JP2007177275A - Power transmission shaft for constant-velocity universal joint - Google Patents

Power transmission shaft for constant-velocity universal joint Download PDF

Info

Publication number
JP2007177275A
JP2007177275A JP2005375472A JP2005375472A JP2007177275A JP 2007177275 A JP2007177275 A JP 2007177275A JP 2005375472 A JP2005375472 A JP 2005375472A JP 2005375472 A JP2005375472 A JP 2005375472A JP 2007177275 A JP2007177275 A JP 2007177275A
Authority
JP
Japan
Prior art keywords
mass
groove
power transmission
hardened layer
transmission shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005375472A
Other languages
Japanese (ja)
Inventor
Yasuhiro Omori
靖浩 大森
Hideto Kimura
秀途 木村
Takaaki Toyooka
高明 豊岡
Kazuhiko Yoshida
和彦 吉田
Hiroo Morimoto
洋生 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
JFE Steel Corp
Original Assignee
NTN Corp
JFE Steel Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, JFE Steel Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005375472A priority Critical patent/JP2007177275A/en
Priority to PCT/JP2006/325449 priority patent/WO2007074705A1/en
Publication of JP2007177275A publication Critical patent/JP2007177275A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably provide a power transmission shaft which has all of high static-torsional strength, high torsional-fatigue strength and excellent hardening-cracking resistance. <P>SOLUTION: The power transmission shaft for the constant-velocity universal joint, which has a groove for torque transmission in both ends thereof, has a composition comprising 0.40-0.50 mass% C, 0.35-0.8 mass% Si, 0.5-0.8 mass% Mn, 0.005-0.05 mass% Al, 0.005-0.05 mass% Ti, 0.3-0.5 mass% Mo, 0.0005-0.005 mass% B, 0.05-0.5 mass% Cu, 0.005-0.025 mass% S, 0.02 mass% or less P, 0.2 mass% or less Cr and the balance Fe with unavoidable impurities; has a metallurgical structure of the base metal including a bainitic structure of 50% or higher by structure fraction; has a quench-hardened layer after having been induction hardened, of which the surface layer includes a retained austenite with an average particle diameter of 10 μm or smaller; and has an effective depth of the quench-hardened layer, of which the ratio to a shaft radius, in other words, a quench-hardened layer ratio is 0.5 to 0.75 in the groove part and is 1.0 in the region except the groove part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高周波焼入れによる硬化層をそなえる、静ねじり強度、ねじり疲労強度および耐焼割れ性に優れる等速自在継手用動力伝達シャフトに関するものである。   The present invention relates to a power transmission shaft for a constant velocity universal joint having a hardened layer formed by induction hardening and excellent in static torsional strength, torsional fatigue strength and anti-fire cracking resistance.

従来、機械構造用部品である等速自在継手用動力伝達シャフトは、熱間圧延棒鋼に、切削、冷間転造などを施して所定の形状に加工したのち、高周波焼入れ−焼戻しを行うことにより、機械構造用部品としての重要な特性である静ねじり強度およびねじり疲労強度を確保しているのが一般的である。
また、近年、環境問題から自動車用部品に対する軽量化への要求が強く、この観点から自動車用部品のねじり疲労強度の一層の向上が要求されている。
Conventionally, power transmission shafts for constant velocity universal joints, which are mechanical structural parts, are obtained by subjecting hot rolled steel bars to cutting, cold rolling, etc. and processing them into a predetermined shape, followed by induction hardening and tempering. Generally, static torsional strength and torsional fatigue strength, which are important characteristics as a machine structural component, are ensured.
In recent years, there has been a strong demand for weight reduction of automobile parts due to environmental problems, and further improvement in torsional fatigue strength of automobile parts has been demanded from this viewpoint.

さらに、動力伝達シャフトの軸端には動力伝達の作用部分となる、スプラインやセレーションと呼ばれる溝部を有するが、このような切欠き形状を有する部位に高周波焼入れを施すと、焼割れが発生する場合があり、静ねじり強度およびねじり疲労強度の低下の原因となることから、この点についての改善も望まれている。
なお、上記した焼割れを助長する元素は、主にCやPであるため、焼割れの抑制には、これらの元素を低減することが有効である。しかしながら、Cは静ねじり強度およびねじり疲労強度の向上に有効な元素であるため、Cの積極的な低減は静ねじり強度およびねじり疲労強度の観点からは好ましくない。
In addition, the shaft end of the power transmission shaft has a groove part called spline or serration that acts as a power transmission action part, but if induction hardening is applied to a part having such a notch shape, if cracking occurs Since this causes a decrease in static torsional strength and torsional fatigue strength, improvement in this respect is also desired.
In addition, since the elements that promote the above-described burning crack are mainly C and P, it is effective to reduce these elements in order to suppress the burning crack. However, since C is an element effective for improving static torsional strength and torsional fatigue strength, positive reduction of C is not preferable from the viewpoint of static torsional strength and torsional fatigue strength.

静ねじり強度およびねじり疲労強度を向上させるためには、例えば高周波焼入れによる焼入れ深さを増加させることが考えられる。しかしながら、静ねじり強度は焼入深さの増加とともに向上するが、ねじり疲労強度は焼入れ深さを増加してもある深さで疲労強度は飽和する。
また、ねじり疲労強度の向上には、粒界強度の向上も有効であり、この観点から、TiCを分散させることによって旧オーステナイト粒径を微細化する技術が提案されている(例えば特許文献1参照のこと)。
In order to improve the static torsional strength and the torsional fatigue strength, for example, it is conceivable to increase the quenching depth by induction hardening. However, although the static torsional strength increases with an increase in the quenching depth, the torsional fatigue strength saturates at a certain depth even if the quenching depth is increased.
Further, improvement of the grain boundary strength is also effective for improving the torsional fatigue strength. From this viewpoint, a technique for refining the prior austenite grain size by dispersing TiC has been proposed (see, for example, Patent Document 1). )

上記の特許文献1に記載された技術では、高周波焼入れ加熱時に微細なTiCを多量に分散させることで、旧オーステナイト粒径の微細化を図るものであるため、焼入れ前にTiCを溶体化しておく必要があり、熱間圧延工程で1100℃以上に加熱する工程を採用している。そのため、熱延時に加熱温度を高くする必要があり、生産性に劣るという問題があった。
また、上記の特許文献1に開示された技術をもってしても、近年のねじり疲労強度および耐焼割れ性に対する要求には十分に応えられないところにも問題を残していた。
In the technique described in Patent Document 1 described above, since fine TiC is dispersed in a large amount during induction quenching heating, the prior austenite grain size is refined, so that TiC is solutionized before quenching. It is necessary to adopt a process of heating to 1100 ° C or higher in the hot rolling process. Therefore, there is a problem that it is necessary to increase the heating temperature during hot rolling, resulting in poor productivity.
Further, even with the technique disclosed in the above-mentioned Patent Document 1, there is still a problem in that it cannot sufficiently meet the recent demands for torsional fatigue strength and fire cracking resistance.

また、特許文献2には、硬化層深さCDと高周波焼入れ軸物部品の半径Rとの比(CD/R)を 0.3〜0.7 に制限した上で、このCD/Rと高周波焼入れ後の表面から1mmまでのオーステナイト結晶粒径γf、高周波焼入れままの(CD/R)=0.1 までの平均ビッカース硬さHfおよび高周波焼入れ後の軸中心部の平均ビッカース硬さHcで規定される値Aを、C量に応じて所定の範囲に制御することによってねじり疲労強度を向上させた機械構造用軸物部品が提案されている。
しかしながら、この部品では、静ねじり強度については考慮が払われていないため、近年の静ねじり強度とねじり疲労強度とを両立させる要求には応えることができない。
また、特許文献2では、高周波焼入れ時における焼割れの発生については何ら考慮が払われていない。
In Patent Document 2, the ratio (CD / R) between the hardened layer depth CD and the radius R of the induction-hardened shaft component is limited to 0.3 to 0.7, and the CD / R and the surface after induction hardening are used. The value A defined by the austenite grain size γf up to 1 mm, the average Vickers hardness Hf up to (CD / R) = 0.1 as induction-quenched, and the average Vickers hardness Hc at the center of the shaft after induction hardening is expressed as C There has been proposed a shaft object part for a machine structure in which torsional fatigue strength is improved by controlling it within a predetermined range according to the amount.
However, in this part, since consideration is not given to static torsion strength, it is not possible to meet the recent demands for achieving both static torsional strength and torsional fatigue strength.
In Patent Document 2, no consideration is given to the occurrence of quenching cracks during induction hardening.

特開2000−154819号公報(特許請求の範囲、段落〔0008〕)JP 2000-154819 A (Claims, paragraph [0008]) 特開平8−53714 号公報(特許請求の範囲)JP-A-8-53714 (Claims)

本発明は、上記の現状に鑑み開発されたもので、従来よりもねじり疲労強度並びに静ねじり強度に優れ、かつ高周波焼入れ時における耐焼割れ性にも優れた動力伝達シャフトを、提供することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and an object thereof is to provide a power transmission shaft that is superior in torsional fatigue strength and static torsional strength, and also excellent in resistance to cracking during induction hardening. And

さて、発明者らは、ねじり疲労強度並びに静ねじり強度、そして耐焼割れ性を効果的に向上させるべく、鋭意検討を行った。
その結果、以下に述べるように、動力伝達シャフトの化学組成、組織、焼入れ後の硬化層表層の旧オーステナイト粒径および有効硬化深さをそれぞれ最適化することにより、優れたねじり疲労強度並びに静ねじり強度、そして耐焼割れ性を有する動力伝達シャフトが得られるとの知見を得た。
The inventors have intensively studied to effectively improve the torsional fatigue strength, static torsional strength, and fire cracking resistance.
As a result, as described below, excellent torsional fatigue strength and static torsion are achieved by optimizing the chemical composition, structure, and prior austenite grain size and effective hardening depth of the hardened layer after quenching. It was found that a power transmission shaft having strength and fire cracking resistance could be obtained.

(1) 適正な化学組成に調整した動力伝達シャフトに、焼入れを施し、焼入れ硬化層表層の旧オーステナイト粒径を10μm 以下とすることで、ねじり疲労強度および耐焼割れ性が顕著に向上する。具体的には、化学組成に関しては、特にMoおよびSiを適正な範囲で添加することで、高周波焼入れ加熱時におけるオーステナイトの核生成サイト数が増加し、またオーステナイト粒の成長が抑制されることにより、焼入れ硬化層の粒径が効果的に微細化し、その結果ねじり疲労強度および耐焼割れ性が顕著に向上する。 (1) By applying quenching to the power transmission shaft adjusted to an appropriate chemical composition and setting the prior austenite grain size of the hardened hardened layer to 10 μm or less, the torsional fatigue strength and the anti-cracking resistance are remarkably improved. Specifically, regarding the chemical composition, the addition of Mo and Si in an appropriate range increases the number of austenite nucleation sites during induction hardening and suppresses austenite grain growth. The grain size of the hardened hardened layer is effectively refined, and as a result, the torsional fatigue strength and the quench cracking resistance are remarkably improved.

(2) 動力伝達シャフトの母材の組織、すなわち焼入れ前の組織を、ベイナイト組織が特定の分率で含有された組織にすると、ベイナイト組織がフェライト−パーライト組織に比べて炭化物が微細に分散した組織であるため、焼入れ加熱時にオーステナイトの核生成サイトであるフェライト/炭化物の界面の面積が増えて、生成したオーステナイトが微細化する。その結果、焼入れ硬化層の粒径が微細となり、これにより粒界強度が向上し、ねじり疲労強度および耐焼割れ性が向上する。 (2) When the structure of the base material of the power transmission shaft, that is, the structure before quenching, is a structure in which the bainite structure is contained at a specific fraction, the bainite structure is finely dispersed compared to the ferrite-pearlite structure. Since it is a structure, the area of the ferrite / carbide interface, which is an austenite nucleation site, is increased during quenching heating, and the generated austenite is refined. As a result, the grain size of the quenched and hardened layer becomes fine, thereby improving the grain boundary strength and improving torsional fatigue strength and quench cracking resistance.

(3)シャフトの溝部とそれ以外の部分とに分けて有効硬化層深さを規制すること、特に溝部以外の部分の硬化深さを深くし、かつ溝部の硬化深さをやや浅くすることによって、溝部の焼割れが抑制されるとともに、溝部以外の部分については従来軸心までの硬化を行うと粒界破壊により逆に強度が低下していたが、上記(1)に示した旧オーステナイト粒径の微細化の効果により、粒界破壊が抑制される結果、静ねじり強度およびねじり疲労強度が向上する。
本発明は、上記の知見に立脚するものである。
(3) By regulating the effective hardened layer depth separately for the groove part of the shaft and other parts, especially by increasing the hardening depth of the part other than the groove part and slightly reducing the hardening depth of the groove part. In addition to suppressing the cracking of the groove part, the strength of the part other than the groove part was reduced due to the grain boundary fracture when hardening to the conventional axis, but the prior austenite grains shown in the above (1) As a result of the grain refinement being suppressed by the effect of refinement of the diameter, the static torsional strength and the torsional fatigue strength are improved.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.軸の両端部に、トルク伝達用の溝を有する等速自在継手用動力伝達シャフトであって、
C:0.40〜0.50mass%、
Si:0.35〜0.8 mass%、
Mn:0.5 〜0.8 mass%、
Al:0.005 〜0.05mass%、
Ti:0.005 〜0.05 mass%、
Mo:0.3〜0.5 mass%、
B:0.0005〜0.005 mass%、
Cu:0.05 〜0.5 mass%、
S:0.005 〜0.025 mass%、
P:0.02mass%以下および
Cr:0.2 mass%以下
を含有し、残部はFeおよび不可避的不純物の成分組成になり、母材組織がベイナイト組織を有し、このベイナイト組織の組織分率が50%以上であり、さらに高周波焼入れ後の硬化層表層部の旧オーステナイト平均粒径が10μm 以下、かつ有効硬化層深さの軸半径に対する比である硬化層比が、前記溝部は0.5〜0.75および該溝部以外の部分は1.0であることを特徴とする等速自在継手用動力伝達シャフト。
That is, the gist configuration of the present invention is as follows.
1. A power transmission shaft for a constant velocity universal joint having a torque transmission groove at both ends of the shaft,
C: 0.40 to 0.50 mass%,
Si: 0.35-0.8 mass%
Mn: 0.5-0.8 mass%,
Al: 0.005 to 0.05 mass%,
Ti: 0.005 to 0.05 mass%,
Mo: 0.3-0.5 mass%,
B: 0.0005 to 0.005 mass%,
Cu: 0.05 to 0.5 mass%,
S: 0.005 to 0.025 mass%,
P: 0.02 mass% or less and
Cr: Contains 0.2 mass% or less, the balance is the composition of Fe and inevitable impurities, the base metal structure has a bainite structure, the bainite structure has a structure fraction of 50% or more, and induction hardening The former austenite average particle size of the subsequent hardened layer surface layer part is 10 μm or less, and the hardened layer ratio, which is the ratio of the effective hardened layer depth to the axial radius, is 0.5 to 0.75 for the groove part and 1.0 for the other part than the groove part. A power transmission shaft for a constant velocity universal joint.

2.上記1において、前記溝部の硬化層平均硬さが、該溝部以外の部分の硬化層平均硬さより低いことを特徴とする等速自在継手用動力伝達シャフト。 2. 2. The power transmission shaft for a constant velocity universal joint according to 1 above, wherein the average hardness of the hardened layer in the groove is lower than the average hardness of the hardened layer in the portion other than the groove.

3.上記1または2において、前記溝部は、軸端面と離隔した溝部最小径部分から拡径する切り上がり部分に、他部品との嵌合部を有することを特徴とする等速自在継手用動力伝達シャフト。 3. 3. The power transmission shaft for a constant velocity universal joint according to 1 or 2, wherein the groove portion has a fitting portion with another part at a rounded-up portion that expands from the minimum diameter portion of the groove portion separated from the shaft end surface. .

4.上記1ないし3のいずれかにおいて、前記溝部以外の部分の高周波熱処理後の残留応力が−700MPa以下であることを特徴とする等速自在継手用動力伝達シャフト。 4). 4. The power transmission shaft for a constant velocity universal joint according to any one of the above 1 to 3, wherein a residual stress after high-frequency heat treatment in a portion other than the groove is −700 MPa or less.

5.上記1ないし4のいずれかにおいて、前記溝部のうち切り上がり部分の前記硬化層比が0.5〜0.75であることを特徴とする等速自在継手用動力伝達シャフト。 5. 5. The power transmission shaft for a constant velocity universal joint according to any one of 1 to 4, wherein the hardened layer ratio of the rounded-up portion of the groove is 0.5 to 0.75.

ここで、上記硬化層表層部とは、硬化層表面から500μmの深さまでの部分を指す。
また、溝部以外の部分とは、溝部を除く軸中間部分を指すが、該軸中間部分に形成された肩部は除外する。ここで、肩部とは、溝部にて他部品と嵌合する際に、溝部と軸中間部分の間に形成された太径の部分に他部品を接触させることで、軸方向の位置関係を決定する部分を指す。以下、この溝部以外の部分を軸中間部という。
さらに、有効硬化層深さとは、JIS G0559にて定義された「有効硬化層深さ」である。
Here, the said hardened layer surface layer part refers to the part from the hardened layer surface to the depth of 500 micrometers.
Further, the portion other than the groove portion refers to an intermediate shaft portion excluding the groove portion, but excludes a shoulder portion formed in the intermediate shaft portion. Here, when the shoulder part is fitted with another part in the groove part, the other part is brought into contact with the large diameter part formed between the groove part and the shaft intermediate part, so that the positional relationship in the axial direction is reached. Refers to the part to be determined. Hereinafter, the portion other than the groove is referred to as a shaft intermediate portion.
Furthermore, the effective hardened layer depth is an “effective hardened layer depth” defined in JIS G0559.

かくして、本発明によれば、耐焼割れ性に優れかつ高い静ねじり強度およびねじり疲労強度を有する動力伝達シャフトを安定して得ることができ、その結果、自動車用部材の軽量化の要求に対して偉功を奏する。   Thus, according to the present invention, it is possible to stably obtain a power transmission shaft that is excellent in resistance to cracking and has high static torsional strength and torsional fatigue strength. Play great achievement.

以下、本発明を具体的に説明する。
まず、本発明において、動力伝達シャフトの成分組成を上記の範囲に限定した理由について説明する。
C:0.40〜0.50mass%
Cは、焼入れ性への影響が最も大きい元素であり、焼入れ硬化層の硬さおよび深さを高めてねじり強度の向上に有効に寄与する。しかしながら、含有量が0.40mass%に満たないと、必要とされるねじり強度を確保するためには焼入れ硬化深さを飛躍的に高めねばならず、その際焼割れの発生が顕著となり、またベイナイト組織も生成し難くなるため、0.40mass%以上を添加する。一方、0.50mass%を超えて含有させると粒界強度が低下し、それに伴いねじり疲労強度が低下し、また切削性、冷間鍛造性および耐焼割れ性も低下する。このためCは、0.40〜0.50mass%の範囲に限定した。好ましくは 0.42〜0.46mass%の範囲である。
The present invention will be specifically described below.
First, the reason why the component composition of the power transmission shaft is limited to the above range in the present invention will be described.
C: 0.40 ~ 0.50mass%
C is an element having the greatest influence on hardenability, and increases the hardness and depth of the hardened hardened layer and effectively contributes to the improvement of torsional strength. However, if the content is less than 0.40 mass%, in order to ensure the required torsional strength, the quench hardening depth must be dramatically increased. Add 0.40mass% or more because it is difficult to generate the structure. On the other hand, if the content exceeds 0.50 mass%, the grain boundary strength decreases, and accordingly, the torsional fatigue strength decreases, and the machinability, cold forgeability, and fire cracking resistance also decrease. For this reason, C was limited to the range of 0.40 to 0.50 mass%. Preferably, it is in the range of 0.42 to 0.46 mass%.

Si:0.35〜0.8 mass%
Siは、ベイナイト組織の生成に有用な元素である。また、焼入れ硬化層の粒径を微細化する作用を有する。さらに、焼戻し軟化抵抗を向上する元素であり、高周波焼入硬化層の硬さを増加させる。さらにまた、炭化物生成を抑制し、炭化物による粒界強度の低下を抑制する。これらのことにより静ねじり強度、ねじり疲労強度および耐焼割れ性を向上させる。
Si: 0.35-0.8 mass%
Si is an element useful for the formation of a bainite structure. Moreover, it has the effect | action which refines | miniaturizes the particle size of a hardening hardening layer. Furthermore, it is an element that improves the temper softening resistance, and increases the hardness of the induction hardening layer. Furthermore, the carbide | carbonized_material production | generation is suppressed and the fall of the grain boundary strength by a carbide | carbonized_material is suppressed. These improve the static torsional strength, the torsional fatigue strength and the anti-fire cracking resistance.

このように、Siは、本発明において非常に重要な元素であり、0.35mass%以上の含有を必須とする。というのは、Si量が0.35mass%に満たないと、ベイナイト組織分率が低下するとともに、焼入れ硬化層表層の旧オーステナイト粒径を10μm 以下の微細粒とすることができず、また、硬化層硬さが低下し、静ねじり強度およびねじり疲労強度が低下するからである。しかしながら、Si量が 0.8mass%を超えると、フェライトの固溶硬化により硬さが上昇し、切削性、冷間鍛造性および耐焼割れ性の低下を招く。従って、Siは、0.35〜0.8 mass%の範囲に限定した。好ましくは0.40〜0.8mass%の範囲である。   Thus, Si is a very important element in the present invention, and it is essential to contain 0.35 mass% or more. This is because when the Si content is less than 0.35 mass%, the bainite structure fraction is reduced, and the old austenite grain size of the hardened hardened layer surface layer cannot be made fine particles of 10 μm or less, and the hardened layer This is because the hardness decreases and the static torsional strength and torsional fatigue strength decrease. However, if the amount of Si exceeds 0.8 mass%, the hardness increases due to the solid solution hardening of ferrite, leading to a decrease in machinability, cold forgeability, and fire cracking resistance. Therefore, Si was limited to the range of 0.35 to 0.8 mass%. Preferably it is the range of 0.40-0.8 mass%.

Mn:0.5 〜0.8 mass%
Mnは、焼入れ性を向上させ、焼入れ時の硬化深さを確保する上で不可欠の成分であるため、積極的に添加するが、含有量が 0.5mass%未満ではその添加効果に乏しいので、0.5 mass%以上とした。一方、Mn量が 0.8mass%を超えると、圧延材の硬さが上昇し、転造性および切削性が低下するとともに耐焼入れ性も向上するので、Mnは 0.8mass%以下とした。さらに、0.7mass%以下とするのが好適である。
Mn: 0.5 to 0.8 mass%
Mn is an indispensable component for improving the hardenability and securing the hardening depth during quenching, so it is actively added, but if the content is less than 0.5 mass%, the effect of addition is poor, so 0.5% More than mass%. On the other hand, if the amount of Mn exceeds 0.8 mass%, the hardness of the rolled material is increased, the rolling property and machinability are lowered, and the quenching resistance is improved. Therefore, Mn is set to 0.8 mass% or less. Furthermore, it is suitable to set it as 0.7 mass% or less.

Al:0.005 〜0.05mass%
Alは、脱酸に有効な元素である。また、焼入れ加熱時におけるオーステナイト粒成長を抑制することによって焼入れ硬化層の粒径を微細化する上でも有用な元素である。しかしながら、含有量が 0.005mass%に満たないとその添加効果に乏しく、一方0.05mass%を超えて含有させてもその効果は飽和し、むしろ成分コストの上昇を招く不利が生じるので、Alは 0.005〜0.05mass%の範囲に限定した。好ましくは0.02〜0.04mass%の範囲である。
Al: 0.005 to 0.05 mass%
Al is an element effective for deoxidation. Moreover, it is an element useful also in refine | miniaturizing the particle size of a hardening hardening layer by suppressing the austenite grain growth at the time of quenching heating. However, if the content is less than 0.005 mass%, the effect of addition is poor. On the other hand, even if the content exceeds 0.05 mass%, the effect is saturated, and a disadvantage that causes an increase in the component cost occurs. Limited to a range of ~ 0.05 mass%. Preferably it is the range of 0.02-0.04 mass%.

Ti:0.005 〜0.05 mass%
Tiは、不可避的不純物として混入するNと結合することで、BがBNとなってBの焼入れ性向上効果が消失するのを防止し、Bの焼入れ性向上効果を十分に発揮させる作用を有する。この効果を得るためには、少なくとも0.005mass%の含有を必要とするが、0.05 mass%を超えて含有されるとTiNが多量に形成される結果、これが疲労破壊の起点となってねじり疲労強度の著しい低下を招くので、Tiは 0.005〜0.05mass%の範囲に限定した。好ましくは
0.015〜0.03mass%の範囲である。
さらに、Nを確実に固定して、Bによる焼入れ性向上により、ベイナイトとマルテンサイト組織を得る観点からは、Ti(mass%)/N(mass%)≧3.42を満足させることが好適である。
Ti: 0.005 to 0.05 mass%
Ti combines with N mixed as an unavoidable impurity to prevent B from becoming BN and the effect of improving the hardenability of B to disappear, and has the effect of sufficiently exerting the effect of improving the hardenability of B. . In order to obtain this effect, it is necessary to contain at least 0.005 mass%, but if it exceeds 0.05 mass%, a large amount of TiN is formed, which becomes the starting point of fatigue fracture and torsional fatigue strength Therefore, Ti is limited to the range of 0.005 to 0.05 mass%. Preferably
The range is 0.015 to 0.03 mass%.
Furthermore, it is preferable to satisfy Ti (mass%) / N (mass%) ≧ 3.42 from the viewpoint of securing N securely and improving the hardenability by B to obtain a bainite and martensite structure.

Mo:0.3〜0.5 mass%
Moは、ベイナイト組織の生成を促進することにより、焼入れ加熱時のオーステナイト粒径を微細化し、焼入れ硬化層の粒径を細粒化する作用がある。また、焼入れ加熱時におけるオーステナイトの粒成長を抑制することにより、焼入れ硬化層の粒径を微細化する作用がある。さらに、焼入れ性の向上に有用な元素であるため、焼入れ性を調整するために用いられる。
このように、Moは、本発明において非常に重要な元素であり、含有量が0.3mass%に満たないと、製造条件や焼入れ条件をいかように調整しても硬化層表層の旧オーステナイト粒径を10μm 以下の微細粒とすることができない。しかしながら、 0.5mass%を超えて含有させると、圧延材の硬さが著しく上昇し、加工性の低下を招く。また、Moが 0.5mass%を超えると耐焼割れ性も低下する。従って、Moは0.3〜0.5 mass%の範囲に限定した。好ましくは0.35〜0.45 mass%の範囲である。
Mo: 0.3-0.5 mass%
Mo promotes the formation of a bainite structure, thereby minimizing the austenite grain size during quenching and heating and reducing the grain size of the quenched hardened layer. Moreover, it has the effect | action which refines | miniaturizes the particle size of a hardening hardening layer by suppressing the grain growth of austenite at the time of quenching heating. Furthermore, since it is an element useful for improving hardenability, it is used for adjusting hardenability.
Thus, Mo is a very important element in the present invention, and if the content is less than 0.3 mass%, the prior austenite grain size of the hardened layer surface layer is adjusted no matter how the manufacturing conditions and quenching conditions are adjusted. Cannot be made into fine grains of 10 μm or less. However, if the content exceeds 0.5 mass%, the hardness of the rolled material is remarkably increased, and the workability is reduced. Moreover, when Mo exceeds 0.5 mass%, the fire cracking resistance also decreases. Therefore, Mo is limited to the range of 0.3 to 0.5 mass%. Preferably it is the range of 0.35-0.45 mass%.

B:0.0005〜0.005 mass%
Bは、ベイナイト組織あるいはマルテンサイト組織の生成を促進する効果を有する。またBは、微量の添加によって焼入れ性を向上させ、焼入れ時の焼入れ深さを高めることによりねじり強度を向上させる効果もある。さらにBは、粒界に優先的に偏析して、粒界に偏析するPの濃度を低減し、粒界強度を向上させ、もってねじり疲労強度を向上させる作用もある。また、粒界強化により耐焼割れ性も向上させる。
このため、本発明では、Bを積極的に添加するが、含有量が0.0005mass%に満たないとその添加効果に乏しく、一方 0.005mass%を超えて含有させるとその効果は飽和し、むしろ成分コストの上昇を招くため、Bは0.0005〜0.005 mass%の範囲に限定した。好ましくは0.0010〜0.0030 mass%の範囲である。
B: 0.0005-0.005 mass%
B has an effect of promoting the formation of a bainite structure or a martensite structure. B also has the effect of improving the torsional strength by improving the hardenability by adding a small amount and increasing the quenching depth during quenching. Further, B preferentially segregates at the grain boundary, reduces the concentration of P segregating at the grain boundary, improves the grain boundary strength, and thus has an effect of improving torsional fatigue strength. Also, the crack resistance is improved by strengthening the grain boundaries.
For this reason, in the present invention, B is positively added. However, if the content is less than 0.0005 mass%, the effect of addition is poor. On the other hand, if the content exceeds 0.005 mass%, the effect is saturated, rather the component In order to raise the cost, B is limited to the range of 0.0005 to 0.005 mass%. Preferably it is the range of 0.0010-0.0030 mass%.

Cu:0.05 〜0.5 mass%、
Cuは、焼入れ性の向上に有効であり、またフェライト中に固溶し、この固溶強化によって、ねじり疲労強度を向上させる。また炭化物の生成を抑制することにより、炭化物による粒界強度の低下を抑制し、ねじり疲労強度を向上させる。そのためには、0.05mass%以上で添加する。しかしながら、含有量が 0.5mass%を超えると熱間加工時に割れが発生したり、また耐焼割れ性も低下するため、0.5 mass%以下の添加とする。なお好ましくは0.3mass%以下である。
Cu: 0.05 to 0.5 mass%,
Cu is effective for improving the hardenability, and also dissolves in ferrite, and this solid solution strengthening improves torsional fatigue strength. Further, by suppressing the formation of carbides, the decrease in grain boundary strength due to carbides is suppressed, and the torsional fatigue strength is improved. For that purpose, 0.05 mass% or more is added. However, if the content exceeds 0.5 mass%, cracks occur during hot working, and the resistance to fire cracking also deteriorates. In addition, Preferably it is 0.3 mass% or less.

S:0.005 〜0.025 mass%、
Sは、鋼中でMnSを形成し、切削性を向上させる有用元素であり、0.005 mass%以上で含有させるが、0.025mass%を超えて含有させると、MnS量が増加し、ねじり強度が低下するため、Sは0.025mass%以下に制限した。
S: 0.005 to 0.025 mass%,
S is a useful element that improves the machinability by forming MnS in steel and is contained at 0.005 mass% or more, but if it exceeds 0.025 mass%, the amount of MnS increases and the torsional strength decreases. Therefore, S is limited to 0.025 mass% or less.

P:0.02mass%以下
Pは、オーステナイトの粒界に偏析し、粒界強度を低下させることにより、ねじり疲労強度を低下させる。また、焼割れを助長する弊害もある。従って、Pの含有は極力低減することが望ましいが、0.02mass%までは許容される。
P: 0.02 mass% or less P segregates at the grain boundaries of austenite and lowers the grain boundary strength, thereby lowering the torsional fatigue strength. In addition, there is a harmful effect that promotes burning cracks. Therefore, it is desirable to reduce the P content as much as possible, but it is allowed up to 0.02 mass%.

Cr:0.2 mass%以下
Crは、炭化物を安定化させて残留炭化物の生成を助長し、粒界強度を低下させてねじり疲労強度を劣化させる。さらにCrは焼割れを助長する。従って、Crの含有は極力低減することが望ましいが、0.2 mass%までは許容できる。好ましくは0.05mass%以下である。
Cr: 0.2 mass% or less
Cr stabilizes the carbide and promotes the formation of residual carbide, lowers the grain boundary strength, and degrades the torsional fatigue strength. In addition, Cr promotes fire cracking. Therefore, it is desirable to reduce the Cr content as much as possible, but up to 0.2 mass% is acceptable. Preferably it is 0.05 mass% or less.

以上、好適成分組成範囲について説明したが、本発明では、成分組成を上記の範囲に限定するだけでは不十分で、鋼組織の調整も重要である。
すなわち、本発明においては、動力伝達シャフトの母材組織、すなわち焼入れ前の組織がベイナイト組織を有し、このベイナイト組織の組織分率が50%以上とする必要がある。この理由は、ベイナイト組織は、フェライト−パーライト組織に比べて炭化物が微細に分散した組織であるため、焼入れ加熱時にオーステナイトの核生成サイトである、フェライト/炭化物界面の面積が増加し、生成したオーステナイトが微細化するため、焼入れ硬化層の粒径を微細化するのに有効に寄与するからである。そして、焼入れ硬化層の粒径の微細化により、粒界強度が上昇し、ねじり疲労強度および耐焼割れ性が向上する。
ここに、ベイナイト組織の組織分率は60vol%以上とすることがより好ましい。
Although the preferred component composition range has been described above, in the present invention, it is not sufficient to limit the component composition to the above range, and adjustment of the steel structure is also important.
That is, in the present invention, the base material structure of the power transmission shaft, that is, the structure before quenching has a bainite structure, and the structure fraction of the bainite structure needs to be 50% or more. The reason for this is that the bainite structure is a structure in which carbides are finely dispersed as compared with the ferrite-pearlite structure. Therefore, the area of the ferrite / carbide interface, which is an austenite nucleation site during quenching heating, increases, and austenite formed. This is because it contributes to making the grain size of the hardened and hardened layer fine. And grain boundary intensity | strength rises by refinement | miniaturizing the particle size of a hardening hardening layer, and a torsional fatigue strength and a quench cracking resistance improve.
Here, the structure fraction of the bainite structure is more preferably 60 vol% or more.

なお、ベイナイト組織以外の残部組織は、マルテンサイト組織、フェライト、パーライト等いずれでもよく、特に規定しない。
また、焼入れ後の硬化層の粒径の微細化に関しては、マルテンサイト組織もベイナイト組織と同程度の効果を有するが、工業的な観点からは、マルテンサイト組織に比べてベイナイト組織の方がより合金元素の添加量が少なくて済み、また低冷却速度で生成させることが可能であるため、製造上有利となる。また、母材組織でマルテンサイトの組織分率が大きくなると、スプラインの転造性が悪化する。すなわち、転造ダイスの欠損等の問題が生じるため、この意味から母材組織は、ベイナイト50%以上、好ましくはベイナイト60%以上とし、残部はフェライトおよび/またはパーライト組織とすることが好ましい。
The remaining structure other than the bainite structure may be a martensite structure, ferrite, pearlite, or the like, and is not particularly defined.
Also, regarding the refinement of the grain size of the hardened layer after quenching, the martensite structure has the same effect as the bainite structure, but from an industrial point of view, the bainite structure is better than the martensite structure. Since the addition amount of the alloy element is small and it can be produced at a low cooling rate, it is advantageous in production. Further, when the martensite structure fraction increases in the base material structure, the spline rollability deteriorates. That is, problems such as rolling die breakage occur. From this point of view, it is preferable that the base material structure is 50% or more of bainite, preferably 60% or more of bainite, and the balance is ferrite and / or pearlite structure.

また、本発明の動力伝達シャフトでは、高周波焼入れ後の硬化層の旧オーステナイト粒径の調整も重要である。すなわち、高周波焼入れ後の硬化層に関し、上記した範囲の表層において旧オーステナイト粒径を10μm 以下とする必要がある。というのは、焼入れ硬化層表層の旧オーステナイト粒径が10μm を超えると、十分な粒界強度が得られず、満足いくほどのねじり疲労強度の向上が望めないからである。なお、好ましくは8μm 以下である。   In the power transmission shaft of the present invention, it is also important to adjust the prior austenite grain size of the hardened layer after induction hardening. That is, regarding the hardened layer after induction hardening, the prior austenite grain size needs to be 10 μm or less in the surface layer in the above range. This is because if the prior austenite grain size of the hardened hardened layer surface layer exceeds 10 μm, sufficient grain boundary strength cannot be obtained, and satisfactory improvement in torsional fatigue strength cannot be expected. In addition, Preferably it is 8 micrometers or less.

ここに、焼入れ硬化層表層の旧オーステナイト粒径の測定は、次のようにして行う。
光学顕微鏡により、400 倍(1視野の面積:0.25mm×0.225 mm)から1000倍(1視野の面積:0.10mm×0.09mm)で、表層から500μmまでの位置において視野観察し、画像解析装置により平均粒径を測定することにより行う。
Here, the measurement of the prior austenite particle size of the hardened hardened layer surface is performed as follows.
Using an optical microscope, observe the field of view from the surface layer to 500 μm from 400 times (area of 1 field of view: 0.25 mm x 0.225 mm) to 1000 times (area of 1 field of view: 0.10 mm x 0.09 mm), and use an image analyzer This is done by measuring the average particle size.

さらに、高周波焼入れ後の硬化層において、有効硬化層深さの軸半径に対する比(以下、硬化層比と示す。)が、溝部は0.5〜0.75および軸中間部は1.0であることが肝要である。すなわち、硬化を軸心まで行う全硬化が実現できれば著しい強度の上昇が得られるが、従来は粒界破壊により逆に強度は低下していた。ここで、本発明では、上記したように焼入れ硬化層表層の旧オーステナイト粒径が10μmと微細化したことによって、粒界強度が向上するために、上記粒界破壊は抑制される結果、静ねじり強度が向上する。   Furthermore, in the hardened layer after induction hardening, it is important that the ratio of the effective hardened layer depth to the axial radius (hereinafter referred to as hardened layer ratio) is 0.5 to 0.75 for the groove and 1.0 for the middle shaft portion. . In other words, if the entire curing can be performed up to the axis, a significant increase in strength can be obtained. However, conventionally, the strength has decreased due to grain boundary fracture. Here, in the present invention, the grain boundary strength is improved because the prior austenite grain size of the hardened hardened layer surface layer has been refined to 10 μm as described above. Strength is improved.

しかしながら、溝部を全硬化した場合には焼割れが発生し、やはり強度の低下をもたらすため、溝部は0.5〜0.75の範囲の硬化層比とする。すなわち、硬化層比が0.5未満では、所望の静ねじりおよびねじり疲労強度が得られず、一方、硬化層比が0.75を超えると、焼割れの発生が顕著となり、静ねじり疲労強度およびねじり疲労強度が低下する。なお、硬化層比の下限は好ましくは0.6とする。   However, when the groove is fully cured, burn cracks are generated and the strength is lowered. Therefore, the groove has a cured layer ratio in the range of 0.5 to 0.75. That is, when the hardened layer ratio is less than 0.5, desired static torsion and torsional fatigue strength cannot be obtained. On the other hand, when the hardened layer ratio exceeds 0.75, the occurrence of burning cracks becomes significant, and the static torsional fatigue strength and torsional fatigue strength are increased. Fatigue strength decreases. The lower limit of the cured layer ratio is preferably 0.6.

さらに、ねじり疲労において破壊の起点となることが多い前記溝部のうち、切り上がり部分の硬化層比を0.5〜0.75と規定することで、ねじり疲労強度についてより品質の安定したものが得られる。   Furthermore, by setting the hardened layer ratio of the rounded-up portion of the groove portion, which is often the starting point of fracture in torsional fatigue, to 0.5 to 0.75, a torsional fatigue strength with a more stable quality can be obtained.

次に、本発明の動力伝達シャフトを製造する条件について説明する。
所定の成分組成に調整した鋼材を、棒鋼圧延または熱間鍛造後、所定の長さに切断し、ついで切削加工を施したのち、図1に示すように、溝部(スプライン部)2について転造加工を施し、ついで動力伝達シャフト1全体に高周波焼入れ−焼戻し処理を施して、製品とする。
Next, conditions for manufacturing the power transmission shaft of the present invention will be described.
A steel material adjusted to a predetermined component composition is rolled into a predetermined length after steel bar rolling or hot forging, and then subjected to cutting, followed by rolling a groove (spline portion) 2 as shown in FIG. Processing is performed, and then the entire power transmission shaft 1 is subjected to induction hardening and tempering to obtain a product.

本発明では、動力伝達シャフトの母材組織を、上述したベイナイト組織を有し、かつベイナイト組織の組織分率が50 vol%以上の組織とするために、圧延・鍛造等の熱間加工後は、0.2 ℃/s以上の速度で冷却する必要がある。というのは、冷却速度が0.2 ℃/s未満の場合には、ベイナイトあるいはマルテンサイト組織が得られ難くなり、組織分率が50 vol%に達しない場合が生じるからである。熱間加工後の冷却速度の好適範囲は 0.3〜30℃/sである。
なお、熱間加工は 900℃超〜1150℃の温度範囲で行うことが好ましい。900 ℃以下では、必要なベイナイト組織が得られず、一方1150℃超では加熱コストが大きくなるため、経済的に不利となるからである。
In the present invention, the base material structure of the power transmission shaft has the above-described bainite structure, and the bainite structure has a structure fraction of 50 vol% or more, after hot working such as rolling and forging. It is necessary to cool at a rate of 0.2 ° C / s or higher. This is because when the cooling rate is less than 0.2 ° C./s, it becomes difficult to obtain a bainite or martensite structure, and the structure fraction may not reach 50 vol%. The preferable range of the cooling rate after hot working is 0.3 to 30 ° C./s.
In addition, it is preferable to perform hot working in a temperature range of over 900 ° C. to 1150 ° C. If the temperature is below 900 ° C., the necessary bainite structure cannot be obtained. On the other hand, if it exceeds 1150 ° C., the heating cost increases, which is economically disadvantageous.

また、本発明において、切削加工およびスプライン部の転造加工は、特に制限されるものではなく、従来公知の方法を用いれば良い。   In the present invention, the cutting process and the rolling process of the spline part are not particularly limited, and a conventionally known method may be used.

次に、本発明では、スプライン部の転造加工後、上述した硬化層を得るために高周波焼入れを施すが、この高周波焼入れ時の加熱温度範囲は 800〜1000℃とする必要がある。というのは、加熱温度が 800℃未満の場合、オーステナイト組織の生成が不十分となり、上述した硬化層組織の生成が不十分となる結果、十分なねじり疲労強度および耐焼割れ性を確保することができず、一方、加熱温度が1000℃超えの場合、オーステナイト粒の成長が促進されて粗大となり、硬化層の粒径が粗大となるため、やはりねじり疲労強度および耐焼割れ性の低下を招くからである。より好ましい加熱温度範囲は 800〜950 ℃である。   Next, in the present invention, after the spline portion is rolled, induction hardening is performed in order to obtain the above-described hardened layer, and the heating temperature range during this induction hardening needs to be 800 to 1000 ° C. This is because when the heating temperature is less than 800 ° C., the austenite structure is not sufficiently generated, and as a result of insufficient generation of the hardened layer structure described above, sufficient torsional fatigue strength and fire cracking resistance can be ensured. On the other hand, when the heating temperature exceeds 1000 ° C., the growth of austenite grains is promoted to become coarse, and the hardened layer has a coarse particle size, which also causes a decrease in torsional fatigue strength and fire cracking resistance. is there. A more preferable heating temperature range is 800 to 950 ° C.

特に、硬化層比を上記の範囲に調整するには、加熱温度を1000℃以下の低温域にするとともに、高周波誘導電流浸透範囲を深めることによって、旧オーステナイト粒径の微細化と硬化層深さの確保とを両立する。   In particular, in order to adjust the hardened layer ratio to the above range, the heating temperature is set to a low temperature range of 1000 ° C. or lower, and the high frequency induction current penetration range is deepened to refine the prior austenite grain size and the hardened layer depth. Ensuring both.

さらに、溝部の硬化層平均硬さが、該溝部以外の部分の硬化層平均硬さより低いことが好ましい。具体的には、溝部の硬化層平均硬さを50〜120Hv程度低くすることが推奨される。すなわち、溝部以外の部分の硬さを低下することなく溝部(切欠き加工部)における切欠き感受性が低下する結果、静ねじり強度の安定向上が実現する。
この硬さ調整は、例えば溝部のみに高周波誘導加熱による焼戻し処理を施すことで可能になる。
Furthermore, it is preferable that the hardened layer average hardness of a groove part is lower than the hardened layer average hardness of parts other than this groove part. Specifically, it is recommended to reduce the average hardness of the hardened layer in the groove by about 50 to 120 Hv. That is, the stability of the static torsional strength is improved as a result of a decrease in notch sensitivity in the groove (notched portion) without reducing the hardness of the portion other than the groove.
This hardness adjustment can be achieved, for example, by subjecting only the groove to a tempering process by high frequency induction heating.

また、図2に示すように、前記溝部は、軸端面と離隔した溝部最小径部分から拡径する切り上がり部分に、他部品との嵌合部を有することが有利である。すなわち、溝部において最弱となる部分は、他部分との嵌合部分の中の端部であり、溝部のみで他部品との嵌合を行った場合には、溝底において径が最小となる溝底部分が最弱となる。これに対して切上り部に他部品との嵌合部を有することで、最弱部は切上り部となり、溝底よりも径が増した部分となり、溝部のみで他部品との嵌合を行う場合よりも有利となる。   Moreover, as shown in FIG. 2, it is advantageous that the groove portion has a fitting portion with another component at a rounded-up portion that expands from the groove portion minimum diameter portion separated from the shaft end surface. In other words, the weakest part in the groove is the end of the fitting part with the other part, and when fitting with other parts using only the groove, the diameter is the smallest at the groove bottom. The groove bottom is the weakest. On the other hand, by having a fitting part with other parts in the rounded-up part, the weakest part becomes the rounded-up part and becomes a part whose diameter is larger than the groove bottom, and fitting with other parts is possible only with the groove part. It is more advantageous than doing so.

さらにまた、軸中間部の高周波熱処理後の残留応力が−700MPa以下とする。なぜなら、ねじり疲労試験時、特に中から高サイクル疲労(104回以上)の疲労試験時に軸中間部の最小径部から破壊が起こった場合、疲労強度が低値となるが、軸中間部の残留応力を−700MPa以下とすることにより、軸中間部最小径部からの破壊が抑制され、高いねじり疲労強度が得られるようになるためである。
この残留応力の調整は、例えば高周波焼入れ時の冷却速度を軸中間部に対してシャフト表面部で300℃/s以上とすることで可能になる。
Furthermore, the residual stress after high-frequency heat treatment of the shaft middle portion is set to −700 MPa or less. Because if the fracture occurs from the smallest diameter part of the shaft middle part during the torsional fatigue test, especially during the middle to high cycle fatigue (10 4 times or more) fatigue test, the fatigue strength will be low, This is because by setting the residual stress to −700 MPa or less, the fracture from the shaft middle portion minimum diameter portion is suppressed, and high torsional fatigue strength can be obtained.
This residual stress can be adjusted, for example, by setting the cooling rate during induction hardening to 300 ° C./s or more at the shaft surface portion with respect to the shaft intermediate portion.

表1に示す成分組成になる鋼素材を、転炉により溶製し、連続鋳造により鋳片とした。鋳片サイズは 300×400mm であった。この鋳片を、ブレークダウン工程を経て150 mm角ビレットに圧延したのち、23mmφの棒鋼に圧延した。圧延の仕上温度はベイナイト組織生成の観点から好適な温度として900 ℃超とした。圧延後の冷却は表2に示す条件とした。
ついで、この棒鋼を所定の長さに切断後、切削加工およびスプライン部の転造加工を施して、図1に示す寸法・形状になる溝部(スプライン部)2を有する動力伝達シャフト1を作製した。この動力伝達シャフトに、周波数:3 kHzの高周波焼入れ装置を用いて、表2に示す条件下で焼入れを行った後、同じく高周波焼入装置を用いて、最高加熱温度を240℃および加熱時間12秒にて、加熱後に放冷または放冷後水冷とする、焼もどしを行い、その後静ねじり強度およびねじり疲労強度について調査した。
Steel materials having the composition shown in Table 1 were melted by a converter and cast into continuous slabs. The slab size was 300 × 400mm. The slab was rolled into a 150 mm square billet through a breakdown process, and then rolled into a 23 mmφ steel bar. The finishing temperature of rolling was over 900 ° C. as a suitable temperature from the viewpoint of bainite structure formation. Cooling after rolling was performed under the conditions shown in Table 2.
Next, after cutting this steel bar to a predetermined length, cutting and rolling of the spline part were performed to produce a power transmission shaft 1 having a groove part (spline part) 2 having the dimensions and shape shown in FIG. . This power transmission shaft was quenched using an induction hardening apparatus having a frequency of 3 kHz under the conditions shown in Table 2, and then the maximum heating temperature was set to 240 ° C. and the heating time was set to 12 using the same induction hardening apparatus. Tempering was performed in seconds, followed by cooling after heating or water cooling after cooling, and then the static torsional strength and torsional fatigue strength were investigated.

なお、静ねじり強度は、電動式ねじり試験機を用い、図3に示すように、スプライン部2a,2bをそれぞれ円盤状のつかみ具3a,3bに組み込み、つかみ具3a,3bとの間にねじりトルクを付加し、シャフトが破断した時点のトルク値を測定し、これを軸中間部の最小部(直径19mmφ)での応力値(Gpa)に変換して評価した。   The static torsional strength is measured by using an electric torsion tester, and as shown in FIG. 3, the spline portions 2a and 2b are incorporated in the disc-shaped grippers 3a and 3b, respectively, and twisted between the grippers 3a and 3b. Torque was applied, the torque value at the time when the shaft broke, was measured, and this was converted into a stress value (Gpa) at the minimum part (diameter 19 mmφ) of the shaft middle part and evaluated.

また、ねじり疲労強度は、動力伝達シャフトのねじり疲労試験において破断繰り返し数が5×104 回の時のトルク値を軸中間部の最小部(直径19mmφ)で応力値(Gpa)に変換して評価した。
ねじり疲労試験は、油圧式疲労試験機を用い、図3に示すように、スプライン部2a,2bをそれぞれ円盤状のつかみ具3a,3bに組み込み、つかみ具3a,3bとの間に周波数:1〜3Hzで繰り返しトルクを負荷することにより行った。
The torsional fatigue strength is calculated by converting the torque value when the number of repetitions of fracture is 5 × 10 4 times in the torsional fatigue test of the power transmission shaft to the stress value (Gpa) at the minimum part (diameter 19 mmφ) of the shaft middle part. evaluated.
In the torsional fatigue test, a hydraulic fatigue tester is used, and as shown in FIG. 3, the spline portions 2a and 2b are respectively incorporated in the disc-shaped grippers 3a and 3b, and the frequency is 1 between the grippers 3a and 3b. This was done by repeatedly applying torque at ~ 3 Hz.

また、同じ動力伝達シャフトについて、鋼材の母材組織、硬化層粒径(旧オーステナイト粒径)を、光学顕微鏡を用いて測定した。   Moreover, about the same power transmission shaft, the base material structure | tissue of steel materials and the hardened layer particle size (old austenite particle size) were measured using the optical microscope.

また、同じ動力伝達シャフトについて、溝部の切り上がり部分および軸中間部における軸方向に平行な断面において、ビッカース硬度計により表面から中心まで0.2mmピッチで硬さ測定を行い、硬化層比および硬化層平均硬さを調査した。なお、硬化層平均硬さは硬化層表面からの深さの軸半径に対する比が0.2となる位置までの硬さの平均値を硬化層平均硬さとして用いた。   Also, for the same power transmission shaft, in the cross section parallel to the axial direction at the rounded-up portion of the groove and the shaft middle portion, the hardness is measured at a 0.2 mm pitch from the surface to the center with a Vickers hardness tester, and the hardened layer ratio and hardened layer The average hardness was investigated. For the average hardness of the hardened layer, the average value of the hardness up to a position where the ratio of the depth from the surface of the hardened layer to the axial radius becomes 0.2 was used as the average hardness of the hardened layer.

さらに、同じ動力伝達シャフトについて、耐焼割れ性についても調査した。
この耐焼割れ性は、高周波焼入れ後のスプライン部について磁粉探傷試験を行い、焼割れが発生した場合を×、焼割れが発生しなかった場合を○として評価した。
また、それぞれの動力伝達シャフトにスプラインの転造加工を施したのち、転造ダイスの欠損の有無を目視で観察し、欠損有りの場合を転造性不良(×)、欠損なしの場合を転造性良好(○)として評価した。
得られた結果を表2に併記する。
Furthermore, the same power transmission shaft was also investigated for fire cracking resistance.
The anti-fire cracking resistance was evaluated by conducting a magnetic particle flaw detection test on the spline part after induction hardening, and evaluating the case where the crack was generated as x and the case where the crack was not generated as being ◯.
In addition, after spline rolling of each power transmission shaft, the presence or absence of defects in the rolling dies is visually observed. It was evaluated as good formability (◯).
The obtained results are also shown in Table 2.

Figure 2007177275
Figure 2007177275

Figure 2007177275
Figure 2007177275

代表的な動力伝達シャフトの正面図である。It is a front view of a typical power transmission shaft. 溝部の形状を示す図である。It is a figure which shows the shape of a groove part. 動力伝達シャフトのねじり疲労試験における試験要領を示す図である。It is a figure which shows the test point in the torsional fatigue test of a power transmission shaft.

符号の説明Explanation of symbols

1 動力伝達シャフト
2 溝部
3 つかみ具
1 Power transmission shaft 2 Groove 3 Grab

Claims (5)

軸の両端部に、トルク伝達用の溝を有する等速自在継手用動力伝達シャフトであって、
C:0.40〜0.50mass%、
Si:0.35〜0.8 mass%、
Mn:0.5 〜0.8 mass%、
Al:0.005 〜0.05mass%、
Ti:0.005 〜0.05 mass%、
Mo:0.3〜0.5 mass%、
B:0.0005〜0.005 mass%、
Cu:0.05 〜0.5 mass%、
S:0.005 〜0.025 mass%、
P:0.02mass%以下および
Cr:0.2 mass%以下
を含有し、残部はFeおよび不可避的不純物の成分組成になり、母材組織がベイナイト組織を有し、このベイナイト組織の組織分率が50%以上であり、さらに高周波焼入れ後の硬化層表層部の旧オーステナイト平均粒径が10μm 以下、かつ有効硬化層深さの軸半径に対する比である硬化層比が、前記溝部は0.5〜0.75および該溝部以外の部分は1.0であることを特徴とする等速自在継手用動力伝達シャフト。
A power transmission shaft for a constant velocity universal joint having a torque transmission groove at both ends of the shaft,
C: 0.40 to 0.50 mass%,
Si: 0.35-0.8 mass%
Mn: 0.5-0.8 mass%,
Al: 0.005 to 0.05 mass%,
Ti: 0.005 to 0.05 mass%,
Mo: 0.3-0.5 mass%,
B: 0.0005 to 0.005 mass%,
Cu: 0.05 to 0.5 mass%,
S: 0.005 to 0.025 mass%,
P: 0.02 mass% or less and
Cr: Contains 0.2 mass% or less, the balance is the composition of Fe and inevitable impurities, the base metal structure has a bainite structure, the bainite structure has a structure fraction of 50% or more, and induction hardening The former austenite average particle size of the subsequent hardened layer surface layer part is 10 μm or less, and the hardened layer ratio, which is the ratio of the effective hardened layer depth to the axial radius, is 0.5 to 0.75 for the groove part and 1.0 for the other part than the groove part. A power transmission shaft for a constant velocity universal joint.
請求項1において、前記溝部の硬化層平均硬さが、該溝部以外の部分の硬化層平均硬さより低いことを特徴とする等速自在継手用動力伝達シャフト。   2. The power transmission shaft for a constant velocity universal joint according to claim 1, wherein the average hardness of the hardened layer of the groove is lower than the average hardness of the hardened layer other than the groove. 請求項1または2において、前記溝部は、軸端面と離隔した溝部最小径部分から拡径する切り上がり部分に、他部品との嵌合部を有することを特徴とする等速自在継手用動力伝達シャフト。   3. The power transmission for a constant velocity universal joint according to claim 1, wherein the groove portion has a fitting portion with another part in a rounded-up portion that expands from the smallest diameter portion of the groove portion separated from the shaft end surface. shaft. 請求項1ないし3のいずれかにおいて、前記溝部以外の部分の高周波熱処理後の残留応力が−700MPa以下であることを特徴とする等速自在継手用動力伝達シャフト。   The power transmission shaft for a constant velocity universal joint according to any one of claims 1 to 3, wherein a residual stress after high-frequency heat treatment in a portion other than the groove is -700 MPa or less. 請求項1ないし4のいずれかにおいて、前記溝部のうち切り上がり部分の前記硬化層比が0.5〜0.75であることを特徴とする等速自在継手用動力伝達シャフト。
5. The power transmission shaft for a constant velocity universal joint according to claim 1, wherein the hardened layer ratio of the rounded-up portion of the groove is 0.5 to 0.75.
JP2005375472A 2005-12-27 2005-12-27 Power transmission shaft for constant-velocity universal joint Withdrawn JP2007177275A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005375472A JP2007177275A (en) 2005-12-27 2005-12-27 Power transmission shaft for constant-velocity universal joint
PCT/JP2006/325449 WO2007074705A1 (en) 2005-12-27 2006-12-14 Power transmission shaft for constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375472A JP2007177275A (en) 2005-12-27 2005-12-27 Power transmission shaft for constant-velocity universal joint

Publications (1)

Publication Number Publication Date
JP2007177275A true JP2007177275A (en) 2007-07-12

Family

ID=38217926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375472A Withdrawn JP2007177275A (en) 2005-12-27 2005-12-27 Power transmission shaft for constant-velocity universal joint

Country Status (2)

Country Link
JP (1) JP2007177275A (en)
WO (1) WO2007074705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002532A1 (en) * 2015-06-29 2017-01-05 Ntn株式会社 Machine part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4255312B2 (en) * 2003-05-19 2009-04-15 Ntn株式会社 Power transmission shaft
JP4281440B2 (en) * 2003-08-08 2009-06-17 Jfeスチール株式会社 Method for manufacturing drive shaft with excellent resistance to cracking and fatigue
JP2005146313A (en) * 2003-11-12 2005-06-09 Ntn Corp Power transmission shaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002532A1 (en) * 2015-06-29 2017-01-05 Ntn株式会社 Machine part
JP2017014550A (en) * 2015-06-29 2017-01-19 Ntn株式会社 Machine component
CN107849655A (en) * 2015-06-29 2018-03-27 Ntn株式会社 Mechanical part

Also Published As

Publication number Publication date
WO2007074705A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP4771745B2 (en) Steel material for high strength constant velocity joint intermediate shaft and high strength constant velocity joint intermediate shaft
JP4983099B2 (en) Steel shaft parts with excellent impact and fatigue properties and manufacturing method thereof
JP4219023B2 (en) High-strength drive shaft and manufacturing method thereof
JP2005325443A (en) Crank shaft having superior bending fatigue strength
JP4983098B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3733967B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP4517983B2 (en) Steel material excellent in fatigue characteristics after induction hardening and method for producing the same
JP4507731B2 (en) Steel materials and steel products excellent in machinability and fatigue characteristics and methods for producing them
JP2005048211A (en) Method for producing steel excellent in fatigue characteristic
JP2006028599A (en) Component for machine structure
JP4196766B2 (en) Steel material excellent in delayed fracture resistance and fatigue characteristics and method for producing the same
JP2005054216A (en) Steel material superior in machinability and fatigue characteristics, and manufacturing method therefor
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP2007177275A (en) Power transmission shaft for constant-velocity universal joint
JP4281440B2 (en) Method for manufacturing drive shaft with excellent resistance to cracking and fatigue
JP2007204798A (en) Method for manufacturing parts excellent in hardening crack resistance
JP4281501B2 (en) Steel material excellent in machinability and fatigue characteristics and method for producing the same
JP4910654B2 (en) Crankshaft with high fatigue strength
JP2007204796A (en) Method for manufacturing parts for machine structure
JP2007231411A (en) Method of manufacturing machine structure component
JP4127143B2 (en) Constant velocity joint outer ring having excellent fatigue characteristics and method of manufacturing the same
JP4127145B2 (en) Constant velocity joint inner ring with excellent fatigue characteristics and manufacturing method thereof
JP5375212B2 (en) Steel material with excellent machinability and torsional fatigue strength

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303