JP2007173040A - Superconductive wire and manufacturing method for it - Google Patents
Superconductive wire and manufacturing method for it Download PDFInfo
- Publication number
- JP2007173040A JP2007173040A JP2005369252A JP2005369252A JP2007173040A JP 2007173040 A JP2007173040 A JP 2007173040A JP 2005369252 A JP2005369252 A JP 2005369252A JP 2005369252 A JP2005369252 A JP 2005369252A JP 2007173040 A JP2007173040 A JP 2007173040A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting wire
- wire
- superconducting
- base metal
- nbti
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
この発明は、超電導線およびその製造方法、特に、NbTi系あるいはNb3Sn系等の金属系超電導線における伸線加工技術に関するものである。 The present invention relates to a superconducting wire and a method for manufacturing the same, and particularly to a wire drawing technique for a metal superconducting wire such as NbTi or Nb 3 Sn.
この種の金属系超電導線の1つとして知られるNbTi合金系超電導線は、通常、NbTiロッドを無酸素銅パイプ中に挿入して伸線加工を施し、これを単芯線として所望本数の単芯線を無酸素銅からなる安定化材のパイプに挿入して更に伸線加工を施し、所望の線径に仕上げることで製造されている(例えば、特許文献1参照)。 An NbTi alloy superconducting wire known as one of this type of metal superconducting wire is usually formed by inserting an NbTi rod into an oxygen-free copper pipe and drawing it, and using this as a single core wire. Is inserted into a stabilizer pipe made of oxygen-free copper, and further subjected to wire drawing, and finished to a desired wire diameter (see, for example, Patent Document 1).
次に、他の金属系超電導線として、Nb3Sn系,Nb3Ge系,V3Ga系,Nb3Al系などのA15型化合物系超電導線が知られている。
これらの中で代表的なものとして知られるNb3Sn系超電導線は、通常、内部錫拡散法,外部錫拡散法,ブロンズ法,チューブ法,インサイチュー法などの方法により製造されている。
このうち、内部錫拡散法は、Nbロッドを無酸素銅パイプ中に挿入して伸線加工を施し、これを単芯線として所望本数の単芯線を得た後、無酸素銅管の内部に錫ロッドが挿入された部材の周りに所望本数の単芯線を配置し無酸素銅パイプ中に複合し、更に伸線加工を必要回数繰り返し、これを複合線として所望本数の複合線を無酸素銅からなる安定化材のパイプに挿入して更に伸線加工を施し、最後に熱処理により銅への錫の拡散(ブロンズ化)、および、Nbと錫の反応を行なって多数のNb3Sn超電導フィラメントをブロンズマトリックス中に生成させる方法である。
他のNb3Sn系超電導線の製造方法も、銅またはブロンズマトリックス中にNbフィラメントを埋設し、最終的にNbと錫の反応を行なって、多数のNb3Sn超電導フィラメントをブロンズマトリックス中に生成させている。
Next, as other metal-based superconducting wires, Nb 3 Sn-based, Nb 3 Ge-based, V 3 Ga-based, Nb 3 Al-based A15 type compound-based superconducting wires are known.
Among these, Nb 3 Sn superconducting wires known as typical ones are usually manufactured by methods such as an internal tin diffusion method, an external tin diffusion method, a bronze method, a tube method, and an in situ method.
Among these, in the internal tin diffusion method, an Nb rod is inserted into an oxygen-free copper pipe, wire drawing is performed, and this is used as a single core wire to obtain a desired number of single core wires. Arrange the desired number of single core wires around the member into which the rod is inserted and combine them in an oxygen-free copper pipe, repeat the wire drawing process as many times as necessary, and use this as a composite wire to convert the desired number of composite wires from oxygen-free copper Inserted into the stabilizer pipe to be further drawn, and finally, the diffusion of tin into copper (bronze) by heat treatment, and the reaction of Nb and tin, many Nb 3 Sn superconducting filaments It is a method of forming in a bronze matrix.
Other Nb 3 Sn-based superconducting wire manufacturing methods also embed Nb filaments in a copper or bronze matrix and finally react with Nb and tin to produce a large number of Nb 3 Sn superconducting filaments in the bronze matrix. I am letting.
従って、これらの各方法で得られるいずれの系の超電導線にあっても、その内部構造は、外周部に安定化材を備え、その内部の銅やブロンズなどからなるマトリックスの内部に、NbTiや熱処理によりNb3Snなどの超電導体となるNbロッドなどが多数埋設された構造になっており、伸線加工により所望の線径に仕上げることを特徴としている。 Therefore, in any of the superconducting wires obtained by each of these methods, the internal structure is provided with a stabilizer on the outer periphery, and inside the matrix made of copper, bronze, etc., NbTi or It has a structure in which a large number of Nb rods or the like that become superconductors such as Nb 3 Sn are embedded by heat treatment, and is finished to a desired wire diameter by wire drawing.
伸線加工は、スエージングマシンと呼ばれる装置で超電導線の先端部分を叩くことで細くし(以下、口打ち作業と呼ぶ)、次にその超電導線をダイスと呼ばれる入口よりも出口の直径が小さい孔を有する金属治具に通し、ダイスから出た超電導線をチャックで掴み、引き抜くことで行われる。一般的な断面減少率は10〜30%程度であり、所望の線径になるまで、通常、この工程は数10回繰り返されるため、口打ち作業やダイス交換作業に多くの時間が割かれるという問題点があった。
また、ダイス交換作業の時間を短縮するため、複数ダイスによる連続伸線加工も行われているが、この場合、超電導線の先端を連続的に複数のダイスに通す作業が必要となり、連続的な口打ち作業によりその部分が無駄になったり、その作業時間が長くなったりするという問題が新たに生じた。
The wire drawing is thinned by hitting the tip of the superconducting wire with a device called a swaging machine (hereinafter referred to as piercing operation), and then the diameter of the outlet of the superconducting wire is smaller than the inlet called the die. This is done by passing through a metal jig having a hole, holding the superconducting wire from the die with a chuck, and pulling it out. The general cross-section reduction rate is about 10 to 30%, and this process is usually repeated several tens of times until the desired wire diameter is reached, so that it takes a lot of time for mouth-to-mouth work and die change work. There was a problem.
In order to shorten the time for die change work, continuous wire drawing with multiple dies is also performed. In this case, it is necessary to continuously pass the tips of superconducting wires through multiple dies. There is a new problem that the part is wasted due to the mouth-to-mouth work and the work time becomes longer.
そこで、ダミー銅線と超電導線を溶接することで無駄になる部分を無くしたり、複数本の超電導線同士を溶接することで連続的に伸線加工したりすることも試みられたが、溶接の際、内部のNbTiやNb成分が溶け出し、ダイスを傷つけ、伸線加工ができなくなるという問題点があった。 Therefore, it was attempted to eliminate the wasted part by welding the dummy copper wire and the superconducting wire, or to continuously draw a wire by welding a plurality of superconducting wires. At this time, the internal NbTi and Nb components are melted and the die is damaged, and there is a problem that the wire drawing cannot be performed.
この発明は、上記のような課題を解決するためになされたものであり、複数本の超電導線構成体の結合状態を改善して超電導線成分による悪影響を受けることなく比較的簡潔な作業で製造できる超電導線および超電導線の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and is manufactured by a relatively simple operation without improving the coupling state of a plurality of superconducting wire components and being adversely affected by superconducting wire components. It is an object to provide a superconducting wire that can be produced and a method of manufacturing the superconducting wire.
この発明に係る超電導線では、超電導素線を基体金属の内部に配設した複数本の超電導線構成体を互いに接合して構成する超電導線において、前記超電導線構成体の端部を基体金属のみで構成し、前記超電導線構成体の端部を互いに接合して前記複数本の超電導線構成体を連続的に結合するものである。 In the superconducting wire according to the present invention, in the superconducting wire formed by joining a plurality of superconducting wire constructs in which the superconducting wires are disposed inside the base metal, the end portion of the superconducting wire construct is only the base metal. And the end portions of the superconducting wire constructs are joined to each other to continuously join the plurality of superconducting wire constructs.
この発明に係る超電導線の製造方法では、超電導素線を基体金属の内部に配設した複数本の超電導線構成体を互いに接合して超電導線を製造する方法において、前記超電導線構成体の端部を基体金属のみで構成し、前記超電導線構成体の端部を互いに接合することにより、前記複数本の超電導線構成体を連続的に結合して、この結合された複数本の超電導線構成体を伸線加工するものである。 In the method of manufacturing a superconducting wire according to the present invention, in the method of manufacturing a superconducting wire by joining a plurality of superconducting wire constructs each having a superconducting wire disposed inside a base metal, the end of the superconducting wire construct is provided. The plurality of superconducting wire constituents are continuously connected by connecting the ends of the superconducting wire constituents to each other, and the combined superconducting wire configuration. The body is drawn.
この発明によれば、複数本の超電導線構成体の結合状態を改善して超電導線成分による悪影響を受けることなく比較的簡潔な作業で製造できる超電導線および超電導線の製造方法を提供することができる。 According to the present invention, it is possible to provide a superconducting wire and a method of manufacturing a superconducting wire that can be manufactured in a relatively simple operation without being adversely affected by a superconducting wire component by improving the coupling state of a plurality of superconducting wire structures. it can.
実施の形態1.
この発明による実施の形態1を図1から図3までに基づいて説明する。図1は実施の形態1におけるNbTi超電導線を製造するための複合体の構成を示す縦断面図である。図2は図1のII−II線における横断面図である。図3は図1のIII−III線における横断面図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing the structure of a composite for producing the NbTi superconducting wire in the first embodiment. 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG.
この発明による実施の形態1におけるNbTi超電導線を製造するための複合体1の構成を示す図1において、複数本のNbTi単芯線2の両端にそれぞれNbTi単芯線2と同本数の銅基金属棒3が接合部4で溶接されており、それらが無酸素銅管5中に複合されている。
In FIG. 1 which shows the structure of the composite 1 for manufacturing the NbTi superconducting wire according to the first embodiment of the present invention, the same number of copper-based metal rods as the NbTi
また、前記複合体1の端部以外の横断面構成を示す図2において、複数本のNbTi単芯線2が無酸素銅管5中に複合されている。
In FIG. 2 showing a cross-sectional configuration other than the end of the composite 1, a plurality of NbTi
また、前記複合体1の端部の横断面構成を示す図3において、複数本の銅基金属棒3が無酸素銅管5中に複合されている。図2および図3において、図1と同一の符号を付したものは、同一またはこれに相当するものである。
Further, in FIG. 3 showing the cross-sectional configuration of the end portion of the composite 1, a plurality of copper-based
無酸素銅の中心にNbTiロッドが埋設された形状を有する直径3mm、長さ960mmのNbTi単芯線2を61本と、NbTi単芯線2と同じ直径を有する長さ20mmの銅基金属棒3を122本用意する。
次に、NbTi単芯線2の両端に銅基金属棒3を接合部4を形成するようにバット溶接機により溶接し、長さ約1000mmの連続棒とした。溶接の際に生じた溶接塊はヤスリによる手作業で除去した。この作業をすべてのNbTi単芯線2と銅基金属棒3について施し、61本の連続棒を製作した。
これらを丁寧に束ねた後、外径40mm、内径30mm、長さ1000mmの無酸素銅管5中に挿入することで、図1〜図3に示す断面形状を有するNbTi超電導線を製造するための複合体1を得た。同様な方法で、合計5個の複合体1を製作した。
次に、複合体1のそれぞれを直径6mmになるまで断面減少率20%(17パス)で伸線加工し、長さ約44mの中間線5本を得た。これら5本の中間線は、スエージングマシンによる口打ち作業、ダイスによる伸線作業において、接合部4で断線を生じることなく、加工性は非常に良好であった。なお、これら5本の中間線のうち、両端部それぞれ約80cmが銅基金属のみの部分であった。
61 NbTi
Next, a copper-based
These are carefully bundled and then inserted into an oxygen-free copper tube 5 having an outer diameter of 40 mm, an inner diameter of 30 mm, and a length of 1000 mm to produce an NbTi superconducting wire having the cross-sectional shape shown in FIGS. Composite 1 was obtained. A total of 5 composites 1 were produced in the same manner.
Next, each of the composites 1 was drawn at a cross-section reduction rate of 20% (17 passes) until the diameter became 6 mm, and five intermediate wires having a length of about 44 m were obtained. These five intermediate wires were very good in workability without causing breakage at the joint 4 in the staking operation using a swaging machine and the wire drawing operation using a die. Of these five intermediate lines, about 80 cm of each of both end portions was a copper-based metal only portion.
この中間線を6mm〜2.75mm(断面減少率20%:7パス)の伸線加工が連続して行える7パス連続伸線機により、次の通り加工した。
まず、直径6mm,長さ20mのダミー銅線をスエージングマシンで口打ちを行い、各ダイスに順番に通した後、その後端部に中間線のうちの1本を溶接により接続した。両者は銅基金属同士の溶接となるため、超電導線内部のNbTi成分が溶け出すことなく、接続状態は非常に良好であった。溶接の際に生じた溶接塊をヤスリにより除去し、表面を滑らかにした後、連続伸線機を動作させ、伸線作業を開始した。接合部の断線を生じることなく、伸線加工が進行し、1本目の中間線の加工が終わる直前(約305m)で、いったん装置を停止し、後端部に2本目の中間線を溶接した。この場合も、両者は銅基金属同士の溶接となるため、超電導線内部のNbTi成分が溶け出すことなく、接続状態は非常に良好であった。溶接の際に生じた溶接塊をヤスリによる手作業で除去し、表面を滑らかにした後、連続伸線機を動作させ、伸線作業を継続した。これらの作業を繰り返し、5本の中間線を連続で加工した。5本の中間線の加工性は良好であり、直径2.75mm,総長約1150mの連続中間線が得られた。この連続中間線のうち、先端部約100m,接続部約8m、後端部約4mが銅基金属のみの部分であった。
This intermediate wire was processed as follows using a 7-pass continuous wire drawing machine capable of continuously drawing wire of 6 mm to 2.75 mm (cross-sectional reduction rate 20%: 7 passes).
First, a dummy copper wire having a diameter of 6 mm and a length of 20 m was pierced by a swaging machine, passed through each die in turn, and one of the intermediate wires was connected to the rear end portion thereof by welding. Since both were welded between copper-based metals, the NbTi component inside the superconducting wire did not melt, and the connection state was very good. The weld ingot generated during welding was removed with a file and the surface was smoothed, then the continuous wire drawing machine was operated to start the wire drawing work. The wire drawing process proceeds without causing breakage of the joint, and immediately before the first intermediate line is finished (about 305 m), the apparatus is once stopped and the second intermediate line is welded to the rear end. . Also in this case, since both were welded between the copper base metals, the connection state was very good without melting the NbTi component inside the superconducting wire. The weld ingot generated during welding was removed manually with a file and the surface was smoothed, and then the continuous wire drawing machine was operated to continue the wire drawing operation. These operations were repeated, and five intermediate lines were processed continuously. The workability of the five intermediate lines was good, and a continuous intermediate line having a diameter of 2.75 mm and a total length of about 1150 m was obtained. Of this continuous intermediate line, the tip portion was about 100 m, the connection portion was about 8 m, and the rear end portion was about 4 m, which was only a copper base metal.
次に、この連続中間線を2.75mm〜1.26mm(断面減少率20%:7パス)の伸線加工が連続して行える7パス連続伸線機により加工した。この際、上記同様、まず、直径2.75mm、長さ20mのダミー銅線をスエージングマシンで口打ちを行い、各ダイスに順番に通した後、その後端部に連続中間線を溶接により接続した。両者は銅基金属同士の溶接となるため、超電導線内部のNbTi成分が溶け出すことなく、接続状態は非常に良好であった。溶接の際に生じた溶接塊をヤスリによる手作業で除去し、表面を滑らかにした後、連続伸線機を動作させ、伸線作業を開始した。接合部の断線を生じることなく、伸線加工が進行し、直径1.26mm、長さ約5590mの連続中間線が得られた。この連続中間線のうち、先端部約115m,接続部約40m,後端部約470mが銅基金属のみの部分であった。 Next, this continuous intermediate wire was processed by a 7-pass continuous wire drawing machine capable of continuously drawing 2.75 mm to 1.26 mm (cross-sectional reduction rate 20%: 7 passes). At this time, similarly to the above, first, a dummy copper wire having a diameter of 2.75 mm and a length of 20 m was struck with a swaging machine, passed through each die in turn, and then a continuous intermediate wire was connected to the rear end portion by welding. did. Since both were welded between copper-based metals, the NbTi component inside the superconducting wire did not melt, and the connection state was very good. The weld ingot generated during welding was removed manually with a file, the surface was smoothed, and then the continuous wire drawing machine was operated to start the wire drawing work. The wire drawing process proceeded without causing breakage of the joint, and a continuous intermediate line having a diameter of 1.26 mm and a length of about 5590 m was obtained. Of the continuous intermediate line, the front end portion of about 115 m, the connection portion of about 40 m, and the rear end portion of about 470 m were only copper base metal.
連続中間線の後端部の銅基金属のみの部分470mのうち不要となる370mを切り落とした後、最後に、この連続中間線にツイスト伸線加工、仕上げ伸線加工を施し、直径1.01mm、長さ約8170mの最終線を得た。接合部の断線を生じることなく、加工性は非常に良好であった。この最終線のうち、先端部約180m,接続部約60m,後端部約160mが銅基金属のみの部分であり、これらを除去することで、最終的に1570mのNbTi超電導線を5本得ることができた。 After cutting off the unnecessary 370 m of the copper base metal-only portion 470 m at the rear end of the continuous intermediate line, the continuous intermediate line is finally subjected to twist drawing and finish drawing, and the diameter is 1.01 mm. A final line about 8170 m long was obtained. The workability was very good without causing disconnection of the joint. Of these final wires, the tip portion is about 180 m, the connection portion is about 60 m, and the rear end portion is about 160 m, which are only copper-based metal parts. By removing these, five NbTi superconducting wires of 1570 m are finally obtained. I was able to.
この発明による実施の形態1では、NbTi超電導線を製造するための複合体1として、複数本のNbTi単芯線2それぞれの両端に銅基金属棒3を接合部4で溶接し、それらを無酸素銅管5中に挿入したものを用いた。
これにより、複合体1の両端部は銅基金属のみで構成されることになり、その後の伸線加工時において、ダミー銅線と前記複合体1との接続、複数本の前記複合体1同士の接合は銅基金属間同士での溶接となるので、超電導線内部のNbTi成分が溶け出すことなく、接合状態は非常に良好となった。また、溶接の際に生じた溶接塊はヤスリにより簡単に除去でき、表面が滑らかな状態で、ダイスを通過することになるので、ダイスを傷つけることなく、伸線加工が行えた。これらの理由により、接合した複数本の前記複合体1は所望線径まで無断線で伸線加工が行えることになり、複数本のNbTi超電導線を連続的に得ることができた。
In Embodiment 1 according to the present invention, as a composite 1 for producing an NbTi superconducting wire, a copper-based
Thereby, the both ends of the composite 1 will be comprised only with a copper base metal, and the connection of a dummy copper wire and the said composite 1 at the time of a subsequent wire drawing process, the said multiple composites 1 each other Since the joining is performed between the copper base metals, the NbTi component inside the superconducting wire is not melted, and the joining state is very good. Further, the weld ingot generated during welding can be easily removed with a file, and the surface passes through the die with a smooth surface, so that the wire drawing can be performed without damaging the die. For these reasons, the plurality of joined composites 1 can be drawn without breaking to the desired wire diameter, and a plurality of NbTi superconducting wires can be continuously obtained.
(1A)この発明による実施の形態1によれば、NbTi単芯線2からなる超電導素線を銅基金属からなる基体金属の内部に配設した複数本の複合体1を伸線加工した中間線からなる超電導線構成体を互いに接合して構成する超電導線において、前記複合体1を伸線加工した中間線からなる超電導線構成体の端部を銅基金属からなる基体金属のみで構成し、前記複合体1からなる超電導線構成体の端部と前記NbTi単芯線2からなる超電導素線とを接合して超電導線構成体を構成し、複数本の前記超電導線構成体の端部を互いに接合して複数本の前記超電導線構成体を連続的に結合するようにしたので、複数本の超電導線構成体の相互結合状態を改善して超電導線成分による悪影響を受けることなく比較的簡潔な作業で製造できる超電導線を提供することができる。
(1A) According to Embodiment 1 of the present invention, an intermediate wire obtained by drawing a plurality of composites 1 in which a superconducting element wire made of a NbTi
(1B)この発明による実施の形態1によれば、NbTi単芯線2からなる超電導素線を銅基金属からなる基体金属の内部に配設した複数本の複合体1を伸線加工した中間線からなる超電導線構成体を互いに接合して超電導線を製造する方法において、前記複合体1からなる超電導線構成体の端部を銅基金属からなる基体金属のみで構成し、前記複合体1からなる超電導線構成体の端部と前記NbTi単芯線2からなる超電導素線とを接合部4で溶接して超電導線構成体を構成し、複数本の前記超電導線構成体の端部を溶接により互いに接合し複数本の前記超電導線構成体を連続的に結合して、この結合された複数本の超電導線構成体を伸線加工するようにしたので、超電導線構成体の端部と超電導素線とを溶接した複数本の超電導線構成体により超電導線成分による悪影響を受けることなく比較的簡潔な作業で製造できる超電導線の製造方法を提供することができる。
(1B) According to the first embodiment of the present invention, an intermediate wire obtained by drawing a plurality of composites 1 in which a superconducting element wire made of a NbTi
実施の形態2.
この発明による実施の形態2を説明する。
この実施の形態2において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1における構成と同一の構成内容を具備し、同様の作用を奏するものである。
A second embodiment according to the present invention will be described.
In the second embodiment, the configuration other than the specific configuration described here has the same configuration contents as the configuration in the first embodiment described above, and exhibits the same operation.
上記実施の形態1と同様な方法によりNbTi超電導線を製造した。ただし、実施の形態2では、それぞれのNbTi単芯線2と銅基金属棒3とを接合部4を形成するように冷間圧接により接合した点のみ異なる。実施の形態2でも、最終的に1570mのNbTi超電導線を5本得ることができた。
An NbTi superconducting wire was manufactured by the same method as in the first embodiment. However, the second embodiment is different only in that each NbTi single-
この発明による実施の形態2によれば、NbTi超電導線を製造するための複合体1として、複数本のNbTi単芯線2それぞれの両端に銅基金属棒3を接合部4で冷間圧接し、それらを無酸素銅管5中に挿入したものを用いた。
これにより、実施の形態1同様、複合体1の両端部は銅基金属のみで構成されることになり、その後の伸線加工時において、ダミー銅線と前記複合体1との接続、複数本の前記複合体1同士の接合は銅基金属間同士での溶接となるので、超電導線内部のNbTi成分が溶け出すことなく、相互結合状態は非常に良好となった。また、溶接の際に生じた溶接塊はヤスリにより簡単に除去でき、表面が滑らかな状態で、ダイスを通過することになるので、ダイスを傷つけることなく、伸線加工が行えた。これらの理由により、接合した複数本の前記複合体1は所望線径まで無断線で伸線加工が行えることになり、複数本のNbTi超電導線を連続的に得ることができた。
また、上記実施の形態2では、NbTi超電導線を製造するための複合体1として、複数本のNbTi単芯線2それぞれの両端に銅基金属棒3を接合部4で冷間圧接することにより連続棒を製造したので、実施の形態1で必要であったNbTi単芯線2と銅基金属棒3とをそれぞれ両端で接合するためのバット溶接工程が不要となり、作業時間を短縮することが可能となった。
According to the second embodiment of the present invention, as a composite 1 for manufacturing an NbTi superconducting wire, a copper-based
As a result, as in the first embodiment, both ends of the composite 1 are composed of only a copper-based metal. During the subsequent wire drawing process, the connection between the dummy copper wire and the composite 1, a plurality Since the composites 1 were welded between the copper base metals, the NbTi component inside the superconducting wire did not melt and the mutual bonding state was very good. Further, the weld ingot generated during welding can be easily removed with a file, and the surface passes through the die with a smooth surface, so that the wire drawing can be performed without damaging the die. For these reasons, the plurality of joined composites 1 can be drawn without breaking to the desired wire diameter, and a plurality of NbTi superconducting wires can be continuously obtained.
Moreover, in the said
(2A)この発明による実施の形態2によれば、NbTi単芯線2(図1参照)からなる超電導素線を銅基金属の内部に配設した複数本の複合体1(図1参照)を伸線加工した中間線からなる超電導線構成体を互いに接合して超電導線を製造する方法において、前記複合体1からなる超電導線構成体の端部を銅基金属のみで構成し、前記複合体1からなる超電導線構成体の端部と前記NbTi単芯線2からなる超電導素線とを接合部4(図1参照)で冷間圧延によって互いに接合して超電導線構成体を構成し、複数本の前記超電導線構成体の端部を溶接により互いに接合することにより複数本の前記超電導線構成体を連続的に結合して、この結合された複数本の超電導線構成体を伸線加工するようにしたので、超電導線構成体の端部と超電導素線とを冷間圧延により接合した複数本の超電導線構成体により超電導線成分による悪影響を受けることなく比較的簡潔な作業で製造できる超電導線の製造方法を提供することができる。
(2A) According to
実施の形態3.
この発明による実施の形態3を図4から図6までに基づいて説明する。図4は実施の形態3におけるNbTi超電導線を製造するための複合体の構成を示す縦断面図である。図5は図4のV−V線における横断面図である。図6は図4のVI−VI線における横断面図である。
この実施の形態3において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1における構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
A third embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a longitudinal sectional view showing the structure of the composite for producing the NbTi superconducting wire in the third embodiment. FIG. 5 is a cross-sectional view taken along line VV in FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
In the third embodiment, the configuration other than the specific configuration described here has the same configuration contents as the configuration in the first embodiment described above, and exhibits the same operation. In the drawings, the same reference numerals indicate the same or corresponding parts.
この発明による実施の形態3におけるNbTi超電導線を製造するための複合体6の構成を示す図4において、複数本のNbTi単芯線2の両端にそれぞれ銅基金属棒7が接合部8で溶接されており、それらが無酸素銅管5中に複合されている。
In FIG. 4 which shows the structure of the composite 6 for manufacturing the NbTi superconducting wire in
この発明による実施の形態3における前記複合体6の端部以外の横断面構成を示す図5において、複数本のNbTi単芯線2が無酸素銅管5中に複合されている。
In FIG. 5 showing a cross-sectional configuration other than the end portion of the composite body 6 in
この発明による実施の形態3における前記複合体6の端部の横断面構成を示す図6において、銅基金属棒7が無酸素銅管5中に複合されている。銅基金属棒7と無酸素銅管5の隙間から奥に見える丸棒は複数本のNbTi単芯線2の一部である。図4〜図6において、図1〜図3と同一の符号を付したものは、同一またはこれに相当するものである。
In FIG. 6 which shows the cross-sectional structure of the edge part of the said composite body 6 in
無酸素銅の中心にNbTiロッドが埋設された形状を有する直径3mm,長さ960mmのNbTi単芯線2を61本と、直径24mm,長さ20mmの銅基金属棒7を2本用意する。次に、61本のNbTi単芯線2を丁寧に束ねた後、接合部8を形成するように、一方の端部に銅基金属棒37を押し付け、両者の境界部を全周に渡りスポット溶接機により溶接した。この溶接作業を、もう一方の端部にも施し、長さ約1000mmの連続棒とした。溶接の際に生じた溶接塊はヤスリによる手作業で除去した。この連続棒を外径40mm,内径30mm,長さ1000mmの無酸素銅管5中に挿入することで、図4〜図6に示す断面形状を有するNbTi超電導線を製造するための複合体6を得た。同様な方法で、合計5個の複合体6を製作した。これ以降は、上記実施の形態1と全く同様な方法により複合体6を加工し、NbTi超電導線を製造した。実施の形態3でも、最終的に1570mを5本得ることができた。
61 NbTi
この発明による実施の形態3では、NbTi超電導線を製造するための複合体6として、複数本のNbTi単芯線2の両端に銅基金属棒7を接合部8で溶接し、それらを無酸素銅管5中に挿入したものを用いた。
これにより、実施の形態1および実施の形態2同様、複合体6の両端部は銅基金属のみで構成されることになり、その後の伸線加工時において、ダミー銅線と前記複合体6との接続、複数本の前記複合体6同士の接合は銅基金属間同士での溶接となるので、超電導線内部のNbTi成分が溶け出すことなく、接合状態は非常に良好となった。また、溶接の際に生じた溶接塊はヤスリによる手作業で簡単に除去でき、表面が滑らかな状態で、ダイスを通過することになるので、ダイスを傷つけることなく、伸線加工が行えた。これらの理由により、接合した複数本の前記複合体6は所望線径まで無断線で伸線加工が行えることになり、複数本のNbTi超電導線を連続的に得ることができた。
また、上記実施の形態3では、NbTi超電導線を製造するための複合体6として、複数本のNbTi単芯線2を束ねた後、その両端に銅基金属棒7を接合部8で全周に渡りスポット溶接することにより連続棒を製造した。これにより、実施の形態1で必要であった複数のNbTi単芯線2と複数の銅基金属棒3とをそれぞれ1本ずつ両端で接合するためのバット溶接工程が不要となり、かつ実施の形態2で必要であった冷間圧接する工程が不要となり、作業時間を大幅に短縮することが可能となった。
In
Thereby, like Embodiment 1 and
Moreover, in the said
なお、実施の形態3においても、実施の形態2同様、NbTi単芯線2と銅基金属棒7とを冷間圧接により接合しても、実施の形態3と同様な効果を得ることができる。
In the third embodiment, as in the second embodiment, the same effect as in the third embodiment can be obtained even if the NbTi
(3A)この発明による実施の形態3によれば、NbTi単芯線2からなる超電導素線を銅基金属の内部に配設した複数本の複合体6を伸線加工した中間線からなる超電導線構成体を互いに接合して超電導線を製造する方法において、前記複合体6を伸線加工した中間線からなる超電導線構成体の端部を複数本のNbTi単芯線2に対して共通の単体として構成される銅基金属棒7からなる銅基金属のみで構成し、前記超電導線構成体の端部とNbTi単芯線2からなる超電導素線とを接合部8でスポット溶接によって互いに接合して超電導線構成体を構成し、前記複数本の超電導線構成体の端部を溶接により互いに接合することにより前記複数本の超電導線構成体を連続的に結合して、この結合された複数本の超電導線構成体を伸線加工するようにしたので、超電導線構成体の端部と超電導素線とをスポット溶接により接合した複数本の超電導線構成体により超電導線成分による悪影響を受けることなく比較的簡潔な作業で製造できる超電導線の製造方法を提供することができる。
(3A) According to
実施の形態4.
この発明による実施の形態4を図7に基づいて説明する。図7は実施の形態4におけるNbTi超電導線を製造するための複合体の縦断面図である。
この実施の形態4において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1における構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 4 FIG.
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a longitudinal sectional view of a composite for producing the NbTi superconducting wire in the fourth embodiment.
In the fourth embodiment, the configuration other than the specific configuration described here has the same configuration contents as the configuration in the first embodiment described above, and exhibits the same operation. In the drawings, the same reference numerals indicate the same or corresponding parts.
この発明による実施の形態4におけるNbTi超電導線を製造するための連続棒9の縦断面構成を示す図7において、複数本のNbTi単芯線2の両端にそれぞれ銅基金属棒7が銅基金属棒シート10を介し接合部11で溶接されている。
In FIG. 7 which shows the longitudinal cross-sectional structure of the
無酸素銅の中心にNbTiロッドが埋設された形状を有する直径3mm,長さ960mmのNbTi単芯線2を61本と、直径24mm,長さ20mmの銅基金属棒7を2本と、幅20mm,厚さ0.3mm,長さ85mmの銅基金属シート10を2枚用意する。
次に、61本のNbTi単芯線2を丁寧に束ねた後、一方の端部に銅基金属棒7を押し付けた状態で、接合部11を形成するために、両者の接続部を被うように銅基金属シート10を巻き付け、NbTi単芯線2と銅基金属棒7の境界部の銅基金属シート10上を全周に渡りスポット溶接機により溶接した。
この溶接作業を、もう一方の端部にも施し、長さ約1000mmとすることで、図7に示す縦断面形状を有するNbTi超電導線を製造するための連続棒9を得た。
この連続棒を溶接した際生じた溶接塊をヤスリによる手作業で除去し、外形40mm,内径30mm,長さ1000mmの無酸素銅管中に挿入することで、NbTi超電導線を製造するための複合体を得た。
同様な方法で、合計5個の複合体を製作した。これ以降は、上記実施の形態1と全く同様な方法により複合体を加工し、NbTi超電導線を製造した。実施の形態4でも、最終的に1570mのNbTi超電導線を5本得ることができた。
61 NbTi
Next, after 61 NbTi
This welding operation was also performed on the other end, and the length was set to about 1000 mm, thereby obtaining a
A composite for producing an NbTi superconducting wire by removing the weld lump produced by welding this continuous bar manually with a file and inserting it into an oxygen-free copper pipe having an outer diameter of 40 mm, an inner diameter of 30 mm, and a length of 1000 mm. Got the body.
A total of 5 composites were produced in the same manner. Thereafter, the composite was processed by the same method as in the first embodiment to produce an NbTi superconducting wire. Even in the fourth embodiment, five NbTi superconducting wires of 1570 m were finally obtained.
この発明による実施の形態4では、NbTi超電導線を製造するための連続棒9として、複数本のNbTi単芯線2の両端に銅基金属棒7を、銅基金属シート10を介し接合部11で溶接したものを用いた。
次に、それを無酸素銅管5中に挿入することで複合体とし、その複合体を伸線加工することでNbTi超電導線を製造した。
この方法により、実施の形態1〜3同様、複合体の両端部は銅基金属のみで構成されることになり、その後の伸線加工時において、ダミー銅線と前記複合体との接続、複数本の前記複合体同士の接合は銅基金属間同士での溶接となるので、超電導線内部のNbTi成分が溶け出すことなく、接合状態は非常に良好となった。また、溶接の際に生じた溶接塊はヤスリにより簡単に除去でき、表面が滑らかな状態で、ダイスを通過することになるので、ダイスを傷つけることなく、伸線加工が行えた。これらの理由により、接合した複数本の前記複合体は所望線径まで無断線で伸線加工が行えることになり、複数本のNbTi超電導線を連続的に得ることができた。
また、上記実施の形態4では、NbTi超電導線を製造するための複合体として、複数本のNbTi単芯線2を束ねた後、その両端に銅基金属棒7を押し付けた状態で両者の接続部を被うように銅基金属シート10を巻き付け、NbTi単芯線2と銅基金属棒7の境界部の銅基金属シート10上を全周に渡りスポット溶接することにより連続棒を製造した。これにより、実施の形態1で必要であった複数のNbTi単芯線2と複数の銅基金属棒3とをそれぞれ1本ずつ両端で接合するためのバット溶接工程が不要となり、作業時間を大幅に短縮することが可能となった。
さらに、NbTi単芯線2と銅基金属棒7とを銅基金属シート10を介してスポット溶接したので、実施の形態3に比べ、接合強度が増し、伸線加工中の断線が無くなり信頼性が向上した。
In Embodiment 4 according to the present invention, as a
Next, it was made into a composite by inserting it into the oxygen-free copper tube 5, and an NbTi superconducting wire was manufactured by drawing the composite.
By this method, as in the first to third embodiments, both ends of the composite are composed of only a copper-based metal, and at the time of subsequent wire drawing, a connection between the dummy copper wire and the composite, a plurality of Since the joining of the composites of the book is welding between the copper base metals, the NbTi component inside the superconducting wire does not melt and the joining state becomes very good. Further, the weld ingot generated during welding can be easily removed with a file, and the surface passes through the die with a smooth surface, so that the wire drawing can be performed without damaging the die. For these reasons, the plurality of bonded composite bodies can be drawn without breaking to the desired wire diameter, and a plurality of NbTi superconducting wires can be continuously obtained.
Moreover, in the said Embodiment 4, after bundling a plurality of NbTi
Further, since the NbTi
(4A)この発明による実施の形態4によれば、NbTi単芯線2からなる超電導素線を銅基金属の内部に配設した複数本の複合体1を伸線加工した中間線からなる超電導線構成体を互いに接合して超電導線を製造する方法において、前記複合体1を伸線加工した中間線からなる超電導線構成体の端部を銅基金属のみで構成し、接合部11を形成するように前記超電導線構成体の端部とNbTi単芯線2からなる超電導素線とを銅基金属シート10からなるシート材を溶接することによって接合することにより超電導線構成体を構成し、複数本の前記超電導線構成体の端部を互いに溶接することにより複数本の前記超電導線構成体を連続的に結合して、この結合された複数本の超電導線構成体を伸線加工するようにしたので、超電導線構成体の端部と超電導素線とをシート材を溶接することによって接合した複数本の超電導線構成体により超電導線成分による悪影響を受けることなく比較的簡潔な作業で製造できる超電導線の製造方法を提供することができる。
(4A) According to the fourth embodiment of the present invention, a superconducting wire comprising an intermediate wire obtained by drawing a plurality of composites 1 in which superconducting wires comprising a NbTi
実施の形態5.
この発明による実施の形態5を図8に基づいて説明する。図8は実施の形態5におけるNbTi超電導線を製造するための複合体の縦断面図である。
この実施の形態5において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1における構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 5 FIG.
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a longitudinal sectional view of a composite for producing the NbTi superconducting wire in the fifth embodiment.
In the fifth embodiment, the configuration other than the specific configuration described here has the same configuration contents as the configuration in the first embodiment described above, and exhibits the same operation. In the drawings, the same reference numerals indicate the same or corresponding parts.
この発明による実施の形態5におけるNbTi超電導線を製造するための複合体12の縦断面構成を示す図8において、複数本のNbTi単芯線2が、両端にネジ孔を有する無酸素銅管13中に挿入されて、両端がそれぞれ銅基金属製ネジ14で固定され、複数本のNbTi単芯線2と銅基金属製ネジ14との間に接合部15が形成されている。
In FIG. 8 which shows the longitudinal cross-sectional structure of the composite_body | complex 12 for manufacturing the NbTi superconducting wire in Embodiment 5 by this invention, several NbTi
無酸素銅の中心にNbTiロッドが埋設された形状を有する直径3mm,長さ960mmのNbTi単芯線2を61本と、長さ20mmの銅基金属製M34ネジ14を2個用意する。
次に、61本のNbTi単芯線2を丁寧に束ねた後、両端部に長さ22mmのM34用のネジ孔を有する外径40mm,内径30mm,長さ1000mmの無酸素銅管13中に挿入する。無酸素銅管13の両端から銅基金属製M34ネジ14によりNbTi単芯線2の束を締め付けることで、複数本のNbTi単芯線2と銅基金属製ネジ14との間に接合部15を形成して、図8に示す断面形状を有するNbTi超電導線を製造するための複合体12を得た。
同様な方法で、合計5個の複合体12を製作した。これ以降は、上記実施の形態1と全く同様な方法により複合体12を加工し、NbTi超電導線を製造した。実施の形態5でも、最終的に1570mのNbTi超電導線を5本得ることができた。
61 NbTi
Next, 61 NbTi
A total of five composites 12 were produced in the same manner. Thereafter, the composite 12 was processed by the same method as in the first embodiment, and an NbTi superconducting wire was manufactured. Also in the fifth embodiment, five NbTi superconducting wires of 1570 m were finally obtained.
この発明による実施の形態5では、NbTi超電導線を製造するための複合体12として、複数本のNbTi単芯線2が、両端にネジ孔を有する無酸素銅管13中に挿入され、両端がそれぞれ銅基金属製ネジ14で固定されたものを用いた。
これにより、実施の形態1〜4同様、複合体12の両端部は銅基金属のみで構成されることになり、その後の伸線加工時において、ダミー銅線と前記複合体12との接続、複数本の前記複合体12同士の接合は銅基金属間同士での溶接となるので、超電導線内部のNbTi成分が溶け出すことなく、接合状態は非常に良好となった。
また、溶接の際に生じた溶接塊はヤスリにより簡単に除去でき、表面が滑らかな状態で、ダイスを通過することになるので、ダイスを傷つけることなく、伸線加工が行えた。これらの理由により、接合した複数本の前記複合体12は所望線径まで無断線で伸線加工が行えることになり、複数本のNbTi超電導線を連続的に得ることができた。
そして、上記実施の形態5では、NbTi超電導線を製造するための複合体12として、複数本のNbTi単芯線2が両端にネジ孔を有する無酸素銅管中に挿入され、両端がそれぞれ銅基金属製ネジ14で固定されたものを用いた。これにより、実施の形態1で必要であった複数のNbTi単芯線2と複数の銅基金属棒3とをそれぞれ1本ずつ両端で接合するためのバット溶接工程が不要となり、作業時間を大幅に短縮することが可能となった。
また、実施の形態3で必要であった複数本のNbTi単芯線2とその両端に1本ずつの銅基金属棒7とを接合するためのスポット溶接工程が不要となり、作業時間を大幅に短縮することが可能となった。
また、実施の形態4で必要であった複数本のNbTi単芯線2とその両端に配した銅基金属棒7とを銅基金属シート10を介し接合するためのスポット溶接工程が不要となり、作業時間を大幅に短縮することが可能となった。
さらに、複数本のNbTi単芯線2の両端をそれぞれ銅基金属製ネジ14で無酸素銅管13中にネジ止め固定したので、実施の形態2に比べ、接合強度が増し、伸線加工中の断線が無くなり信頼性が向上した。
In Embodiment 5 according to the present invention, a plurality of NbTi
Thereby, like Embodiment 1-4, the both ends of the composite_body | complex 12 will be comprised only with a copper base metal, and the connection of a dummy copper wire and the said composite_body | complex 12 at the time of subsequent wire drawing processing, Since joining of the plurality of composite bodies 12 is welding between copper base metals, the NbTi component inside the superconducting wire does not melt, and the joining state becomes very good.
Further, the weld ingot generated during welding can be easily removed with a file, and the surface passes through the die with a smooth surface, so that the wire drawing can be performed without damaging the die. For these reasons, the plurality of joined composite bodies 12 can be drawn without breaking to the desired wire diameter, and a plurality of NbTi superconducting wires can be continuously obtained.
And in the said Embodiment 5, as the composite_body | complex 12 for manufacturing a NbTi superconducting wire, the several NbTi
In addition, the spot welding process for joining a plurality of NbTi
In addition, the spot welding process for joining the plurality of NbTi
Furthermore, since both ends of the plurality of NbTi
(5A)この発明による実施の形態5によれば、NbTi単芯線2からなる超電導素線を銅基金属の内部に配設した複数本の複合体1を伸線加工した中間線からなる超電導線構成体を互いに接合して超電導線を製造する方法において、前記複合体1を伸線加工した中間線からなる超電導線構成体の端部を銅基金属のみで構成し、前記超電導線構成体の端部と前記NbTi単芯線2からなる超電導素線とを前記超電導線構成体の端部として形成された金属ネジで固定することによって接合部15で互いに接合することにより超電導線構成体を構成し、複数本の前記超電導線構成体の端部を互いに溶接することにより複数本の前記超電導線構成体を連続的に結合して、この結合された複数本の超電導線構成体を伸線加工するようにしたので、超電導線構成体の端部と超電導素線とを金属ネジで固定することによって接合した複数本の超電導線構成体により超電導線成分による悪影響を受けることなく比較的簡潔な作業で製造できる超電導線の製造方法を提供することができる。
(5A) According to the fifth embodiment of the present invention, a superconducting wire comprising an intermediate wire obtained by drawing a plurality of composites 1 in which superconducting wires comprising NbTi single-
上記実施の形態1〜5では、複数本のNbTi超電導線が連続的に製造できるため、超電導線をそれぞれ1本ずつ別々に製造する場合に比べ、ダイス交換回数が減らせることになり、製造時間と製造コストの低減が達成できた。 In the first to fifth embodiments, since a plurality of NbTi superconducting wires can be continuously manufactured, the number of times of die replacement can be reduced as compared with the case where each superconducting wire is manufactured separately one by one. And the reduction of manufacturing cost was achieved.
さらに、上記実施の形態1〜5では、単に複数本のNbTi超電導線が連続的に製造できるばかりでなく、スエージングマシンによる口打ち作業は最初の1本の超電導線のみに施すことになり2本目以降の超電導線では、スエージングマシンによる口打ち作業が必要なくなるため、製造時間と製造コストの大幅な低減が達成できた。このことは、特に、複数パスを連続して行う連続伸線機による伸線加工の場合により大きな効果が期待できる。 Furthermore, in the first to fifth embodiments, not only a plurality of NbTi superconducting wires can be continuously manufactured, but also the swaging machine performs the punching operation only on the first superconducting wire. Since the superconducting wires after this time do not require a swaging work with a swaging machine, the manufacturing time and manufacturing cost can be greatly reduced. In particular, a greater effect can be expected in the case of wire drawing by a continuous wire drawing machine that performs a plurality of passes continuously.
また、一般に、スエージングマシンによる口打ち作業は線材を周囲から叩くことで線材を細く変形させる方式のため、叩かれた部分の線材の内部はダメージを受け、超電導線としては使用できず不良部分となる。そこで、上記実施の形態1〜5によるNbTi超電導線を製造するための複合体として、複数本のNbTi単芯線2のそれぞれの両端に位置する銅基金属材料(上記実施の形態1と2では銅基金属棒3、上記実施の形態3と4では銅基金属棒7、上記実施の形態5では銅基金属製ネジ14)のうちの一方の長さを200mm程度に長くすることで、銅基金属のみの部分の長さが増え、その側を口打ち作業側とすることで、同作業時に生じる不良部分を低減することができるという新たな効果も生じた。
In general, the staking machine uses a swaging machine to squeeze the wire into a thin shape by hitting the wire from the surroundings. Therefore, the inside of the struck part is damaged and cannot be used as a superconducting wire. It becomes. Therefore, as a composite for manufacturing the NbTi superconducting wire according to the first to fifth embodiments, a copper-based metal material (copper in the first and second embodiments described above) located at each end of each of the plurality of NbTi
なお、上記実施の形態1〜5では、61本のNbTi単芯線2を用いNbTi超電導線を製造する場合について説明したが、61本のNbTi単芯線2を1本のNbTi棒で置き換えてもよく、この場合はNbTi単芯線2の製造方法として上記実施の形態1〜5と同様の効果を奏する。
In the first to fifth embodiments, the case where the NbTi superconducting wire is manufactured using 61 NbTi
さらに、上記実施の形態1〜5で用いた各構成物を複合する際の直径、外径、内径、長さ、複合数等を変化させ、さらに最終径を変化させても、上記実施の形態1〜5と同様の効果を奏するのはいうまでもない。また、複合体の接続数も5本に制限されることはない。 Furthermore, even if the diameter, the outer diameter, the inner diameter, the length, the number of composites, and the like when the components used in the first to fifth embodiments are combined are changed, and the final diameter is further changed, the above-described embodiments are used. Needless to say, the same effects as those of 1 to 5 can be obtained. Further, the number of connections of the complex is not limited to five.
この発明ではNbTi超電導線を製造する場合について説明したが、NbTi超電導線の製造方法に限定されることなく、Nb3Sn系、Nb3Ge系、V3Ga系、Nb3Al系などのA15型化合物系超電導線等のいずれかの系の超電導線の製造方法にも適用できる。 In the present invention, the case of manufacturing the NbTi superconducting wire has been described. However, the present invention is not limited to the method of manufacturing the NbTi superconducting wire, and A15 such as Nb 3 Sn system, Nb 3 Ge system, V 3 Ga system, Nb 3 Al system, etc. The present invention can also be applied to a manufacturing method of any type of superconducting wire such as a type compound superconducting wire.
なお、この発明において、銅基金属とは、純銅、または、加工性を阻害しない程度の少量のSn等の添加元素を含む銅をいう。 In the present invention, the copper-based metal refers to pure copper or copper containing a small amount of an additive element such as Sn that does not impair workability.
1 複合体、2 NbTi単芯線、3 銅基金属棒、4 接合部、5 無酸素銅管、6 複合体、7 銅基金属棒、8 接合部、9 連続棒、10 銅基金属シート、11 接合部、12 複合体、13 無酸素銅管、14 銅基金属製ネジ、15 接合部。
DESCRIPTION OF SYMBOLS 1 Composite, 2 NbTi single core wire, 3 Copper base metal rod, 4 Junction part, 5 Oxygen-free copper pipe, 6 Composite, 7 Copper base metal rod, 8 Junction part, 9 Continuous bar, 10 Copper base metal sheet, 11 Joint, 12 composite, 13 oxygen-free copper tube, 14 copper-based metal screw, 15 joint.
Claims (7)
In a method of manufacturing a superconducting wire by joining a plurality of superconducting wire constructs each having a superconducting wire disposed inside a copper base metal, the end of the superconducting wire construct is composed only of a copper base metal, The end of the superconducting wire structure and the superconducting element wire are joined by fixing with a metal screw to form a superconducting wire structure, and a plurality of the superconducting wire structures are continuously coupled, A method of manufacturing a superconducting wire, comprising drawing a plurality of superconducting wire constituents combined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005369252A JP2007173040A (en) | 2005-12-22 | 2005-12-22 | Superconductive wire and manufacturing method for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005369252A JP2007173040A (en) | 2005-12-22 | 2005-12-22 | Superconductive wire and manufacturing method for it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007173040A true JP2007173040A (en) | 2007-07-05 |
Family
ID=38299317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005369252A Pending JP2007173040A (en) | 2005-12-22 | 2005-12-22 | Superconductive wire and manufacturing method for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007173040A (en) |
-
2005
- 2005-12-22 JP JP2005369252A patent/JP2007173040A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107438887B (en) | Superconducting wire and method for manufacturing superconducting wire | |
US20110168428A1 (en) | Method of connecting superconductors and superconducting coil | |
CN102672326A (en) | Method for manufacturing copper-aluminum welded joint of capillary tube and copper end sleeved aluminum capillary tube | |
JP2017531563A (en) | Heat bonding method for butt connection of metal parts | |
JP2003305586A (en) | Bonded joint consisting of different kind of metallic material and its manufacturing method | |
JP2007173040A (en) | Superconductive wire and manufacturing method for it | |
JP2007190603A (en) | Solder bonding method and solder bonded body | |
JP2008027706A (en) | Die for manufacturing superconducting wire and method of manufacturing superconducting wire using above die for manufacturing superconducting wire | |
JPH05200432A (en) | Manufacture of double tube | |
TWI569902B (en) | Bicycle frame pipe system | |
JP2003311355A (en) | Manufacturing method of metallic wire | |
JP2000079432A (en) | Nickel-titanium-based shape memory alloy made joined ring and its manufacture | |
JPS58169712A (en) | Method of producing composite superconductive wire | |
JPS61269997A (en) | Brazing material for titanium material | |
JPH07150369A (en) | Composite wire made of shape memory alloy | |
JPH0917250A (en) | Method of winding at least one steel wire around core in layer form | |
KR20150021875A (en) | Connecting method of superconductive conductor | |
JPH04111981A (en) | Production of noble metal clad titanium wire | |
JPS58116982A (en) | Butt welding method for flux cored wire for weld | |
JP2001096395A (en) | Method of manufacturing wire solder containing flux from solder hard to machine | |
JPH03210978A (en) | Titanium or titanium alloy/stainless steel pipe joint and its manufacture | |
JPH04182023A (en) | Manufacture of clad metallic tube | |
JPS63120637A (en) | Noble metal clad ti or ti alloy composite material | |
JPH0433272A (en) | Connecting method for superconducting wire | |
JPH0256533B2 (en) |