JP2007175563A - Method for producing monounsaturated fatty acid - Google Patents

Method for producing monounsaturated fatty acid Download PDF

Info

Publication number
JP2007175563A
JP2007175563A JP2005373981A JP2005373981A JP2007175563A JP 2007175563 A JP2007175563 A JP 2007175563A JP 2005373981 A JP2005373981 A JP 2005373981A JP 2005373981 A JP2005373981 A JP 2005373981A JP 2007175563 A JP2007175563 A JP 2007175563A
Authority
JP
Japan
Prior art keywords
fatty acid
copper
catalyst
group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005373981A
Other languages
Japanese (ja)
Other versions
JP4668060B2 (en
Inventor
Shoichiro Kamitakahara
正一郎 上高原
Hiroshi Mimura
拓 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005373981A priority Critical patent/JP4668060B2/en
Publication of JP2007175563A publication Critical patent/JP2007175563A/en
Application granted granted Critical
Publication of JP4668060B2 publication Critical patent/JP4668060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogenation catalyst for producing a high-quality monounsaturated fatty acid having low content of polyunsaturated fatty acids such as linoleic acid, low content of saturated fatty acids and low content of trans-fatty acids, and a method for producing the high-quality monounsaturated fatty acid. <P>SOLUTION: The hydrogenation catalyst contains copper and at least one element selected from group A consisting of molybdenum, zirconium, vanadium, gallium and elements of group III in the periodic table and is used for producing the monounsaturated fatty acid from a polyunsaturated fatty acid. The method for producing the monounsaturated fatty acid comprises a step of hydrogenating a raw material fatty acid containing polyunsaturated fatty acids by using the hydrogenation catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、滑剤、可塑剤、油剤、乳化剤、洗浄剤等の原料として、広く利用されている高品質なモノ不飽和脂肪酸の製造方法に関する。   The present invention relates to a method for producing high-quality monounsaturated fatty acids that are widely used as raw materials for lubricants, plasticizers, oils, emulsifiers, detergents, and the like.

モノ不飽和脂肪酸、例えばオレイン酸は、一般的に牛脂等の油脂を加水分解して得られる脂肪酸を液体酸と固体酸に分別後、得られた液体酸を蒸留し、全留出物を取得することにより製造されている。しかしながら、この方法により製造されたオレイン酸は、リノール酸などの多不飽和脂肪酸を含有し、それがオレイン酸の純度を低下させるばかりでなく、色相、匂い、酸化安定性など品質低下の原因となっており、従来より改善が望まれていた。   Monounsaturated fatty acids, such as oleic acid, are generally obtained by distilling fatty acids obtained by hydrolyzing oils and fats such as beef tallow into liquid acids and solid acids, and then distilling the obtained liquid acids to obtain all distillates. It is manufactured by doing. However, oleic acid produced by this method contains polyunsaturated fatty acids such as linoleic acid, which not only lowers the purity of oleic acid, but also causes quality deterioration such as hue, odor, and oxidation stability. Therefore, improvement has been desired from the past.

オレイン酸中のリノール酸などの多不飽和脂肪酸を除去する方法としては、クロマトグラフィー分離法、尿素付加法等の精製による方法と、触媒を用いて多不飽和脂肪酸を選択的に水素化する方法がある。   Methods for removing polyunsaturated fatty acids such as linoleic acid in oleic acid include purification methods such as chromatographic separation and urea addition, and methods for selectively hydrogenating polyunsaturated fatty acids using a catalyst. There is.

しかし、クロマトグラフィー分離法、尿素付加法等の精製による方法は、製造コスト、処理能力等の点で工業的製造法として満足できる方法ではない。   However, purification methods such as chromatographic separation methods and urea addition methods are not satisfactory as industrial production methods in terms of production cost, throughput, and the like.

一方、触媒を使用した水素化によるオレイン酸の製造法としては、原料として油脂、脂肪酸またはそのエステルを用いて、触媒としてニッケル、パラジウム、ロジウム、銅等の固体触媒を用いる方法が検討されている。銅触媒は他の固体触媒と比較すると、安価であり、飽和脂肪酸の生成が極めて少ないという長所を有している。   On the other hand, as a method for producing oleic acid by hydrogenation using a catalyst, a method using a fat or fatty acid or an ester thereof as a raw material and a solid catalyst such as nickel, palladium, rhodium or copper as a catalyst has been studied. . Copper catalysts have the advantages that they are less expensive and produce less saturated fatty acids than other solid catalysts.

しかしながら、銅は水素化原料である脂肪酸に溶出しやすく、銅石鹸を形成しやすい。また、形成された銅石鹸が水素化されて生成する金属銅は凝集しやすく、触媒活性を低下させる。この課題を克服するために、銅含有触媒の使用方法として、脂肪族アルコール、脂肪酸エステル等の不活性な液体中で、予め還元活性化する方法が開示されている(特許文献1)。しかしこの方法では、反応原料以外の液体を使用することで、還元活性化のための反応槽などの設備、並びに、還元活性化後の触媒の分離設備が必要となり、コスト、労力、生産能力等に問題があった。
特開平8−99036号公報
However, copper is easy to elute into fatty acid as a hydrogenation raw material, and easily forms copper soap. Moreover, the copper metal produced | generated when the formed copper soap is hydrogenated easily aggregates, and catalyst activity falls. In order to overcome this problem, as a method of using a copper-containing catalyst, a method of reducing and activating in advance in an inert liquid such as an aliphatic alcohol or a fatty acid ester has been disclosed (Patent Document 1). However, in this method, by using liquids other than the reaction raw materials, equipment such as a reaction tank for reduction activation and separation equipment for the catalyst after reduction activation are required, and cost, labor, production capacity, etc. There was a problem.
JP-A-8-99036

本発明の課題は、リノール酸などの多不飽和脂肪酸含量が少なく、飽和脂肪酸含量、トランス酸含量も少ない、高品質なモノ不飽和脂肪酸を製造するための水添用触媒、並びに高品質なモノ不飽和脂肪酸の製造方法を提供することにある。   An object of the present invention is to provide a hydrogenation catalyst for producing a high-quality monounsaturated fatty acid having a low content of polyunsaturated fatty acids such as linoleic acid, a low content of saturated fatty acids, and a low content of trans acids, as well as a high-quality mono It is providing the manufacturing method of an unsaturated fatty acid.

本発明は、銅と、下記群Aから選ばれる少なくとも1種の元素とを含有する、多不飽和脂肪酸のモノ不飽和脂肪酸への水添用触媒、並びにこの水添用触媒を用いて、多不飽和脂肪酸を含有する原料脂肪酸を水素化する、モノ不飽和脂肪酸の製造方法を提供する。
群A:モリブデン、ジルコニウム、バナジウム、ガリウム、及び周期律表3族の元素
The present invention provides a catalyst for hydrogenation of polyunsaturated fatty acids to monounsaturated fatty acids containing copper and at least one element selected from the following group A, and a catalyst for hydrogenation using the hydrogenation catalyst. Provided is a method for producing a monounsaturated fatty acid in which a raw fatty acid containing an unsaturated fatty acid is hydrogenated.
Group A: Molybdenum, zirconium, vanadium, gallium, and elements of Group 3 of the periodic table

本発明によると、多不飽和脂肪酸含量が低減され、飽和脂肪酸含量、トランス酸含量も少ない高品質なモノ不飽和脂肪酸を製造することができる。   According to the present invention, it is possible to produce a high-quality monounsaturated fatty acid having a reduced content of polyunsaturated fatty acids and a low content of saturated fatty acids and a low content of trans acids.

[水添用触媒及びその製造法]
本発明において使用される水添用触媒は、銅と、上記群Aから選ばれる少なくとも1種の元素とを含有する。
[Hydrogenation catalyst and its production method]
The hydrogenation catalyst used in the present invention contains copper and at least one element selected from the above group A.

群Aの元素としては、モリブデン、ジルコニウム、バナジウム、ガリウムや、スカンジウム、イットリウム、ランタノイド元素、アクチノイド元素等の周期律表3族の元素が挙げられ、その中で、モリブデン、ジルコニウム、イットリウム、ランタンが好ましく、モリブデン、ジルコニウム、イットリウムが更に好ましい。   Group A elements include elements of Group 3 of the periodic table such as molybdenum, zirconium, vanadium, gallium, scandium, yttrium, lanthanoid elements, and actinoid elements. Among them, molybdenum, zirconium, yttrium, and lanthanum are included. Molybdenum, zirconium and yttrium are more preferable.

本発明の水添用触媒中の銅と群Aの元素との重量比は、銅/(群Aの元素)=100/0.1〜100/80の範囲が好ましく、100/1〜100/50の範囲が更に好ましい。   The weight ratio of copper to the group A element in the hydrogenation catalyst of the present invention is preferably in the range of copper / (group A element) = 100 / 0.1 to 100/80, preferably 100/1 to 100/80. A range of 50 is more preferred.

本発明の水添用触媒は、下記(1)〜(3)の方法等により製造することができる。   The hydrogenation catalyst of the present invention can be produced by the following methods (1) to (3).

(1)含浸担持法
含浸担持法は、銅の酸化物、水酸化物、炭酸塩又はそれらの混合物に、群Aから選ばれる少なくとも1種の元素の金属塩を含浸担持させて水添用触媒を得る方法である。
(1) Impregnation supporting method The impregnation supporting method is a hydrogenation catalyst in which a metal oxide of at least one element selected from Group A is impregnated and supported on a copper oxide, hydroxide, carbonate or a mixture thereof. Is the way to get.

具体的には、例えば、銅を含む金属塩水溶液と、沈殿剤を混合することにより沈殿物を得て、引き続き、ろ過、水洗、乾燥、焼成、又はそれらの工程を組み合わせて得られる銅の酸化物、水酸化物、炭酸塩又はそれらの混合物に、群Aから選ばれる少なくとも1種の元素の金属塩を含浸担持させて水添用触媒を得る。ここで用いられる沈殿剤としては、炭酸ナトリウム、炭酸アンモニウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、アンモニア、尿素等のアルカリ水溶液が挙げられる。   Specifically, for example, a precipitate is obtained by mixing a metal salt aqueous solution containing copper and a precipitating agent, followed by filtration, washing with water, drying, firing, or oxidation of copper obtained by combining these steps. A hydrogenation catalyst is obtained by impregnating and supporting a metal salt of at least one element selected from Group A on a product, hydroxide, carbonate or a mixture thereof. Examples of the precipitant used here include aqueous alkali solutions such as sodium carbonate, ammonium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, ammonia, and urea.

含浸担持する方法は、群Aから選ばれる少なくとも1種の元素の金属塩の水溶液を、銅の酸化物、水酸化物、炭酸塩又はそれらの混合物に、接触、混合させた後、水分を乾燥により除去する方法が挙げられる。乾燥して得られた含浸担持触媒は、更に焼成してもよい。   The impregnating and supporting method comprises contacting an aqueous solution of a metal salt of at least one element selected from Group A with a copper oxide, hydroxide, carbonate or a mixture thereof, and then drying the moisture. The method of removing by is mentioned. The impregnated supported catalyst obtained by drying may be further calcined.

(2)共沈殿法
共沈殿法は、銅の金属塩と、群Aから選ばれる少なくとも1種の元素の金属塩を含む混合水溶液から沈殿剤により沈殿物を形成させて水添用触媒を得る方法である。
(2) Coprecipitation method In the coprecipitation method, a hydrogenation catalyst is obtained by forming a precipitate with a precipitant from a mixed aqueous solution containing a metal salt of copper and a metal salt of at least one element selected from group A. Is the method.

具体的には、銅の金属塩と、群Aから選ばれる少なくとも1種の元素の金属塩を含む混合水溶液と、沈殿剤を混合することにより沈殿物を得て、引き続き、ろ過、水洗、乾燥、焼成、又はそれらの工程を組み合わせて水添用触媒を得る。   Specifically, a precipitate is obtained by mixing a copper metal salt, a mixed aqueous solution containing a metal salt of at least one element selected from Group A, and a precipitant, followed by filtration, washing with water, and drying. , Calcination, or a combination of these processes to obtain a hydrogenation catalyst.

ここで用いられる沈殿剤としては、上記(1)の方法と同様のものが挙げられる。   Examples of the precipitating agent used here are the same as those in the method (1).

(3)アルコキシド加水分解による共沈殿法
アルコキシド加水分解による共沈殿法は、銅と、群Aから選ばれる少なくとも1種の金属とのアルコキシドの溶液から沈殿物を形成させて水添用触媒を得る方法である。
(3) Coprecipitation method by alkoxide hydrolysis In the coprecipitation method by alkoxide hydrolysis, a hydrogenation catalyst is obtained by forming a precipitate from a solution of copper and at least one metal selected from Group A. Is the method.

具体的には、銅と、群Aから選ばれる少なくとも1種の金属とのアルコキシドの溶液を、水、あるいは酸又は塩基性水溶液を混合することで沈殿物を得て、引き続き、ろ過、水洗、乾燥、焼成、又はそれらの工程を組み合わせて水添用触媒を得る。   Specifically, a solution of an alkoxide of copper and at least one metal selected from group A is mixed with water or an acid or basic aqueous solution to obtain a precipitate, followed by filtration, washing with water, A hydrogenation catalyst is obtained by drying, calcination, or a combination of these steps.

上記(1)〜(3)の製造方法の中では、(1)の含浸担持法と(2)の共沈殿法が好ましく、(1)の含浸担持法が更に好ましい。   Among the production methods (1) to (3), the impregnation supporting method (1) and the coprecipitation method (2) are preferable, and the impregnation supporting method (1) is more preferable.

上記方法で使用される金属塩は水溶性のものであれば、全て使用可能である。例えば、銅、イットリウム、ランタン、セリウムの金属塩としては、硝酸塩、硫酸塩、アンモニウム錯塩、酢酸塩、シュウ酸塩、及び塩化物が、モリブデン及びバナジウムの金属塩としては、アンモニウム塩、塩化物が、ジルコニウムの金属塩としては、硝酸塩、オキシ硝酸塩、硫酸塩、酢酸塩、塩化物が、スカンジウムの金属塩としては、硝酸塩、酢酸塩、塩化物が、またガリウムの金属塩としては、硝酸塩、塩化物が用いられる。   Any metal salt can be used as long as it is water-soluble. For example, metal salts of copper, yttrium, lanthanum, and cerium include nitrates, sulfates, ammonium complexes, acetates, oxalates, and chlorides, and metal salts of molybdenum and vanadium include ammonium salts and chlorides. Zirconium metal salts include nitrates, oxynitrates, sulfates, acetates and chlorides, scandium metal salts include nitrates, acetates and chlorides, and gallium metal salts include nitrates and chlorides. Things are used.

乾燥及び焼成は、20℃〜700℃で行うことが好ましく、20℃〜400℃で行うのが更に好ましい。圧力は、特に限定されないが、製造時間の観点から、低い温度、たとえば90℃以下で乾燥する場合、減圧下で行うことが好ましい。   Drying and baking are preferably performed at 20 ° C to 700 ° C, more preferably 20 ° C to 400 ° C. The pressure is not particularly limited, but from the viewpoint of production time, when drying at a low temperature, for example, 90 ° C. or less, it is preferably performed under reduced pressure.

本発明の水添用触媒は担体に担持されていてもよい。担体としては、具体的には、チタニア、ジルコニア、珪藻土、シリカ、シリカアルミナ、アルミナ、ニオビア、活性炭等が挙げられる。   The hydrogenation catalyst of the present invention may be supported on a carrier. Specific examples of the carrier include titania, zirconia, diatomaceous earth, silica, silica alumina, alumina, niobia, activated carbon and the like.

含浸担持法の場合は、担体の存在下、銅の金属塩水溶液と、沈殿剤を混合することにより沈殿物を得て、引き続き、ろ過、水洗、乾燥、焼成、又はそれらの工程を組み合わせて得られる銅/担体の酸化物、水酸化物、炭酸塩又はそれらの混合物に、群Aから選ばれる少なくとも1種の元素の金属塩を含浸担持させて、担体に担持された水添用触媒が製造される。   In the case of the impregnation support method, a precipitate is obtained by mixing a copper metal salt aqueous solution and a precipitating agent in the presence of a carrier, followed by filtration, washing with water, drying, firing, or a combination of these steps. A copper / support oxide, hydroxide, carbonate or mixture thereof impregnated with a metal salt of at least one element selected from group A to produce a hydrogenation catalyst supported on the support Is done.

共沈殿法の場合は、担体の存在下、銅の金属塩と、群Aから選ばれる少なくとも1種の元素の金属塩を含む混合水溶液と、沈殿剤を混合することにより沈殿物を得て、引き続き、ろ過、水洗、乾燥、焼成、又はそれらの工程を組み合わせて、担体に担持された水添用触媒が製造される。   In the case of the coprecipitation method, in the presence of a carrier, a precipitate is obtained by mixing a copper metal salt, a mixed aqueous solution containing a metal salt of at least one element selected from Group A, and a precipitant, Subsequently, a hydrogenation catalyst supported on a carrier is produced by filtering, washing with water, drying, calcination, or a combination of these processes.

[水添用触媒の還元活性化法]
多不飽和脂肪酸の水素化に際し、触媒の還元活性化を行う場合は、不活性な液体中で行っても差し支えないが、水素化反応によりモノ不飽和脂肪酸を製造するための原料脂肪酸中で行っても何ら問題はなく、この場合、触媒の還元活性化と水素化を連続的に行うことができるので好ましい。
[Reduction activation method of hydrogenation catalyst]
When hydrogenating a polyunsaturated fatty acid, the reduction of the catalyst may be performed in an inert liquid, but it is performed in a raw fatty acid for producing a monounsaturated fatty acid by a hydrogenation reaction. However, there is no problem, and in this case, it is preferable because reduction activation and hydrogenation of the catalyst can be performed continuously.

水素化反応によりモノ不飽和脂肪酸を製造するための原料脂肪酸を、触媒の還元活性化用脂肪酸として使用する場合は、原料脂肪酸と触媒の混合物中にガスを流通させる方法が簡便であり好ましい。   When the raw fatty acid for producing the monounsaturated fatty acid by the hydrogenation reaction is used as the reduction activation fatty acid of the catalyst, a method of circulating a gas through the mixture of the raw fatty acid and the catalyst is simple and preferable.

ここで用いるガス(以下、流通ガスと呼ぶ)は、還元に用いる水素ガスを使用しても良く、あるいは水素ガスと不活性ガスの混合ガスを用いても良い。流通ガスの流量は、特に限定されないが、銅1モルに対し1時間あたり5モル(以下、5mol/mol/hと表す)以上を流通させることが好ましく、10mol/mol/h以上がより好ましく、20mol/mol/h以上がさらに好ましい。流量の上限は特に限定されないが、経済性、脂肪酸の揮発あるいは飛沫同伴を考慮し、600mol/mol/h以下が好ましく、300mol/mol/h以下がさらに好ましい。不活性ガスとしては、アルゴン、窒素等が好ましく、窒素ガスがより好ましい。水素ガスと不活性ガスの混合ガスを使用する場合、水素ガスと不活性ガスの比は、水素ガス/不活性ガスの比が0.01mol/mol以上であることが好ましく、0.1mol/mol以上がより好ましい。   As the gas used here (hereinafter referred to as circulation gas), hydrogen gas used for reduction may be used, or a mixed gas of hydrogen gas and inert gas may be used. The flow rate of the flow gas is not particularly limited, but it is preferable to flow 5 mol per hour (hereinafter referred to as 5 mol / mol / h) or more per 1 mol of copper, and more preferably 10 mol / mol / h or more. More preferably 20 mol / mol / h or more. The upper limit of the flow rate is not particularly limited, but is preferably 600 mol / mol / h or less, and more preferably 300 mol / mol / h or less in consideration of economy, volatilization of fatty acids or entrainment of droplets. As the inert gas, argon, nitrogen and the like are preferable, and nitrogen gas is more preferable. When a mixed gas of hydrogen gas and inert gas is used, the ratio of hydrogen gas to inert gas is preferably such that the hydrogen gas / inert gas ratio is 0.01 mol / mol or more, and 0.1 mol / mol The above is more preferable.

ガスの流通を開始する温度は、20〜190℃の範囲が好ましく、50〜180℃の範囲がより好ましい。ガス流通を開始してからは、温度を一定に保ちながら還元活性化を行うことができるが、昇温を継続させながら還元活性化を行うことも可能である。この場合、昇温速度は、100℃/h以下が好ましく、70℃/h以下がより好ましい。還元活性化を十分に行うために、ガス流通時の最高温度は、120℃以上が好ましく、150℃以上がより好ましい。一方、触媒の熱的劣化を抑制するため、300℃以下が好ましく、250℃以下がより好ましい。還元活性化時間は特に限定されないが、20分以上が好ましく、40分以上がさらに好ましい。上限は特に限定されないが、10時間以下が好ましい。還元活性化工程における圧力は特に限定されないが、常圧〜5MPa・Gが好ましく、さらに好ましくは常圧〜3MPa・Gである。   The temperature at which gas circulation starts is preferably in the range of 20 to 190 ° C, more preferably in the range of 50 to 180 ° C. After starting the gas flow, the reduction activation can be performed while keeping the temperature constant, but the reduction activation can also be performed while the temperature rise is continued. In this case, the heating rate is preferably 100 ° C./h or less, and more preferably 70 ° C./h or less. In order to sufficiently perform the reduction activation, the maximum temperature during the gas flow is preferably 120 ° C. or higher, and more preferably 150 ° C. or higher. On the other hand, in order to suppress thermal degradation of the catalyst, 300 ° C. or lower is preferable, and 250 ° C. or lower is more preferable. The reduction activation time is not particularly limited, but is preferably 20 minutes or more, and more preferably 40 minutes or more. Although an upper limit is not specifically limited, 10 hours or less are preferable. Although the pressure in a reduction activation process is not specifically limited, Normal pressure-5 Mpa * G are preferable, More preferably, they are normal pressure-3 Mpa * G.

[モノ不飽和脂肪酸の製造方法]
本発明のモノ不飽和脂肪酸の製造方法は、本発明に係わる水添用触媒を用いて、多不飽和脂肪酸を含有する原料脂肪酸を水素化して、モノ不飽和脂肪酸を製造する方法であり、特にリノール酸等の多不飽和脂肪酸を含有する原料脂肪酸を水素化して、高品質のオレイン酸を製造する場合に好適に用いられる。
[Method for producing monounsaturated fatty acid]
The method for producing a monounsaturated fatty acid according to the present invention is a method for producing a monounsaturated fatty acid by hydrogenating a raw fatty acid containing a polyunsaturated fatty acid using the hydrogenation catalyst according to the present invention. It is suitably used when high-quality oleic acid is produced by hydrogenating raw fatty acids containing polyunsaturated fatty acids such as linoleic acid.

オレイン酸の製造に用いられる原料脂肪酸は、原料油脂を脂肪酸とグリセリンに加水分解することにより得ることができる。原料油脂としては、牛脂、羊脂、豚脂、鶏脂、パーム油、パーム油を分別して得られるパームステアリンもしくはパームオレイン、ハイオレイックサフラワー油、ハイオレイックひまわり油、落花生油、大豆油、ヤシ油、綿実油、なたね油、パーム核油等の動植物油が挙げられるが、低融点のオレイン酸を得るためには、例えば、牛脂、羊油、鶏脂、ハイオレイックひまわり油、パーム核油等の動植物油が好ましい。   The raw fatty acid used for the production of oleic acid can be obtained by hydrolyzing the raw oil and fat into fatty acid and glycerin. Raw oils and fats include beef tallow, sheep fat, pork tallow, chicken tallow, palm oil, palm oil, palm stearin or palm olein, high oleic sunflower oil, high oleic sunflower oil, peanut oil, soybean oil, palm Animal and vegetable oils such as oil, cottonseed oil, rapeseed oil, and palm kernel oil can be used. Is preferred.

原料油脂の加水分解の方法としては、公知の方法で行うことが出来、具体的には高圧連続分解法、中圧法、酵素法等の一般的に工業化に利用されている方法で行うことができる。このようにして得られた脂肪酸は必要に応じ、公知の方法及び条件により蒸留してもよい。例えば、炭素数18の脂肪酸以外の脂肪酸を多量に含む油脂を加水分解した場合には、この段階で蒸留を行い、炭素数18の脂肪酸を主成分とする脂肪酸を得て、それを液体酸と固体酸に分別する工程に供することにより、より効率的に目的のオレイン酸製造用原料脂肪酸を製造することができる。   As a method for hydrolysis of raw material fats and oils, it can be carried out by a known method, and specifically, it can be carried out by a method generally used for industrialization such as a high-pressure continuous decomposition method, a medium-pressure method, an enzyme method or the like. . The fatty acid thus obtained may be distilled according to known methods and conditions, if necessary. For example, when fats and oils containing a large amount of fatty acids other than fatty acids having 18 carbon atoms are hydrolyzed, distillation is performed at this stage to obtain fatty acids mainly composed of fatty acids having 18 carbon atoms. By subjecting it to the step of fractionating into solid acid, the target raw material fatty acid for producing oleic acid can be more efficiently produced.

液体酸と固体酸に分別する方法としては、溶剤分別法、活性剤分別法等の一般的に工業的に利用されている方法で行うことができる。このようにして得られた液体酸は、必要に応じ、公知の方法及び条件により蒸留してもよい。   As a method of fractionating into a liquid acid and a solid acid, it can be carried out by a generally industrially utilized method such as a solvent fractionation method or an activator fractionation method. The liquid acid thus obtained may be distilled according to known methods and conditions, if necessary.

次にこのようにして得られた原料脂肪酸を、本発明に係わる水添用触媒を用いて、水素化する。触媒量が多すぎたり、温度また水素圧力が高すぎると飽和脂肪酸の生成が増加し、温度が低すぎると水素化活性が低下し、反応に長い時間を要するので好ましくない。かかる観点より、触媒の使用量は、原料脂肪酸に対し、0.1〜5重量%が好ましく、0.2〜4重量%がより好ましい。   Next, the raw fatty acid thus obtained is hydrogenated using the hydrogenation catalyst according to the present invention. If the amount of the catalyst is too large, or if the temperature or hydrogen pressure is too high, the production of saturated fatty acids increases, and if the temperature is too low, the hydrogenation activity decreases and a long time is required for the reaction. From this viewpoint, the amount of the catalyst used is preferably 0.1 to 5% by weight, more preferably 0.2 to 4% by weight, based on the raw fatty acid.

水素化反応温度は、120℃〜280℃が好ましく、150〜230℃がより好ましい。水素圧力は常圧〜3MPa・Gが好ましく、常圧〜1MPa・Gがより好ましい。水素化反応は、水素ガスの流通下または、水素ガス雰囲気密閉条件とも利用することが可能である。反応の終了は、残存する多不飽和脂肪酸量並びに飽和脂肪酸量から、適宜判断することができる。   The hydrogenation reaction temperature is preferably 120 ° C to 280 ° C, and more preferably 150 to 230 ° C. The hydrogen pressure is preferably from normal pressure to 3 MPa · G, more preferably from normal pressure to 1 MPa · G. The hydrogenation reaction can be used under the flow of hydrogen gas or under the hydrogen gas atmosphere sealing conditions. The completion of the reaction can be appropriately determined from the amount of polyunsaturated fatty acid remaining and the amount of saturated fatty acid.

以下の例において、%は特記しない限り重量%である。また、Cm:nは、炭素数mで二重結合数nの脂肪酸を意味する。脂肪酸組成はジアゾメタンにより、メチル化後、ガスクロマトグラフィー分析を行うことにより求めた。   In the following examples,% is% by weight unless otherwise specified. Cm: n means a fatty acid having m carbon atoms and n double bonds. The fatty acid composition was determined by gas chromatography analysis after methylation with diazomethane.

以下の例で原料脂肪酸として使用した液体酸1〜3は、牛脂を常法により高圧加水分解した牛脂脂肪酸を、常法により活性剤法で分別することにより得た。その脂肪酸組成は表1に示した通りであった。   Liquid acids 1 to 3 used as raw material fatty acids in the following examples were obtained by fractionating beef tallow fatty acids obtained by high-pressure hydrolysis of beef tallow by a conventional method using an activator method. The fatty acid composition was as shown in Table 1.

Figure 2007175563
Figure 2007175563

実施例1
9%の炭酸ナトリウム水溶液に、15%の硝酸銅水溶液を室温で滴下してスラリーを得た。滴下終了後のpHは7.0であった。このスラリーより沈殿物をろ別し、十分水洗した後、120℃で14時間乾燥し、粉体を得た。この粉体10.43gを水中に懸濁させ、そこへモリブデン酸アンモニウム0.55gの水溶液を加えて室温で攪拌後、エバポレーターにより、70℃にて水を留去した。得られた固体を120℃で14時間乾燥後、300℃で2時間焼成して、触媒(重量比は、銅/モリブデン=100/5.0)を得た。この触媒を0.57%(対液体酸)用いて、表1に示した組成の液体酸1中で、水素0.01MPa・G密閉条件下、室温から170℃まで昇温した。170℃到達後、水素流通を開始し、水素/銅=25mol/mol/hの水素流通下、常圧、30℃/hの昇温速度で1時間、触媒を還元活性化した。その後200℃、0.40MPa・G密閉条件下で、4時間水素化を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。
Example 1
A 15% copper nitrate aqueous solution was dropped into a 9% sodium carbonate aqueous solution at room temperature to obtain a slurry. The pH after completion of the dropwise addition was 7.0. The precipitate was filtered off from this slurry, sufficiently washed with water, and then dried at 120 ° C. for 14 hours to obtain a powder. 10.43 g of this powder was suspended in water, an aqueous solution of 0.55 g of ammonium molybdate was added thereto and stirred at room temperature, and then water was distilled off at 70 ° C. with an evaporator. The obtained solid was dried at 120 ° C. for 14 hours and then calcined at 300 ° C. for 2 hours to obtain a catalyst (weight ratio: copper / molybdenum = 100 / 5.0). Using 0.57% (vs. liquid acid) of this catalyst, the temperature was raised from room temperature to 170 ° C. in a liquid acid 1 having the composition shown in Table 1 under a hydrogen 0.01 MPa · G sealed condition. After reaching 170 ° C., hydrogen flow was started, and the catalyst was reduced and activated for 1 hour at a normal temperature and a heating rate of 30 ° C./h under hydrogen flow of hydrogen / copper = 25 mol / mol / h. Thereafter, hydrogenation was carried out for 4 hours under sealed conditions of 200 ° C. and 0.40 MPa · G. The composition of the fatty acid rich in oleic acid obtained is shown in Table 2.

実施例2
9%の炭酸ナトリウム水溶液に、15%の硝酸銅水溶液を室温で滴下してスラリーを得た。滴下終了後のpHは7.0であった。このスラリーより沈殿物をろ別し、十分水洗した後、120℃で14時間乾燥し、粉体を得た。この粉体10.43gを水中に懸濁させ、そこへオキシ硝酸ジルコニウム0.87gの水溶液を加えて室温で攪拌後、エバポレーターにより、70℃にて水を留去した。得られた固体を120℃で14時間乾燥後、500℃で2時間焼成して、触媒(重量比は、銅/ジルコニウム=100/5.0)を得た。この触媒を使用し、表1に示した組成の液体酸2を用いる以外は実施例1と同様の還元活性化処理の後、同様の条件下、水素化反応を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。
Example 2
A 15% copper nitrate aqueous solution was dropped into a 9% sodium carbonate aqueous solution at room temperature to obtain a slurry. The pH after completion of the dropwise addition was 7.0. The precipitate was filtered off from this slurry, sufficiently washed with water, and then dried at 120 ° C. for 14 hours to obtain a powder. 10.43 g of this powder was suspended in water, an aqueous solution of 0.87 g of zirconium oxynitrate was added thereto and stirred at room temperature, and then water was distilled off at 70 ° C. with an evaporator. The obtained solid was dried at 120 ° C. for 14 hours and then calcined at 500 ° C. for 2 hours to obtain a catalyst (weight ratio: copper / zirconium = 100 / 5.0). A hydrogenation reaction was performed under the same conditions after the reduction activation treatment as in Example 1 except that this catalyst was used and the liquid acid 2 having the composition shown in Table 1 was used. The composition of the fatty acid rich in oleic acid obtained is shown in Table 2.

実施例3
9%の炭酸ナトリウム水溶液に、硝酸銅42.82g、及びオキシ硝酸ジルコニウム1.65gの混合水溶液を室温で滴下してスラリーを得た。滴下終了後のpHは7.2であった。このスラリーより沈殿物をろ別し、十分水洗した後、120℃で14時間乾燥し、500℃で2時間焼成して、触媒(重量比は、銅/ジルコニウム=100/5.0)を得た。この触媒を使用し、表1に示した組成の液体酸2を用いる以外は実施例1と同様の還元活性化処理の後、同様の条件下、水素化反応を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。
Example 3
A mixed aqueous solution of 42.82 g of copper nitrate and 1.65 g of zirconium oxynitrate was dropped into a 9% aqueous sodium carbonate solution at room temperature to obtain a slurry. The pH after the completion of dropping was 7.2. The precipitate is filtered off from this slurry, sufficiently washed with water, dried at 120 ° C. for 14 hours, and calcined at 500 ° C. for 2 hours to obtain a catalyst (weight ratio: copper / zirconium = 100 / 5.0). It was. A hydrogenation reaction was performed under the same conditions after the reduction activation treatment as in Example 1 except that this catalyst was used and the liquid acid 2 having the composition shown in Table 1 was used. The composition of the fatty acid rich in oleic acid obtained is shown in Table 2.

実施例4
9%の炭酸ナトリウム水溶液に、15%の硝酸銅水溶液を室温で滴下してスラリーを得た。滴下終了後のpHは7.0であった。このスラリーより沈殿物をろ別し、十分水洗した後、120℃で14時間乾燥し、粉体を得た。この粉体10.43gを水中に懸濁させ、そこへ硝酸イットリウム1.27gの水溶液を加えて室温で攪拌後、エバポレーターにより、70℃にて水を留去した。得られた固体を120℃で14時間乾燥後、500℃で2時間焼成して、触媒(重量比は、銅/イットリウム=100/5.0)を得た。この触媒を使用し、表1に示した組成の液体酸2を用いる以外は実施例1と同様の還元活性化処理の後、同様の条件下、水素化反応を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。
Example 4
A 15% copper nitrate aqueous solution was dropped into a 9% sodium carbonate aqueous solution at room temperature to obtain a slurry. The pH after completion of the dropwise addition was 7.0. The precipitate was filtered off from this slurry, sufficiently washed with water, and then dried at 120 ° C. for 14 hours to obtain a powder. 10.43 g of this powder was suspended in water, an aqueous solution of 1.27 g of yttrium nitrate was added thereto and stirred at room temperature, and then water was distilled off at 70 ° C. with an evaporator. The obtained solid was dried at 120 ° C. for 14 hours and then calcined at 500 ° C. for 2 hours to obtain a catalyst (weight ratio: copper / yttrium = 100 / 5.0). A hydrogenation reaction was performed under the same conditions after the reduction activation treatment as in Example 1 except that this catalyst was used and the liquid acid 2 having the composition shown in Table 1 was used. The composition of the fatty acid rich in oleic acid obtained is shown in Table 2.

実施例5
9%の炭酸ナトリウム水溶液に、15%の硝酸銅水溶液を室温で滴下してスラリーを得た。滴下終了後のpHは7.0であった。このスラリーより沈殿物をろ別し、十分水洗した後、120℃で14時間乾燥し、粉体を得た。この粉体10.43gを水中に懸濁させ、そこへモリブデン酸アンモニウム0.11gの水溶液を加えて室温で攪拌後、エバポレーターにより、70℃にて水を留去した。得られた固体を120℃で14時間乾燥後、500℃で2時間焼成して、触媒(重量比は、銅/モリブデン=100/1.0)を得た。この触媒を使用し、表1に示した組成の液体酸2を用いる以外は実施例1と同様の還元活性化処理の後、同様の条件下、水素化反応を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。
Example 5
A 15% copper nitrate aqueous solution was dropped into a 9% sodium carbonate aqueous solution at room temperature to obtain a slurry. The pH after completion of the dropwise addition was 7.0. The precipitate was filtered from this slurry, washed thoroughly with water, and then dried at 120 ° C. for 14 hours to obtain a powder. 10.43 g of this powder was suspended in water, an aqueous solution of 0.11 g of ammonium molybdate was added thereto and stirred at room temperature, and then water was distilled off at 70 ° C. with an evaporator. The obtained solid was dried at 120 ° C. for 14 hours and then calcined at 500 ° C. for 2 hours to obtain a catalyst (weight ratio: copper / molybdenum = 100 / 1.0). A hydrogenation reaction was performed under the same conditions after the reduction activation treatment as in Example 1 except that this catalyst was used and the liquid acid 2 having the composition shown in Table 1 was used. Table 2 shows the composition of the fatty acid rich in oleic acid obtained.

実施例6
9%の炭酸ナトリウム水溶液に、15%の硝酸銅水溶液を室温で滴下してスラリーを得た。滴下終了後のpHは7.0であった。このスラリーより沈殿物をろ別し、十分水洗した後、120℃で14時間乾燥し、粉体を得た。この粉体10.43gを水中に懸濁させ、そこへモリブデン酸アンモニウム1.65gの水溶液を加えて室温で攪拌後、エバポレーターにより、70℃にて水を留去した。得られた固体を120℃で14時間乾燥後、300℃で2時間焼成して、触媒(重量比は、銅/モリブデン=100/15)を得た。この触媒を使用し、実施例1と同様の還元活性化処理の後、同様の条件下、水素化反応を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。
Example 6
A 15% copper nitrate aqueous solution was dropped into a 9% sodium carbonate aqueous solution at room temperature to obtain a slurry. The pH after completion of the dropwise addition was 7.0. The precipitate was filtered off from this slurry, sufficiently washed with water, and then dried at 120 ° C. for 14 hours to obtain a powder. 10.43 g of this powder was suspended in water, an aqueous solution of 1.65 g of ammonium molybdate was added thereto and stirred at room temperature, and then water was distilled off at 70 ° C. with an evaporator. The obtained solid was dried at 120 ° C. for 14 hours and then calcined at 300 ° C. for 2 hours to obtain a catalyst (weight ratio: copper / molybdenum = 100/15). Using this catalyst, a hydrogenation reaction was carried out under the same conditions after the reduction activation treatment as in Example 1. The composition of the fatty acid rich in oleic acid obtained is shown in Table 2.

実施例7
9%の炭酸ナトリウム水溶液に、15%の硝酸銅水溶液を室温で滴下してスラリーを得た。滴下終了後のpHは7.0であった。このスラリーより沈殿物をろ別し、十分水洗した後、120℃で14時間乾燥し、粉体を得た。この粉体10.43gを水中に懸濁させ、そこへモリブデン酸アンモニウム0.55gの水溶液を加えて室温で攪拌後、エバポレーターにより、70℃にて水を留去した。得られた固体を120℃で14時間乾燥して、触媒(重量比は、銅/モリブデン=100/5.0)を得た。この触媒0.79%(対液体酸)を使用し、実施例1と同様の還元活性化処理の後、同様の条件下、水素化反応を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。
Example 7
A 15% copper nitrate aqueous solution was dropped into a 9% sodium carbonate aqueous solution at room temperature to obtain a slurry. The pH after completion of the dropwise addition was 7.0. The precipitate was filtered off from this slurry, sufficiently washed with water, and then dried at 120 ° C. for 14 hours to obtain a powder. 10.43 g of this powder was suspended in water, an aqueous solution of 0.55 g of ammonium molybdate was added thereto and stirred at room temperature, and then water was distilled off at 70 ° C. with an evaporator. The obtained solid was dried at 120 ° C. for 14 hours to obtain a catalyst (weight ratio: copper / molybdenum = 100 / 5.0). Using this catalyst 0.79% (vs. liquid acid), the hydrogenation reaction was carried out under the same conditions after the reduction activation treatment as in Example 1. The composition of the fatty acid rich in oleic acid obtained is shown in Table 2.

比較例1
9%の炭酸ナトリウム水溶液に、15%の硝酸銅水溶液を室温で滴下してスラリーを得た。滴下終了後のpHは7.0であった。このスラリーより沈殿物をろ別し、十分水洗した後、120℃で14時間乾燥し、次いで500℃で2時間焼成して、触媒を得た。この触媒を使用し、実施例1と同様の還元活性化処理の後、同様の条件下、水素化反応を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。
Comparative Example 1
A 15% copper nitrate aqueous solution was dropped into a 9% sodium carbonate aqueous solution at room temperature to obtain a slurry. The pH after completion of the dropwise addition was 7.0. The precipitate was filtered off from this slurry, sufficiently washed with water, dried at 120 ° C. for 14 hours, and then calcined at 500 ° C. for 2 hours to obtain a catalyst. Using this catalyst, a hydrogenation reaction was carried out under the same conditions after the reduction activation treatment as in Example 1. The composition of the fatty acid rich in oleic acid obtained is shown in Table 2.

比較例2
パラジウム/シリカアルミナ触媒(エヌ・イー・ケムキャット(株)製、パラジウム含量5%)を0.40%(対液体酸)用いて、表1に示した組成の液体酸3中で、50℃、0.10MPa・G密閉条件下で、4時間水素化を行った。得られたオレイン酸に富む脂肪酸の組成を表2に示した。リノール酸の反応率は高いが、オレイン酸中のトランス体(エライジン酸)が非常に多いことがわかる。
Comparative Example 2
Using 0.40% (vs. liquid acid) of a palladium / silica alumina catalyst (produced by N.E. Chemcat Co., Ltd., palladium content 5%) in liquid acid 3 having the composition shown in Table 1, Hydrogenation was performed for 4 hours under 0.10 MPa · G hermetic conditions. The composition of the fatty acid rich in oleic acid obtained is shown in Table 2. Although the reaction rate of linoleic acid is high, it can be seen that there are very many trans isomers (elaidic acid) in oleic acid.

Figure 2007175563
Figure 2007175563

注)
*1:対原料脂肪酸%
*2:全脂肪酸中の、C18:1トランス体(エライジン酸)の重量%を表す。
*3:C18:2の反応率[%]=(原料脂肪酸中のC18:2の割合[%]−反応4時間後のC18:2の割合[%])/原料脂肪酸中のC18:2の割合[%]ラ100
note)
* 1: Raw fatty acid%
* 2: Represents the weight percentage of C18: 1 trans form (elaidic acid) in all fatty acids.
* 3: C18: 2 reaction rate [%] = (C18: 2 ratio in raw fatty acid [%] − C18: 2 ratio after 4 hours of reaction [%]) / C18: 2 in raw fatty acid Ratio [%] La 100

Claims (5)

銅と、下記群Aから選ばれる少なくとも1種の元素とを含有する、多不飽和脂肪酸のモノ不飽和脂肪酸への水添用触媒。
群A:モリブデン、ジルコニウム、バナジウム、ガリウム、及び周期律表3族の元素
A catalyst for hydrogenation of a polyunsaturated fatty acid to a monounsaturated fatty acid, containing copper and at least one element selected from group A below.
Group A: Molybdenum, zirconium, vanadium, gallium, and elements of Group 3 of the periodic table
銅と群Aの元素との重量比(銅/群Aの元素)が、100/0.1〜100/80の範囲である、請求項1記載の水添用触媒。   2. The hydrogenation catalyst according to claim 1, wherein a weight ratio of copper to a group A element (copper / group A element) is in a range of 100 / 0.1 to 100/80. 銅の酸化物、水酸化物、炭酸塩又はそれらの混合物に、群Aから選ばれる少なくとも1種の元素の金属塩を含浸担持させて得られる、請求項1又は2記載の水添用触媒。   The hydrogenation catalyst according to claim 1 or 2, obtained by impregnating and supporting a metal salt of at least one element selected from Group A on a copper oxide, hydroxide, carbonate or a mixture thereof. 請求項1〜3いずれかに記載の水添用触媒を用いて、多不飽和脂肪酸を含有する原料脂肪酸を水素化する、モノ不飽和脂肪酸の製造方法。   A method for producing a monounsaturated fatty acid, wherein a raw fatty acid containing a polyunsaturated fatty acid is hydrogenated using the hydrogenation catalyst according to claim 1. 多不飽和脂肪酸を含有する原料脂肪酸中で触媒の還元活性化処理を行った後、原料脂肪酸の水素化を行う、請求項4記載のモノ不飽和脂肪酸の製造方法。
The manufacturing method of the monounsaturated fatty acid of Claim 4 which hydrogenates a raw material fatty acid after performing the reduction | restoration activation process of a catalyst in the raw material fatty acid containing a polyunsaturated fatty acid.
JP2005373981A 2005-12-27 2005-12-27 Process for producing monounsaturated fatty acids Active JP4668060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373981A JP4668060B2 (en) 2005-12-27 2005-12-27 Process for producing monounsaturated fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373981A JP4668060B2 (en) 2005-12-27 2005-12-27 Process for producing monounsaturated fatty acids

Publications (2)

Publication Number Publication Date
JP2007175563A true JP2007175563A (en) 2007-07-12
JP4668060B2 JP4668060B2 (en) 2011-04-13

Family

ID=38301280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373981A Active JP4668060B2 (en) 2005-12-27 2005-12-27 Process for producing monounsaturated fatty acids

Country Status (1)

Country Link
JP (1) JP4668060B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061959A1 (en) * 2008-11-28 2010-06-03 花王株式会社 Process for production of fats and oils

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943140B2 (en) * 2006-12-28 2012-05-30 花王株式会社 Process for producing monounsaturated fatty acids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177140A (en) * 1991-05-22 1993-07-20 Kao Corp Preparation of precursor of catalyst for hydrogenation and preparation of alcohol using the precursor
JPH07163880A (en) * 1993-12-13 1995-06-27 Kao Corp Preparation of copper-containing hydrogenation catalyst and production of alcohol
JPH0899036A (en) * 1994-09-30 1996-04-16 Kao Corp Catalyst for selective hydrogenation and preparation of high purity oleic acid using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177140A (en) * 1991-05-22 1993-07-20 Kao Corp Preparation of precursor of catalyst for hydrogenation and preparation of alcohol using the precursor
JPH07163880A (en) * 1993-12-13 1995-06-27 Kao Corp Preparation of copper-containing hydrogenation catalyst and production of alcohol
JPH0899036A (en) * 1994-09-30 1996-04-16 Kao Corp Catalyst for selective hydrogenation and preparation of high purity oleic acid using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061959A1 (en) * 2008-11-28 2010-06-03 花王株式会社 Process for production of fats and oils
JP2010126676A (en) * 2008-11-28 2010-06-10 Kao Corp Method for producing oil-and-fat

Also Published As

Publication number Publication date
JP4668060B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
US4338221A (en) Catalyst for the reduction of unsaturated organic acids
KR101813736B1 (en) Hydrogenation of fatty acids using a promoted supported nickel catalyst
JP2003267920A (en) Method of producing ester
JP2010006842A (en) Hydrogenation method
EP0429995B1 (en) Process for hydrogenation of oils
US6376414B1 (en) Method for producing catalysts containing ruthenium and the use thereof for hydrogenation
US9650327B2 (en) Process for the selective hydrogenation of vegetable oils
FI64392B (en) FOERFARANDE FOER SELEKTIV HYDRERING AV OMAETTADE FETTSYRADERIVAT
JP4668060B2 (en) Process for producing monounsaturated fatty acids
JPH0899036A (en) Catalyst for selective hydrogenation and preparation of high purity oleic acid using the same
JP4963011B2 (en) Method for producing fatty acid lower alkyl ester
EP3237369B1 (en) Improved process for the selective hydrogenation of vegetable oils
JP4943140B2 (en) Process for producing monounsaturated fatty acids
KR101777893B1 (en) Process for the hydrogenation of fatty acids using a promoted supported nickel catalyst
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP4531461B2 (en) Process for producing monounsaturated fatty acids
CA2329040A1 (en) Method for producing hexanediol
JP6063722B2 (en) Method for producing alcohol and glycerin
KR102363796B1 (en) Downstream processing of fatty alcohol compositions produced by recombinant host cells
EP0733093A1 (en) A process for the interesterification of triglycerides
JP5113029B2 (en) Method for producing basic copper carbonate
EP1185496B1 (en) Method of making hydrogenated acids
JP2006063252A (en) Manufacturing process of oil highly containing diglyceride
EP3472284A1 (en) Process for the selective hydrogenation of vegetable oils using egg-shell type catalysts.
JP4799727B2 (en) Production of oleic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4668060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250