JP2007171125A - Deterioration history determination method for light-weight cellular concrete - Google Patents

Deterioration history determination method for light-weight cellular concrete Download PDF

Info

Publication number
JP2007171125A
JP2007171125A JP2005372777A JP2005372777A JP2007171125A JP 2007171125 A JP2007171125 A JP 2007171125A JP 2005372777 A JP2005372777 A JP 2005372777A JP 2005372777 A JP2005372777 A JP 2005372777A JP 2007171125 A JP2007171125 A JP 2007171125A
Authority
JP
Japan
Prior art keywords
history
deterioration
cellular concrete
concrete
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005372777A
Other languages
Japanese (ja)
Other versions
JP4610479B2 (en
Inventor
Fumiaki Matsushita
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2005372777A priority Critical patent/JP4610479B2/en
Publication of JP2007171125A publication Critical patent/JP2007171125A/en
Application granted granted Critical
Publication of JP4610479B2 publication Critical patent/JP4610479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deterioration hysteresis determination method for a light-weight cellular concrete (ALC) capable of determining, totally and in detail, the durability of the ALC that has been used over the years. <P>SOLUTION: Steam adsorption isotherms in adsorption and desorption are acquired as to one part collected from the ALC, and the levels of hysteresis in the obtained steam adsorption isotherms serve as a deterioration history in the ALC. This method determines that the ALC, of which the hysteresis (1-Wa/Wd) in the steam adsorption isotherm obtained, based on an equilibrium moisture content Wa at 0.6 of the relative pressure in the adsorption, and based on an equilibrium moisture content Wd at 0.6 of the relative pressure in desorption, is 0.1 or larger, as having gone through a moderate deterioration history, and determines that the ALC of which the hysteresis (1-Wa/Wd) to be 0.075 or smaller, as having gone through an abrupt deterioration history. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量気泡コンクリートの劣化履歴判定方法に関し、特に、建築物の壁、屋根または床などに使用される軽量気泡コンクリート(ALC)パネルの劣化履歴判定方法に関する。   The present invention relates to a degradation history determination method for lightweight cellular concrete, and more particularly, to a degradation history determination method for lightweight cellular concrete (ALC) panels used for walls, roofs, floors, and the like of buildings.

ALCは、珪石等の珪酸質原料と、セメントや生石灰等の石灰質原料とを主原料とし、これらの微粉末に水とアルミニウム粉末等の添加物を加えてスラリー状とした後、アルミニウム粉末の反応により発泡し、石灰質原料の反応により半硬化させ、所定寸法に成形した後、オートクレーブによる高温高圧水蒸気養生を行うことにより、製造されている。また、予めALCパネルには補強用鉄筋が配置されており、ALCパネルの強度保持に寄与している。ALCパネルは、軽量で、耐火性、断熱性および施工性に優れているため、建築材料として広く使用されている。   ALC is mainly composed of siliceous raw materials such as silica and calcareous raw materials such as cement and quick lime, and additives such as water and aluminum powder are added to these fine powders to form a slurry, followed by the reaction of the aluminum powder. It is manufactured by carrying out high-temperature and high-pressure steam curing with an autoclave after foaming, semi-curing by reaction of the calcareous raw material, forming to a predetermined dimension. Further, reinforcing bars are arranged in advance on the ALC panel, which contributes to maintaining the strength of the ALC panel. ALC panels are light in weight and excellent in fire resistance, heat insulation and workability, and thus are widely used as building materials.

ALCパネルは、十分に水蒸気養生されているために、元来、耐久性は高いが、数十年という長期間の耐久性において、一番の課題が、空気中の炭酸ガスと反応および分解することによる炭酸化劣化である。炭酸化劣化は、ALCパネルにひび割れ、たわみ、収縮または強度低下などの劣化現象をもたらすことがある。これらの劣化現象は、通常のALCパネルに施される仕上げの下に隠れるため、目視確認できない。このため、本発明者らは、特許第3451616号公報、特許第3451617号公報および特許第3478160号公報に記載されているように、少量のサンプルを採取して、化学的な分析方法である炭酸化度を指標とした診断方法を提案している。しかし、炭酸化度のみでは、十分とはいえなかった。   Since ALC panels are sufficiently steam-cured, they are inherently highly durable. However, the long-term durability of several decades is the most important issue for reaction and decomposition with carbon dioxide in the air. It is carbonation deterioration by. Carbonation degradation can cause degradation phenomena such as cracks, deflection, shrinkage or reduced strength in the ALC panel. These deterioration phenomena cannot be visually confirmed because they are hidden under the finish applied to a normal ALC panel. For this reason, as described in Japanese Patent No. 3451616, Japanese Patent No. 3451617, and Japanese Patent No. 3478160, the present inventors have collected a small amount of sample and obtained a carbonic acid which is a chemical analysis method. A diagnostic method using the degree of conversion as an index is proposed. However, the carbonation degree alone was not sufficient.

特許3451616号公報Japanese Patent No. 3451616

特許3451617号公報Japanese Patent No. 3451617

特許3478160号公報Japanese Patent No. 3478160

本発明の目的は、経年使用されたALCパネルの耐久性を、総合的にかつ詳細に判定することができるALCの劣化履歴判定方法を提供することである。   An object of the present invention is to provide an ALC deterioration history determination method capable of comprehensively and specifically determining the durability of an ALC panel used over time.

本発明の経年使用された軽量気泡コンクリートの劣化履歴判定方法の一態様では、該軽量気泡コンクリートから採取した一部について、吸着時と脱着時の水蒸気吸着等温線を得て、得られる水蒸気吸着等温線の持つヒステリシスの大きさを、前記軽量気泡コンクリートにおける劣化履歴とする。   In one aspect of the method for judging deterioration history of lightweight aerated concrete according to the present invention, a portion collected from the lightweight aerated concrete is obtained with a water vapor adsorption isotherm at the time of adsorption and desorption, and the water vapor adsorption isotherm obtained. Let the magnitude | size of the hysteresis which a line has be a deterioration log | history in the said lightweight cellular concrete.

本発明の経年使用された軽量気泡コンクリートの劣化履歴判定方法の異なる態様では、該軽量気泡コンクリートから採取した一部について、吸着時と脱着時の水蒸気吸着等温線を得て、相対圧0.6における吸着時平衡含水率Waと相対圧0.6における脱着時平衡含水率Wdとにより得られる水蒸気吸着等温線の持つヒステリシス(1−Wa/Wd)が0.1以上である軽量気泡コンクリートは、緩やかな劣化履歴を経たと判定し、かつ、前記ヒステリシス(1−Wa/Wd)が0.075以下である軽量気泡コンクリートは、急激な劣化履歴を経たと判定する。   In a different aspect of the degradation history judgment method for lightweight aerated concrete of the present invention, a water vapor adsorption isotherm at the time of adsorption and desorption is obtained for a part collected from the lightweight aerated concrete, and a relative pressure of 0.6 is obtained. A lightweight aerated concrete having a water vapor adsorption isotherm (1-Wa / Wd) of not less than 0.1 obtained by the equilibrium moisture content Wa during adsorption Wa and the equilibrium moisture content Wd during desorption at a relative pressure of 0.6, It is determined that a mild deterioration history has passed, and the lightweight cellular concrete having the hysteresis (1-Wa / Wd) of 0.075 or less is determined to have passed a rapid deterioration history.

本発明の経年使用された軽量気泡コンクリートの劣化履歴判定方法の異なる態様では、該軽量気泡コンクリートから採取した一部について、窒素吸着により細孔径分布を測定して、細孔径が0.5nm〜5nmの細孔のピークを、前記軽量気泡コンクリートにおける劣化履歴とする。   In a different aspect of the degradation history judgment method for light-weight aerated concrete of the present invention, the pore diameter distribution is measured by nitrogen adsorption for a part collected from the lightweight aerated concrete, and the pore diameter is 0.5 nm to 5 nm. The peak of the pores is defined as the deterioration history of the lightweight cellular concrete.

本発明の経年使用された軽量気泡コンクリートの劣化履歴判定方法の異なる態様では、該軽量気泡コンクリートから採取した一部について、窒素吸着により細孔径分布を測定して、細孔径が0.5nm〜5nmの細孔のピークが、0.05ml/g以下である軽量気泡コンクリートは、緩やかな劣化履歴を経たと判定し、かつ、0.08ml/g以上である軽量気泡コンクリートは、急激な劣化履歴を経たと判定する。   In a different aspect of the degradation history judgment method for light-weight aerated concrete of the present invention, the pore diameter distribution is measured by nitrogen adsorption for a part collected from the lightweight aerated concrete, and the pore diameter is 0.5 nm to 5 nm. It is determined that lightweight cellular concrete having a pore peak of 0.05 ml / g or less has undergone a mild deterioration history, and lightweight cellular concrete having a pore peak of 0.08 ml / g or more has a rapid degradation history. Judge that it has passed.

本発明の経年使用された軽量気泡コンクリートの劣化履歴判定方法の異なる態様では、該軽量気泡コンクリートから採取した一部について、窒素吸着によりBET比表面積を測定して、得られるBET比表面積を、前記軽量気泡コンクリートにおける劣化履歴とする。   In a different aspect of the method for determining deterioration history of lightweight aerated concrete according to the present invention, the BET specific surface area obtained by measuring the BET specific surface area by nitrogen adsorption for a part collected from the lightweight aerated concrete, The deterioration history of lightweight cellular concrete.

本発明の経年使用された軽量気泡コンクリートの劣化履歴判定方法の異なる態様では、該軽量気泡コンクリートから採取した一部について、窒素吸着によりBET比表面積を測定して、得られる前記BET比表面積が、同一の方法で新たに製造された軽量気泡コンクリートから得られる前記BET比表面積と比して、小さい軽量気泡コンクリートは、緩やかな劣化履歴を経たと判定し、かつ、大きい軽量気泡コンクリートは、急激な劣化履歴を経たと判定する。   In a different aspect of the degradation history judgment method of lightweight cellular concrete used over time of the present invention, the BET specific surface area obtained by measuring the BET specific surface area by nitrogen adsorption for a part collected from the lightweight cellular concrete, Compared to the BET specific surface area obtained from the lightweight cellular concrete newly produced by the same method, the small lightweight cellular concrete is judged to have undergone a gradual deterioration history, and the large lightweight cellular concrete is abrupt. It is determined that the deterioration history has passed.

本発明により、経年使用されたALCパネルの一部を採取したサンプルから、劣化履歴を判定することができる。得られる劣化履歴に、炭酸化度による判定を加えることで、経年使用されたALCパネルの耐久性を、総合的にかつ詳細に判定することができる。   According to the present invention, it is possible to determine a deterioration history from a sample obtained by collecting a part of an ALC panel that has been used over time. By adding the determination based on the degree of carbonation to the obtained deterioration history, the durability of the ALC panel used over time can be determined comprehensively and in detail.

本発明者らのその後の研究から、緩やかに炭酸化劣化が進むことにより、緩やかな劣化履歴を経た場合には、炭酸化度が高くなっても建築部材としてALCパネルの劣化は顕著でなく、逆に、急激に炭酸化劣化が進むことにより、急激な劣化履歴を経た場合には、炭酸化度が低い段階から建築部材としてALCパネルの劣化が顕著であることが分かった。本明細書において、緩やかに炭酸化劣化が進む状態とは、雰囲気が、通常の空気中の炭酸ガス濃度である0.03容積%程度の炭酸ガス濃度であり、かつ、ALCパネルに水分が侵入しない気乾状態である。これとは反対に、急激に炭酸化劣化が進む状態とは、雰囲気が、通常の空気中の炭酸ガス濃度に対して10倍以上である0.3容積%以上の炭酸ガス濃度であるか、もしくは、ALCパネルに水分が浸入し、ALCパネルの含水率が10質量%以上になる状態である。   From the subsequent studies by the present inventors, when the carbonation deterioration gradually progresses, when passing through a slow deterioration history, the deterioration of the ALC panel as a building member is not remarkable even if the carbonation degree is high. On the contrary, it has been found that the deterioration of the ALC panel as a building member is remarkable from the stage where the degree of carbonation is low when a rapid deterioration history is caused by the rapid deterioration of carbonation. In this specification, the state in which carbonation deterioration progresses slowly means that the atmosphere is a carbon dioxide concentration of about 0.03% by volume, which is a normal carbon dioxide concentration in the air, and moisture enters the ALC panel. Do not air dry. Contrary to this, the state in which carbonation deterioration rapidly proceeds is that the atmosphere has a carbon dioxide gas concentration of 0.3% by volume or more, which is 10 times or more than the carbon dioxide concentration in normal air, Alternatively, moisture enters the ALC panel, and the moisture content of the ALC panel is 10% by mass or more.

本発明者らのサンプル調査から、炭酸化度とパネル表面のひび割れの有無との関係については、表1に示すように、緩やかな劣化履歴を経たALCパネルは、炭酸化度が50%を超えた段階からひび割れが発生し、急激な劣化履歴を経たALCパネルパネルは、炭酸化度35%で既にひび割れが発生することが分かった。つまり、ALCパネルの炭酸化劣化の程度を正確に判定するには、炭酸化度だけでなく、劣化履歴を判定する必要があることが分かる。   From the sample survey by the present inventors, as shown in Table 1, regarding the relationship between the degree of carbonation and the presence or absence of cracks on the panel surface, an ALC panel that has undergone a gradual deterioration history has a degree of carbonation exceeding 50%. It was found that the ALC panel panel, which has cracked from the initial stage and has undergone a rapid deterioration history, has already cracked at a carbonation degree of 35%. That is, it can be seen that it is necessary to determine not only the degree of carbonation but also the deterioration history in order to accurately determine the degree of carbonation deterioration of the ALC panel.

本発明のALCの劣化履歴判定方法の一態様では、経年使用されたALCから採取した一部について、吸着時と脱着時の水蒸気吸着等温線を得て、得られる水蒸気吸着等温線の持つヒステリシスの大きさを、前記ALCにおける劣化履歴とする。   In one aspect of the method for determining deterioration history of ALC of the present invention, for a part collected from ALC used over time, water vapor adsorption isotherms at the time of adsorption and desorption are obtained, and the hysteresis of the water vapor adsorption isotherm obtained is obtained. The size is the deterioration history in the ALC.

さらに、相対圧0.6における吸着時平衡含水率Waと相対圧0.6における脱着時平衡含水率Wdとにより得られる水蒸気吸着等温線の持つヒステリシス(1−Wa/Wd)が0.1以上である軽量気泡コンクリートは、緩やかな劣化履歴を経たと判定し、かつ、前記ヒステリシス(1−Wa/Wd)が0.075以下である軽量気泡コンクリートは、急激な劣化履歴を経たと判定する。   Furthermore, the hysteresis (1-Wa / Wd) of the water vapor adsorption isotherm obtained by the equilibrium water content Wa during adsorption at relative pressure 0.6 and the equilibrium water content Wd during desorption at relative pressure 0.6 is 0.1 or more. It is determined that the lightweight aerated concrete has undergone a moderate deterioration history, and the lightweight aerated concrete having the hysteresis (1-Wa / Wd) of 0.075 or less is determined to have undergone a rapid deterioration history.

ヒステリシスの定量化については、脱着側と吸着側の差分の面積を算出する方法や、任意の相対圧における脱着側と吸着側の吸着量の差や比率を算出する方法などが、一般的である。脱着側と吸着側の差分の面積を算出する方法は、誰もが容易に実施できるものでなく、高圧側をどこまで測定するかという測定条件による影響を大きく受ける。一方、任意の相対圧における脱着側と吸着側の吸着量の差や比率を算出する方法は、簡便であるが、設定する相対圧が重要であり、0.3以下の相対圧ではヒステリシスが、通常、見られず、0.8以上の相対圧では測定条件による変動の影響が強くなる。そこで、本発明においては、誰もが容易に実施でき、かつ、変動の少ない相対圧0.6における平衡含水率の比率から求める方法を採用した。   For quantifying hysteresis, methods such as calculating the area of the difference between the desorption side and the adsorption side, and calculating the difference or ratio of the adsorption amount between the desorption side and the adsorption side at an arbitrary relative pressure are common. . The method of calculating the area of the difference between the desorption side and the adsorption side is not easily implemented by anyone, and is greatly influenced by the measurement conditions of how far the high pressure side is measured. On the other hand, the method of calculating the difference or ratio of the amount of adsorption between the desorption side and the adsorption side at an arbitrary relative pressure is simple, but the relative pressure to be set is important, and at a relative pressure of 0.3 or less, the hysteresis is Usually, it is not seen, and at a relative pressure of 0.8 or more, the influence of fluctuation due to measurement conditions becomes strong. Therefore, in the present invention, a method is adopted in which anyone can easily carry out and obtain from the ratio of the equilibrium water content at a relative pressure of 0.6 with little fluctuation.

従って、好ましい態様として、相対圧0.6における吸着時平衡含水率Waと相対圧0.6における脱着時平衡含水率Wdとにより得られる水蒸気吸着等温線の持つヒステリシス(1−Wa/Wd)によって定量化するが、ヒステリシスの評価方法はこれに限定されない。ヒステリシス(1−Wa/Wd)が0.1以上であるALCは、前述のように、炭酸化度50%を超えた段階からひび割れが発生し、0.075以下であるALCは、炭酸化度35%で既にひび割れが発生する。   Accordingly, as a preferred embodiment, the hysteresis (1-Wa / Wd) of the water vapor adsorption isotherm obtained by the equilibrium water content Wa during adsorption at a relative pressure 0.6 and the equilibrium water content Wd during desorption at a relative pressure 0.6. Although it is quantified, the evaluation method of hysteresis is not limited to this. As described above, the ALC having a hysteresis (1-Wa / Wd) of 0.1 or more cracks from the stage where the carbonation degree exceeds 50%, and the ALC having a hysteresis degree of 0.075 or less Cracks already occur at 35%.

本発明のALCの劣化履歴判定方法の異なる態様では、経年使用されたALCから採取した一部について、窒素吸着により細孔径分布を測定して、細孔径が0.5nm〜5nmの細孔のピークを、前記ALCにおける劣化履歴とする。   In a different aspect of the ALC degradation history determination method of the present invention, the pore diameter distribution is measured by nitrogen adsorption for a part collected from the ALC that has been used over time, and the pore peak with a pore diameter of 0.5 nm to 5 nm is measured. Is the deterioration history in the ALC.

さらに、細孔径が0.5nm〜5nmの細孔のピークが、0.05ml/g以下であるALCは、緩やかな劣化履歴を経たと判定し、かつ、0.08ml/g以上であるALCは、急激な劣化履歴を経たと判定する。   Furthermore, ALC with a pore diameter of 0.5 nm to 5 nm having a pore peak of 0.05 ml / g or less was judged to have passed a gradual deterioration history, and ALC having a pore diameter of 0.08 ml / g or more was It is determined that a rapid deterioration history has passed.

細孔径が0.5nm〜5nmの細孔のピークが、0.05ml/g以下であるALCは、前述のように、炭酸化度50%を超えた段階からひび割れが発生し、0.08ml/g以上であるALCは、炭酸化度35%で既にひび割れが発生する。   As described above, the ALC having a pore peak with a pore diameter of 0.5 nm to 5 nm having a pore size of 0.05 ml / g or less is cracked from the stage where the carbonation degree exceeds 50%, and is 0.08 ml / g. An ALC of g or more already cracks at a carbonation degree of 35%.

本発明のALCの劣化履歴判定方法の異なる態様では、経年使用されたALCから採取した一部について、窒素吸着によりBET比表面積を測定して、得られるBET比表面積を、前記ALCにおける劣化履歴とする。   In a different aspect of the ALC degradation history determination method of the present invention, the BET specific surface area obtained by measuring the BET specific surface area by nitrogen adsorption for a part collected from the ALC used over time, and the obtained BET specific surface area as the degradation history in the ALC. To do.

さらに、得られる前記BET比表面積が、同一の方法で新たに製造されたALCから得られる前記BET比表面積と比して、小さいALCは、緩やかな劣化履歴を経たと判定し、かつ、大きいALCは、急激な劣化履歴を経たと判定する。   Furthermore, the obtained BET specific surface area is smaller than the BET specific surface area obtained from the ALC newly produced by the same method, and it is determined that a small ALC has undergone a gradual deterioration history and a large ALC. Is determined to have undergone a rapid deterioration history.

得られるBET比表面積が、同一の方法で新たに製造されたALCから得られる前記BET比表面積と比して、小さいALCは、前述のように、炭酸化度50%を超えた段階からひび割れが発生し、大きいALCは、炭酸化度35%で既にひび割れが発生する。   The obtained BET specific surface area is smaller than the BET specific surface area obtained from the ALC newly produced by the same method. As described above, the AET is cracked from the stage where the carbonation degree exceeds 50%. Large ALC is already cracked at a carbonation degree of 35%.

(実施例1)
新品ALCから採取した一部について、ガス吸着測定装置(日本ベル株式会社製、BELSORP−18PLUS−T)を用いて、吸着時と脱着時の水蒸気吸着等温線を得た。得られた水蒸気吸着等温線を、図1および図2に示す。
Example 1
About a part collected from the new ALC, a water vapor adsorption isotherm at the time of adsorption and desorption was obtained using a gas adsorption measurement device (BELSORP-18PLUS-T, manufactured by Bell Japan Co., Ltd.). The obtained water vapor adsorption isotherm is shown in FIG. 1 and FIG.

図から、相対圧0.6における吸着時平衡含水率Waと相対圧0.6における脱着時平衡含水率Wdとにより得られる水蒸気吸着等温線の持つヒステリシス(1−Wa/Wd)を算出したところ、0.034であった。   From the figure, the hysteresis (1-Wa / Wd) of the water vapor adsorption isotherm obtained from the equilibrium water content Wa during adsorption at relative pressure 0.6 and the equilibrium water content Wd during desorption at relative pressure 0.6 was calculated. 0.034.

さらに、窒素吸着式細孔径測定装置(株式会社アムコ製、ソープトマチック)を使用して、窒素吸着により細孔径分布を測定した。得られた細孔径分布を、図3および図4に示す。細孔径が0.5nm〜5nmの細孔のピークは、0.05ml/gであった。   Furthermore, the pore size distribution was measured by nitrogen adsorption using a nitrogen adsorption type pore size measuring device (Amco Corporation, Soapmatic). The obtained pore size distribution is shown in FIGS. The peak of pores having a pore diameter of 0.5 nm to 5 nm was 0.05 ml / g.

さらに、窒素吸着式表面積測定装置(株式会社アムコ製、ソープトマチック)を使用して、窒素吸着によりBET比表面積を測定した。得られたBET比表面積は、20.4m/gであった。測定結果を、表2に示す。 Furthermore, the BET specific surface area was measured by nitrogen adsorption using a nitrogen adsorption surface area measuring apparatus (manufactured by Amco Corporation, Soapmatic). The BET specific surface area obtained was 20.4 m 2 / g. The measurement results are shown in Table 2.

(実施例2)
実施例1と同じ製造方法で得られたALCパネルについて、平均相対湿度が約90%、かつ、大気中炭酸ガス濃度(約0.03%)の雰囲気中で、含水率10〜15質量%の試験体を、6ヶ月、静置したALCパネルから採取した一部について、実施例1と同様に、吸着時と脱着時の水蒸気吸着等温線を得た。
(Example 2)
About the ALC panel obtained by the same manufacturing method as Example 1, the average relative humidity is about 90%, and the moisture content is 10 to 15% by mass in an atmosphere of carbon dioxide concentration (about 0.03%) in the atmosphere. For a part of the test specimen collected from the ALC panel that was allowed to stand for 6 months, in the same manner as in Example 1, water vapor adsorption isotherms during adsorption and desorption were obtained.

炭酸化度を前述の特許第3451616号公報を参照して測定したところ、25%であった。得られた水蒸気吸着等温線を、図1に示す。図1からヒステリシスの大きさを算出したところ、0.049であった。   When the carbonation degree was measured with reference to the aforementioned Japanese Patent No. 3451616, it was 25%. The obtained water vapor adsorption isotherm is shown in FIG. The magnitude of hysteresis calculated from FIG. 1 was 0.049.

さらに、実施例1と同様に、窒素吸着により細孔径分布を測定した。得られた細孔径分布を、図3に示す。細孔径が0.5nm〜5nmの細孔のピークは、0.09ml/gであった。   Further, as in Example 1, the pore size distribution was measured by nitrogen adsorption. The obtained pore size distribution is shown in FIG. The peak of pores having a pore diameter of 0.5 nm to 5 nm was 0.09 ml / g.

さらに、実施例1と同様に、窒素吸着によりBET比表面積を測定した。得られたBET比表面積を、表2に示す。   Further, as in Example 1, the BET specific surface area was measured by nitrogen adsorption. The obtained BET specific surface area is shown in Table 2.

(実施例3)
実施例1と同じ製造方法で得られたALCパネルについて、平均相対湿度が約65%、かつ、炭酸ガス濃度0.3%の雰囲気中で、含水率3〜5質量%の試験体を、6ヶ月、静置したALCパネルから採取した一部について、実施例1と同様に、吸着時と脱着時の水蒸気吸着等温線を得た。
(Example 3)
For an ALC panel obtained by the same production method as in Example 1, a specimen having a moisture content of 3 to 5% by mass in an atmosphere having an average relative humidity of about 65% and a carbon dioxide gas concentration of 0.3% was obtained. For a part collected from the ALC panel left still for months, as in Example 1, water vapor adsorption isotherms during adsorption and desorption were obtained.

炭酸化度を前述の特許第3451616号公報を参照して測定したところ、50%であった。得られた水蒸気吸着等温線を、図1に示す。図1からヒステリシスの大きさを算出したところ、0.065であった。   When the carbonation degree was measured with reference to the aforementioned Japanese Patent No. 3451616, it was 50%. The obtained water vapor adsorption isotherm is shown in FIG. The magnitude of hysteresis calculated from FIG. 1 was 0.065.

さらに、実施例1と同様に、窒素吸着により細孔径分布を測定した。得られた細孔径分布を、図3に示す。細孔径が0.5nm〜5nmの細孔のピークは、0.22ml/gであった。   Further, as in Example 1, the pore size distribution was measured by nitrogen adsorption. The obtained pore size distribution is shown in FIG. The peak of pores having a pore diameter of 0.5 nm to 5 nm was 0.22 ml / g.

さらに、実施例1と同様に、窒素吸着によりBET比表面積を測定した。得られたBET比表面積を、表2に示す。   Further, as in Example 1, the BET specific surface area was measured by nitrogen adsorption. The obtained BET specific surface area is shown in Table 2.

(実施例4)
実施例1と同じ製造方法で得られたALCパネルについて、平均相対湿度が約90%、かつ、炭酸ガス濃度0.3%の雰囲気中で、含水率10〜15質量%の試験体を、6ヶ月、静置したALCパネルから採取した一部について、実施例1と同様に、吸着時と脱着時の水蒸気吸着等温線を得た。
Example 4
For an ALC panel obtained by the same production method as in Example 1, a test specimen having a moisture content of 10 to 15% by mass in an atmosphere having an average relative humidity of about 90% and a carbon dioxide gas concentration of 0.3% was obtained. For a part collected from the ALC panel left still for months, as in Example 1, water vapor adsorption isotherms during adsorption and desorption were obtained.

炭酸化度を前述の特許第3451616号公報を参照して測定したところ、60%であった。得られた水蒸気吸着等温線を、図1に示す。図1からヒステリシスの大きさを算出したところ、0.073であった。   The degree of carbonation was measured with reference to the aforementioned Japanese Patent No. 3451616 and found to be 60%. The obtained water vapor adsorption isotherm is shown in FIG. The magnitude of the hysteresis calculated from FIG. 1 was 0.073.

さらに、実施例1と同様に、窒素吸着により細孔径分布を測定した。得られた細孔径分布を、図3に示す。細孔径が0.5nm〜5nmの細孔のピークは、0.28ml/gであった。   Further, as in Example 1, the pore size distribution was measured by nitrogen adsorption. The obtained pore size distribution is shown in FIG. The peak of pores having a pore diameter of 0.5 nm to 5 nm was 0.28 ml / g.

さらに、実施例1と同様に、窒素吸着によりBET比表面積を測定した。得られたBET比表面積を、表2に示す。   Further, as in Example 1, the BET specific surface area was measured by nitrogen adsorption. The obtained BET specific surface area is shown in Table 2.

(実施例5)
実施例1と同じ製造方法で得られたALCパネルについて、平均相対湿度が約65%、かつ、大気中炭酸ガス濃度(約0.03%)の雰囲気中で、含水率3〜5質量%の試験体を、10年、静置したALCパネルから採取した一部について、実施例1と同様に、吸着時と脱着時の水蒸気吸着等温線を得た。
(Example 5)
About the ALC panel obtained by the same manufacturing method as Example 1, the average relative humidity is about 65% and the moisture content is 3 to 5% by mass in an atmosphere of carbon dioxide gas concentration (about 0.03%) in the atmosphere. For a part of the specimen collected from the ALC panel which was left standing for 10 years, the water vapor adsorption isotherm during adsorption and desorption was obtained in the same manner as in Example 1.

炭酸化度を前述の特許第3451616号公報を参照して測定したところ、30%であった。得られた水蒸気吸着等温線を、図2に示す。図2からヒステリシスの大きさを算出したところ、0.106であった。   The degree of carbonation was measured with reference to the aforementioned Japanese Patent No. 3451616 and found to be 30%. The obtained water vapor adsorption isotherm is shown in FIG. The magnitude of hysteresis was calculated from FIG. 2 and found to be 0.106.

さらに、実施例1と同様に、窒素吸着により細孔径分布を測定した。得られた細孔径分布を、図4に示す。細孔径が0.5nm〜5nmの細孔のピークは、0.04ml/gであった。   Further, as in Example 1, the pore size distribution was measured by nitrogen adsorption. The obtained pore size distribution is shown in FIG. The peak of pores having a pore diameter of 0.5 nm to 5 nm was 0.04 ml / g.

さらに、実施例1と同様に、窒素吸着によりBET比表面積を測定した。得られたBET比表面積を、表2に示す。   Further, as in Example 1, the BET specific surface area was measured by nitrogen adsorption. The obtained BET specific surface area is shown in Table 2.

(実施例6)
実施例1と同じ製造方法で得られたALCパネルについて、平均相対湿度が約65%、かつ、大気中炭酸ガス濃度(約0.03%)の雰囲気中で、含水率3〜5質量%の試験体を、22年、静置したALCパネルから採取した一部について、実施例1と同様に、吸着時と脱着時の水蒸気吸着等温線を得た。
(Example 6)
About the ALC panel obtained by the same manufacturing method as Example 1, the average relative humidity is about 65% and the moisture content is 3 to 5% by mass in an atmosphere of carbon dioxide gas concentration (about 0.03%) in the atmosphere. The water vapor adsorption isotherm at the time of adsorption and desorption was obtained in the same manner as in Example 1 for a part of the specimen collected from the ALC panel which was left standing for 22 years.

炭酸化度を前述の特許第3451616号公報を参照して測定したところ、50%であった。得られた水蒸気吸着等温線を、図2に示す。図2からヒステリシスの大きさを算出したところ、0.150であった。   When the carbonation degree was measured with reference to the aforementioned Japanese Patent No. 3451616, it was 50%. The obtained water vapor adsorption isotherm is shown in FIG. The magnitude of hysteresis was calculated from FIG. 2 and found to be 0.150.

さらに、実施例1と同様に、窒素吸着によりBET比表面積を測定した。得られたBET比表面積を、表2に示す。   Further, as in Example 1, the BET specific surface area was measured by nitrogen adsorption. The obtained BET specific surface area is shown in Table 2.

(実施例7)
実施例1と同じ製造方法で得られたALCパネルについて、平均相対湿度が約65%、かつ、大気中炭酸ガス濃度(約0.03%)の雰囲気中で、含水率3〜5質量%の試験体を、30年、静置したALCパネルから採取した一部について、実施例1と同様に、吸着時と脱着時の水蒸気吸着等温線を得た。
(Example 7)
About the ALC panel obtained by the same manufacturing method as Example 1, the average relative humidity is about 65% and the moisture content is 3 to 5% by mass in an atmosphere of carbon dioxide gas concentration (about 0.03%) in the atmosphere. For a part of the specimen collected from the ALC panel which was left standing for 30 years, the water vapor adsorption isotherm during adsorption and desorption was obtained in the same manner as in Example 1.

炭酸化度を前述の特許第3451616号公報を参照して測定したところ、59%であった。得られた水蒸気吸着等温線を、図2に示す。図2からヒステリシスの大きさを算出したところ、0.251であった。   The degree of carbonation was measured with reference to the aforementioned Japanese Patent No. 3451616, and it was 59%. The obtained water vapor adsorption isotherm is shown in FIG. It was 0.251 when the magnitude | size of the hysteresis was computed from FIG.

さらに、実施例1と同様に、窒素吸着により細孔径分布を測定した。得られた細孔径分布を、図4に示す。細孔径が0.5nm〜5nmの細孔のピークは、0.03ml/gであった。   Further, as in Example 1, the pore size distribution was measured by nitrogen adsorption. The obtained pore size distribution is shown in FIG. The peak of pores having a pore diameter of 0.5 nm to 5 nm was 0.03 ml / g.

さらに、実施例1と同様に、窒素吸着によりBET比表面積を測定した。得られたBET比表面積を、表2に示す。   Further, as in Example 1, the BET specific surface area was measured by nitrogen adsorption. The obtained BET specific surface area is shown in Table 2.

図1および図2に示したように、水蒸気吸着等温線におけるヒステリシスは、脱着時の平衡含水率が吸着時よりも高く、かつ、相対圧力(P/Ps)が0.4付近で閉じ、差が小さくなる。急激な劣化履歴である実施例2〜4では、ヒステリシスがほとんど見られず、緩やかな劣化履歴である実施例5〜7では、典型的なヒステリシスを持っていた。   As shown in FIG. 1 and FIG. 2, the hysteresis in the water vapor adsorption isotherm is such that the equilibrium moisture content at the time of desorption is higher than that at the time of adsorption, and the relative pressure (P / Ps) closes around 0.4. Becomes smaller. In Examples 2 to 4 which are rapid deterioration histories, almost no hysteresis was observed, and in Examples 5 to 7 which were gradual deterioration histories, typical hysteresis was obtained.

図3および図4に示したように、窒素吸着による細孔径分布においては、急激な劣化履歴である実施例2〜4では、細孔径が0.5nm〜5nmの領域に、顕著なピークを示すが、緩やかな劣化履歴である実施例5〜7では、細孔径が0.5nm〜5nmの領域に、ピークが全く見られない。   As shown in FIG. 3 and FIG. 4, in the pore diameter distribution by nitrogen adsorption, in Examples 2 to 4 which are rapid deterioration history, a remarkable peak is shown in the region where the pore diameter is 0.5 nm to 5 nm. However, in Examples 5 to 7, which have a gradual deterioration history, no peak is observed in the region where the pore diameter is 0.5 nm to 5 nm.

表2に示したように、急激な劣化履歴である実施例2〜4では、新品ALCである実施例1よりも、BET比表面積が大きく、緩やかな劣化履歴である実施例5〜7では、BET比表面積が小さい。   As shown in Table 2, in Examples 2 to 4 which are rapid deterioration histories, the BET specific surface area is larger than in Example 1 which is a new ALC, and in Examples 5 to 7 which are gradual deterioration histories, BET specific surface area is small.

ALCの主要鉱物は、トバモライトと原料から残留する珪石および石こうなどであり、これらの分量や、オートクレーブによる養生の状態によって、新品ALCであってもBET比表面積は異なる値となる。また、炭酸化劣化によってBET比表面積が変化するのはトバモライトであり、珪石と石こうのBET比表面積は、ほとんど変化しない。従って、BET比表面積の絶対値で判定するのは適当でなく、同じ条件で製造された新品ALCに対して、BET比表面積が大きいか、小さいかにより、劣化履歴を判定する。   The main minerals of ALC are tobermorite and silica and gypsum remaining from the raw material, and even if it is a new ALC, the BET specific surface area varies depending on the amount of these and the state of curing by autoclave. Moreover, it is tobermorite that a BET specific surface area changes by carbonation deterioration, and the BET specific surface area of a silica and a gypsum hardly changes. Therefore, it is not appropriate to determine the absolute value of the BET specific surface area, and the deterioration history is determined based on whether the BET specific surface area is large or small with respect to a new ALC manufactured under the same conditions.

水蒸気吸着等温線を示すグラフである。It is a graph which shows a water vapor | steam adsorption isotherm. 水蒸気吸着等温線を示すグラフである。It is a graph which shows a water vapor | steam adsorption isotherm. 窒素吸着により細孔径分布を示すグラフである。It is a graph which shows pore diameter distribution by nitrogen adsorption. 窒素吸着により細孔径分布を示すグラフである。It is a graph which shows pore diameter distribution by nitrogen adsorption.

Claims (6)

経年使用された軽量気泡コンクリートの劣化履歴判定方法であり、該軽量気泡コンクリートから採取した一部について、吸着時と脱着時の水蒸気吸着等温線を得て、得られる水蒸気吸着等温線の持つヒステリシスの大きさを、前記軽量気泡コンクリートにおける劣化履歴とすることを特徴とする軽量気泡コンクリートの劣化履歴判定方法。   This is a method for judging the deterioration history of lightweight aerated concrete that has been used for many years. For some of the samples taken from the lightweight aerated concrete, obtain water vapor adsorption isotherms at the time of adsorption and desorption, and the hysteresis of the water vapor adsorption isotherm obtained. A degradation history determination method for lightweight cellular concrete, characterized in that the size is a degradation history in the lightweight cellular concrete. 経年使用された軽量気泡コンクリートの劣化履歴判定方法であり、該軽量気泡コンクリートから採取した一部について、吸着時と脱着時の水蒸気吸着等温線を得て、相対圧0.6における吸着時平衡含水率Waと相対圧0.6における脱着時平衡含水率Wdとにより得られる水蒸気吸着等温線の持つヒステリシス(1−Wa/Wd)が0.1以上である軽量気泡コンクリートは、緩やかな劣化履歴を経たと判定し、かつ、前記ヒステリシス(1−Wa/Wd)が0.075以下である軽量気泡コンクリートは、急激な劣化履歴を経たと判定することを特徴とする軽量気泡コンクリートの劣化履歴判定方法。   Deterioration history determination method for light-weight aerated concrete used over time, obtaining water vapor adsorption isotherms during adsorption and desorption for a portion collected from the lightweight aerated concrete, and equilibrium moisture content during adsorption at a relative pressure of 0.6 The lightweight cellular concrete with a water vapor adsorption isotherm (1-Wa / Wd) of 0.1 or more obtained by the rate Wa and the equilibrium water content Wd at the time of desorption at a relative pressure of 0.6 has a moderate deterioration history. It is determined that the lightweight cellular concrete having the hysteresis (1-Wa / Wd) of 0.075 or less is determined to have undergone a rapid degradation history. . 経年使用された軽量気泡コンクリートの劣化履歴判定方法であり、該軽量気泡コンクリートから採取した一部について、窒素吸着により細孔径分布を測定して、細孔径が0.5nm〜5nmの細孔のピークを、前記軽量気泡コンクリートにおける劣化履歴とすることを特徴とする軽量気泡コンクリートの劣化履歴判定方法。   Deterioration history determination method for light-weight aerated concrete used over time, a pore diameter distribution of a portion collected from the light-weight aerated concrete is measured by nitrogen adsorption, and the pore diameter is 0.5 nm to 5 nm. Is a deterioration history judgment method of the lightweight cellular concrete, characterized in that the degradation history of the lightweight cellular concrete is used. 経年使用された軽量気泡コンクリートの劣化履歴判定方法であり、該軽量気泡コンクリートから採取した一部について、窒素吸着により細孔径分布を測定して、細孔径が0.5nm〜5nmの細孔のピークが、0.05ml/g以下である軽量気泡コンクリートは、緩やかな劣化履歴を経たと判定し、かつ、0.08ml/g以上である軽量気泡コンクリートは、急激な劣化履歴を経たと判定することを特徴とする軽量気泡コンクリートの劣化履歴判定方法。   Deterioration history determination method for light-weight aerated concrete used over time, a pore diameter distribution of a portion collected from the light-weight aerated concrete is measured by nitrogen adsorption, and the pore diameter is 0.5 nm to 5 nm. However, it is determined that lightweight cellular concrete having a volume of 0.05 ml / g or less has undergone a slow deterioration history, and lightweight cellular concrete having a capacity of 0.08 ml / g or greater has been determined to have undergone a rapid degradation history. Deterioration history judgment method for lightweight cellular concrete characterized by the above. 経年使用された軽量気泡コンクリートの劣化履歴判定方法であり、該軽量気泡コンクリートから採取した一部について、窒素吸着によりBET比表面積を測定して、得られるBET比表面積を、前記軽量気泡コンクリートにおける劣化履歴とすることを特徴とする軽量気泡コンクリートの劣化履歴判定方法。   Deterioration history determination method for light-weight cellular concrete used over time, for a part collected from the lightweight cellular concrete, by measuring the BET specific surface area by nitrogen adsorption, the resulting BET specific surface area is degraded in the lightweight cellular concrete A method for judging deterioration history of lightweight cellular concrete, characterized in that it is a history. 経年使用された軽量気泡コンクリートの劣化履歴判定方法であり、該軽量気泡コンクリートから採取した一部について、窒素吸着によりBET比表面積を測定して、得られる前記BET比表面積が、同一の方法で新たに製造された軽量気泡コンクリートから得られる前記BET比表面積と比して、小さい軽量気泡コンクリートは、緩やかな劣化履歴を経たと判定し、かつ、大きい軽量気泡コンクリートは、急激な劣化履歴を経たと判定することを特徴とする軽量気泡コンクリートの劣化履歴判定方法。   This is a deterioration history judgment method for lightweight cellular concrete that has been used over time. For a part collected from the lightweight cellular concrete, the BET specific surface area is measured by nitrogen adsorption, and the obtained BET specific surface area is newly determined by the same method. In comparison with the BET specific surface area obtained from the lightweight aerated concrete manufactured in the above, it is determined that the small lightweight aerated concrete has undergone a gradual deterioration history, and the large lightweight aerated concrete has undergone a rapid deterioration history. A method for determining a deterioration history of lightweight cellular concrete, characterized in that:
JP2005372777A 2005-12-26 2005-12-26 Degradation history judgment method for lightweight cellular concrete Active JP4610479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372777A JP4610479B2 (en) 2005-12-26 2005-12-26 Degradation history judgment method for lightweight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372777A JP4610479B2 (en) 2005-12-26 2005-12-26 Degradation history judgment method for lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JP2007171125A true JP2007171125A (en) 2007-07-05
JP4610479B2 JP4610479B2 (en) 2011-01-12

Family

ID=38297869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372777A Active JP4610479B2 (en) 2005-12-26 2005-12-26 Degradation history judgment method for lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP4610479B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032318A (en) * 2008-07-28 2010-02-12 Clion Co Ltd Deterioration diagnosis method of autoclaved lightweight concrete panel
JP2011209079A (en) * 2010-03-29 2011-10-20 Central Res Inst Of Electric Power Ind Method and device for measuring rock inside gap surface area by radon
CN105445159A (en) * 2015-11-11 2016-03-30 成都理工大学 Method for obtaining pore diameter distribution curve and sample specific surface area

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177083A (en) * 2001-12-11 2003-06-27 Sumitomo Kinzoku Kozan Siporex Kk Method for estimating degree of deterioration of alc panel
JP2004198311A (en) * 2002-12-19 2004-07-15 Sumitomo Kinzoku Kozan Siporex Kk Method for estimating degree of deterioration of alc panel
JP2004203672A (en) * 2002-12-25 2004-07-22 Asahi Kasei Construction Materials Co Ltd Lightweight cellular concrete having water repellency
JP2005298263A (en) * 2004-04-12 2005-10-27 Sumitomo Kinzoku Kozan Siporex Kk Lightweight cellular concrete having excellent carbonation resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177083A (en) * 2001-12-11 2003-06-27 Sumitomo Kinzoku Kozan Siporex Kk Method for estimating degree of deterioration of alc panel
JP2004198311A (en) * 2002-12-19 2004-07-15 Sumitomo Kinzoku Kozan Siporex Kk Method for estimating degree of deterioration of alc panel
JP2004203672A (en) * 2002-12-25 2004-07-22 Asahi Kasei Construction Materials Co Ltd Lightweight cellular concrete having water repellency
JP2005298263A (en) * 2004-04-12 2005-10-27 Sumitomo Kinzoku Kozan Siporex Kk Lightweight cellular concrete having excellent carbonation resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010029915, 柴田 純夫, "熱力学的アプローチによるセメント硬化体の劣化機構の解明", 室蘭工業大学CRDセンター ニュースレター, 200503, No. 81 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032318A (en) * 2008-07-28 2010-02-12 Clion Co Ltd Deterioration diagnosis method of autoclaved lightweight concrete panel
JP2011209079A (en) * 2010-03-29 2011-10-20 Central Res Inst Of Electric Power Ind Method and device for measuring rock inside gap surface area by radon
CN105445159A (en) * 2015-11-11 2016-03-30 成都理工大学 Method for obtaining pore diameter distribution curve and sample specific surface area
CN105445159B (en) * 2015-11-11 2021-08-13 成都理工大学 Method for obtaining pore size distribution curve and sample specific surface area

Also Published As

Publication number Publication date
JP4610479B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
Houst et al. Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste
Choi et al. Mechanical properties of mortar containing bio-char from pyrolysis
De Belie et al. Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations
Van den Heede et al. Transport properties of high-volume fly ash concrete: Capillary water sorption, water sorption under vacuum and gas permeability
Almeida et al. Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age
Gómez Soberón Relationship between gas adsorption and the shrinkage and creep of recycled aggregate concrete
Zhang et al. Enhancing Chloride Corrosion Resistance of Precast Reinforced Concrete by Carbonation Curing.
Saeidpour et al. Moisture equilibrium of cement based materials containing slag or silica fume and exposed to repeated sorption cycles
Soares et al. EN 998-1 performance requirements for thermal aerogel-based renders
Anderberg et al. Method for simultaneous determination of sorption isotherms and diffusivity of cement-based materials
JP4610479B2 (en) Degradation history judgment method for lightweight cellular concrete
Ismail et al. Hygric properties of wheat straw biocomposite containing natural additives intended for thermal insulation of buildings
Lenart Assessment of mortar shrinkage in aspect of organic and inorganic modifiers use
Herold et al. Measurement of porosity of ultra-high strength fibre reinforced concrete
Khan Nanostructure and microstructure of cement concrete incorporating multicementitious composites
Allen et al. Mechanical properties of hydraulic lime mortars
JP2000180437A (en) Method for diagnosing endurance of aerated lightweight concrete
JP2013231598A (en) Quantitative evaluation method of crack reduction effect by shrinkage-reducing material, and selection method of shrinkage-reducing material
Baghban et al. Effect of internal hydrophobation, silica fume and w/c on compressive strength of hardened cement pastes
Das et al. A comparative study for determining pore volume of concrete
Imamoto et al. Simplified evaluation of shrinking aggregate based on BET surface area using water vapor
JP2005104791A (en) Method of manufacturing lightweight cellular concrete
Koronthalyova et al. Hygroscopicity of non-matured and matured plasters
RU2776843C1 (en) Building mixture or coating for interior works
FOŘT et al. UTILIZATION OF SUPERABSORBENT POLYMERS IN PLASTERS FOR MODERATION OF INDOOR RELATIVE HUMIDITY LEVEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150