JP2007170803A - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP2007170803A
JP2007170803A JP2006066156A JP2006066156A JP2007170803A JP 2007170803 A JP2007170803 A JP 2007170803A JP 2006066156 A JP2006066156 A JP 2006066156A JP 2006066156 A JP2006066156 A JP 2006066156A JP 2007170803 A JP2007170803 A JP 2007170803A
Authority
JP
Japan
Prior art keywords
compressor
pressure
pressure side
low
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006066156A
Other languages
Japanese (ja)
Inventor
Yasuo Sakamoto
泰生 坂本
Satoshi Tabei
聡 田部井
Shinji Sekine
信次 関根
Kazuhiko Mihara
一彦 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006066156A priority Critical patent/JP2007170803A/en
Publication of JP2007170803A publication Critical patent/JP2007170803A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that in a refrigerant circuit having a compressor, a condenser, a decompression device, and an evaporator annularly connected by piping in an air conditioner for air-conditioning a low temperature show case installed in a store such as a convenience store or for air-conditioning a store, the COP (Coefficient of Performance) is better when the high pressure side pressure of the compressor is low, but because the condensation pressure when the outside air temperature is low becomes remarkably low and the pressure difference between the high pressure side and the low pressure side becomes small, a refrigerant does not flow even when an expansion valve operates. <P>SOLUTION: In the refrigerating cycle device having the refrigerant circuit, when the outside temperature is low, capacity of the compressor and/or condensation capacity of the condenser is controlled so that the pressure difference between the low pressure side pressure and the high pressure side pressure of the compressor is a set value or within a set range. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧縮機、凝縮器、減圧装置及び蒸発器を環状に配管接続した冷媒回路によって構成される冷凍サイクルに関するものであり、特に低外気温時の運転制御に関するものである。   The present invention relates to a refrigeration cycle constituted by a refrigerant circuit in which a compressor, a condenser, a decompression device, and an evaporator are connected in a ring shape, and particularly relates to operation control at a low outside air temperature.

従来より、コンビニエンスストア等の店舗に設置される低温ショーケースや店舗内の空調をするための空気調和機は、圧縮機、凝縮器、減圧装置及び蒸発器を環状に配管接続した冷媒回路を備えている(特許文献1参照)。
特開平4−24446号公報
Conventionally, a low temperature showcase installed in a store such as a convenience store or an air conditioner for air conditioning in a store includes a refrigerant circuit in which a compressor, a condenser, a decompression device, and an evaporator are connected in a ring shape. (See Patent Document 1).
JP-A-4-24446

上記のような冷媒回路において、低外気温時には圧縮機の高圧側圧力が低くなり成績係数(COP)が良くなるものの、凝縮圧力が著しく低下してしまうため高圧側圧力と低圧側圧力の圧力差が小さくなってしまう。このような状態では、減圧装置の上流側(凝縮器側)の圧力もまた著しく低下してしまうため、減圧装置が開いた時に冷媒が蒸発器内に流れず、ショーケース等の冷却を行うことができないという問題があった。   In the refrigerant circuit as described above, the high pressure side pressure of the compressor is lowered and the coefficient of performance (COP) is improved at a low outside air temperature, but the condensing pressure is significantly reduced, so the pressure difference between the high pressure side pressure and the low pressure side pressure. Will become smaller. In such a state, since the pressure on the upstream side (condenser side) of the decompression device also decreases significantly, the refrigerant does not flow into the evaporator when the decompression device is opened, and the showcase and the like are cooled. There was a problem that could not.

本発明は係る従来の課題を解決するために成されたものであり、低外気温時において成績係数を良好に保つと共に、減圧装置の前後で所定の圧力差を確保することを目的とした冷凍サイクルを提供するものである。   The present invention has been made to solve the conventional problems, and is intended to maintain a good coefficient of performance at a low outside air temperature and to secure a predetermined pressure difference before and after the decompression device. Providing a cycle.

請求項1記載の発明は、容量制御可能な圧縮機、凝縮器、減圧装置及び蒸発器を配管接続した冷凍システムにおいて、前記凝縮器は凝縮能力の制御が可能な凝縮器であり、前記圧縮機の低圧側及び高圧側に設けられた圧力センサと、前記凝縮器の周囲の温度を計測する温度センサを備え、前記温度センサによって検出された外気温が所定値よりも高い時は前記低圧側圧力センサによって検出された低圧側圧力に応じて前記圧縮機の吐出容量及び前記凝縮器の凝縮能力を制御し、前記外気温が所定値よりも低い時は前記低圧側圧力センサ及び高圧側圧力センサによって検出された低圧側圧力と高圧側圧力の圧力差に応じて前記圧縮機の吐出容量及び前記凝縮器の凝縮能力を制御することを特徴とするものである。   The invention according to claim 1 is a refrigeration system in which a compressor, a condenser, a decompression device, and an evaporator whose capacity can be controlled are connected by piping, wherein the condenser is a condenser capable of controlling a condensation capacity, and the compressor Pressure sensors provided on the low pressure side and the high pressure side, and a temperature sensor for measuring the temperature around the condenser, and when the outside air temperature detected by the temperature sensor is higher than a predetermined value, the low pressure side pressure The discharge capacity of the compressor and the condensing capacity of the condenser are controlled according to the low pressure side pressure detected by the sensor. When the outside air temperature is lower than a predetermined value, the low pressure side pressure sensor and the high pressure side pressure sensor The discharge capacity of the compressor and the condensation capacity of the condenser are controlled according to the detected pressure difference between the low pressure side pressure and the high pressure side pressure.

請求項2記載の発明は、請求項1記載の冷凍システムにおいて、前記外気温が所定値よりも低く、前記圧力差が設定範囲の下限値を下回った場合、前記圧縮機の吐出容量を増加させると共に前記凝縮器の凝縮能力を低下させることを特徴とするものである。   According to a second aspect of the present invention, in the refrigeration system according to the first aspect, when the outside air temperature is lower than a predetermined value and the pressure difference falls below a lower limit value of a set range, the discharge capacity of the compressor is increased. At the same time, the condensation capacity of the condenser is reduced.

本発明によれば、容量制御可能な圧縮機、凝縮器、減圧装置及び蒸発器を配管接続した冷凍システムにおいて、前記凝縮器は凝縮能力の制御が可能な凝縮器であり、前記外気温が所定値より高い時は前記圧縮機の低圧側圧力に応じて前記凝縮器の凝縮能力を制御すると共に前記圧縮機の吐出容量を制御し、前記外気温が所定値より低い時は前記圧縮機の低圧側圧力と高圧側圧力の圧力差に応じて前記凝縮器の凝縮能力を制御すると共に前記圧縮機の吐出容量を制御する。特に前記外気温が所定値よりも低く、前記圧力差が設定範囲の下限値を下回った場合、前記凝縮器の凝縮能力を低下させることで凝縮圧力の下がり過ぎを防止し、前記圧縮機の吐出容量を増加させることで吐出圧力を上昇させ、前記減圧装置前後の圧力差を設定範囲内にすることができる。前記減圧装置が作動した際にはこの圧力差によって、冷媒が適正に減圧されて前記蒸発器内に流入するため、低外気温時においても冷却が可能となる。さらに、前記圧力差を設定範囲内にすることで、前記圧縮機の高圧側圧力の上昇によるCOPの低下を防ぐことができる。   According to the present invention, in a refrigeration system in which a compressor, a condenser, a decompression device, and an evaporator capable of capacity control are connected by piping, the condenser is a condenser capable of controlling a condensation capacity, and the outside air temperature is predetermined. When the air temperature is higher than the value, the condensing capacity of the condenser is controlled according to the low-pressure side pressure of the compressor and the discharge capacity of the compressor is controlled. When the outside air temperature is lower than the predetermined value, the low pressure of the compressor The condensation capacity of the condenser is controlled according to the pressure difference between the side pressure and the high pressure side pressure, and the discharge capacity of the compressor is controlled. In particular, when the outside air temperature is lower than a predetermined value and the pressure difference falls below the lower limit value of the setting range, the condensation capacity of the condenser is reduced to prevent the condensation pressure from being excessively lowered, and the compressor discharge By increasing the capacity, the discharge pressure can be increased, and the pressure difference before and after the pressure reducing device can be set within a set range. When the pressure reducing device is activated, the refrigerant is appropriately decompressed by this pressure difference and flows into the evaporator, so that cooling is possible even at a low outside temperature. Furthermore, by setting the pressure difference within a set range, it is possible to prevent a COP from being lowered due to an increase in the high-pressure side pressure of the compressor.

以下、図面に基づき本発明の実施形態を説明する。なお各図面において、破線により囲まれている箇所は減圧装置及び蒸発器を備えた低温ショーケースや空調機等の室内機を表している。また、各実施例において使用する冷媒はHFC系冷媒を想定しているが、これに限らず、HC系冷媒や二酸化炭素等の自然冷媒でも同様の効果を奏する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, a portion surrounded by a broken line represents an indoor unit such as a low-temperature showcase or an air conditioner provided with a decompression device and an evaporator. Moreover, although the refrigerant | coolant used in each Example assumes the HFC type | system | group refrigerant | coolant, it is not restricted to this, A natural refrigerant | coolant, such as HC type | system | group refrigerant | coolant and a carbon dioxide, has the same effect.

図1は本発明を適用した冷凍サイクルの冷媒回路である。図1において、1はインバータ制御可能な圧縮機(容量制御可能な圧縮機)、2は凝縮器、3は膨張弁(減圧装置)、4は蒸発器であり、これらによって前記冷凍サイクル装置の冷媒回路は構成されている。   FIG. 1 is a refrigerant circuit of a refrigeration cycle to which the present invention is applied. In FIG. 1, 1 is a compressor capable of inverter control (compressor capable of capacity control), 2 is a condenser, 3 is an expansion valve (decompression device), and 4 is an evaporator. The circuit is configured.

また、11は前記圧縮機1の容量を制御するコントローラであり、12は凝縮器温度センサ、13は外気温センサ、14は高圧側圧力センサ、15は低圧側圧力センサであり、各センサからの信号は前記コントローラ11に入力される。入力された信号によってコントローラ11は圧縮機1の容量を制御する。   Further, 11 is a controller for controlling the capacity of the compressor 1, 12 is a condenser temperature sensor, 13 is an outside air temperature sensor, 14 is a high pressure side pressure sensor, and 15 is a low pressure side pressure sensor. The signal is input to the controller 11. The controller 11 controls the capacity of the compressor 1 according to the input signal.

以上の構成で圧縮機1が起動されると、圧縮機1にて圧縮された高温高圧のガス冷媒は圧縮機1から吐出され、凝縮器2に入り冷却される。冷却された冷媒は気液混合状態となり、膨張弁3を介して蒸発器4に流入する。膨張弁3において冷媒は絞られることで減圧され、蒸発器4において蒸発することで冷却を行う。この蒸発器4において蒸発した低温低圧のガス冷媒は圧縮機1に再び吸い込まれ、冷凍サイクルが構成されている。   When the compressor 1 is started with the above configuration, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 and enters the condenser 2 to be cooled. The cooled refrigerant is in a gas-liquid mixed state and flows into the evaporator 4 via the expansion valve 3. The refrigerant is decompressed by being throttled in the expansion valve 3, and is cooled by being evaporated in the evaporator 4. The low-temperature and low-pressure gas refrigerant evaporated in the evaporator 4 is again sucked into the compressor 1 to constitute a refrigeration cycle.

なお、本実施例において、膨張弁3は蒸発器4の出口温度を検知する感温筒によって開度が変化するサーモバルブを用いているが、蒸発器4の出口温度に対応して電子的に開度が制御される電子膨張弁を使用しても構わない。   In this embodiment, the expansion valve 3 uses a thermo valve whose opening degree is changed by a temperature sensing cylinder that detects the outlet temperature of the evaporator 4, but electronically corresponding to the outlet temperature of the evaporator 4. An electronic expansion valve whose opening degree is controlled may be used.

コントローラ11は、外気温センサ13からの出力に基づき、例えば0℃以上などの常温時には、低圧側圧力センサ15からの入力を基に圧縮機1の容量を制御する。よって、蒸発器4が十分冷却されている場合は膨張弁3が閉じるため、低圧側圧力が低下し高圧側圧力が上昇する。   Based on the output from the outside air temperature sensor 13, the controller 11 controls the capacity of the compressor 1 based on the input from the low pressure side pressure sensor 15 at room temperature such as 0 ° C. or more. Therefore, when the evaporator 4 is sufficiently cooled, the expansion valve 3 is closed, so that the low-pressure side pressure decreases and the high-pressure side pressure increases.

この高圧側圧力の上昇により、冷凍サイクル装置のCOPが低下してしまうため、低圧側圧力センサ15が低圧側圧力の低下を検知した場合、コントローラ11は圧縮機1の容量を低減させ省エネ運転を行う。   Since the COP of the refrigeration cycle apparatus decreases due to the increase in the high pressure side pressure, when the low pressure side pressure sensor 15 detects a decrease in the low pressure side pressure, the controller 11 reduces the capacity of the compressor 1 and performs energy saving operation. Do.

また、ショーケース等の温度が上昇し、蒸発器4が冷却動作を開始すると、膨張弁3が開くため低圧側圧力が上昇し高圧側圧力が低下する。この状況が継続すると冷媒の不足による冷凍サイクル装置の冷却能力の低下や、圧力差の減少により冷媒が流れにくくなる。   Further, when the temperature of the showcase or the like rises and the evaporator 4 starts a cooling operation, the expansion valve 3 opens, so that the low pressure side pressure rises and the high pressure side pressure falls. If this situation continues, it becomes difficult for the refrigerant to flow due to a decrease in the cooling capacity of the refrigeration cycle apparatus due to a shortage of refrigerant and a decrease in pressure difference.

よって、低圧側圧力センサ15が低圧側圧力の上昇を検知した場合、コントローラ11は圧縮機1の容量を増加させ、高圧側圧力を高くすることで前記圧力差を大きくする。   Therefore, when the low pressure side pressure sensor 15 detects an increase in the low pressure side pressure, the controller 11 increases the capacity of the compressor 1 and increases the high pressure side pressure to increase the pressure difference.

一方、外気温が0℃以下のような低外気温時には、コントローラ11は低圧側圧力センサ15及び高圧側圧力センサ14の出力による圧力差に基づいて圧縮機1の制御を行う。   On the other hand, when the outside air temperature is low, such as 0 ° C. or less, the controller 11 controls the compressor 1 based on the pressure difference between the outputs of the low pressure side pressure sensor 15 and the high pressure side pressure sensor 14.

前記圧力差が設定値−αで表される下限値よりも小さい場合は冷媒が流れにくくなるため、コントローラ11は圧縮機1の容量を増加させ高圧側圧力を上昇させることで前記圧力差を維持する。   When the pressure difference is smaller than the lower limit value represented by the set value −α, the refrigerant becomes difficult to flow. Therefore, the controller 11 maintains the pressure difference by increasing the capacity of the compressor 1 and increasing the high-pressure side pressure. To do.

上記の制御により、前記圧力差を設定値−α(設定範囲の下限)以上にすることで、膨張弁3が作動した際には冷媒が適正に減圧され、前記ショーケース等において冷却を行うことができる。   By making the pressure difference equal to or greater than the set value −α (the lower limit of the set range) by the above control, the refrigerant is appropriately decompressed when the expansion valve 3 is operated, and cooling is performed in the showcase or the like. Can do.

また、前記圧力差が設定値+αで表される上限値よりも大きい場合には、高圧側圧力の上昇により圧縮機1のCOPが低下するため、圧縮機1の容量を低下させ高圧側圧力の上昇を抑える。なお、前記圧力差が下限値以上かつ上限値以下の場合には圧縮機1の容量制御は行わない。   Further, when the pressure difference is larger than the upper limit value represented by the set value + α, the COP of the compressor 1 is reduced due to the increase of the high-pressure side pressure. Suppress the rise. When the pressure difference is not less than the lower limit and not more than the upper limit, the capacity control of the compressor 1 is not performed.

図2は本発明を適用した冷凍サイクルの冷媒回路である。この図において、5―a及び5―bは圧縮機、2は凝縮器、3は膨張弁、4は蒸発器であり、これらによって前記冷凍サイクル装置の冷媒回路を構成している。   FIG. 2 is a refrigerant circuit of a refrigeration cycle to which the present invention is applied. In this figure, 5-a and 5-b are compressors, 2 is a condenser, 3 is an expansion valve, and 4 is an evaporator, which constitute a refrigerant circuit of the refrigeration cycle apparatus.

また、11は前記圧縮機5―a及び5―bの運転を制御するコントローラであり、12は凝縮器温度センサ、13は外気温センサ、14は高圧側圧力センサ、15は低圧側圧力センサであり、各センサからの信号は前記コントローラ11に入力される。入力された信号によってコントローラ11は圧縮機5―a及び5―bの運転を制御する。   11 is a controller for controlling the operation of the compressors 5-a and 5-b, 12 is a condenser temperature sensor, 13 is an outside air temperature sensor, 14 is a high-pressure sensor, and 15 is a low-pressure sensor. Yes, signals from each sensor are input to the controller 11. The controller 11 controls the operation of the compressors 5-a and 5-b according to the input signal.

以上の構成で圧縮機5―a又は5―bが起動されると、圧縮機5―a又は5―bにて圧縮された高温高圧のガス冷媒は圧縮機5―a又は5―bから吐出され、凝縮器2に入り冷却される。冷却された冷媒は気液混合状態となり、膨張弁3を介して蒸発器4に流入する。膨張弁3において冷媒は絞られることで減圧され、蒸発器4において蒸発することで冷却を行う。この蒸発器4において蒸発した低温低圧のガス冷媒は圧縮機5―a又は5―bに再び吸い込まれ、冷凍サイクルが構成されている。   When the compressor 5-a or 5-b is started with the above configuration, the high-temperature and high-pressure gas refrigerant compressed by the compressor 5-a or 5-b is discharged from the compressor 5-a or 5-b. And enters the condenser 2 to be cooled. The cooled refrigerant is in a gas-liquid mixed state and flows into the evaporator 4 via the expansion valve 3. The refrigerant is decompressed by being throttled in the expansion valve 3, and is cooled by being evaporated in the evaporator 4. The low-temperature and low-pressure gas refrigerant evaporated in the evaporator 4 is again sucked into the compressor 5-a or 5-b to constitute a refrigeration cycle.

なお、本実施例において、膨張弁3は蒸発器4の出口温度を検知する感温筒によって開度が変化するサーモバルブを用いているが、蒸発器4の出口温度に対応して電子的に開度が制御される電子膨張弁を使用しても構わない。   In this embodiment, the expansion valve 3 uses a thermo valve whose opening degree is changed by a temperature sensing cylinder that detects the outlet temperature of the evaporator 4, but electronically corresponding to the outlet temperature of the evaporator 4. An electronic expansion valve whose opening degree is controlled may be used.

コントローラ11は、外気温センサ13からの入力に基づき、例えば0℃以上などの常温時には、低圧側圧力センサ15からの入力を基に圧縮機5―a及び5―bの作動・停止
を制御する。蒸発器4が十分冷却されている場合は膨張弁3が閉じるため、低圧側圧力が低下し高圧側圧力が上昇する。この高圧側圧力の上昇により冷凍サイクル装置のCOPが低下してしまう。
The controller 11 controls the operation and stop of the compressors 5-a and 5-b based on the input from the low-pressure side pressure sensor 15 based on the input from the outside air temperature sensor 13 based on the input from the low-pressure sensor 15 at a normal temperature such as 0 ° C. or more. . When the evaporator 4 is sufficiently cooled, the expansion valve 3 is closed, so that the low-pressure side pressure decreases and the high-pressure side pressure increases. The increase in the high-pressure side pressure causes the COP of the refrigeration cycle apparatus to decrease.

よって、低圧側圧力センサ15が低圧側圧力の低下を検知した場合、コントローラ11は例えば圧縮機5―a及び圧縮機5―bの両方が動作している時は、圧縮機5―bを停止させ、圧縮機5―aのみを動作させることで、冷凍サイクル装置の圧縮機の容量を低減させ、省エネ運転を行う。   Therefore, when the low-pressure side pressure sensor 15 detects a decrease in the low-pressure side pressure, the controller 11 stops the compressor 5-b when, for example, both the compressor 5-a and the compressor 5-b are operating. By operating only the compressor 5-a, the capacity of the compressor of the refrigeration cycle apparatus is reduced, and energy saving operation is performed.

また、前記ショーケース等の温度が上昇し、蒸発器4が冷却動作を開始すると、膨張弁3が開くため低圧側圧力が上昇し高圧側圧力が低下する。この状況が継続すると冷媒の不足による冷凍サイクル装置の冷却能力低下や、圧力差の減少により冷媒が流れにくくなる。   Further, when the temperature of the showcase or the like rises and the evaporator 4 starts a cooling operation, the expansion valve 3 opens, so the low pressure side pressure rises and the high pressure side pressure falls. If this situation continues, it becomes difficult for the refrigerant to flow due to a decrease in the cooling capacity of the refrigeration cycle apparatus due to a shortage of refrigerant and a decrease in pressure difference.

よって、低圧側圧力センサ15が低圧側圧力の低下を検知した場合、コントローラ11は例えば圧縮機5―a及び圧縮機5―bの両方を作動させ、前記圧縮機の高圧側圧力を高くすることで前記圧力差を大きくする。   Therefore, when the low-pressure side pressure sensor 15 detects a decrease in the low-pressure side pressure, the controller 11 operates both the compressor 5-a and the compressor 5-b, for example, to increase the high-pressure side pressure of the compressor. To increase the pressure difference.

一方、外気温が0℃以下のような低外気温時には、コントローラ11は低圧側圧力センサ15及び高圧側圧力センサ14の出力による圧力差に基づいて圧縮機5―a及び5―bの制御を行う。   On the other hand, when the outside air temperature is low such as 0 ° C. or less, the controller 11 controls the compressors 5-a and 5-b based on the pressure difference due to the outputs of the low pressure sensor 15 and the high pressure sensor 14. Do.

前記圧力差が設定値−αで表される下限値よりも小さいと冷媒が流れにくくなるため、コントローラ11は例えば圧縮機5―aしか動作していない場合は、圧縮機5―a及び5―bの両方を作動させ、高圧側圧力を上昇させることで前記圧力差を維持する。   If the pressure difference is smaller than the lower limit value represented by the set value −α, it becomes difficult for the refrigerant to flow. For example, when the controller 11 is operating only the compressor 5-a, the compressors 5-a and 5- The pressure difference is maintained by operating both b and increasing the high-pressure side pressure.

上記制御により、前記圧力差を設定値−α以上にすることで、膨張弁3が作動した際には冷媒が適正に減圧され、前記ショーケース等において冷却を行うことができる。   By setting the pressure difference to be equal to or larger than the set value −α by the above control, the refrigerant is appropriately decompressed when the expansion valve 3 is operated, and cooling can be performed in the showcase or the like.

また、前記圧力差が設定値+αで表される上限値よりも大きい場合には、高圧側圧力の上昇により圧縮機5―a及び5―bのCOPが低下してしまう。よって、この様な状態の場合、コントローラ11は例えば圧縮機5―a及び5―bの両方が動作している時は、圧縮機5―aを停止させ高圧側圧力の上昇を抑える。なお、前記圧力差が下限値以上かつ上限値以下の場合には圧縮機5―a及び5―bの制御は行わない。   When the pressure difference is larger than the upper limit value represented by the set value + α, the COPs of the compressors 5-a and 5-b are reduced due to the increase in the high-pressure side pressure. Therefore, in such a state, for example, when both the compressors 5-a and 5-b are operating, the controller 11 stops the compressor 5-a and suppresses the increase in the high-pressure side pressure. When the pressure difference is not less than the lower limit and not more than the upper limit, the compressors 5-a and 5-b are not controlled.

図3は本発明を適用した冷凍サイクルの冷媒回路である。この図において、6は圧縮機、2は凝縮器、3は膨張弁、4は蒸発器であり、これらによって前記冷凍サイクル装置の冷媒回路を構成している。21は凝縮器2を空冷するための凝縮器用送風機であり、モータ22によって駆動される。凝縮器2はこのモータ22の回転数によって凝縮能力を変化させることができる。   FIG. 3 is a refrigerant circuit of a refrigeration cycle to which the present invention is applied. In this figure, 6 is a compressor, 2 is a condenser, 3 is an expansion valve, 4 is an evaporator, and these constitute a refrigerant circuit of the refrigeration cycle apparatus. 21 is a condenser blower for air-cooling the condenser 2, and is driven by a motor 22. The condenser 2 can change the condensing capacity depending on the rotational speed of the motor 22.

また、11は凝縮器用送風機21のモータ22の回転数を制御するコントローラであり、12は凝縮器温度センサ、13は外気温センサ、14は高圧側圧力センサ、15は低圧側圧力センサであり、各センサからの信号は前記コントローラ11に入力される。入力された信号によってコントローラ11は凝縮器用送風機21のモータ22の回転数を制御する。   11 is a controller for controlling the rotation speed of the motor 22 of the condenser blower 21, 12 is a condenser temperature sensor, 13 is an outside air temperature sensor, 14 is a high pressure side pressure sensor, and 15 is a low pressure side pressure sensor, Signals from each sensor are input to the controller 11. The controller 11 controls the rotation speed of the motor 22 of the condenser blower 21 based on the input signal.

以上の構成で圧縮機6が起動されると、圧縮機6にて圧縮された高温高圧のガス冷媒は圧縮機6から吐出され、凝縮器2に入り冷却される。この際、凝縮器用送風機21のモー
タ22の回転数によって凝縮器2の凝縮能力は変化する。
When the compressor 6 is started with the above configuration, the high-temperature and high-pressure gas refrigerant compressed by the compressor 6 is discharged from the compressor 6 and enters the condenser 2 to be cooled. At this time, the condensing capacity of the condenser 2 varies depending on the rotational speed of the motor 22 of the condenser blower 21.

冷却された冷媒は気液混合状態となり、膨張弁3を介して蒸発器4に流入する。膨張弁3において冷媒は絞られることで減圧され、蒸発器4において蒸発することで冷却を行う。この蒸発器4において蒸発した低温のガス冷媒は圧縮機6に再び吸い込まれ、冷凍サイクルが構成されている。   The cooled refrigerant is in a gas-liquid mixed state and flows into the evaporator 4 via the expansion valve 3. The refrigerant is decompressed by being throttled in the expansion valve 3, and is cooled by being evaporated in the evaporator 4. The low-temperature gas refrigerant evaporated in the evaporator 4 is again sucked into the compressor 6 to constitute a refrigeration cycle.

なお、本実施例において、膨張弁3は蒸発器4の出口温度を検知する感温筒によって開度が変化するサーモバルブを用いているが、蒸発器4の出口温度に対応して電子的に開度が制御される電子膨張弁を使用しても構わない。   In this embodiment, the expansion valve 3 uses a thermo valve whose opening degree is changed by a temperature sensing cylinder that detects the outlet temperature of the evaporator 4, but electronically corresponding to the outlet temperature of the evaporator 4. An electronic expansion valve whose opening degree is controlled may be used.

コントローラ11は、外気温センサ13からの入力に基づき、例えば0℃以上などの常温時には、凝縮器2の温度センサ12からの入力を基にモータ22の回転数を制御する。例えば、凝縮器2に流入した冷媒の温度が高い時はモータ22の回転数を上昇させ放熱を促し、逆に凝縮器2に流入した冷媒の温度が低く放熱の必要がない時はモータ22の回転数を低下させ省エネを図る。   The controller 11 controls the rotational speed of the motor 22 based on the input from the temperature sensor 12 of the condenser 2 based on the input from the outside air temperature sensor 13 at a normal temperature such as 0 ° C. or more. For example, when the temperature of the refrigerant flowing into the condenser 2 is high, the rotational speed of the motor 22 is increased to promote heat dissipation. Conversely, when the temperature of the refrigerant flowing into the condenser 2 is low and there is no need for heat dissipation, the motor 22 Reduce the number of revolutions to save energy.

また、ショーケース等の温度が上昇し、蒸発器4が冷却動作を開始すると、膨張弁3が開くため低圧側圧力が上昇し高圧側圧力が低下する。この状況が継続すると冷媒の不足によって冷凍サイクル装置の冷却能力低下するため、コントローラ11はモータ22の回転数を上昇させて蒸発器4に流入する冷媒の温度を下げることで冷却能力を高める。   Further, when the temperature of the showcase or the like rises and the evaporator 4 starts a cooling operation, the expansion valve 3 opens, so that the low pressure side pressure rises and the high pressure side pressure falls. If this situation continues, the cooling capacity of the refrigeration cycle apparatus decreases due to a shortage of refrigerant, so the controller 11 increases the cooling capacity by increasing the number of revolutions of the motor 22 and lowering the temperature of the refrigerant flowing into the evaporator 4.

一方、外気温が0℃より低いような低外気温時には、コントローラ11は低圧側圧力センサ15及び高圧側圧力センサ14の出力による圧力差に基づいて凝縮器用送風機21のモータ22の制御を行う。前記圧力差が設定値−αで表される下限値よりも小さいと冷媒が流れにくくなるため、コントローラ11はモータ22の回転数を低下させ凝縮圧力の低下を抑えることで圧力差を維持する。   On the other hand, when the outside air temperature is low such that the outside air temperature is lower than 0 ° C., the controller 11 controls the motor 22 of the condenser blower 21 based on the pressure difference between the outputs of the low pressure side pressure sensor 15 and the high pressure side pressure sensor 14. If the pressure difference is smaller than the lower limit value represented by the set value −α, it becomes difficult for the refrigerant to flow. Therefore, the controller 11 maintains the pressure difference by reducing the rotation speed of the motor 22 and suppressing the decrease in the condensation pressure.

また、前記圧力差が設定値+αで表される上限値よりも大きい場合には、高圧側圧力の上昇により圧縮機6のCOPが低下するため、コントローラ11はモータ22の回転数を上昇させ凝縮圧力を低下させる。なお、前記圧力差が下限値以上かつ上限値以下の場合にはモータ22の回転数の制御は行わない。   When the pressure difference is larger than the upper limit value represented by the set value + α, the controller 11 increases the rotation speed of the motor 22 to condense because the COP of the compressor 6 decreases due to the increase of the high-pressure side pressure. Reduce pressure. In addition, when the said pressure difference is more than a lower limit and below an upper limit, control of the rotation speed of the motor 22 is not performed.

上記制御により、高外気温時には高圧側圧力の過度な上昇を抑えることで冷凍サイクル装置のCOPを改善することができる。また、低外気温時には前記圧力差を設定値±α(設定範囲)内にすることで、膨張弁3が作動した際には冷媒が適正に減圧され、冷却を行うことができる。さらに低外気温時においても、前記圧力差が大きくなり過ぎないように制御を行うことで、冷凍サイクル装置のCOPを改善することができる。   By the above control, the COP of the refrigeration cycle apparatus can be improved by suppressing an excessive increase in the high-pressure side pressure at a high outside air temperature. Further, by setting the pressure difference within a set value ± α (set range) at a low outside air temperature, the refrigerant is appropriately decompressed and cooled when the expansion valve 3 is operated. Furthermore, COP of the refrigeration cycle apparatus can be improved by performing control so that the pressure difference does not become too large even at low outside air temperatures.

なお、実施例では外気温によってコントローラ11による制御方法を切り換えたが、常時圧縮機の高圧側圧力と低圧側圧力との圧力差が設定値又は設定範囲内となるように運転制御を行ってもよい。実施例2では圧縮機の数を2台としているが、台数に制限はない。   In the embodiment, the control method by the controller 11 is switched depending on the outside air temperature. However, the operation control may be performed so that the pressure difference between the high pressure side pressure and the low pressure side pressure of the compressor is always within the set value or the set range. Good. In the second embodiment, the number of compressors is two, but the number is not limited.

また、実施例3では凝縮器2の容量制御方法として送風機のモータ22の回転数を用いているが、これに限らず凝縮器の表面積を変化させるものや、用いる凝縮器の台数を変更する方法などでもよい。   In the third embodiment, the rotational speed of the motor 22 of the blower is used as a capacity control method of the condenser 2. However, the present invention is not limited to this, and the method of changing the surface area of the condenser or changing the number of condensers to be used. Etc.

なお、実施例1、実施例2及び実施例3の制御を行う際には、いずれの場合においても前記設定値又は前記設定範囲を0.45MPa以上とすることで膨張弁3の誤動作を防ぐことができることを確認している。   In addition, when performing control of Example 1, Example 2, and Example 3, in any case, the malfunction of the expansion valve 3 is prevented by setting the set value or the set range to 0.45 MPa or more. Confirm that you can.

本発明を適用した冷凍システムの冷媒回路図である(実施例1)。It is a refrigerant circuit figure of the refrigerating system to which this invention is applied (Example 1). 本発明を適用した冷凍システムの冷媒回路図である(実施例2)。(Example 2) which is the refrigerant circuit figure of the refrigerating system to which this invention is applied. 本発明を適用した冷凍システムの冷媒回路図である(実施例3)。(Example 3) which is a refrigerant circuit figure of the refrigerating system to which this invention is applied.

符号の説明Explanation of symbols

1 インバータ制御可能な圧縮機
2 凝縮器
3 膨張弁
4 蒸発器
5―a、5―b、6 圧縮機
11 コントローラ
12 凝縮器温度センサ
13 外気温センサ
14 圧縮機高圧側センサ
15 圧縮機低圧側センサ
21 凝縮器冷却用送風機
22 凝縮器冷却用送風機用モータ
DESCRIPTION OF SYMBOLS 1 Inverter-controllable compressor 2 Condenser 3 Expansion valve 4 Evaporator 5-a, 5-b, 6 Compressor 11 Controller 12 Condenser temperature sensor 13 Outside temperature sensor 14 Compressor high pressure side sensor 15 Compressor low pressure side sensor 21 Condenser cooling fan 22 Condenser cooling fan motor

Claims (2)

容量制御可能な圧縮機、凝縮器、減圧装置及び蒸発器を配管接続した冷凍システムにおいて、
前記凝縮器は凝縮能力の制御が可能な凝縮器であり、
前記圧縮機の低圧側及び高圧側に設けられた圧力センサと、
前記凝縮器の周囲の温度を計測する温度センサを備え、
前記温度センサによって検出された外気温が所定値よりも高い時は前記低圧側圧力センサによって検出された低圧側圧力に応じて前記圧縮機の吐出容量及び前記凝縮器の凝縮能力を制御し、
前記外気温が所定値よりも低い時は前記低圧側圧力センサ及び高圧側圧力センサによって検出された低圧側圧力と高圧側圧力の圧力差に応じて前記圧縮機の吐出容量及び前記凝縮器の凝縮能力を制御することを特徴とする冷凍システム。
In a refrigeration system in which a capacity-controllable compressor, condenser, decompressor and evaporator are connected by piping,
The condenser is a condenser capable of controlling the condensation capacity,
Pressure sensors provided on the low pressure side and the high pressure side of the compressor;
A temperature sensor for measuring the ambient temperature of the condenser;
When the outside air temperature detected by the temperature sensor is higher than a predetermined value, the discharge capacity of the compressor and the condensation capacity of the condenser are controlled according to the low pressure side pressure detected by the low pressure side pressure sensor,
When the outside air temperature is lower than a predetermined value, the discharge capacity of the compressor and the condensation of the condenser according to the pressure difference between the low pressure side pressure and the high pressure side pressure detected by the low pressure side pressure sensor and the high pressure side pressure sensor. A refrigeration system characterized by controlling capacity.
前記外気温が所定値よりも低く、
前記圧力差が設定範囲の下限値を下回った場合、
前記圧縮機の吐出容量を増加させると共に前記凝縮器の凝縮能力を低下させることを特徴とする請求項1記載の冷凍システム。
The outside air temperature is lower than a predetermined value,
When the pressure difference falls below the lower limit of the setting range,
The refrigeration system according to claim 1, wherein the discharge capacity of the compressor is increased and the condensing capacity of the condenser is decreased.
JP2006066156A 2006-03-10 2006-03-10 Refrigeration system Pending JP2007170803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066156A JP2007170803A (en) 2006-03-10 2006-03-10 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066156A JP2007170803A (en) 2006-03-10 2006-03-10 Refrigeration system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005365906A Division JP2007170706A (en) 2005-12-20 2005-12-20 Refrigeration system

Publications (1)

Publication Number Publication Date
JP2007170803A true JP2007170803A (en) 2007-07-05

Family

ID=38297580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066156A Pending JP2007170803A (en) 2006-03-10 2006-03-10 Refrigeration system

Country Status (1)

Country Link
JP (1) JP2007170803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105588A (en) * 2016-12-28 2018-07-05 ヤンマー株式会社 heat pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083376A1 (en) * 2002-03-29 2003-10-09 Daikin Industries, Ltd. Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083376A1 (en) * 2002-03-29 2003-10-09 Daikin Industries, Ltd. Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105588A (en) * 2016-12-28 2018-07-05 ヤンマー株式会社 heat pump

Similar Documents

Publication Publication Date Title
WO2010137344A1 (en) Air-conditioning device
JP4475655B2 (en) Air conditioner
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
JP2009041845A (en) Operation control method of multi-room type air conditioner
JP2006207932A (en) Air conditioner
JP2006214617A (en) Air conditioner
JP2007170706A (en) Refrigeration system
JP2009210213A (en) Air conditioner for railway vehicle
JP2008082637A (en) Supercritical refrigerating cycle
JP5517891B2 (en) Air conditioner
JP4726657B2 (en) Refrigeration system
JP4726658B2 (en) Refrigeration system
JP2011149611A (en) Air-conditioning apparatus
JP2007085659A (en) Controller for air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP4307878B2 (en) Refrigerant cycle equipment
JP4215543B2 (en) Refrigeration cycle equipment
JP7438342B2 (en) air conditioner
JP2007170803A (en) Refrigeration system
JP2007170802A (en) Refrigeration system
JP2007170799A (en) Refrigeration system
US10914487B2 (en) Low load mode of HVAC system
JP2007170804A (en) Refrigeration system
JP6047381B2 (en) air conditioner
JP2007170798A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308