるためには金属酸化物半導体多孔質層の電導帯が増感色素の光励起順位から電子を受け取りやすい位置に存在することが望ましい。このため前記金属酸化物半導体粒子の中でも酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ等が特に用いられる。さらに、価格や環境衛生性等の点から、酸化チタンが特に用いられる。本発明においては平均粒子径径5nm以上500nmの金属酸化物半導体粒子から一種又は複数の種類を選択して組み合わせることができる。
(Metal oxide semiconductor particle layer, step 1)
The material of the metal oxide semiconductor particle layer having an average particle diameter of 5 nm to 500 nm used in the present invention is titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, iron oxide, nickel oxide, cobalt oxide, Examples include strontium oxide, tantalum oxide, antimony oxide, lanthanoid oxide, yttrium oxide, vanadium oxide, etc., but after these excimer lamp treatment, a metal oxide semiconductor porous layer is formed and electrons in a photoexcited state The present invention is not limited to this as long as it has electrical conductivity and can be converted into visible light and / or near-infrared light by connecting a sensitizing dye. The material of the metal oxide semiconductor particles may be a combination of a plurality of types of metal oxides. In order for the surface of the metal oxide semiconductor porous layer to be sensitized by the sensitizing dye, it is desirable that the conduction band of the metal oxide semiconductor porous layer is present at a position where electrons can be easily received from the photoexcitation order of the sensitizing dye. For this reason, titanium oxide, tin oxide, zinc oxide, niobium oxide and the like are particularly used among the metal oxide semiconductor particles. Further, titanium oxide is particularly used from the viewpoint of price and environmental hygiene. In the present invention, one or more kinds of metal oxide semiconductor particles having an average particle diameter of 5 nm to 500 nm can be selected and combined.

金属酸化物半導体粒子層はたとえば溶剤中に金属酸化物半導体粒子を分散させたペーストを作成し、これを透明電極表面に塗布し、溶剤を蒸発させて形成する。ペースト作成時には必要に応じて、硝酸やアセチルアセトン等の酸やポリエチレングリコール、トリトンX−100等の分散剤や有機物をペースト成分に混合しても良いが少量の使用が望ましい。水熱合成から得られたの単分散コロイド粒子を利用しても良い。金属酸化物半導体粒子層の成膜方法としては塗布法が簡便で量産性を有する方法として望ましい。スピンコーターによる塗布方法やスクリーン印刷を用いた塗布法、スキージーを用いた塗布方法、ディップ法、吹き付け法、転写法、ローラー法等を用いることができる。成膜後、基材を変質させない温度で乾燥させて揮発成分を除去することが望ましい。さらに透明基材が樹脂基材である場合、これが変質しない150℃程度の温度でプレベーク処理をしても良い。特開2002−184477に開示されたエアロゾル方式等のように溶剤を用いない吹き付けの成膜法および吹き付け時に加熱等のエネルギー付与を併用する方法によっても良い。また金属酸化物半導体粒子の電着によって金属酸化物半導体粒子層を形成させても良い。   The metal oxide semiconductor particle layer is formed, for example, by preparing a paste in which metal oxide semiconductor particles are dispersed in a solvent, applying the paste to the surface of the transparent electrode, and evaporating the solvent. When preparing the paste, if necessary, an acid such as nitric acid or acetylacetone, a dispersant such as polyethylene glycol or Triton X-100, or an organic substance may be mixed with the paste component, but a small amount is preferably used. Monodispersed colloidal particles obtained from hydrothermal synthesis may be used. As a method for forming a metal oxide semiconductor particle layer, a coating method is simple and desirable as a method having mass productivity. A coating method using a spin coater, a coating method using screen printing, a coating method using a squeegee, a dipping method, a spraying method, a transfer method, a roller method, or the like can be used. After film formation, it is desirable to remove volatile components by drying at a temperature that does not alter the substrate. Furthermore, when the transparent substrate is a resin substrate, pre-baking treatment may be performed at a temperature of about 150 ° C. at which the transparent substrate does not change. A spraying film-forming method that does not use a solvent, such as an aerosol method disclosed in JP-A-2002-184477, and a method that uses energy application such as heating at the time of spraying may be used. Further, the metal oxide semiconductor particle layer may be formed by electrodeposition of metal oxide semiconductor particles.

金属酸化物半導体粒子層の成膜後、被処理体にエキシマーランプ処理をする前あるいは後に成膜層に対して加圧、光処理、加電圧処理、プラズマ雰囲気処理、化学処理、超音波処理、超音波溶着処理、マイクロ波照射処理、電子線処理、オゾン処理等の別の処理方法を併用することもできる。又、エキシマーランプの処理の前後で、水を含む溶剤や、さらにオルトチタン酸テトライソプロピル等のような無味酸化物前駆体等、および有機、無機の処理剤で被処理体の前処理、後処理を行っても良い。   After deposition of the metal oxide semiconductor particle layer, before or after excimer lamp treatment of the object to be treated, pressurization, light treatment, applied voltage treatment, plasma atmosphere treatment, chemical treatment, ultrasonic treatment, Other treatment methods such as ultrasonic welding treatment, microwave irradiation treatment, electron beam treatment, and ozone treatment can be used in combination. Before and after excimer lamp treatment, pre-treatment and post-treatment of water-containing solvents, tasteless oxide precursors such as tetraisopropyl orthotitanate, and organic and inorganic treatment agents May be performed.

(透明導電層)
用いられる透明導電層としては、太陽光の可視から近赤外領域に対して光吸収が少ない導電材料なら特に限定されないが、ITO(インジウム−スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛等の導電性の良好な金属酸化物や炭素が好適である。本発明においては透明電極層と金属酸化物粒子層との間に結着を促進したり、電子伝達を改善したり、逆電子過程を防止する等の目的で他の層を追加しても良い。
(Transparent conductive layer)
The transparent conductive layer used is not particularly limited as long as it is a conductive material that absorbs little light from the visible to the near infrared region of sunlight, but ITO (indium-tin oxide) or tin oxide (fluorine or the like is doped) A metal oxide having good conductivity, such as zinc oxide, or carbon is preferable. In the present invention, another layer may be added for the purpose of promoting the binding between the transparent electrode layer and the metal oxide particle layer, improving the electron transfer, or preventing the reverse electron process. .

(透明基材)
用いられる透明基材としては太陽光の可視から近赤外領域に対して光り吸収が少ない材料であれば特に限定されない。石英、並ガラス、BK7、鉛ガラス等のガラス基材、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、ポリビニルブチラート、ポリプロピレン、テトラアセチルセルロース、シンジオクタチックポリスチレン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフォン、ポリエステルスルフォン、ポリエーテルイミド、環状ポリオレフィン、ブロム化フェノキシ、塩化ビニール等の樹脂基材等を用いることができる。
(Transparent substrate)
The transparent substrate to be used is not particularly limited as long as it is a material that absorbs less light in the visible to near infrared region of sunlight. Glass substrates such as quartz, ordinary glass, BK7, lead glass, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyester, polyethylene, polycarbonate, polyvinyl butyrate, polypropylene, tetraacetylcellulose, syndioctane polystyrene, polyphenylene sulfide, polyarylate Resin base materials such as polysulfone, polyester sulfone, polyetherimide, cyclic polyolefin, brominated phenoxy, and vinyl chloride can be used.

本発明においてエキシマーランプ処理によって得られた無機多孔質の金属酸化物半導体電極は、これを透明基材ごと増感色素を溶解させた溶液中に浸すことにより無機多孔質表面と増感色素の連結置換基の親和性を利用して増感色素を無機多孔質表面に接触・結合させる方法が一般的であるが、この方法に限定されない。   In the present invention, an inorganic porous metal oxide semiconductor electrode obtained by excimer lamp treatment is immersed in a solution in which a sensitizing dye is dissolved together with a transparent substrate, thereby connecting the inorganic porous surface and the sensitizing dye. A method of contacting and binding a sensitizing dye to an inorganic porous surface using the affinity of a substituent is common, but is not limited to this method.

増感色素の溶液を作るための溶剤は、増感色素を溶解させ、金属酸化物層に色素吸着の仲立ちを行える溶剤である必要がある。増感色素を溶解させるために必要に応じて加熱、溶解助剤の添加および不溶分のろ過を行っても良い。溶剤は二種類以上の溶剤を混合して用いても良く、溶剤としてエタノール、イソプロピルアルコール、ベンジルアルコールなどのアルコール系溶剤、アセトニトリル、プロピオニトリルなどのニトリル系溶剤、クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、酢酸エチル、サクサンブチル等のエステル系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤、ヘキサン、オクタン、トルエン、キシレン等の炭水化物系位溶剤、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチルイミダゾリノン、Nメチルピロリドン、水等を用いることができるがこれに限らない。溶剤は二種類以上の溶剤を混合して用いても良い。   The solvent for preparing the sensitizing dye solution needs to be a solvent that can dissolve the sensitizing dye and mediate dye adsorption on the metal oxide layer. In order to dissolve the sensitizing dye, heating, addition of a solubilizing agent, and filtration of insoluble matter may be performed as necessary. Two or more kinds of solvents may be used as a mixture, and alcohol solvents such as ethanol, isopropyl alcohol, and benzyl alcohol, nitrile solvents such as acetonitrile and propionitrile, and halogens such as chloroform, dichloromethane, and chlorobenzene. Solvents, ether solvents such as diethyl ether and tetrahydrofuran, ester solvents such as ethyl acetate and succinbutyl, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, carbonate solvents such as diethyl carbonate and propylene carbonate, hexane and octane Carbohydrate solvents such as toluene, xylene, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, 1,3-dimethylimidazolinone, N-methylpyrrolidone, water, etc. Yes, but not limited to this. Two or more kinds of solvents may be mixed and used.

透明基材の導電面上に形成される金属酸化物半導体多孔質層の膜厚は0.5μm以上200μm以下であることが望ましい。膜厚がこの範囲未満である場合有効な変換効率が得られない。又膜厚がこの範囲より厚い場合成膜時に割れや剥がれが生じる等作成が困難になる反面、金属酸化物多孔質体表層と導電面との距離が増えるために発生電荷が導電面に有効に伝えられなくなるので、良好な変換効率を得にくくなる。   The film thickness of the metal oxide semiconductor porous layer formed on the conductive surface of the transparent substrate is desirably 0.5 μm or more and 200 μm or less. When the film thickness is less than this range, effective conversion efficiency cannot be obtained. If the film thickness is thicker than this range, it may be difficult to create such as cracking or peeling during film formation. On the other hand, the distance between the metal oxide porous body surface and the conductive surface increases, so the generated charge is effectively applied to the conductive surface. Since it cannot be transmitted, it becomes difficult to obtain good conversion efficiency.

(光電変換用増感色素の説明)
本発明において用いられる光電変換用増感色素としては、下記式(3)に示した構造のルテニウム錯体色素が代表的である。SOLARONIX社製 Ruthenium 535、Ruthenium 535-bisTBAなどがこれに該当する。
(Description of sensitizing dye for photoelectric conversion)
As a sensitizing dye for photoelectric conversion used in the present invention, a ruthenium complex dye having a structure represented by the following formula (3) is representative. This includes Ruthenium 535 and Ruthenium 535-bisTBA manufactured by SOLARONIX.

式(3)

Figure 2007179854

Formula (3)
Figure 2007179854

さらに光電変換用増感色素としては、アゾ系色素、キナクリドン系色素、ジケトピロロピロール系色素、スクワリリウム系色素シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィン系色素、クロロフィル系色素、ルテニウム錯体系色素、インジゴ系色素、ペリレン系色素、オキサジン系色素、アントラキノン系色素、フタロシアニン系色素、ナフタロシアニン系色素等、およびその誘導体が挙げられるが光を吸収し金属酸化物半導体電極の伝導帯に励起電子を注入できる色素であればこれらに限定されない。これらの増感色素はその構造中に連結基を1個以上有する場合は、無機半導体多孔質体表面に連結することができ、光励起された色素の励起電子を無機半導体多孔質体の電導帯に迅速に伝えることができるので望ましい。   Further, as sensitizing dyes for photoelectric conversion, azo dyes, quinacridone dyes, diketopyrrolopyrrole dyes, squarylium dyes cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphine dyes, Examples include chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, oxazine dyes, anthraquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, and their derivatives, but they absorb light and are metal oxide semiconductors. The present invention is not limited to these as long as the dye can inject excited electrons into the conduction band of the electrode. When these sensitizing dyes have one or more linking groups in their structure, they can be connected to the surface of the inorganic semiconductor porous body, and the excited electrons of the photoexcited dye are transferred to the conduction band of the inorganic semiconductor porous body. This is desirable because it can be communicated quickly.

(光電変換セル)
本発明において用いられる光電変換用電極は、電解質層を介して導電性対極を組み合わせることによって光電変換セルを形成する。
(Photoelectric conversion cell)
The photoelectric conversion electrode used in the present invention forms a photoelectric conversion cell by combining a conductive counter electrode through an electrolyte layer.

(電解質層)
本発明で用いられる電解質層は電解質、媒体、および添加物から構成されることが好ましい。本発明の電解質はI2とヨウ化物(例としてLiI、NaI、KI、CsI、MgI2、CaI2、CuI、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等)の混合物、Br2と臭化物(例としてLiBr等)の混合物、Inorg. Chem. 1996,35,1168-1178に記載の溶融塩等を用いることができるがこの限りではない。この中でもI2とヨウ化物の組み合わせとしてLiI、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等を混合した電解質が本発明では好ましいがこの組み合わせ方に限らない。
好ましい電解質濃度は媒体中I2が0.01M以上0.5M以下でありヨウ化物の混合物が0.1M以上15M以下である。
本発明で電解質層に用いられる媒体は、良好なイオン電導性を発現できる化合物であることが望ましい。溶液状の媒体としては、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3‐メチル‐2‐オキサゾリジノンなどの複素環化合物、ジメチルスルホキシド、スルホランなど非プロトン極性物質などを用いることができる。
(Electrolyte layer)
The electrolyte layer used in the present invention is preferably composed of an electrolyte, a medium, and an additive. The electrolyte of the present invention is a mixture of I 2 and iodide (for example, LiI, NaI, KI, CsI, MgI 2 , CaI 2 , CuI, tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, etc.), Br 2 Mixtures of bromide and bromide (for example, LiBr, etc.), molten salts described in Inorg. Chem. 1996, 35, 1168-1178, etc. can be used, but not limited thereto. Among these, an electrolyte in which LiI, pyridinium iodide, imidazolium iodide, or the like is mixed as a combination of I 2 and iodide is preferable in the present invention, but is not limited to this combination.
The preferable electrolyte concentration is 0.01 M to 0.5 M in the medium I 2 and 0.1 M to 15 M in the iodide mixture.
The medium used for the electrolyte layer in the present invention is desirably a compound that can exhibit good ionic conductivity. Solution media include ether compounds such as dioxane and diethyl ether, chain ethers such as ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether, methanol, ethanol, and ethylene glycol monoalkyl. Alcohols such as ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin, acetonitrile, glutarodinitrile, Methoxyacetonitrile, propioni Lil, nitrile compounds such as benzonitrile, ethylene carbonate, carbonate compounds such as propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, dimethyl sulfoxide, aprotic polar substances such as sulfolane may be employed.

又、固体状(ゲル状を含む)の媒体を用いる目的で、ポリマーを含ませることもできる。この場合、ポリアクリロニトリル、ポリフッ化ビニリデン等のポリマーを前記溶液状媒体中に添加したり、エチレン性不飽和基を有した多官能性モノマーを前記溶液状媒体中で重合させて媒体を固体状にする。   In addition, a polymer can be included for the purpose of using a solid (including gel) medium. In this case, a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution-like medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution-like medium to make the medium solid. To do.

電解質層としてはこの他、CuI、CuSCN媒体を必要としない電解質および、Nature,Vol.395, 8 Oct. 1998,p583-585記載の2,2’,7,7’‐テトラキス(N,N‐ジ‐p‐メトキシフェニルアミン)9,9’‐スピロビフルオレンのような正孔輸送材料を用いることができる。   As the electrolyte layer, an electrolyte that does not require a CuI or CuSCN medium, and 2,2 ′, 7,7′-tetrakis (N, N—) described in Nature, Vol. 395, 8 Oct. 1998, p583-585. Hole transport materials such as di-p-methoxyphenylamine) 9,9'-spirobifluorene can be used.

本発明に用いられる電解質層には光電変換セルの電気的出力を向上させたり、耐久性を向上させる働きをする添加物を添加することができる。電気的出力を向上させる添加物として4‐t‐ブチルピリジンや、2‐ピコリン、2,6‐ルチジン等が挙げられる。耐久性を向上させる添加物としてMgI等が挙げられる。   The electrolyte layer used in the present invention may contain an additive that functions to improve the electrical output of the photoelectric conversion cell or improve the durability. Examples of additives that improve electrical output include 4-t-butylpyridine, 2-picoline, and 2,6-lutidine. MgI etc. are mentioned as an additive which improves durability.

(導電性対極)
本発明で用いられる導電性対極は光電変換セルの正極として機能するものである。具体的に対極に用いる導電性の材料としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、金属酸化物(ITO(インジウム‐スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛)、または炭素等が挙げられる。対極の膜厚は、特に制限はないが、5nm以上10μm以下であることが好ましい。
(Conductive counter electrode)
The conductive counter electrode used in the present invention functions as a positive electrode of the photoelectric conversion cell. Specific examples of conductive materials used for the counter electrode include metals (for example, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxides (ITO (indium-tin oxide), tin oxide (fluorine, etc.)). Including doped substances), zinc oxide), or carbon. The thickness of the counter electrode is not particularly limited, but is preferably 5 nm or more and 10 μm or less.

(組み立て方)
前記の光電変換用電極と導電性対極を電解質層を介して組み合わせることによって光電変換セルを形成する。必要に応じて電解質層の漏れや揮発を防ぐために、光電変換セルの周囲に封止を行う。封止には熱可塑性樹脂、光硬化性樹脂、ガラスフリット等を封止材料として用いることができる。光電変換セルは必要に応じて小面積の光電変換セルを連結させて作る。光電変換セルを直列に組み合わせることによって起電圧を高くすることができる。
(How to assemble)
A photoelectric conversion cell is formed by combining the photoelectric conversion electrode and a conductive counter electrode through an electrolyte layer. In order to prevent leakage and volatilization of the electrolyte layer as necessary, sealing is performed around the photoelectric conversion cell. For sealing, a thermoplastic resin, a photocurable resin, glass frit, or the like can be used as a sealing material. The photoelectric conversion cell is made by connecting small-area photoelectric conversion cells as necessary. The electromotive voltage can be increased by combining the photoelectric conversion cells in series.

以下に実施例を具体的に示すが本発明は以下に限定されるものではない。
特にエネルギー強度条件やパルス幅条件等はあくまでも試験機で変更可能な範囲に留まっているので、実施例の試験範囲以外の条件でも本質的にエキシマーランプ効果が得られれば本発明に該当する。
(実施例1)
・透明電極
導電層を有した樹脂基材の透明電極として、王子トービ社製PET基材透明電極またはPEN基材透明電極(ITO透明導電層)を使用した(表面抵抗値20Ω/□)。
・酸化チタン粒子層の調整
実施例の全てと比較例1、2に関しては、酸化チタンとして日本アエロゾル社製P25を12g用い、1−ヘキサノール20g中、チタンアセチルアセトナート1.2gと共にビーズ分散機を用いて分散体を作成した。比較例4に関してはチタンアセチルアセトナートの代わりにチタンエトキシド(Ti(OEt)4)を同重量用いた。
透明電極上に5mm×5mm角の大きさに塗布して成膜後オーブン中で140℃1時間プレベーク処理をした。
・エキシマーランプ処理(酸化チタン電極の作成)
処理装置としてウシオ社製エキシマーランプ照射装置(UER型;照射窓面における放射強度の定格値は172nmランプで50mW/cm2、222nmランプで25mW/cm2、146nmランプは照射強度不明だが数mW/cm2付近と思われる)を用い、酸化チタン粒子層に対し表2の条件でエキシマーランプ処理を行い、金属酸化物半導体電極として用いた。
Examples will be specifically shown below, but the present invention is not limited to the following examples.
In particular, since the energy intensity condition, the pulse width condition, and the like remain in a range that can be changed by the testing machine, the present invention falls within the scope of the present invention if the excimer lamp effect can be obtained essentially under conditions other than the test range of the examples.
(Example 1)
-Transparent electrode As a transparent electrode of a resin base material having a conductive layer, a PET base transparent electrode or a PEN base transparent electrode (ITO transparent conductive layer) manufactured by Oji Tobi Co., Ltd. (surface resistance value 20Ω / □) was used.
-Adjustment of titanium oxide particle layer For all of Examples and Comparative Examples 1 and 2, 12g of P25 manufactured by Nippon Aerosol Co. was used as titanium oxide, and a bead disperser was used together with 1.2g of titanium acetylacetonate in 20g of 1-hexanol. A dispersion was made. For Comparative Example 4, the same weight of titanium ethoxide (Ti (OEt) 4 ) was used instead of titanium acetylacetonate.
The film was applied on a transparent electrode in a size of 5 mm × 5 mm square, and after film formation, prebaking was performed in an oven at 140 ° C. for 1 hour.
・ Excimer lamp treatment (creation of titanium oxide electrode)
Ushio Inc. excimer lamp irradiation device (UER type as the processing unit; 50 mW / cm 2 Ratings of radiation intensity at 172nm lamp in the irradiation window surface, 222 nm lamp 25mW / cm 2, 146nm lamp is unknown illumination intensity is several mW / using cm 2 seems vicinity), the excimer lamp treatment under the conditions shown in Table 2 with respect to the titanium oxide particle layer, was used as a metal oxide semiconductor electrode.

・増感色素の吸着
増感色素としてSOLARONIX社製 Ruthenium535-bisTBAを用い、エタノール溶剤に溶解し色素溶液酸化チタン電極を浸して色素を吸着させた。着色した電極表面をエタノールで洗浄して乾燥させ、光電変換用電極を得た。
・電解質溶液の調整
下記処方で電解質溶液を得た。
溶媒:3-メトキシプロピオニトリル
LiI:0.1M
2 :0.05M
4‐t‐ブチルピリジン:0.5M
1‐プロピル‐2,3‐ジメチルイミダゾリウムヨージド:0.6M
-Adsorption of sensitizing dye Ruthenium535-bisTBA manufactured by SOLARONIX was used as a sensitizing dye, and the dye was adsorbed by dissolving in an ethanol solvent and immersing the dye solution titanium oxide electrode. The colored electrode surface was washed with ethanol and dried to obtain a photoelectric conversion electrode.
-Preparation of electrolyte solution The electrolyte solution was obtained by the following prescription.
Solvent: 3-methoxypropionitrile
LiI: 0.1M
I 2 : 0.05M
4-t-butylpyridine: 0.5M
1-propyl-2,3-dimethylimidazolium iodide: 0.6M

・光電変換セルの組み立て
図1の様に光電変換セルの試験サンプルを組み立てた。
導電性対極にはフッ素ドープ酸化スズ層付ガラス基板の導電層上にスパッタリング法により白金層を積層した物を用いた。
樹脂フィルム製スペーサーとしては、三井・デュポンポリケミカル社製「ハイミラン」フィルムの25μm厚の物を用いた。
-Assembly of photoelectric conversion cell The test sample of the photoelectric conversion cell was assembled as shown in FIG.
As the conductive counter electrode, a platinum layer laminated by a sputtering method on the conductive layer of the glass substrate with a fluorine-doped tin oxide layer was used.
As the resin film spacer, a 25 μm thick “High Milan” film made by Mitsui DuPont Polychemical Co., Ltd. was used.

・変換効率の測定方法
オリエル社製ソーラーシュミレーターをエアマスフィルターとを組み合わせ、光量計で100mW/cmの光量に調整して測定用光源とし、光電変換セルの試験サンプルに光照射をしながらI‐Vカーブトレーサーを使用してI‐Vカーブ特性を測定した。変換効率ηは、I‐Vカーブ特性測定から得られたVoc(開放電圧値)、Isc(短絡電流値)、ff(フィルファクター値)を用いて下式(4)により算出した。
・ Measurement method for conversion efficiency Combined with an Oriel solar simulator and an air mass filter, the light intensity is adjusted to 100 mW / cm 2 with a light meter to obtain a light source for measurement. The IV curve characteristics were measured using a V curve tracer. The conversion efficiency η was calculated by the following equation (4) using Voc (open circuit voltage value), Isc (short circuit current value), and ff (fill factor value) obtained from the IV curve characteristic measurement.

式(4)

η(%)= Voc(V)×Isc(mA)×ff×100
100(mW/cm)×金属酸化物半導体多孔質層面積(cm
Formula (4)

η (%) = Voc (V) × Isc (mA) × ff × 100
100 (mW / cm 2 ) × metal oxide semiconductor porous layer area (cm 2 )

(実施例2 〜 11)
実施例1のランプ波長、ランプ照射窓との距離、照射時間、照射開始時基材温度、雰囲気を変化させて処理を行った。セル作成方法、評価方法等は実施例1と同様に行った。
(Examples 2 to 11)
The treatment was performed by changing the lamp wavelength, distance from the lamp irradiation window, irradiation time, substrate temperature at the start of irradiation, and atmosphere in Example 1. The cell creation method, evaluation method, and the like were performed in the same manner as in Example 1.

(実施例12)
実施例3で用いた分散体の原料のうち、チタンアセチルアセトナートの代わりにジルコニウムアセチルアセトナートを同重量用いた以外は実施例3と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様に行った。
(Example 12)
A titanium oxide electrode was prepared in the same manner as in Example 3 except that the same weight of zirconium acetylacetonate was used instead of titanium acetylacetonate among the raw materials of the dispersion used in Example 3, and the conversion efficiency was measured. Went. The cell creation method, evaluation method, and the like were performed in the same manner as in Example 1.

(実施例13)
実施例3で用いた分散体の原料のうち、チタンアセチルアセトナートの代わりにTi(−OC4−)2を同重量用いた以外は実施例3と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様に行った。Ti(−OC4−)2は、Ti(0Me)4を原料とし、エチレングリコール溶剤中でリフラックス処理したのち、溶剤を減圧除去して得られた残留物である。
(Example 13)
Preparation of a titanium oxide electrode in the same manner as in Example 3 except that the same weight of Ti (—OC 2 H 4 —) 2 was used instead of titanium acetylacetonate among the raw materials of the dispersion used in Example 3. The conversion efficiency was measured. The cell creation method, evaluation method, and the like were performed in the same manner as in Example 1. Ti (—OC 2 H 4 —) 2 is a residue obtained by using Ti (0Me) 4 as a raw material, performing a reflux treatment in an ethylene glycol solvent, and then removing the solvent under reduced pressure.

(実施例14)
実施例3で用いた分散体の原料のうち、チタンアセチルアセトナートの代わりにインジウムアセチルアセトナートを同重量用いた以外は実施例3と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様に行った。
(Example 14)
A titanium oxide electrode was prepared in the same manner as in Example 3 except that the same weight of indium acetylacetonate was used instead of titanium acetylacetonate among the raw materials of the dispersion used in Example 3, and the conversion efficiency was measured. Went. The cell creation method, evaluation method, and the like were performed in the same manner as in Example 1.

(比較例1)
実施例3で行ったエキシマーランプ処理を行わなかった以外は実施例3と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様に行った。
(Comparative Example 1)
A titanium oxide electrode was prepared in the same manner as in Example 3 except that the excimer lamp treatment performed in Example 3 was not performed, and the conversion efficiency was measured. The cell creation method, evaluation method, and the like were performed in the same manner as in Example 1.

(比較例2〜 3)
実施例3のエキシマーランプに変えてキセノンランプを使用した以外は実施例3と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様に行った。
(Comparative Examples 2-3)
A titanium oxide electrode was prepared in the same manner as in Example 3 except that a xenon lamp was used instead of the excimer lamp in Example 3, and the conversion efficiency was measured. The cell creation method, evaluation method, and the like were performed in the same manner as in Example 1.

(比較例4)
実施例3で用いた分散体の原料のうち、チタンアセチルアセトナートの代わりにチタンエトキシド(Ti(OEt)4)を同重量用いた以外は実施例3と同様の方法で酸化チタン電極の作成を行い変換効率の測定を行った。セル作成方法、評価方法等は実施例1と同様に行った。
(Comparative Example 4)
A titanium oxide electrode was prepared in the same manner as in Example 3 except that the same weight of titanium ethoxide (Ti (OEt) 4 ) was used instead of titanium acetylacetonate among the raw materials of the dispersion used in Example 3. The conversion efficiency was measured. The cell creation method, evaluation method, and the like were performed in the same manner as in Example 1.

実施例1〜14および比較例1〜4の条件、変換効率などを表1に示した。

Figure 2007179854
Table 1 shows conditions, conversion efficiency, and the like of Examples 1 to 14 and Comparative Examples 1 to 4.
Figure 2007179854

(実施例15)
熱分析(TGA)に耐え得る重量(大きさ)の酸化チタン層を作成した以外は実施例3と同様にして酸化チタン電極を作成し、酸化チタン層を掻き取ってサンプルとし、熱分析(TGA)を行った。これを、エキシマーランプ処理を行わなかった場合の掻き取りサンプルおよび、未処理の酸化チタン粉と比較して、重量減低下の相対比較を行った。エキシマーランプ処理を行わなかったものは、未処理の酸化チタンに対し、450℃で1.25%の重量減を示したのに対し、エキシマーランプ処理を行ったものは0.05%の重量減を示し、有機成分の残存は殆ど認められなかった。TGA測定条件は空気雰囲気中、昇温速度20℃/min。
(Example 15)
A titanium oxide electrode was prepared in the same manner as in Example 3 except that a titanium oxide layer having a weight (size) capable of withstanding thermal analysis (TGA) was prepared, and the titanium oxide layer was scraped to obtain a sample. ) This was compared with the scraped sample in the case where the excimer lamp treatment was not performed and the untreated titanium oxide powder, and a relative comparison of weight loss was performed. Those without the excimer lamp treatment showed a weight loss of 1.25% at 450 ° C. with respect to the untreated titanium oxide, while those without the excimer lamp treatment showed a weight loss of 0.05%. Almost no organic component remained. The TGA measurement conditions were an air atmosphere, a heating rate of 20 ° C./min.

光電変換セル試験サンプル。Photoelectric conversion cell test sample.

符号の説明Explanation of symbols

1:酸化チタン多孔質層(光電変換用増感色素が吸着済)
2:電解質溶液層
3:透明導電層(ITO又はFTO)
4:Pt電極層
5:PET基材、又はガラス基材
6:樹脂フィルム製スペーサー
7:変換効率測定用導線
1: Titanium oxide porous layer (photosensitive sensitizing dye already adsorbed)
2: Electrolyte solution layer 3: Transparent conductive layer (ITO or FTO)
4: Pt electrode layer 5: PET substrate or glass substrate 6: Resin film spacer 7: Conversion efficiency measurement lead

Claims (9)

透明導電層を備えた透明基材と金属酸化物半導体多孔質層とを含む光電変換用金属酸化物半導体電極の製造方法であって、平均一次粒子径5nm以上500nm以下の金属酸化物半導体粒子を透明導電層上に成膜して金属酸化物半導体多孔質層とする工程(1)と、気体雰囲気下または減圧状態で金属酸化物半導体多孔質層にエキシマーランプ処理を施す工程(2)とを含むことを特徴とする光電変換用金属酸化物半導体電極の製造方法。   A method for producing a metal oxide semiconductor electrode for photoelectric conversion comprising a transparent substrate provided with a transparent conductive layer and a metal oxide semiconductor porous layer, wherein metal oxide semiconductor particles having an average primary particle diameter of 5 nm to 500 nm A step (1) for forming a metal oxide semiconductor porous layer by forming a film on the transparent conductive layer, and a step (2) for performing an excimer lamp treatment on the metal oxide semiconductor porous layer in a gas atmosphere or under reduced pressure. A method for producing a metal oxide semiconductor electrode for photoelectric conversion, comprising: 工程(2)が誘電体バリア放電エキシマーランプを用いて行われることを特徴とする請求項1記載の光電変換用金属酸化物半導体電極の製造方法。   2. The method for producing a metal oxide semiconductor electrode for photoelectric conversion according to claim 1, wherein the step (2) is performed using a dielectric barrier discharge excimer lamp. 工程(2)が極大波長172nmかつ半値幅30nm以内、極大波長222nmかつ半値幅20nm以内、または極大波長146nmかつ半値幅30nm以内で発光する光源を用いて行われることを特徴とする請求項1または2記載の光電変換用金属酸化物半導体電極の製造方法。   The step (2) is performed using a light source that emits light at a maximum wavelength of 172 nm and a half-value width of 30 nm or less, a maximum wavelength of 222 nm and a half-value width of 20 nm or less, or a maximum wavelength of 146 nm and a half-value width of 30 nm or less. 2. A method for producing a metal oxide semiconductor electrode for photoelectric conversion according to 2. 工程(2)が0.1mW/cm2以上1000mW/cm2以下の照射強度で行われることを特徴とする請求項1〜3いずれか1項に記載の光電変換用金属酸化物半導体電極の製造方法。   The method for producing a metal oxide semiconductor electrode for photoelectric conversion according to any one of claims 1 to 3, wherein the step (2) is performed with an irradiation intensity of 0.1 mW / cm 2 or more and 1000 mW / cm 2 or less. 被処理体を250℃以下に保ちながら工程(2)を行うことを特徴とする請求項1〜4いずれか1項に記載の光電変換用金属酸化物半導体電極の製造方法。   The method for producing a metal oxide semiconductor electrode for photoelectric conversion according to any one of claims 1 to 4, wherein the step (2) is performed while maintaining the object to be treated at 250 ° C or lower. 金属酸化物半導体多孔質層が、金属酸化物半導体粒子と、下記式(1)の部分構造を含む金属原子錯体とを接触させてなる処理金属酸化物半導体粒子分散体から得られたものであることを特徴とする請求項1〜5いずれか1項に記載の光電変換用金属酸化物半導体電極の製造方法。
式(1)
Figure 2007179854

(式中、Mは、1価から6価の金属原子を示す。A、Bは、それぞれ独立に酸素、窒素、リン、イオウ原子を示し、Xは2価の有機残基を示す。矢印はAおよびBからMへの配位結合またはイオン結合を示す。)
The porous metal oxide semiconductor layer is obtained from a treated metal oxide semiconductor particle dispersion obtained by bringing a metal oxide semiconductor particle into contact with a metal atom complex containing a partial structure of the following formula (1). The manufacturing method of the metal oxide semiconductor electrode for photoelectric conversions of any one of Claims 1-5 characterized by the above-mentioned.
Formula (1)
Figure 2007179854

(In the formula, M represents a monovalent to hexavalent metal atom. A and B independently represent oxygen, nitrogen, phosphorus and sulfur atoms, and X represents a divalent organic residue. Coordination bond or ionic bond from A and B to M is shown.)
式(1)の部分構造が、下記式(2)の部分構造である請求項6記載の光電変換用金属酸化物半導体電極の製造方法。
式(2)
Figure 2007179854

(式中、Mは、1価から6価の金属原子を示す。R1, R2, R3は、それぞれ独立に水素原子又は1価の置換基を示す。矢印は、酸素原子からMへの配位結合またはイオン結合を示す。破線は、ジケトナート化合物構造中の非局在結合を示す。)
The method for producing a metal oxide semiconductor electrode for photoelectric conversion according to claim 6, wherein the partial structure of the formula (1) is a partial structure of the following formula (2).
Formula (2)
Figure 2007179854

(In the formula, M represents a monovalent to hexavalent metal atom. R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a monovalent substituent. The arrow represents an oxygen atom to M. (The broken line indicates a delocalized bond in the structure of the diketonate compound.)
金属酸化物半導体粒子が、酸化チタン、酸化亜鉛、酸化スズおよび酸化ニオブの群から選ばれる少なくとも1種の化合物を含む請求項1〜7いずれか1項に記載の光電変換用金属酸化物半導体電極の製造方法。   The metal oxide semiconductor electrode for photoelectric conversion according to any one of claims 1 to 7, wherein the metal oxide semiconductor particles contain at least one compound selected from the group consisting of titanium oxide, zinc oxide, tin oxide and niobium oxide. Manufacturing method. 請求項1〜8いずれか1項に記載の製造方法により得ることができる光電変換用金属酸化物半導体電極、増感色素層、電解質層、および導電性対極を備えた光電変換用半導体セル。


The semiconductor cell for photoelectric conversion provided with the metal oxide semiconductor electrode for photoelectric conversion, the sensitizing dye layer, the electrolyte layer, and the electroconductive counter electrode which can be obtained with the manufacturing method of any one of Claims 1-8.


JP2005376513A 2005-12-27 2005-12-27 Manufacturing method of metal oxide semiconductor electrode for photoelectric conversion Pending JP2007179854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005376513A JP2007179854A (en) 2005-12-27 2005-12-27 Manufacturing method of metal oxide semiconductor electrode for photoelectric conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005376513A JP2007179854A (en) 2005-12-27 2005-12-27 Manufacturing method of metal oxide semiconductor electrode for photoelectric conversion

Publications (1)

Publication Number Publication Date
JP2007179854A true JP2007179854A (en) 2007-07-12

Family

ID=38304833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005376513A Pending JP2007179854A (en) 2005-12-27 2005-12-27 Manufacturing method of metal oxide semiconductor electrode for photoelectric conversion

Country Status (1)

Country Link
JP (1) JP2007179854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117867A1 (en) * 2011-03-02 2012-09-07 ソニー株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117867A1 (en) * 2011-03-02 2012-09-07 ソニー株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and electronic equipment

Similar Documents

Publication Publication Date Title
Jung et al. Dye sensitized solar cells for economically viable photovoltaic systems
JP5081345B2 (en) Method for manufacturing photoelectric conversion element
Tekerek et al. Dye-sensitized solar cells fabricated with black raspberry, black carrot and rosella juice
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
KR20080094021A (en) Dye sensitization photoelectric converter
Nwanya et al. Dyed sensitized solar cells: A technically and economically alternative concept to pn junction photovoltaic devices.
JP2008186752A (en) Photoelectric conversion element and solar cell
Masud et al. Redox shuttle-based electrolytes for dye-sensitized solar cells: comprehensive guidance, recent progress, and future perspective
JP4563697B2 (en) Dye-sensitized solar cell and method for producing the same
Lee et al. Mass transport effect on the photovoltaic performance of ruthenium-based quasi-solid dye sensitized solar cells using cobalt based redox couples
Cheema et al. Harnessing photovoltage: Effects of film thickness, TiO2 nanoparticle size, MgO and surface capping with DSCs
TWI449236B (en) Gel type electrolyte, method of fabrication thereof and dye-sensitized solar cell using the same
JP2007042534A (en) Metal oxide semiconductor particle dispersion body, manufacturing method of metal oxide semiconductor electrode, and photoelectric transfer cell
JP5636736B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5233318B2 (en) Photoelectric conversion element and solar cell
Baviskar et al. Dye-sensitized solar cells
JP2012043662A (en) Metal oxide semiconductor electrode manufacturing method
JP2004273770A (en) Method for manufacturing inorganic oxide semiconductor electrode for photoelectric conversion
JP2007179854A (en) Manufacturing method of metal oxide semiconductor electrode for photoelectric conversion
JP2007042572A (en) Manufacturing method of treated metal oxide semiconductor particle dispersion body, manufacturing method of semiconductor electrode using treated metal oxide semiconductor particle dispersion body munufactured by this method, and photoelectric transfer cell
JP2012131906A (en) Dye and dye sensitized solar cell
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
JP2010282780A (en) Photoelectric conversion element and solar cell
JP2008226582A (en) Photoelectric conversion element and solar cell