JP2007170976A - Detection system of position, direction, and equivalent magnetic moment of high accuracy lc resonance type magnetic marker - Google Patents

Detection system of position, direction, and equivalent magnetic moment of high accuracy lc resonance type magnetic marker Download PDF

Info

Publication number
JP2007170976A
JP2007170976A JP2005368926A JP2005368926A JP2007170976A JP 2007170976 A JP2007170976 A JP 2007170976A JP 2005368926 A JP2005368926 A JP 2005368926A JP 2005368926 A JP2005368926 A JP 2005368926A JP 2007170976 A JP2007170976 A JP 2007170976A
Authority
JP
Japan
Prior art keywords
marker
resonance type
coil
type magnetic
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005368926A
Other languages
Japanese (ja)
Inventor
Makoto Yabugami
信 薮上
Kenichi Arai
賢一 荒井
Yasuo Okazaki
靖雄 岡崎
Shuichiro Kase
修一郎 枦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005368926A priority Critical patent/JP2007170976A/en
Publication of JP2007170976A publication Critical patent/JP2007170976A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection system of the position, the direction, and the equivalent magnetic moment of a high accuracy LC resonance type magnetic marker for improving position accuracy by using not only an amplitude but also a phase as a measuring object. <P>SOLUTION: This system is equipped with an excitation coil, a plurality of detection coils facing to the excitation coil, an LC resonance type magnetic marker arranged between the excitation coil and the detection coils, a means for measuring an induction field from the LC resonance type magnetic marker by each detection coil of the plurality of detection coils when the excitation coil generates an alternating-current magnetic field synchronized with a resonance frequency of the LC resonance type magnetic marker, a means for measuring the first induced voltage by the detection coil in the state where the LC resonance type magnetic marker is set, a means for measuring the second induced voltage by the detection coil in the state where the LC resonance type magnetic marker is not set, a means for determining a phase difference θ between the first induced voltage and the second induced voltage, and a means for determining a contribution voltage of the LC resonance type magnetic marker based on the phase difference. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LC共振型磁気マーカの位置検出システムに係り、特に、位相計測による複数のLC共振型磁気マーカの位置、方向および等価的磁気モーメント(マーカコイルを鎖交する磁束量に比例)検出システムに関するものである。   The present invention relates to a position detection system for an LC resonance type magnetic marker, and in particular, detects the position, direction and equivalent magnetic moment (proportional to the amount of magnetic flux interlinked with a marker coil) of a plurality of LC resonance type magnetic markers by phase measurement. It is about the system.

生体内部や生体表面の部位の位置を磁気的な方法で精密に計測する場合には、計測部位に貼付するマーカは電気的引き出し線やバッテリをもたないことが望ましい。これまでに、光学的に遮蔽された空間の位置検出に適した方法として、永久磁石や着磁された磁性体の位置検出方法が開発されてきた(下記非特許文献1−5)。しかしこれらは直流磁界を計測対象としているため、地磁気や低周波雑音の影響を受けやすい欠点がある。   In the case where the position of a part inside the living body or the surface of the living body is accurately measured by a magnetic method, it is desirable that the marker attached to the measurement part does not have an electrical lead wire or a battery. So far, as a method suitable for detecting the position of an optically shielded space, a method for detecting the position of a permanent magnet or a magnetized magnetic material has been developed (the following Non-Patent Documents 1-5). However, since these measure a DC magnetic field, they are susceptible to the effects of geomagnetism and low-frequency noise.

一方、LC共振回路によるマーカの位置検出システムとしてはマサチューセッツ工科大学から報告がされている(下記非特許文献6)。しかしこれは、1個のコイルを用いて磁気マーカの位置を大まかに計測するものであり、位置精度は議論できておらず、mmオーダの精密な位置検出システムではない。また、マーカの位置および方向の5自由度を計測することは困難である。また、バッテリを内蔵したアクティブICタグによる位置検出方法も提案されている(下記非特許文献7)が、バッテリを内蔵することによる寸法や動作時間の制約や計測の時間的安定性等の問題がある。   On the other hand, Massachusetts Institute of Technology reports a marker position detection system using an LC resonance circuit (Non-Patent Document 6 below). However, this is to roughly measure the position of the magnetic marker using one coil, and the position accuracy has not been discussed, and it is not a precise position detection system on the order of mm. Moreover, it is difficult to measure the five degrees of freedom of the marker position and direction. Also, a position detection method using an active IC tag with a built-in battery has been proposed (Non-Patent Document 7 below), but there are problems such as restrictions on dimensions and operating time and time stability of measurement due to the built-in battery. is there.

本願発明者らは、これまで磁気マーカへの電気的引き出し線が不要であることと外来ノイズに影響を受けにくいことを両立することを目指して、LC共振回路によるマーカを用いた位置検出システムを提案した。マーカの誘導電圧の振幅を計測することにより、直径5mm、長さ10mmの磁気マーカを用いて、2mm程度の位置精度でマーカの位置が検出可能であることを示した(下記非特許文献8)。   The inventors of the present application aimed to achieve both the necessity of an electrical lead wire to the magnetic marker and the difficulty of being affected by external noise, and a position detection system using a marker by an LC resonance circuit. Proposed. By measuring the amplitude of the induced voltage of the marker, it was shown that the position of the marker can be detected with a positional accuracy of about 2 mm using a magnetic marker having a diameter of 5 mm and a length of 10 mm (Non-patent Document 8 below). .

位置検出システムにおいて、マーカ直径を1mm程度に小型化し、かつ1mm程度の位置精度で計測できれば、マーカを注射針やカテーテル等により生体内へ挿入し、高精度に位置が計測できるため、医療応用の可能性が現時的課題になると考えられる。
特開2005−121573号公報 F.Grant,G.West,Interpretation Theory in Applied Geophysics.New York:McGraw−Hill,1965,pp.306−381. S.V.Marshall,Vehicle Detection Using a Magnetic Field Sensor,IEEE Trans.Vehicular Technology,vol.VT−27,pp.65−68,(1978). W.M.Wynu,C.P.Frahm,P.J.Carroll,R.H.Clark,J.Wellhoner,M.J.Wynn,Advanced Supperconducting Gradiometer/Magnetometer Arrays and A Novel Signal Processing Technique,IEEE Trans.Magn.vol.MAG−11,pp.701−707,(1974). J.E.Mcfee,Y.Das,Determination of the Parameters of a Dipole by Mesurement of its Magnetic Field,IEEE Trans.Antennas and Propagation,vol.AP−29,pp.282−287,(1981). S.Yabukami,K.Arai,H.Kanetaka,S.Tsuji,and K.I.Arai,Journal of the Magnetics Society of Japan,vol.28,pp.711−717,(2004). J.A.Paradiso,K.Hsiao,J.Stricken,J.Lifton,A.Adler,IBM Systems Journal,vol.39,No.3&4,pp.892−914,(2000). S.Watanabe,S.Nishiyama,N.Koshizuka,and K.Sakamura,MWE 2003 Microwave Workshop,pp.245−250,(2003). S.Yabukami,S.Hashi,Y.Tokunaga,T.Kohno,K.I.Arai,and Y.Okazaki,Journal of the Magnetics Society of Japan,vol.28,pp.877−885,(2004). T.Nakagawa,Y.Koyanagi,Experimental Data Analysis by the least square method,p.95−99,The University of Tokyo Press(1982).
In the position detection system, if the marker diameter is reduced to about 1 mm and can be measured with a position accuracy of about 1 mm, the marker can be inserted into the living body with an injection needle or a catheter and the position can be measured with high accuracy. Possibility is considered to be a current issue.
JP 2005-121573 A F. Grant, G.G. West, Interpretation Theory in Applied Geophysics. New York: McGraw-Hill, 1965, pp. 306-381. S. V. Marshall, Vehicle Detection Using a Magnetic Field Sensor, IEEE Trans. Vehicular Technology, vol. VT-27, pp. 65-68, (1978). W. M.M. Wynu, C.I. P. Frahm, P.A. J. et al. Carroll, R.A. H. Clark, J. et al. Wellhoner, M .; J. et al. Wynn, Advanced Supercomputing Gradiometer / Magnetometer Arrays and A Novel Signal Processing Technique, IEEE Trans. Magn. vol. MAG-11, pp. 701-707, (1974). J. et al. E. McFee, Y.M. Das, Determination of the Parameters of a Dipole by Measurement of it's Magnetic Field, IEEE Trans. Antennas and Propagation, vol. AP-29, pp. 282-287, (1981). S. Yabukami, K .; Arai, H .; Kanetaka, S .; Tsuji, and K.K. I. Arai, Journal of the Magnetics Society of Japan, vol. 28, pp. 711-717, (2004). J. et al. A. Paradiso, K .; Hsiao, J. et al. Stricken, J .; Lifton, A.M. Adler, IBM Systems Journal, vol. 39, no. 3 & 4, pp. 892-914, (2000). S. Watanabe, S.M. Nishiyama, N .; Koshizuka, and K.K. Sakamura, MWE 2003 Microwave Workshop, pp. 245-250, (2003). S. Yabukami, S .; Hashi, Y .; Tokunaga, T .; Kohno, K .; I. Arai, and Y.A. Okazaki, Journal of the Magnetics Society of Japan, vol. 28, pp. 877-885, (2004). T.A. Nakagawa, Y .; Koyanagi, Experimental Data Analysis by the least square method, p. 95-99, The University of Tokyo Press (1982).

そこで、本発明では、磁気マーカの誘導電圧の振幅だけでなく位相も計測対象としてマーカ位置の検出精度を向上させることを目指した。すなわち、上記特許文献1及び非特許文献8においては、マーカの電気的特性やマーカと各コイルの配置によっては、振幅のみからマーカの寄与電圧を求めるだけでは不十分な場合があった。さらに振幅のみを計測対象とする場合には1個のマーカあたり2つの周波数の信号の計測が必要であり、多数個のマーカの位置を検出する場合などに測定装置が煩雑になるといった問題があった。   Therefore, the present invention aims to improve the detection accuracy of the marker position by measuring not only the amplitude of the induced voltage of the magnetic marker but also the phase. In other words, in Patent Document 1 and Non-Patent Document 8, it may not be sufficient to obtain the marker contribution voltage only from the amplitude depending on the electrical characteristics of the marker and the arrangement of the marker and each coil. Furthermore, when only the amplitude is to be measured, it is necessary to measure signals of two frequencies per marker, and there is a problem that the measuring apparatus becomes complicated when detecting the positions of a large number of markers. It was.

さらに、本発明では個々の検出コイルを同数の高速ADコンバータへ並列に接続し、高速化およびSN比を高めることを意図した。これにより、生体内部や生体表面へマーカを挿入あるいは貼付するための現実的な寸法である、直径1mm程度のマーカの位置、方向および等価的磁気モーメントを計測することを目標とした。   Furthermore, the present invention intends to connect each detection coil to the same number of high-speed AD converters in parallel to increase the speed and the S / N ratio. Thus, the objective was to measure the position and direction of the marker having a diameter of about 1 mm and the equivalent magnetic moment, which are realistic dimensions for inserting or sticking the marker into the living body or on the surface of the living body.

上記の目標に基づく位置検出システムを開発し、マーカ用コイルとして、直径1.2mm、長さ10mmの大きさを有する微細なマーカを3次元的な100mm程度の移動で1mm程度の絶対位置精度で計測可能であることを示した。またリアルタイムにマーカの位置を表示可能とした。   A position detection system based on the above target was developed, and a fine marker having a diameter of 1.2 mm and a length of 10 mm was used as a marker coil with a three-dimensional movement of about 100 mm with an absolute position accuracy of about 1 mm. It was shown that measurement is possible. The marker position can be displayed in real time.

すなわち、本発明は、上記状況に鑑みて、磁気マーカの誘導電圧の振幅だけでなく位相も計測対象としてマーカ位置の検出精度を向上させることができる高精度LC共振型磁気マーカの位置、方向および等価的磁気モーメントの検出システムを提供することを目的とする。   That is, in view of the above situation, the present invention provides the position, direction, and direction of a high-accuracy LC resonance type magnetic marker that can improve the detection accuracy of the marker position as a measurement target in addition to the amplitude of the induced voltage of the magnetic marker. An object is to provide an equivalent magnetic moment detection system.

本発明は、上記目的を達成するために、
〔1〕高精度LC共振型磁気マーカの位置、方向および等価的磁気モーメントの検出システムにおいて、励磁コイルと、この励磁コイルと対向する複数の検出コイルと、前記励磁コイルと前記検出コイルとの間に配置されるLC共振型磁気マーカと、前記励磁コイルは前記LC共振型磁気マーカの共振周波数に同調させた交流磁界を発生させ、前記LC共振型磁気マーカからの誘導磁界を前記複数の検出コイルの各検出コイルで計測する手段と、前記LC共振型磁気マーカをセットした状態での前記検出コイルによる第1の誘起電圧を計測する手段と、前記LC共振型磁気マーカをセットしない状態での前記検出コイルによる第2の誘起電圧を計測する手段と、前記第1の誘起電圧と前記第2の誘起電圧の位相差を求める手段と、前記位相差に基づいて前記LC共振型磁気マーカの電圧を求める手段とを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a system for detecting the position, direction, and equivalent magnetic moment of a high-accuracy LC resonance type magnetic marker, an excitation coil, a plurality of detection coils opposed to the excitation coil, and between the excitation coil and the detection coil And the exciting coil generates an alternating magnetic field tuned to a resonance frequency of the LC resonant magnetic marker, and an induced magnetic field from the LC resonant magnetic marker is detected by the plurality of detection coils. Means for measuring with each detection coil, means for measuring a first induced voltage by the detection coil in a state in which the LC resonance type magnetic marker is set, and the state in which the LC resonance type magnetic marker is not set. Means for measuring a second induced voltage by the detection coil; means for determining a phase difference between the first induced voltage and the second induced voltage; and the phase difference. Based characterized by comprising a means for obtaining a voltage of the LC resonant magnetic marker.

〔2〕上記〔1〕記載の高精度LC共振型磁気マーカの位置、方向および等価的磁気モーメントの検出システムにおいて、前記計測手段は、前記複数の検出コイルの各検出コイル同数の高速ADコンバータへ並列に接続し、高速化およびSN比を高めることを特徴とする。   [2] In the detection system for the position, direction, and equivalent magnetic moment of the high-accuracy LC resonant magnetic marker described in [1] above, the measurement means may convert the detection coils to the same number of high-speed AD converters as the detection coils. It is characterized by being connected in parallel to increase the speed and the SN ratio.

本発明によれば、以下のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

位相計測による複数マーカの位置検出を行うことができる。つまり、本システムは励磁コイル、検出コイル、LC共振型マーカから構成され、LC共振型マーカの共振周波数に同調させた交流磁界を励磁し、マーカからの誘導磁界を各検出コイルで計測して、マーカの位置、方向および等価的磁気モーメント(マーカコイルを鎖交する磁束量に比例)を最適化する。その場合、図4のベクトル図に記載したように、マーカからの誘導磁界による電圧Vmk(ベクトル量)を求める際にマーカの誘導電圧によるの位相変化Δθを用いるようにした。 The position of a plurality of markers can be detected by phase measurement. That is, this system is composed of an excitation coil, a detection coil, and an LC resonance type marker, excites an AC magnetic field tuned to the resonance frequency of the LC resonance type marker, measures the induction magnetic field from the marker with each detection coil, Optimize the marker position, orientation, and equivalent magnetic moment (proportional to the amount of magnetic flux linking the marker coil). In this case, as described in the vector diagram of FIG. 4, the phase change Δθ due to the induced voltage of the marker is used when obtaining the voltage V mk (vector amount) due to the induced magnetic field from the marker.

本発明の高精度LC共振型磁気マーカの位置、方向および等価的磁気モーメント(マーカコイルを鎖交する磁束量に比例)の検出システムは、励磁コイルと、この励磁コイルと対向する複数の検出コイルと、前記励磁コイルと前記検出コイルとの間に配置されるLC共振型磁気マーカと、前記励磁コイルは前記LC共振型磁気マーカの共振周波数に同調させた交流磁界を発生させ、前記LC共振型磁気マーカからの誘導磁界を前記複数の検出コイルの各検出コイルで計測する手段と、前記LC共振型磁気マーカをセットした状態での前記検出コイルによる第1の誘起電圧を計測する手段と、前記LC共振型磁気マーカをセットしない状態での前記検出コイルによる第2の誘起電圧を計測する手段と、前記第1の誘起電圧と前記第2の誘起電圧の位相差を求める手段と、前記位相差に基づいて前記LC共振型磁気マーカの電圧を求める手段とを具備する。   The detection system of the position, direction and equivalent magnetic moment (proportional to the amount of magnetic flux interlinking the marker coil) of the high-accuracy LC resonance type magnetic marker of the present invention includes an excitation coil and a plurality of detection coils opposed to the excitation coil. And an LC resonance type magnetic marker disposed between the excitation coil and the detection coil, and the excitation coil generates an alternating magnetic field tuned to a resonance frequency of the LC resonance type magnetic marker, and the LC resonance type Means for measuring the induced magnetic field from the magnetic marker with each of the detection coils, means for measuring a first induced voltage by the detection coil in a state where the LC resonance type magnetic marker is set, and Means for measuring a second induced voltage by the detection coil in a state where the LC resonance type magnetic marker is not set, the first induced voltage and the second induced voltage Comprising means for determining the phase difference, and means for determining the voltage of the LC resonant magnetic marker based on the phase difference.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(1)位相情報を用いた位置、方向およびおよび等価的磁気モーメントの検出方法
(1−1)全体の測定手順
図1は本発明にかかる高精度LC共振型磁気マーカによる位置および方向の検出システムの模式図、図2は本発明にかかる高精度LC共振型磁気マーカの位置および方向を求めるためのフローチャートである。
(1) Position, direction and equivalent magnetic moment detection method using phase information (1-1) Overall measurement procedure FIG. 1 shows a position and direction detection system using a high-accuracy LC resonance type magnetic marker according to the present invention. FIG. 2 is a flowchart for obtaining the position and direction of the high-accuracy LC resonance type magnetic marker according to the present invention.

本発明の高精度LC共振型磁気マーカによる位置および方向の検出システムは、この図1に示すように、励磁コイル1と、複数の検出コイル2、LC共振型磁気マーカ3から構成される。このシステムでは、励磁コイル1によりLC共振型磁気マーカ3の共振周波数に同調させた交流磁界を発生させてLC共振型磁気マーカ3を励磁し、このLC共振型磁気マーカ3からの誘導磁界を各検出コイル2で計測して、LC共振型磁気マーカ3からの誘導磁界をダイポール磁界と仮定してLC共振型磁気マーカ3の位置、方向および等価的磁気モーメント(マーカコイルを鎖交する磁束量に比例)を最適化するものである。   The position and direction detection system using the high-accuracy LC resonance type magnetic marker of the present invention comprises an excitation coil 1, a plurality of detection coils 2, and an LC resonance type magnetic marker 3, as shown in FIG. In this system, an alternating magnetic field tuned to the resonance frequency of the LC resonance type magnetic marker 3 is generated by the excitation coil 1 to excite the LC resonance type magnetic marker 3, and the induced magnetic field from the LC resonance type magnetic marker 3 is applied to each of the induction magnetic fields. Assuming that the induction magnetic field from the LC resonance type magnetic marker 3 is a dipole magnetic field measured by the detection coil 2, the position, direction and equivalent magnetic moment of the LC resonance type magnetic marker 3 (the amount of magnetic flux interlinking the marker coil) (Proportional) is optimized.

図2を参照しながら本発明にかかる高精度LC共振型磁気マーカの位置および方向を求める方法について説明する。   A method for obtaining the position and direction of the high-accuracy LC resonance type magnetic marker according to the present invention will be described with reference to FIG.

まず、励磁コイル1と検出コイル2をセットする(ステップS1)。   First, the excitation coil 1 and the detection coil 2 are set (step S1).

次に、LC共振型磁気マーカ3を取り去った状態で、配置した検出コイル2の誘起電圧を測定し、バックグラウンド電圧(Bbackground)とする(ステップS2)。 Next, with the LC resonance type magnetic marker 3 removed, the induced voltage of the arranged detection coil 2 is measured to obtain a background voltage (B background ) (step S2).

次に、LC共振型磁気マーカ3を配置して検出コイル2の誘起電圧(Btotal )を測定する(ステップS3)。 Next, the LC resonance type magnetic marker 3 is arranged, and the induced voltage (B total ) of the detection coil 2 is measured (step S3).

次に、LC共振型磁気マーカ3の有無による誘起電圧のベクトル的な差分を求めることで、LC共振型磁気マーカ3の寄与分(検出コイルiにおけるLC共振型磁気マーカからの誘起電圧B(i) m)が測定される(ステップS4)。 Next, by determining the vector difference of the induced voltage due to the presence or absence of the LC resonance type magnetic marker 3, the contribution of the LC resonance type magnetic marker 3 (the induced voltage B (i from the LC resonance type magnetic marker in the detection coil i ) ) m) is measured (step S4).

次に、LC共振型磁気マーカ3の位置および方向はLC共振型磁気マーカ3から発生する誘導磁界がダイポール磁界に近似できることを仮定して、下記(1)〜(3)式により位置および方向をGauss−Newton法(非特許文献9参照)により最適化処理する。   Next, assuming that the induced magnetic field generated from the LC resonance type magnetic marker 3 can approximate the dipole magnetic field, the position and direction of the LC resonance type magnetic marker 3 are determined by the following equations (1) to (3). Optimization processing is performed by the Gauss-Newton method (see Non-Patent Document 9).

(1−2)位相情報を用いた計測方法
図3は本願発明者らが既に提案した、振幅を用いた誘導電圧の計測の説明図、図4は本発明の位相を用いた誘導電圧の計測の説明図である。
(1-2) Measurement Method Using Phase Information FIG. 3 is an explanatory diagram of the measurement of the induced voltage using the amplitude, which has already been proposed by the present inventors, and FIG. 4 is the measurement of the induced voltage using the phase of the present invention. It is explanatory drawing of.

図3(a)は、特許文献1または非特許文献8に示される、誘導電圧の振幅を計測する際の磁気マーカの寄与電圧と、コイルの誘起電圧の関係をベクトル的に示したものである。
FIG. 3A is a vector diagram showing the relationship between the contribution voltage of the magnetic marker and the induced voltage of the coil when measuring the amplitude of the induced voltage shown in Patent Document 1 or Non-Patent Document 8. .

ここで、マーカの寄与電圧は下記式(4)のように求めた。   Here, the contribution voltage of the marker was obtained as in the following formula (4).

図3(b)は、マーカを挿入した状態における電圧振幅の周波数依存性を示したものであり、この電圧の極大値および極小値の2つの周波数成分を計測する必要があった。
FIG. 3B shows the frequency dependence of the voltage amplitude in the state where the marker is inserted, and it is necessary to measure two frequency components of the maximum value and the minimum value of this voltage.

また、図4(b)は、そのマーカの等価回路を模式的に示したものである。図4(b)中のLはインダクタンス、Cはコンデンサのキャパシタンス、Rは内部抵抗、Vは外部から与えられた交流磁界による誘起電圧を等価的な電圧源として表記したもの、Iは電圧源により回路中を流れる誘導電流を示した。
FIG. 4B schematically shows an equivalent circuit of the marker. In FIG. 4B, L is an inductance, C is a capacitance of a capacitor, R is an internal resistance, V is an induced voltage generated by an AC magnetic field given from the outside as an equivalent voltage source, and I is a voltage source. The induced current flowing in the circuit is shown.

共振周波数で計測することで最もSN比が高い計測が可能になるとともに、1マーカあたり1個の周波数でマーカの寄与電圧が計測可能になる。本発明では各検出コイルにおいてマーカがない状態での振幅、および両者の電圧の位相差を測定し、下記式(5)を用いてベクトル的に等価的なマーカ寄与電圧を求めた。   By measuring at the resonance frequency, measurement with the highest S / N ratio is possible, and the contribution voltage of the marker can be measured at one frequency per marker. In the present invention, the amplitude in the state where there is no marker in each detection coil and the phase difference between the two voltages are measured, and a vector-equivalent marker contribution voltage is obtained using the following equation (5).

3.位置検出システム
次に、位置検出システムについて説明する。
3. Position Detection System Next, the position detection system will be described.

図5は本発明にかかる試作した位置検出システムの構成を示す図である。   FIG. 5 is a diagram showing the configuration of a prototype position detection system according to the present invention.

計測システムは励磁コイル11、検出コイルアレイ12(20チャンネル)、LC共振型磁気マーカ13、ADコンバータおよびDAコンバータ14(NI PXI−6251:1台)、ADコンバータ15(NI PXI−6250:9台)、制御ユニット(NI PXI−8187)、プリアンプ16(SR560)から構成される。制御用プログラムはLab VIEW ver.7.1、位置および方向の最適化処理プログラムはVisual C++を用いて作成した。ADコンバータであるPXI−6251およびPXI−6250は500k sample/secのサンプリング速度で、1台あたり2チャンネルの16ビット信号を計測するモードで使用し、20チャンネルの検出コイルの誘起電圧を並列に取得できるように構成した。励磁コイルへの電圧はADコンバータおよびDAコンバータPXI−6251からの出力信号をアンプを介して励磁コイルへ接続した。すべてのADコンバータおよびDAコンバータはPXIシステムのため相互に同期が取れており、基準信号に対する位相差を計測可能である。LC共振型磁気マーカは励磁コイルと検出コイルから構成されるユニット内部に配置した。マーカの位置および方向の最適化処理はイーサーネット接続した別のパソコン〔Pentium(登録商標)(R)D,3.20GHz〕で演算し、マーカ位置を画面上に表示させた。   The measurement system includes an excitation coil 11, a detection coil array 12 (20 channels), an LC resonance type magnetic marker 13, an AD converter and a DA converter 14 (NI PXI-6251: 1 unit), and an AD converter 15 (NI PXI-6250: 9 units). ), A control unit (NI PXI-8187), and a preamplifier 16 (SR560). The control program is Lab VIEW ver. 7.1, A position and orientation optimization processing program was created using Visual C ++. The AD converters PXI-6251 and PXI-6250 are used in a mode to measure 16-bit signals of 2 channels per unit at a sampling rate of 500 ksample / sec, and the induced voltages of 20 channels of detection coils are acquired in parallel. Configured to be possible. For the voltage to the excitation coil, the output signal from the AD converter and DA converter PXI-6251 was connected to the excitation coil via an amplifier. All AD converters and DA converters are synchronized with each other because of the PXI system, and the phase difference with respect to the reference signal can be measured. The LC resonance type magnetic marker was arranged inside a unit composed of an excitation coil and a detection coil. The marker position and direction optimization processing was performed by another personal computer [Pentium (registered trademark) (R) D, 3.20 GHz] connected via Ethernet, and the marker position was displayed on the screen.

図6は本発明にかかる計測システムに用いたPXI制御コントローラ(ADコンバータとDAコンバータを内蔵)、プリアンプおよびディスプレイの写真である。図7は本発明にかかる励磁コイル、検出コイル、マーカの写真である。図7(a)は励磁コイルとマーカ配置を示したものである。励磁コイルおよび検出コイルはアクリルで作成した一辺150mmの立方体に配置し、励磁コイルと検出コイルの面は150mmの距離で対向させた。励磁コイルは一辺約150mmの正方形であり、直径1.0mmの銅線を20ターン施した。図7(b)は検出コイルアレイの写真を示し、図7(c)は検出コイルの配置を示したものである。検出コイルは線径0.2mmの銅線を直径23mm、125ターンのコイルに施し、同一平面上に20個配置した。検出コイルの直径は23mmであり、丸枠内の数値は検出コイルの番号を示している。検出コイルの配置位置は一辺150mmの立方体内部において局所解による影響が十分小さくなることを意図して設計した。   FIG. 6 is a photograph of the PXI controller (with built-in AD converter and DA converter), preamplifier, and display used in the measurement system according to the present invention. FIG. 7 is a photograph of an excitation coil, a detection coil, and a marker according to the present invention. FIG. 7A shows the excitation coil and marker arrangement. The excitation coil and the detection coil were arranged in a cube made of acrylic and having a side of 150 mm, and the surfaces of the excitation coil and the detection coil were opposed to each other at a distance of 150 mm. The exciting coil was a square having a side of about 150 mm, and 20 turns of a copper wire having a diameter of 1.0 mm was applied. FIG. 7 (b) shows a photograph of the detection coil array, and FIG. 7 (c) shows the arrangement of the detection coils. As the detection coil, a copper wire having a wire diameter of 0.2 mm was applied to a coil having a diameter of 23 mm and 125 turns, and 20 coils were arranged on the same plane. The diameter of the detection coil is 23 mm, and the numerical value in the round frame indicates the number of the detection coil. The arrangement position of the detection coil was designed with the intention of sufficiently reducing the influence of the local solution inside a cube having a side of 150 mm.

図8は本発明にかかる試作したLC共振型マーカの写真を示したものである。マーカはコイル、コンデンサを半田で直列に接続して作製した。マーカは2種類作成し、寸法は表1に示す。   FIG. 8 shows a photograph of a prototype LC resonance type marker according to the present invention. The marker was produced by connecting a coil and a capacitor in series with solder. Two types of markers are prepared, and the dimensions are shown in Table 1.

マーカ1は、直径5mm、長さ20mmのMnZnフェライト(TDK株式会社製EEシリーズ)の周囲に直径0.1mmの銅線を500ターン巻いて外形寸法が長さ20mm、直径約6mmとした。90kHzにおけるインダクタンスは約5.6mHであった。90kHzにおける性能指数は約60であった。コンデンサは、1nFのチップコンデンサ(ROHM社製MCHシリーズ)を使用した。 The marker 1 was formed by winding a copper wire having a diameter of 0.1 mm for 500 turns around a MnZn ferrite having a diameter of 5 mm and a length of 20 mm (EE series manufactured by TDK Corporation) to have an outer dimension of 20 mm in length and a diameter of about 6 mm. The inductance at 90 kHz was about 5.6 mH. The figure of merit at 90 kHz was about 60. As the capacitor, a 1 nF chip capacitor (ROCH MCH series) was used.

マーカ2は直径1mm、長さ10mmのMnZnフェライトの周囲に直径0.1mmの銅線を1層(77ターン)施したものである。それぞれマーカの共振周波数は約90kHzに設定した。共振周波数における性能指数は約10であった。マーカは非導体による3軸スキャナにより移動させた。   The marker 2 is obtained by applying one layer (77 turns) of a 0.1 mm diameter copper wire around a MnZn ferrite having a diameter of 1 mm and a length of 10 mm. The resonance frequency of each marker was set to about 90 kHz. The figure of merit at the resonant frequency was about 10. The marker was moved by a non-conductor triaxial scanner.

(4)実測結果
(4−1)振幅および位相の測定確度
図9は本発明にかかる計測システムにおける振幅および位相の計測確度を測定時間に対して示したものである。それぞれは1000回の測定における標準偏差から求めた。計測時間が長いほど振幅および位相の計測確度は高感度化し、ほぼ平均化回数の1/2乗に反比例した。例えば、測定時間が0.1秒(10Hz)であれば、振幅確度は約1.7μV、位相確度は5.1m度となった。図9(b)はこの測定装置を用いて、検出コイルからの距離が80mmの地点に微細なマーカ2(表1参照)を配置した時の各検出コイルの平均的な信号レベルと図9の振幅角度とのSN比を求めたものである。SN比は最大で100程度得られた。
(4) Measurement Result (4-1) Amplitude and Phase Measurement Accuracy FIG. 9 shows the amplitude and phase measurement accuracy in the measurement system according to the present invention with respect to the measurement time. Each was obtained from the standard deviation in 1000 measurements. The longer the measurement time, the higher the measurement accuracy of amplitude and phase, and it was almost inversely proportional to the average power of 1/2. For example, when the measurement time is 0.1 second (10 Hz), the amplitude accuracy is about 1.7 μV and the phase accuracy is 5.1 m. FIG. 9B shows an average signal level of each detection coil when the fine marker 2 (see Table 1) is arranged at a point where the distance from the detection coil is 80 mm using this measuring apparatus, and FIG. The S / N ratio with the amplitude angle is obtained. A maximum S / N ratio of about 100 was obtained.

図10(a)は市販のネットワークアナライザ(MS4630B)を本発明で使用したADコンバータの代わりに用い、マーカ2を用いて、上記と同一構成でのSN比を比較したものである。図10(b)はその際のマーカの絶対位置精度を示している。ネットワークアナライザのRBWは100Hz、平均化回数は10回とした。図10(b)の中心付近である約40mmの範囲において1mm以内の絶対位置精度が得られており、それに対するSN比は約50以上であった。このSN比は本発明における検出器を用いた場合のSN比を下回った。   FIG. 10A shows a comparison of the S / N ratio in the same configuration as described above using a commercially available network analyzer (MS4630B) instead of the AD converter used in the present invention and using the marker 2. FIG. 10B shows the absolute position accuracy of the marker at that time. The RBW of the network analyzer was 100 Hz, and the averaging count was 10 times. In the range of about 40 mm, which is near the center of FIG. 10B, an absolute position accuracy within 1 mm was obtained, and the SN ratio was about 50 or more. This SN ratio was lower than the SN ratio when the detector of the present invention was used.

以上から本発明で試作した計測部を用いて、1mm程度の絶対位置精度を得る際に必要な計測確度が得られたと言える。
(4−2)磁気マーカの位置および方向
図11は本発明にかかるマーカ1の位置および方向を示したものである。マーカは図8、表1で示した直径6mm、長さ20mmのマーカである。位置は検出コイルからの距離が80mmの位置を基準にして、x軸、y軸、z軸のそれぞれの方向へ10mm刻みで約100mm移動させた。ただし、検出コイルの座標系とマーカ移動用マイクロメータの座標系は一致していないため、得られたマーカの座標はわずかに傾いている。マーカ用コイルの法線方向は図中のy軸方向とほぼ平行になるように配置した。計測周期は1Hzとした。座標軸は図11中に示した。図11(a)はxz平面内での位置を示したものであり、図11(b)はyz平面内での位置を示した。■は実測値であり、破線は理論値である。破線は実測値の軌跡と平行かつほぼ対応するような直線で表記した。さらに:破線の中の◆は10mm刻みのマーカの位置を表し、マーカの理論的な位置を示した。図11(b)および図11(c)からマーカの位置は概ね正しく計測されていると判断される。図11(d)は絶対位置精度を示した。絶対位置精度は図11(a)および図11(b)における■と◆の3次元位置の距離で定義した。横軸は基準位置に対しての移動距離を正規化して示した。図11(d)によれば検出コイルの面から最大で130mmの距離以内で1.5mm以内の絶対位置精度が得られた。全体の約88%の測定点で1mm以内の絶対位置精度が得られた。
From the above, it can be said that the measurement accuracy necessary for obtaining the absolute position accuracy of about 1 mm was obtained using the measurement unit prototyped in the present invention.
(4-2) Position and Direction of Magnetic Marker FIG. 11 shows the position and direction of the marker 1 according to the present invention. The marker is a marker having a diameter of 6 mm and a length of 20 mm shown in FIG. The position was moved about 100 mm in 10 mm increments in the x-axis, y-axis, and z-axis directions, with the distance from the detection coil being 80 mm as a reference. However, since the coordinate system of the detection coil and the coordinate system of the marker moving micrometer do not match, the coordinates of the obtained marker are slightly inclined. The normal direction of the marker coil was arranged so as to be substantially parallel to the y-axis direction in the figure. The measurement cycle was 1 Hz. The coordinate axes are shown in FIG. FIG. 11A shows the position in the xz plane, and FIG. 11B shows the position in the yz plane. (2) is an actual measurement value, and a broken line is a theoretical value. The broken line is represented by a straight line parallel to and substantially corresponding to the trace of the actual measurement value. Furthermore: ◆ in the broken line represents the marker position in 10 mm increments, indicating the theoretical position of the marker. From FIG. 11 (b) and FIG. 11 (c), it is determined that the position of the marker is generally measured correctly. FIG. 11 (d) shows the absolute position accuracy. The absolute position accuracy was defined by the distance between the three-dimensional positions of ■ and ◆ in FIGS. 11 (a) and 11 (b). The abscissa shows the movement distance with respect to the reference position normalized. According to FIG. 11D, the absolute position accuracy within 1.5 mm is obtained within a maximum distance of 130 mm from the surface of the detection coil. Absolute position accuracy within 1 mm was obtained at about 88% of the measurement points.

図11(e)にはマーカの方向角を示した。φは方向ベクトルとz軸とのなす角である。実験した配置はコイルの法線成分がほぼy軸と平行であり、θは定義できないためφのみ記載した。横軸は基準点からの移動距離として表記した。φはおおむね0度近辺の値が得られた。絶対角度精度は±4度以内であった。   FIG. 11E shows the direction angle of the marker. φ is an angle formed by the direction vector and the z-axis. In the experimental arrangement, the normal component of the coil is almost parallel to the y-axis, and θ cannot be defined. The horizontal axis is expressed as the movement distance from the reference point. A value of about 0 degrees was obtained for φ. The absolute angle accuracy was within ± 4 degrees.

図12は本発明にかかる微細なマーカ2を用いて得られた位置および方向を示したものである。マーカの移動方法は図11と同一とした。計測周期は1Hzとした。   FIG. 12 shows the position and direction obtained using the fine marker 2 according to the present invention. The marker moving method was the same as in FIG. The measurement cycle was 1 Hz.

図12(a)はxy平面内のマーカの位置を示したものであり、図12(b)はxz平面内でのマーカの位置を示した。マーカの位置は概ね正確に計測された。図12(c)は絶対位置精度を示した。位置精度は実験した範囲で1.6mm以内であった。全測定点の中の約91%の点で絶対位置精度は1mm以内となり、概ね目標を達成したと考えられる。図12(d)は角度のプロファイルを示したものである。角度精度は概ね±4度以内であった。   FIG. 12A shows the position of the marker in the xy plane, and FIG. 12B shows the position of the marker in the xz plane. The marker position was measured approximately accurately. FIG. 12 (c) shows the absolute position accuracy. The positional accuracy was within 1.6 mm within the experimental range. The absolute position accuracy was within 1 mm at about 91% of all the measurement points, and it is considered that the target was generally achieved. FIG. 12D shows an angle profile. The angular accuracy was generally within ± 4 degrees.

(4−3)位置精度についての考察
図13は2種類のマーカを基準点(検出コイルアレイからの距離は約80mm)に配置した場合における各検出コイルに対して誤差電圧を示したものである。誤差電圧は下記(6)式によって算出した。
(4-3) Consideration on Positional Accuracy FIG. 13 shows error voltages for each detection coil when two types of markers are arranged at a reference point (the distance from the detection coil array is about 80 mm). . The error voltage was calculated by the following equation (6).

(i) error =V(i) mk−v(i) c …(6)
ただし、Vmkはマーカ寄与電圧の実測値、Vc は最適化処理された位置および方向を上記(2)式へ代入して得られた磁束密度を電圧に換算した計算値、iは検出コイルの番号である。
V (i) error = V (i) mk -v (i) c (6)
Where V mk is a measured value of the marker contribution voltage, V c is a calculated value obtained by converting the magnetic flux density obtained by substituting the optimized position and direction into the above equation (2), and i is a detection coil. Is the number.

図13によればマーカ1(コイル直径:6mm、コイル長さ:20mm)における誤差電圧は測定器のノイズレベルに比較して十分に大きく、このマーカを用いた位置精度はマーカおよび検出コイルの寸法効果によりダイポール磁界からの誤差が主要因と考えられる。   According to FIG. 13, the error voltage at the marker 1 (coil diameter: 6 mm, coil length: 20 mm) is sufficiently larger than the noise level of the measuring instrument, and the positional accuracy using this marker is the dimensions of the marker and the detection coil. Due to the effect, the error from the dipole magnetic field is considered as the main factor.

一方、微細なマーカ2(コイル直径:1.2mm、コイル長さ:10mm)における誤差電圧は測定器のノイズレベルに比較して若干大きいものの、ほぼ同程度のオーダであった。このためこのマーカにおける誤差要因はマーカおよび検出コイルの寸法効果と測定器のノイズがともに寄与していると考えられる。   On the other hand, although the error voltage in the fine marker 2 (coil diameter: 1.2 mm, coil length: 10 mm) was slightly larger than the noise level of the measuring instrument, it was almost on the same order. For this reason, it is considered that the error factor in this marker is caused by both the size effect of the marker and the detection coil and the noise of the measuring instrument.

上記したように、
(1)本発明のLC共振型磁気マーカの位置検出システムにより、位相情報を用いたリアルタイム動作による位置検出システムを開発することができた。
As mentioned above,
(1) With the LC resonance type magnetic marker position detection system of the present invention, a position detection system based on real-time operation using phase information could be developed.

(2)検出コイルからの最大距離130mm、一辺100mmの立方体内部において直径6mm、長さ20mmのマーカで絶対位置精度を1.5mm以内とすることができた。全測定点の約88%の点で絶対位置精度は1mm以内であった。   (2) The absolute position accuracy was within 1.5 mm with a marker having a diameter of 6 mm and a length of 20 mm inside a cube having a maximum distance of 130 mm from the detection coil and a side of 100 mm. The absolute position accuracy was within 1 mm at about 88% of all measurement points.

(3)マーカコイルの直径が約1.2mm、長さが10mmのマーカを用いて上記の範囲において絶対位置精度は1.6mm以内であった。全測定点の約91%の点で絶対位置精度は1mm以内であった。   (3) Using a marker having a marker coil diameter of about 1.2 mm and a length of 10 mm, the absolute position accuracy was within 1.6 mm within the above range. The absolute position accuracy was within 1 mm at about 91% of all measurement points.

また、本発明は、位相情報を用いた位置および方向のみならず、マーカの等価的磁気モーメントの検出を行うことができる。   Further, the present invention can detect not only the position and direction using phase information but also the equivalent magnetic moment of the marker.

図14は本発明にかかるマーカの等価的磁気モーメントをも検出する場合の磁界センサとマーカの配置を示す図、図15はマーカの正規化された位置(mm)に対するマーカが感じる磁界強度に比例する等価的磁気モーメント(Wbm)を示す図である。   FIG. 14 is a diagram showing the arrangement of the magnetic field sensor and the marker when detecting the equivalent magnetic moment of the marker according to the present invention, and FIG. 15 is proportional to the magnetic field intensity felt by the marker with respect to the normalized position (mm) of the marker. It is a figure which shows the equivalent magnetic moment (Wbm) to do.

図14に示すように、磁界センサ(ピックアップコイルアレイ)21は直方体の後方の一面に配置され、それに対して、Z軸方向に向いているLC共振型磁気マーカ22をX,Y,Zの各軸に平行に移動する。励磁コイル23は直方体の前方の面に配置されている。ここでは、Z軸に対しての移動は、磁界センサ21から遠ざかる方向を負方向とした。励磁コイル23は、図15の横軸で−30mm付近にある。   As shown in FIG. 14, a magnetic field sensor (pickup coil array) 21 is arranged on one surface behind a rectangular parallelepiped, and an LC resonance type magnetic marker 22 facing in the Z-axis direction is arranged for each of X, Y, and Z. Move parallel to the axis. The exciting coil 23 is disposed on the front surface of the rectangular parallelepiped. Here, for the movement with respect to the Z axis, the direction away from the magnetic field sensor 21 is defined as the negative direction. The exciting coil 23 is in the vicinity of −30 mm on the horizontal axis of FIG.

マーカ22が励磁コイル23から離れるにしたがって、マーカを鎖交する磁束は減少するため、等価的磁気モーメント(磁界強度に比例)は小さくなった。励磁コイル23付近で磁界は最大となった。等価的磁気モーメント値は極大となった。また、X方向およびY方向へ平行な方向の移動では、ほぼ等価的磁気モーメント値は変化しないものの、端部では若干減少している。これはマーカ22が励磁コイル23から発生する磁界のうち、Z軸成分を検出していることから考えれば、磁界強度のZ軸成分が端部ほど減少することは合理的な結果である。   As the marker 22 moves away from the exciting coil 23, the magnetic flux interlinking the marker decreases, so the equivalent magnetic moment (proportional to the magnetic field strength) is reduced. The magnetic field was maximized in the vicinity of the exciting coil 23. The equivalent magnetic moment value is maximized. In addition, in the movement in the direction parallel to the X direction and the Y direction, the equivalent magnetic moment value does not change, but slightly decreases at the end. Considering that the marker 22 detects the Z-axis component of the magnetic field generated from the exciting coil 23, it is a reasonable result that the Z-axis component of the magnetic field intensity decreases toward the end.

以上から、等価的磁気モーメントを求めることで、マーカコイルの法線方向の磁界を測定できることが示された。   From the above, it was shown that the magnetic field in the normal direction of the marker coil can be measured by obtaining the equivalent magnetic moment.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の高精度LC共振型磁気マーカの位置および方向の検出システムは、位相情報を用いたリアルタイム動作による位置検出システムとして利用可能である。   The position and direction detection system of the high-accuracy LC resonance type magnetic marker of the present invention can be used as a position detection system based on real-time operation using phase information.

本発明にかかる高精度LC共振型磁気マーカによる位置検出システムの模式図である。It is a schematic diagram of the position detection system by the high precision LC resonance type magnetic marker concerning this invention. 本発明にかかる高精度LC共振型磁気マーカの位置および方向を求めるためのフローチャートである。It is a flowchart for calculating | requiring the position and direction of the high precision LC resonance type | mold magnetic marker concerning this invention. 本願発明者らが既に提案した振幅を用いた誘導電圧の計測の説明図である。It is explanatory drawing of the measurement of the induced voltage using the amplitude which the present inventors already proposed. 本発明の位相を用いた誘導電圧の計測の説明図である。It is explanatory drawing of the measurement of the induced voltage using the phase of this invention. 本発明にかかる試作した位置検出システムの構成を示す図である。It is a figure which shows the structure of the position detection system made as a prototype concerning this invention. 本発明にかかる計測システムに用いたPXI制御コントローラ(ADコンバータとDAコンバータを内蔵)、プリアンプおよびディスプレイの写真(代用図)である。It is a photograph (substitute figure) of a PXI controller (built-in AD converter and DA converter), a preamplifier, and a display used for the measurement system concerning the present invention. 本発明にかかる励磁コイル、検出コイル、マーカの写真(代用図)である。It is a photograph (substitute figure) of the exciting coil, detection coil, and marker concerning this invention. 本発明にかかる試作したLC共振型マーカの写真(代用図)である。It is a photograph (substitute figure) of the LC resonance type marker made as a prototype according to the present invention. 本発明にかかる計測システムにおける振幅および位相の計測確度を測定時間に対して示した図である。It is the figure which showed the measurement accuracy of the amplitude in the measurement system concerning this invention with respect to measurement time. 本発明にかかるネットワークアナライザーを用いたSN比と位置精度の関係を示す図である。It is a figure which shows the relationship between SN ratio and position accuracy using the network analyzer concerning this invention. 本発明にかかるマーカ1の位置および方向を示した図である。It is the figure which showed the position and direction of the marker 1 concerning this invention. 本発明にかかる微細なマーカ2を用いて得られた位置および方向を示した図である。It is the figure which showed the position and direction obtained using the fine marker 2 concerning this invention. 本発明にかかる2種類のマーカを基準点(検出コイルアレイからの距離は約80mm)に配置した場合における各検出コイルに対して誤差電圧を示す図である。It is a figure which shows an error voltage with respect to each detection coil in case the two types of markers concerning this invention are arrange | positioned in the reference | standard point (the distance from a detection coil array is about 80 mm). 本発明にかかるマーカの等価的磁気モーメントをも検出する場合の磁界センサとマーカの配置を示す図である。It is a figure which shows arrangement | positioning of the magnetic field sensor and marker in the case of detecting also the equivalent magnetic moment of the marker concerning this invention. 正規化された位置(mm)に対するマーカが感じる磁界強度に比例する等価的磁気モーメント(Wbm)を示す図である。It is a figure which shows the equivalent magnetic moment (Wbm) proportional to the magnetic field intensity which the marker with respect to the normalized position (mm) senses.

符号の説明Explanation of symbols

1,11,23 励磁コイル
2,12 検出コイル
3,13,22 LC共振型磁気マーカ
14 ADコンバータおよびDAコンバータ
15 ADコンバータ
16 プリアンプ16
21 磁界センサ(ピックアップコイルアレイ)
DESCRIPTION OF SYMBOLS 1,11,23 Excitation coil 2,12 Detection coil 3,13,22 LC resonance type magnetic marker 14 AD converter and DA converter 15 AD converter 16 Preamplifier 16
21 Magnetic field sensor (Pickup coil array)

Claims (2)

(a)励磁コイルと、
(b)該励磁コイルと対向する複数の検出コイルと、
(c)前記励磁コイルと前記検出コイルとの間に配置されるLC共振型磁気マーカと、
(d)前記励磁コイルは前記LC共振型磁気マーカの共振周波数に同調させた交流磁界を発生させ、前記LC共振型磁気マーカからの誘導磁界を前記複数の検出コイルの各検出コイルで計測する計測手段と、
(e)前記LC共振型磁気マーカをセットした状態での前記検出コイルによる第1の誘起電圧を計測する手段と、
(f)前記LC共振型磁気マーカをセットしない状態での前記検出コイルによる第2の誘起電圧を計測する手段と、
(g)前記第1の誘起電圧と前記第2の誘起電圧の位相差を求める手段と、
(h)前記位相差に基づいて前記LC共振型磁気マーカの寄与電圧を求める手段とを具備することを特徴とする位相計測による高精度LC共振型磁気マーカの位置、方向および等価的磁気モーメントの検出システム。
(A) an exciting coil;
(B) a plurality of detection coils opposed to the excitation coil;
(C) an LC resonance type magnetic marker disposed between the excitation coil and the detection coil;
(D) Measurement in which the excitation coil generates an alternating magnetic field tuned to the resonance frequency of the LC resonance type magnetic marker, and an induction magnetic field from the LC resonance type magnetic marker is measured by each detection coil of the plurality of detection coils. Means,
(E) means for measuring a first induced voltage by the detection coil in a state where the LC resonance type magnetic marker is set;
(F) means for measuring a second induced voltage by the detection coil in a state where the LC resonance type magnetic marker is not set;
(G) means for determining a phase difference between the first induced voltage and the second induced voltage;
And (h) means for determining a contribution voltage of the LC resonance type magnetic marker based on the phase difference, and the position, direction and equivalent magnetic moment of the high precision LC resonance type magnetic marker by phase measurement. Detection system.
請求項1記載の高精度LC共振型磁気マーカの位置および等価的磁気モーメントの検出システムにおいて、前記計測手段は、前記複数の検出コイルの各検出コイル同数の高速ADコンバータへ並列に接続し、高速化およびSN比を高めることを特徴とする高精度LC共振型磁気マーカの位置、方向および等価的磁気モーメントの検出システム。   2. The system for detecting the position and equivalent magnetic moment of a high-accuracy LC resonant magnetic marker according to claim 1, wherein the measuring means is connected in parallel to the same number of high-speed AD converters as the detection coils of the plurality of detection coils. System for detecting the position, direction, and equivalent magnetic moment of a high-precision LC resonance type magnetic marker, characterized in that the SNR and the SN ratio are increased.
JP2005368926A 2005-12-22 2005-12-22 Detection system of position, direction, and equivalent magnetic moment of high accuracy lc resonance type magnetic marker Withdrawn JP2007170976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005368926A JP2007170976A (en) 2005-12-22 2005-12-22 Detection system of position, direction, and equivalent magnetic moment of high accuracy lc resonance type magnetic marker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005368926A JP2007170976A (en) 2005-12-22 2005-12-22 Detection system of position, direction, and equivalent magnetic moment of high accuracy lc resonance type magnetic marker

Publications (1)

Publication Number Publication Date
JP2007170976A true JP2007170976A (en) 2007-07-05

Family

ID=38297733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368926A Withdrawn JP2007170976A (en) 2005-12-22 2005-12-22 Detection system of position, direction, and equivalent magnetic moment of high accuracy lc resonance type magnetic marker

Country Status (1)

Country Link
JP (1) JP2007170976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088978A (en) * 2021-11-16 2022-02-25 中国电子科技集团公司第二十研究所 PXI structure-based calibration method and device for TACAN signal speed parameters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088978A (en) * 2021-11-16 2022-02-25 中国电子科技集团公司第二十研究所 PXI structure-based calibration method and device for TACAN signal speed parameters

Similar Documents

Publication Publication Date Title
CN104603628B (en) Magnetoresistive transducer, gradient former
Hashi et al. Wireless magnetic position-sensing system using optimized pickup coils for higher accuracy
CN103837900A (en) Underground cable locating method and device based on vector magnetic field detection
EP3122070A1 (en) Magnetoresistive audio collector
CN113866477B (en) Four-magnetic-core six-coil magnetic modulation high-precision ultra-large aperture current detection method and system
CN103454597A (en) Current-induction measuring device and method and sensitivity adjusting method
Zhang et al. Coil positioning based on DC pre-excitation and magnetic sensing for wireless electric vehicle charging
Hashi et al. Numerical study on the improvement of detection accuracy for a wireless motion capture system
JP2005121573A (en) Detection method of position and direction of wireless magnetic marker and its system
JP2004151056A (en) Weak magnetic field generation device and inspection method for magnetic field sensor
CN106443826A (en) EAS hard tag mass parameter detection device
CN106225657B (en) displacement sensor
Hashi et al. Wireless magnetic motion capture system using multiple LC resonant magnetic markers with high accuracy
Guo et al. Crosstalk analysis and current measurement correction in circular 3D magnetic sensors arrays
JP2007170976A (en) Detection system of position, direction, and equivalent magnetic moment of high accuracy lc resonance type magnetic marker
Hashi et al. Wireless magnetic motion capture system for multi-marker detection
CN206270515U (en) EAS hard tag mass parameter detection means
Hashi et al. Development of real-time and highly accurate wireless motion capture system utilizing soft magnetic core
JP2006177684A (en) Method of measuring position/direction using magnetic marker, and position/direction measuring method system
CN113484807A (en) Nested annular three-axis fluxgate sensor detection probe
CN109061528B (en) Three-axis planar magnetic sensor based on giant magneto-impedance effect
Hashi et al. Wireless magnetic motion capture system—Compensatory tracking of positional error caused by mutual inductance
Indrasari et al. A magnetic distance sensor with high sensitivity based on double secondary coil of fluxgate
CN109283476A (en) The low frequency intrinsic noise test macro and test method of Magnetic Sensor
CN109730770B (en) Method for reducing volume of magnetic field receiving unit and measuring magnetic field change rate, magnetic field receiving unit, electromagnetic tracking system and application

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303