JP2007169581A - Light-emitting element material and light emitting element - Google Patents
Light-emitting element material and light emitting element Download PDFInfo
- Publication number
- JP2007169581A JP2007169581A JP2006038930A JP2006038930A JP2007169581A JP 2007169581 A JP2007169581 A JP 2007169581A JP 2006038930 A JP2006038930 A JP 2006038930A JP 2006038930 A JP2006038930 A JP 2006038930A JP 2007169581 A JP2007169581 A JP 2007169581A
- Authority
- JP
- Japan
- Prior art keywords
- group
- light emitting
- light
- emitting device
- aryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 C*[C@](C(*C)=C)C(N)=C(*)C(*)=C Chemical compound C*[C@](C(*C)=C)C(N)=C(*)C(*)=C 0.000 description 4
- LMSUAIKOCJVOMT-UHFFFAOYSA-N CC(C)c1c(ccc(c2c(cc3)cc4)c3-c3cccc5c3[o]c3ccccc53)c2c4c(-c2cccc3c2[o]c2ccccc32)c1 Chemical compound CC(C)c1c(ccc(c2c(cc3)cc4)c3-c3cccc5c3[o]c3ccccc53)c2c4c(-c2cccc3c2[o]c2ccccc32)c1 LMSUAIKOCJVOMT-UHFFFAOYSA-N 0.000 description 1
- SJHVQYZVZYPWSC-UHFFFAOYSA-N CCC(C)(C)c1c(ccc(c2c(cc3)cc4)c3-c(cc3)ccc3-c3ccccc3)c2c4c(-c(cc2)ccc2-c2ccccc2)c1 Chemical compound CCC(C)(C)c1c(ccc(c2c(cc3)cc4)c3-c(cc3)ccc3-c3ccccc3)c2c4c(-c(cc2)ccc2-c2ccccc2)c1 SJHVQYZVZYPWSC-UHFFFAOYSA-N 0.000 description 1
- GPTXTMXIEDDBFU-UHFFFAOYSA-N CCC(CC)c1c(ccc(c2c(cc3)cc4)c3-c3c(cccc5)c5c(-c5ccccc5)c5c3cccc5)c2c4c(-c2c(cccc3)c3c(-c3ccccc3)c3c2cccc3)c1 Chemical compound CCC(CC)c1c(ccc(c2c(cc3)cc4)c3-c3c(cccc5)c5c(-c5ccccc5)c5c3cccc5)c2c4c(-c2c(cccc3)c3c(-c3ccccc3)c3c2cccc3)c1 GPTXTMXIEDDBFU-UHFFFAOYSA-N 0.000 description 1
- BGDGKKUYYLYTMD-UHFFFAOYSA-N Cc1c(ccc(c2c(cc3)cc4)c3-c(cc3)ccc3-c3cc(cccc5)c5[o]3)c2c4c(-c(cc2)ccc2-c2cc3ccccc3[o]2)c1 Chemical compound Cc1c(ccc(c2c(cc3)cc4)c3-c(cc3)ccc3-c3cc(cccc5)c5[o]3)c2c4c(-c(cc2)ccc2-c2cc3ccccc3[o]2)c1 BGDGKKUYYLYTMD-UHFFFAOYSA-N 0.000 description 1
- BEVHOKHVJSIMDL-UHFFFAOYSA-N Cc1c(ccc(c2c(cc3)cc4)c3-c3c(cccc5)c5c(cccc5)c5c3)c2c4c(-c2cc(cccc3)c3c3c2cccc3)c1 Chemical compound Cc1c(ccc(c2c(cc3)cc4)c3-c3c(cccc5)c5c(cccc5)c5c3)c2c4c(-c2cc(cccc3)c3c3c2cccc3)c1 BEVHOKHVJSIMDL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
- Indole Compounds (AREA)
Abstract
Description
本発明は、蛍光色素や電荷輸送剤として有用なピレン化合物およびこれを用いた発光素子であって、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能な発光素子に関するものである。 The present invention relates to a pyrene compound useful as a fluorescent dye or a charge transport agent and a light emitting device using the same, and includes a display device, a flat panel display, a backlight, illumination, an interior, a sign, a signboard, an electrophotographic machine, and an optical signal The present invention relates to a light-emitting element that can be used in a field such as a generator.
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機発光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型でかつ低駆動電圧下での高輝度発光と、発光材料を選ぶことによる多色発光が特徴であり、注目を集めている。 In recent years, research on organic thin-film light-emitting devices that emit light when electrons injected from a cathode and holes injected from an anode are recombined in an organic light-emitting body sandwiched between both electrodes has been actively conducted. This light-emitting element is characterized by thin light emission with high luminance under a low driving voltage and multicolor light emission by selecting a light-emitting material.
この研究は、イーストマンコダック社のC.W.Tangらによって有機薄膜発光素子が高輝度に発光することが示されて以来、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機薄膜発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層であるトリス(8−キノリノラート)アルミニウム(III)、そして陰極としてMg:Ag(合金)を順次設けたものであり、10V程度の駆動電圧で1,000cd/m2の緑色発光が可能であった(非特許文献1参照)。 This study was conducted by Eastman Kodak's C.I. W. Since Tang et al. Have shown that organic thin-film light-emitting elements emit light with high brightness, many research institutions have studied. The representative structure of the organic thin film light emitting device presented by the Kodak research group is a hole transporting diamine compound on an ITO glass substrate, tris (8-quinolinolato) aluminum (III) as a light emitting layer, and a cathode. Mg: Ag (alloy) was sequentially provided, and green light emission of 1,000 cd / m 2 was possible with a driving voltage of about 10 V (see Non-Patent Document 1).
また、有機薄膜発光素子は、発光層に種々の蛍光材料を用いることにより、多様な発光色を得ることが可能であることから、ディスプレイなどへの実用化研究が盛んである。三原色の発光材料の中では緑色発光材料の研究が最も進んでおり、現在は赤色発光材料と青色発光材料において、特性向上を目指して鋭意研究がなされている。 In addition, organic thin-film light-emitting elements can be obtained in various emission colors by using various fluorescent materials for the light-emitting layer, and therefore, researches for practical application to displays and the like are actively conducted. Among the three primary color luminescent materials, research on the green luminescent material is the most advanced, and at present, intensive research is being conducted to improve the characteristics of the red and blue luminescent materials.
有機薄膜発光素子における最大の課題の一つは、素子の耐久性である。特に青色に関しては、耐久性が優れ、信頼性の高い素子を提供する青色発光材料が少ない。例えば、ピレン化合物を青色発光素子に用いる技術が開示されている。アリール置換ピレン(特許文献1〜4参照)やアミン置換ピレン(特許文献5参照)を用いた青色発光素子が報告されているが、いずれも耐久性が不十分であった。
そこで本発明は、かかる従来技術の問題を解決し、発光効率が高く、耐久性に優れた発光素子を可能にする発光素子材料および発光素子を提供することを目的とするものである。 Accordingly, an object of the present invention is to provide a light-emitting element material and a light-emitting element that solve the problems of the prior art and enable a light-emitting element that has high luminous efficiency and excellent durability.
本発明は一般式(1)で表されるピレン化合物を含有する発光素子材料である。 The present invention is a light emitting device material containing a pyrene compound represented by the general formula (1).
R1〜R10はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、ホスフィンオキサイド基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。但し、R1〜R10の少なくとも1つは、アルキル基またはシクロアルキル基であり、少なくとも1つはAとの連結に用いられる。nは1〜3の整数である。Aはアリール基またはヘテロアリール基であり、nが2または3の場合、Aはそれぞれ同じでも異なっていてもよい。 R 1 to R 10 may be the same or different and are each hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether Selected from the group, a halogen, a phosphine oxide group, a silyl group, and a condensed ring formed between adjacent substituents. However, at least one of R 1 to R 10 is an alkyl group or a cycloalkyl group, and at least one is used for linking with A. n is an integer of 1 to 3. A is an aryl group or a heteroaryl group, and when n is 2 or 3, A may be the same or different.
また、本発明は、陽極と陰極の間に少なくとも発光層が存在し、電気エネルギーにより発光する発光素子であって、発光素子が一般式(1)で表される発光素子材料を含有することを特徴とする発光素子である。 Further, the present invention is a light emitting element that has at least a light emitting layer between an anode and a cathode and emits light by electric energy, and the light emitting element contains a light emitting element material represented by the general formula (1). A light-emitting element is characterized.
本発明は、発光素子等に利用可能な発光性能の高い発光素子材料を提供できる。さらに本発明によれば、上記発光素子材料を用いることによって、発光効率が高く、耐久性に優れた発光素子が得られる。 INDUSTRIAL APPLICABILITY The present invention can provide a light emitting element material having high light emission performance that can be used for a light emitting element or the like. Furthermore, according to the present invention, by using the light emitting element material, a light emitting element having high luminous efficiency and excellent durability can be obtained.
まず、本発明において用いる一般式(1)で表されるピレン化合物について説明する。 First, the pyrene compound represented by the general formula (1) used in the present invention will be described.
R1〜R10はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、ホスフィンオキサイド基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。但し、R1〜R10の少なくとも1つは、アルキル基またはシクロアルキル基であり、少なくとも1つはAとの連結に用いられる。nは1〜3の整数である。Aはアリール基またはヘテロアリール基であり、nが2または3の場合、Aはそれぞれ同じでも異なっていてもよい。 R 1 to R 10 may be the same or different and are each hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether Selected from the group, a halogen, a phosphine oxide group, a silyl group, and a condensed ring formed between adjacent substituents. However, at least one of R 1 to R 10 is an alkyl group or a cycloalkyl group, and at least one is used for linking with A. n is an integer of 1 to 3. A is an aryl group or a heteroaryl group, and when n is 2 or 3, A may be the same or different.
これらの置換基のうち、アルキル基とは、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。 Among these substituents, the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. This may or may not have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of being substituted, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned, This point is common also in the following description. The number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 from the viewpoint of availability and cost.
シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、通常、3以上20以下の範囲である。 The cycloalkyl group represents a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may or may not have a substituent. Although carbon number of an alkyl group part is not specifically limited, Usually, it is the range of 3-20.
複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。 The heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. . Although carbon number of a heterocyclic group is not specifically limited, Usually, it is the range of 2-20.
アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。 An alkenyl group shows the unsaturated aliphatic hydrocarbon group containing double bonds, such as a vinyl group, an allyl group, and a butadienyl group, and this may or may not have a substituent. Although carbon number of an alkenyl group is not specifically limited, Usually, it is the range of 2-20.
シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。 An alkynyl group shows the unsaturated aliphatic hydrocarbon group containing triple bonds, such as an ethynyl group, for example, and may or may not have a substituent. Although carbon number of an alkynyl group is not specifically limited, Usually, it is the range of 2-20.
アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。 The alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have. Although carbon number of an alkoxy group is not specifically limited, Usually, it is the range of 1-20.
アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。 The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。 An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。 An aryl thioether group is one in which the oxygen atom of the ether bond of the aryl ether group is substituted with a sulfur atom. The aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6-40.
ハロゲン原子とは、フッ素、塩素、臭素、ヨウ素を示す。 The halogen atom represents fluorine, chlorine, bromine or iodine.
ホスフィンオキサイド基は、置換基を有していても有していなくてもよく、置換基は例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。 The phosphine oxide group may or may not have a substituent. Examples of the substituent include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group. These substituents are further substituted. May be.
シリル基とは、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、通常、3以上20以下の範囲である。また、ケイ素数は、通常、1以上6以下である。 A silyl group refers to, for example, a functional group having a bond to a silicon atom, such as a trimethylsilyl group, which may or may not have a substituent. Although carbon number of a silyl group is not specifically limited, Usually, it is the range of 3-20. The number of silicon is usually 1 or more and 6 or less.
隣接置換基との間に形成される縮合環とは、前記一般式(1)で説明すると、R1〜R10の中から選ばれる任意の隣接2置換基(例えばR1とR2)が互いに結合して共役または非共役の縮合環を形成するものである。縮合環の構成元素として、炭素以外にも窒素、酸素、硫黄、リン、ケイ素原子を含んでいてもよいし、さらに別の環と縮合してもよい。 The condensed ring formed between adjacent substituents is, as described in the general formula (1), any adjacent two substituents selected from R 1 to R 10 (for example, R 1 and R 2 ). They are bonded to each other to form a conjugated or non-conjugated condensed ring. As a constituent element of the condensed ring, in addition to carbon, nitrogen, oxygen, sulfur, phosphorus and silicon atoms may be contained, or further condensed with another ring.
アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、通常、6〜40の範囲である。 An aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group, which may or may not have a substituent. Also good. Although carbon number of an aryl group is not specifically limited, Usually, it is the range of 6-40.
ヘテロアリール基とは、例えば、フラニル基、チオフェニル基、オキサゾリル基、ピリジル基、キノリニル基、カルバゾリル基などの炭素以外の原子を環内に有する芳香族基を示し、これは置換基を有していても有していなくてもよい。ヘテロアリール基の炭素数は特に限定されないが、通常、2以上30以下の範囲である。 A heteroaryl group refers to an aromatic group having a non-carbon atom in the ring, such as a furanyl group, a thiophenyl group, an oxazolyl group, a pyridyl group, a quinolinyl group, or a carbazolyl group, which has a substituent. Even if it does not have. Although carbon number of heteroaryl group is not specifically limited, Usually, it is the range of 2-30.
本発明の一般式(1)で表されるピレン化合物は、ピレン骨格に1〜3個のアリール基またはヘテロアリール基、および少なくとも1つのアルキル基またはシクロアルキル基が置換されていることにより、高い薄膜形成性と優れた耐熱性を有する優れた発光素子材料となる。中でも一般式(1)のR1、R3、R6およびR8のうちの1〜3個がアリール基またはヘテロアリール基であることが、蛍光量子収率を向上させ、高い発光効率を可能にするため、好ましい。さらに、R1、R3、R6およびR8のうちの1または2個がアリール基またはヘテロアリール基であることが、色純度に優れた青色発光を可能にするため、好ましい。 The pyrene compound represented by the general formula (1) of the present invention is high because 1 to 3 aryl groups or heteroaryl groups and at least one alkyl group or cycloalkyl group are substituted on the pyrene skeleton. It becomes an excellent light-emitting element material having thin film formability and excellent heat resistance. Among them, 1 to 3 of R 1 , R 3 , R 6 and R 8 in the general formula (1) are aryl groups or heteroaryl groups, which improves the fluorescence quantum yield and enables high luminous efficiency. Therefore, it is preferable. Furthermore, it is preferable that one or two of R 1 , R 3 , R 6 and R 8 are an aryl group or a heteroaryl group in order to enable blue light emission with excellent color purity.
また、一般式(1)のAの少なくとも1つが、正孔輸送性置換基を含むことが、電荷輸送性や耐久性向上の点から好ましい。正孔輸送性置換基とは、メチル基、t−ブチル基などのアルキル基、メトキシ基などのアルコキシ基、フラン、ベンゾフラン、ジベンゾフラン、チオフェン、ベンゾチオフェン、ジベンゾチオフェン、ピロール、インドールおよびカルバゾールなどのヘテロアリール基など電子供与性を有する置換基であれば特に限定されないが、中でもジベンゾフラニル基、カルバゾリル基が特に好ましい例として挙げられる。 In addition, at least one of A in the general formula (1) preferably includes a hole transporting substituent from the viewpoint of charge transportability and durability improvement. The hole transporting substituent is an alkyl group such as a methyl group or a t-butyl group, an alkoxy group such as a methoxy group, a hetero group such as furan, benzofuran, dibenzofuran, thiophene, benzothiophene, dibenzothiophene, pyrrole, indole or carbazole. Although it will not specifically limit if it is a substituent which has an electron donating property, such as an aryl group, Among them, a dibenzofuranyl group and a carbazolyl group are particularly preferable examples.
一般式(1)で表されるピレン化合物の中でも、一般式(2)で表されるピレン化合物が好ましい。 Among the pyrene compounds represented by the general formula (1), the pyrene compound represented by the general formula (2) is preferable.
R11〜R17はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、ハロゲン、ホスフィンオキサイド基、シリル基、並びに隣接置換基との間に形成される縮合環の中から選ばれる。Ar1およびAr2はそれぞれ同じでも異なっていてもよく、アリール基またはヘテロアリール基であり、Yはアルキル基またはシクロアルキル基である。これら置換基の説明は、一般式(1)の説明と同様である。 R 11 to R 17 may be the same as or different from each other, and hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, aryl ether group, aryl thioether Selected from the group, a halogen, a phosphine oxide group, a silyl group, and a condensed ring formed between adjacent substituents. Ar 1 and Ar 2 may be the same or different, and are an aryl group or a heteroaryl group, and Y is an alkyl group or a cycloalkyl group. The explanation of these substituents is the same as that of the general formula (1).
一般式(2)で表されるピレン化合物は、ピレン骨格の1,3位にアリール基またはヘテロアリール基、7位にアルキル基またはシクロアルキル基を有することにより、より高い薄膜形成性を有する。Ar1およびAr2はそれぞれ同じでも異なっていてもよいが、Ar1およびAr2がそれぞれ異なっていると、分子の対称性が低下し、薄膜形成性が向上するため好ましい。 The pyrene compound represented by the general formula (2) has higher film-forming properties by having an aryl group or heteroaryl group at the 1,3-position and an alkyl group or cycloalkyl group at the 7-position of the pyrene skeleton. Ar 1 and Ar 2 may be the same or different from each other, but Ar 1 and Ar 2 are preferably different from each other because molecular symmetry is lowered and thin film formation is improved.
本発明の一般式(1)で表されるピレン化合物は高い薄膜形成性と耐熱性に優れるため、発光素子材料として用いることにより、発光効率が高く、かつ耐久性に優れた発光素子が可能となる。 Since the pyrene compound represented by the general formula (1) of the present invention is excellent in high thin film formability and heat resistance, it can be used as a light emitting element material, and a light emitting element having high luminous efficiency and excellent durability can be obtained. Become.
上記のような一般式(1)表されるピレン化合物として、特に限定されないが、具体的には以下のような例が挙げられる。 Although it does not specifically limit as a pyrene compound represented by the above General formula (1), Specifically, the following examples are given.
一般式(1)で表されるピレン化合物の合成には、公知の方法を使用することができる。ピレン骨格へアリール基を導入する方法としては、例えば、パラジウムやニッケル触媒下でのハロゲン化ピレン誘導体とアリールボロン酸またはアリールボロン酸エステルのカップリング反応を用いる方法が挙げられる。 A known method can be used for the synthesis of the pyrene compound represented by the general formula (1). Examples of the method for introducing an aryl group into the pyrene skeleton include a method using a coupling reaction between a halogenated pyrene derivative and an aryl boronic acid or aryl boronic acid ester under a palladium or nickel catalyst.
また、ピレン骨格へアルキル基を導入する方法としては、例えばルイス酸を用いたハロゲン化アルキルとのFriedel−Crafts反応や、ピレンカルボン酸誘導体の還元反応を用いる方法が挙げられる。 Examples of a method for introducing an alkyl group into the pyrene skeleton include a method using a Friedel-Crafts reaction with an alkyl halide using a Lewis acid and a reduction reaction of a pyrenecarboxylic acid derivative.
次に、本発明における発光素子の実施形態について例をあげて説明する。本発明の発光素子は、少なくとも陽極と陰極、およびそれら陽極と陰極との間に介在する発光素子材料からなる有機層とで構成されている。 Next, embodiments of the light-emitting element in the present invention will be described with examples. The light emitting device of the present invention is composed of at least an anode and a cathode, and an organic layer made of a light emitting device material interposed between the anode and the cathode.
本発明で用いられる陽極は、正孔を有機層に効率よく注入できる材料であれば特に限定されないが、比較的仕事関数の大きい材料を用いるのが好ましく、例えば、酸化錫、酸化インジウム、酸化亜鉛インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロールおよびポリアニリンなどの導電性ポリマーなどが挙げられる。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。 The anode used in the present invention is not particularly limited as long as it can efficiently inject holes into the organic layer. However, it is preferable to use a material having a relatively large work function, for example, tin oxide, indium oxide, zinc oxide. Conductive metal oxides such as indium and indium tin oxide (ITO), metals such as gold, silver and chromium, inorganic conductive materials such as copper iodide and copper sulfide, conductive polymers such as polythiophene, polypyrrole and polyaniline, etc. Is mentioned. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
陽極の抵抗は、発光素子の発光に十分な電流が供給できればよく、発光素子の消費電力の点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、100Ω/□以下の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。 The resistance of the anode is not limited as long as a current sufficient for light emission of the light emitting element can be supplied, and is preferably low from the viewpoint of power consumption of the light emitting element. For example, an ITO substrate of 300Ω / □ or less will function as a device electrode, but since it is now possible to supply a substrate of about 10Ω / □, use a low-resistance product of 100Ω / □ or less. Is particularly desirable. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiO2などのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、陽極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。 In order to maintain the mechanical strength of the light emitting element, the light emitting element is preferably formed over a substrate. As the substrate, a glass substrate such as soda glass or non-alkali glass is preferably used. As the thickness of the glass substrate, it is sufficient that the thickness is sufficient to maintain the mechanical strength. The glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass, but soda lime glass with a barrier coat such as SiO 2 is also available on the market. it can. Furthermore, if the anode functions stably, the substrate does not have to be glass. For example, the anode may be formed on a plastic substrate. The ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.
本発明で用いられる陰極に用いられる材料は、電子を有機層に効率良く注入できる物質であれば特に限定されないが、一般に白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウムおよびマグネシウムならびにこれらの合金などが挙げられる。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は、一般に大気中で不安定であることが多いため、有機層に微量のリチウムやマグネシウムをドーピングまたは積層(真空蒸着の膜厚計表示で1nm以下)して安定性の高い電極を得る方法が好ましい例として挙げることができる。また、フッ化リチウムのような無機塩の使用も可能である。更に、電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物を積層することが、好ましい例として挙げられる。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。 The material used for the cathode used in the present invention is not particularly limited as long as it is a substance that can efficiently inject electrons into the organic layer, but is generally platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium. Lithium, sodium, potassium, cesium, calcium and magnesium, and alloys thereof. Lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics. However, since these low work function metals are generally unstable in the atmosphere, they are stable by doping or laminating a small amount of lithium or magnesium in the organic layer (1 nm or less in the vacuum vapor deposition thickness gauge display). A preferred example is a method for obtaining a highly conductive electrode. Also, an inorganic salt such as lithium fluoride can be used. Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride Lamination of organic polymer compounds such as hydrocarbon polymer compounds is a preferred example. The method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam, sputtering, ion plating, and coating.
本発明の発光素子は、有機層が一般式(1)で表されるピレン化合物を含む発光素子材料により形成される。発光素子材料とは、自ら発光するもの、およびその発光を助けるもののいずれかに該当し、発光に関与している化合物を指すものであり、具体的には、正孔輸送材料、発光材料および電子輸送材料などが該当する。 The light-emitting element of the present invention is formed of a light-emitting element material in which the organic layer contains a pyrene compound represented by the general formula (1). The light-emitting element material corresponds to either a compound that emits light by itself or a compound that assists the light emission, and refers to a compound that participates in light emission. Specifically, a hole-transport material, a light-emitting material, and an electron This includes transportation materials.
本発明の発光素子を構成する有機層は、少なくとも発光素子材料を有する発光層から構成される。有機層の構成例は、発光層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層および、2)発光層/電子輸送層、3)正孔輸送層/発光層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。正孔輸送層および電子輸送層が複数層を有する場合、電極に接する側の層をそれぞれ正孔注入層および電子注入層と呼ぶことがあるが、以下の説明では正孔注入材料は正孔輸送材料に、電子注入材料は電子輸送材料にそれぞれ含まれる。 The organic layer constituting the light emitting element of the present invention is composed of a light emitting layer having at least a light emitting element material. Examples of the organic layer include, in addition to a structure composed of only a light emitting layer, 1) a hole transport layer / light emitting layer / electron transport layer, 2) a light emitting layer / electron transport layer, and 3) a hole transport layer / light emitting layer. And the like. Each of the layers may be a single layer or a plurality of layers. When the hole transport layer and the electron transport layer have a plurality of layers, the layers in contact with the electrodes may be referred to as a hole injection layer and an electron injection layer, respectively. In the material, the electron injection material is included in the electron transport material.
正孔輸送層は、正孔輸送材料の一種または二種以上を積層または混合する方法、もしくは、正孔輸送材料と高分子結着剤の混合物を用いる方法により形成される。また、正孔輸送材料に塩化鉄(III)のような無機塩を添加して正孔輸送層を形成してもよい。正孔輸送材料は、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されない。例えば、4,4’−ビス(N−(3−メチルフェニル)−N−フェニルアミノ)ビフェニル、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、ビス(N−アリルカルバゾール)またはビス(N−アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが好ましい。 The hole transport layer is formed by a method of laminating or mixing one or more hole transport materials or a method using a mixture of a hole transport material and a polymer binder. Alternatively, the hole transport layer may be formed by adding an inorganic salt such as iron (III) chloride to the hole transport material. The hole transport material is not particularly limited as long as it is a compound that forms a thin film necessary for manufacturing a light emitting element, can inject holes from the anode, and can further transport holes. For example, 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl, 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl, 4,4 Triphenylamine derivatives such as', 4 "-tris (3-methylphenyl (phenyl) amino) triphenylamine, biscarbazole derivatives such as bis (N-allylcarbazole) or bis (N-alkylcarbazole), pyrazoline derivatives, Heterocyclic compounds such as stilbene compounds, hydrazone compounds, benzofuran derivatives, thiophene derivatives, oxadiazole derivatives, phthalocyanine derivatives, porphyrin derivatives, and polymers, polycarbonates, styrene derivatives, polythiophene, polyaniline having the above monomers in the side chain , Polyfluorene, poly Such alkenyl carbazole and polysilane are preferred.
本発明において、発光層は単一層、複数層のどちらでもよく、いずれもホスト材料およびドーパント材料を主成分とする発光材料により形成される。発光材料はホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のいずれか一方のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着しても良い。 In the present invention, the light emitting layer may be either a single layer or a plurality of layers, both of which are formed of a light emitting material mainly composed of a host material and a dopant material. The light emitting material may be a mixture of a host material and a dopant material, or may be a host material alone. That is, in the light emitting device of the present invention, in each light emitting layer, only one of the host material and the dopant material may emit light, or both the host material and the dopant material may emit light. Each of the host material and the dopant material may be one kind or a plurality of combinations. The dopant material may be included in the entire host material or may be partially included. The dopant material may be laminated or dispersed. If the amount of the dopant material is too large, a concentration quenching phenomenon occurs, so that it is preferably used at 20% by weight or less, more preferably 10% by weight or less with respect to the host material. The doping method can be formed by a co-evaporation method with a host material, but may be pre-mixed with the host material and then simultaneously deposited.
一般式(1)で表されるピレン化合物は本発明の発光素子の発光材料として好適に用いられる。また、本発明のピレン化合物は、青色領域に強い発光を示すことから、青色発光材料として好適に用いられるが、緑色〜赤色発光素子や白色発光素子用の材料としても用いることが可能である。本発明のピレン化合物はドーパント材料として用いてもよいが、薄膜安定性に優れることから、ホスト材料として好適に用いられる。 The pyrene compound represented by the general formula (1) is suitably used as a light emitting material of the light emitting device of the present invention. In addition, the pyrene compound of the present invention exhibits strong light emission in the blue region and is therefore preferably used as a blue light emitting material, but can also be used as a material for green to red light emitting elements and white light emitting elements. Although the pyrene compound of this invention may be used as a dopant material, since it is excellent in thin film stability, it is used suitably as a host material.
本発明の一般式(1)で表されるピレン化合物のイオン化ポテンシャルは、特に限定されないが、好ましくは4.6eV以上6.0eV以下であり、より好ましくは4.8eV以上5.8eV以下である。なお、イオン化ポテンシャルの絶対値は測定方法により異なる場合があるが、本発明のイオン化ポテンシャルは、大気雰囲気型紫外線光電子分析装置(AC−1、理研機器(株)製)を用いて、ITOガラス基板上に30nm〜100nmの厚さに蒸着した薄膜を測定した値である。 The ionization potential of the pyrene compound represented by the general formula (1) of the present invention is not particularly limited, but is preferably 4.6 eV or more and 6.0 eV or less, more preferably 4.8 eV or more and 5.8 eV or less. . Although the absolute value of the ionization potential may vary depending on the measurement method, the ionization potential of the present invention is an ITO glass substrate using an atmospheric-type ultraviolet photoelectron analyzer (AC-1, manufactured by Riken Kikai Co., Ltd.). It is the value which measured the thin film vapor-deposited on the thickness of 30 nm-100 nm on the top.
本発明で用いられるホスト材料は、本発明の一般式(1)で表されるピレン化合物一種のみに限る必要はなく、本発明の複数のピレン化合物を混合して用いたり、その他のホスト材料の一種類以上を本発明のピレン化合物と混合して用いてもよい。混合しうるホスト材料としては、発光体であるアントラセンやピレンなどの縮合環誘導体、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどの芳香族アミン誘導体、トリス(8−キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、カルバゾール誘導体、ピロロピロール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体が好適に用いられる。 The host material used in the present invention need not be limited to one kind of pyrene compound represented by the general formula (1) of the present invention, and a plurality of pyrene compounds of the present invention may be mixed and used. One or more kinds may be used as a mixture with the pyrene compound of the present invention. Examples of the host material that can be mixed include fused ring derivatives such as anthracene and pyrene as light emitters, N, N′-dinaphthyl-N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, and the like. Aromatic amine derivatives, metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III), bisstyryl derivatives such as distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, For pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, carbazole derivatives, pyrrolopyrrole derivatives, polymers, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazol Derivatives, polythiophene derivatives are suitably used.
発光材料に含有されるドーパント材料は、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデンなどのアリール環を有する化合物やその誘導体(例えば2−(ベンゾチアゾール−2−イル)−9,10−ジフェニルアントラセンや5,6,11,12−テトラフェニルナフタセンなど)、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ジスチリルベンゼン誘導体、4,4’−ビス(2−(4−ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’−ビス(N−(スチルベン−4−イル)−N−フェニルアミノ)スチルベンなどのアミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4−c]ピロール誘導体、2,3,5,6−1H,4H−テトラヒドロ−9−(2’−ベンゾチアゾリル)キノリジノ[9,9a,1−gh]クマリンなどのクマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミンに代表される芳香族アミン誘導体などが挙げられる。中でも、電子受容性置換基を有する縮合芳香環誘導体をドーパントとして用いると、本発明のピレン化合物が有する薄膜安定性の効果がより顕著になるため、好ましい。具体的には、1−(ベンゾオキサゾール−2−イル)−3,8−ビス(4−メチルフェニル)ピレンに代表されるベンゾアゾール基を有するピレン化合物が特に好ましいドーパントとして挙げられる。 The dopant material contained in the light-emitting material is not particularly limited, but a compound having an aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene, or a derivative thereof (for example, 2- (benzothiazole-2- Yl) -9,10-diphenylanthracene and 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene , Benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene, etc. Aminostyryl such as zen derivatives, 4,4′-bis (2- (4-diphenylaminophenyl) ethenyl) biphenyl, 4,4′-bis (N- (stilben-4-yl) -N-phenylamino) stilbene Derivatives, aromatic acetylene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, pyromethene derivatives, diketopyrrolo [3,4-c] pyrrole derivatives, 2,3,5,6-1H, 4H-tetrahydro-9- (2 Coumarin derivatives such as' -benzothiazolyl) quinolidino [9,9a, 1-gh] coumarin, azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole, triazole and metal complexes thereof, and N, N'-diphenyl -N, N'-di (3-methyl And aromatic amine derivatives typified by phenyl) -4,4'-diphenyl-1,1'-diamine. Among them, it is preferable to use a condensed aromatic ring derivative having an electron-accepting substituent as a dopant because the effect of the thin film stability of the pyrene compound of the present invention becomes more remarkable. Specifically, pyrene compounds having a benzoazole group typified by 1- (benzoxazol-2-yl) -3,8-bis (4-methylphenyl) pyrene are particularly preferable dopants.
本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため電子輸送層は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質で構成されることが望ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。したがって、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。 In the present invention, the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons. The electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. Therefore, it is desirable that the electron transport layer is made of a material having a high electron affinity, a high electron mobility, excellent stability, and a trapping impurity that is unlikely to be generated during manufacture and use. However, considering the transport balance between holes and electrons, if the electron transport layer mainly plays a role of effectively preventing the holes from the anode from recombining and flowing to the cathode side, the electron transport Even if it is made of a material that does not have a high capability, the effect of improving the luminous efficiency is equivalent to that of a material that has a high electron transport capability. Therefore, the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
電子輸送層に用いられる電子輸送材料は、特に限定されないが、ナフタレン、アントラセンなどの縮合アリール環を有する化合物やその誘導体、4,4’−ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体、トリス(8−キノリノラート)アルミニウム(III)などのキノリノール錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体、電子受容性窒素を有するヘテロアリール環を有する化合物などが挙げられる。 The electron transport material used for the electron transport layer is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene or anthracene or a derivative thereof, or a styryl-based fragrance represented by 4,4′-bis (diphenylethenyl) biphenyl. Ring derivatives, perylene derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, quinone derivatives such as anthraquinone and diphenoquinone, phosphorus oxide derivatives, carbazole derivatives and indole derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III) and hydroxy Examples thereof include hydroxyazole complexes such as phenyloxazole complexes, azomethine complexes, tropolone metal complexes and flavonol metal complexes, and compounds having a heteroaryl ring having electron-accepting nitrogen.
本発明における電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を含むヘテロアリール環は、高い電子親和性を有する。電子受容性窒素を含むヘテロアリール環は、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。 The electron-accepting nitrogen in the present invention represents a nitrogen atom that forms a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, heteroaryl rings containing electron-accepting nitrogen have a high electron affinity. Heteroaryl rings containing electron-accepting nitrogen include, for example, pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, oxazole ring, oxalate ring, Examples include a diazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
また、本発明の電子受容性窒素を含むヘテロアリール環構造を有する化合物は、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成されることが好ましい。これらの元素で構成された電子受容性窒素を含むヘテロアリール環構造を有する化合物は、高い電子輸送能を有し、駆動電圧を著しく低減できる。 The compound having a heteroaryl ring structure containing electron-accepting nitrogen of the present invention is preferably composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon and phosphorus. A compound having a heteroaryl ring structure containing electron-accepting nitrogen composed of these elements has a high electron transporting ability and can significantly reduce a driving voltage.
電子受容性窒素を含み、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成されるヘテロアリール環構造を有する化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。中でも、トリス(N−フェニルベンズイミダゾール−2−イル)ベンゼンなどのイミダゾール誘導体、1,3−ビス[(4−tert−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3−ビス(1,10−フェナントロリン−9−イル)ベンゼンなどのフェナントロリン誘導体、2,2’−ビス(ベンゾ[h]キノリン−2−イル)−9,9’−スピロビフルオレンなどのベンゾキノリン誘導体、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールなどのビピリジン誘導体、1,3−ビス(4’−(2,2’:6’2”−ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の点から好ましく用いられる。さらに、1,3−ビス(1,10−フェナントロリン−9−イル)ベンゼン、2,7−ビス(1,10−フェナントロリン−9−イル)ナフタレン、1,3−ビス(2−フェニル−1,10−フェナントロリン−9−イル)ベンゼンなどのフェナントロリン二量体、および2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールなどのビピリジン二量体は、本発明の一般式(1)で表されるピレン化合物と組み合わせた際の耐久性向上効果が著しく高く、特に好ましい例として挙げられる。 Examples of compounds having a heteroaryl ring structure containing an electron-accepting nitrogen and composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus include benzimidazole derivatives, benzoxazole derivatives, and benzthiazoles. Preferred examples include derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives, and naphthyridine derivatives. . Among them, imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′ A benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ″ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 ′: 6′2 ″ -ta Terpyridine derivatives such as pyridinyl)) benzene, naphthyridine derivatives such as bis (1-naphthyl) -4- (1,8-naphthyridin-2-yl) phenylphosphine oxide are preferably used from the viewpoint of electron transporting capability. Furthermore, 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,7-bis (1,10-phenanthroline-9-yl) naphthalene, 1,3-bis (2-phenyl-1, Phenanthroline dimers such as 10-phenanthroline-9-yl) benzene, 2,5-bis (6 ′-(2 ′, 2 ″ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilole, etc. This bipyridine dimer has a significantly high durability improving effect when combined with the pyrene compound represented by the general formula (1) of the present invention, and is particularly preferable.
上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。また、アルカリ金属やアルカリ土類金属などの金属と混合して用いることも可能である。電子輸送層のイオン化ポテンシャルは、特に限定されないが、好ましくは5.8eV以上8.0eV以下であり、より好ましくは6.0eV以上7.5eV以下である。 The electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed with the electron transport material. It is also possible to use a mixture with a metal such as an alkali metal or an alkaline earth metal. The ionization potential of the electron transport layer is not particularly limited, but is preferably 5.8 eV or more and 8.0 eV or less, and more preferably 6.0 eV or more and 7.5 eV or less.
発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。 The method of forming each layer constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., but resistance heating vapor deposition or electron beam vapor deposition is usually used in terms of element characteristics. preferable.
層の厚みは、発光素子材料の抵抗値にもよるので限定することはできないが、1〜1000nmの間から選ばれる。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。 The thickness of the layer depends on the resistance value of the light emitting element material and cannot be limited, but is selected from 1 to 1000 nm. The film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。 The light-emitting element of the present invention has a function of converting electrical energy into light. Here, a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used. The current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。 The light emitting device of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動はその構造が簡単であるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。 In the matrix method, pixels for display are two-dimensionally arranged such as a lattice shape or a mosaic shape, and a character or an image is displayed by a set of pixels. The shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 μm or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become. In monochrome display, pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics, and it is necessary to use it depending on the application.
本発明におけるセグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 The segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and an area determined by the arrangement of the pattern is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned. The matrix display and the segment display may coexist in the same panel.
本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。 The light emitting device of the present invention is also preferably used as a backlight for various devices. The backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. In particular, the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されない。なお、下記の各実施例にある化合物の番号は上の化学式に記載した化合物の番号を指す。また構造分析に関する評価はNMR法で行い、1H−NMRは超伝導FTNMR EX−270(日本電子(株)製)を用い、重クロロホルム溶液にて測定を行った。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited by these Examples. In addition, the number of the compound in each following Example points out the number of the compound described in the above chemical formula. The structural analysis was evaluated by NMR, and 1 H-NMR was measured with a deuterated chloroform solution using superconducting FTNMR EX-270 (manufactured by JEOL Ltd.).
実施例1(化合物[12]の合成方法)
1−ブロモピレン7g、トリメチルボロキシン6g、炭酸セシウム12g、PdCl2(dppf)・CH2Cl22gとジメチルホルムアミド80mlと蒸留水8mlの混合溶液を窒素気流下、80℃で7時間加熱撹拌した。室温に冷却した後、水50mlを注入し、ろ過した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、1−メチルピレン4.4gを得た。
Example 1 (Synthesis Method of Compound [12])
A mixed solution of 7 g of 1-bromopyrene, 6 g of trimethylboroxine, 12 g of cesium carbonate, 2 g of PdCl 2 (dppf) · CH 2 Cl 2, 80 ml of dimethylformamide and 8 ml of distilled water was heated and stirred at 80 ° C. for 7 hours under a nitrogen stream. After cooling to room temperature, 50 ml of water was poured and filtered. The obtained solid was purified by silica gel column chromatography and vacuum-dried to obtain 4.4 g of 1-methylpyrene.
次に、1−メチルピレン4.4g、t−ブチルクロリド2gとジクロロメタン33mlの混合溶液を窒素気流下、0℃に冷やし、塩化アルミニウム2.7gを加えた。この混合溶液を室温で3時間撹拌した後、水30mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、7−t−ブチル−1−メチルピレン3gを得た。 Next, a mixed solution of 4.4 g of 1-methylpyrene, 2 g of t-butyl chloride and 33 ml of dichloromethane was cooled to 0 ° C. under a nitrogen stream, and 2.7 g of aluminum chloride was added. The mixed solution was stirred at room temperature for 3 hours, and then 30 ml of water was injected and extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. After purification by silica gel column chromatography and vacuum drying, 7 g of 7-t-butyl-1-methylpyrene was obtained.
次に、7−t−ブチル−1−メチルピレン3g、ジクロロメタン130mlとメタノール43mlの混合溶液を窒素気流下、0℃に冷やし、ジクロロメタン5mlに溶解させたベンジルトリメチルアンモニウムトリブロマイド4.3gを滴下した。この混合溶液を室温で4時間撹拌した後、水50mlを注入し、ジクロロメタン50mlで抽出した。有機層を水50mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、1−ブロモ−7−t−ブチル−3−メチルピレン3.4gを得た。 Next, a mixed solution of 7 g of 7-t-butyl-1-methylpyrene, 130 ml of dichloromethane and 43 ml of methanol was cooled to 0 ° C. under a nitrogen stream, and 4.3 g of benzyltrimethylammonium tribromide dissolved in 5 ml of dichloromethane was added dropwise. After stirring this mixed solution at room temperature for 4 hours, 50 ml of water was injected and extracted with 50 ml of dichloromethane. The organic layer was washed twice with 50 ml of water, dried over magnesium sulfate and evaporated. After purification by silica gel column chromatography and vacuum drying, 3.4 g of 1-bromo-7-t-butyl-3-methylpyrene was obtained.
次に、1−ブロモ−7−t−ブチル−3−メチルピレン1g、9−[4−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)フェニル]カルバゾール1.3g、リン酸三カリウム1.5g、テトラブチルアンモニウムブロミド0.22g、酢酸パラジウム16mgとジメチルホルムアミド30mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水30mlを注入し、ろ過した。エタノール30mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥した後、白色結晶1.2gを得た。得られた粉末の1H−NMR分析結果は次の通りであり、上記で得られた白色結晶が化合物〔12〕であることが確認された。
1H−NMR(CDCl3(d=ppm)):1.61(s, 9H), 3.05(s, 3H), 7.23-8.30(m, 19H)。
Next, 1 g of 1-bromo-7-t-butyl-3-methylpyrene, 9- [4- (4,4,5,5-tetramethyl- [1,3,2] dioxaborolan-2-yl) phenyl] A mixed solution of 1.3 g of carbazole, 1.5 g of tripotassium phosphate, 0.22 g of tetrabutylammonium bromide, 16 mg of palladium acetate and 30 ml of dimethylformamide was heated and stirred at 130 ° C. for 2 hours under a nitrogen stream. After cooling to room temperature, 30 ml of water was poured and filtered. After washing with 30 ml of ethanol, the product was purified by silica gel chromatography and vacuum-dried to obtain 1.2 g of white crystals. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the white crystals obtained above were the compound [12].
1 H-NMR (CDCl 3 (d = ppm)): 1.61 (s, 9H), 3.05 (s, 3H), 7.23-8.30 (m, 19H).
尚、この化合物[12]は、油拡散ポンプを用いて1×10−3Paの圧力下、約230℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.1%、昇華精製後が99.3%であった。 This compound [12] was used as a light emitting device material after sublimation purification at about 230 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.1% before sublimation purification and 99.3% after sublimation purification.
実施例2(化合物[39]の合成)
1,6−ジブロモピレン1.4g、トリメチルボロキシン2g、炭酸セシウム3.7g、PdCl2(dppf)・CH2Cl20.31gとジメチルホルムアミド10mlと蒸留水1mlの混合溶液を窒素気流下、80℃で8時間加熱撹拌した。室温に冷却した後、水30mlを注入し、ろ過した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、1,6−ジメチルピレン0.7gを得た。
Example 2 (Synthesis of Compound [39])
A mixed solution of 1.4 g of 1,6-dibromopyrene, 2 g of trimethylboroxine, 3.7 g of cesium carbonate, 0.31 g of PdCl 2 (dppf) · CH 2 Cl 2, 10 ml of dimethylformamide, and 1 ml of distilled water was added under a nitrogen stream. The mixture was heated and stirred at 80 ° C. for 8 hours. After cooling to room temperature, 30 ml of water was poured and filtered. The obtained solid was purified by silica gel column chromatography and vacuum dried to obtain 0.7 g of 1,6-dimethylpyrene.
次に、1,6−ジメチルピレン0.7g、N−ブロモスクシンイミド0.52gとジメチルホルムアミド8mlの混合溶液を窒素気流下、室温で1時間撹拌した後、水20mlを注入し、ろ過した。エタノール30mlで洗浄し、真空乾燥した後、3−ブロモ−1,6−ジメチルピレン0.84gを得た。 Next, a mixed solution of 0.7 g of 1,6-dimethylpyrene, 0.52 g of N-bromosuccinimide and 8 ml of dimethylformamide was stirred at room temperature for 1 hour in a nitrogen stream, and then 20 ml of water was injected and filtered. After washing with 30 ml of ethanol and vacuum drying, 0.84 g of 3-bromo-1,6-dimethylpyrene was obtained.
次に、3−ブロモ−1,6−ジメチルピレン0.84g、4−t−ブチルフェニルボロン酸0.73g、リン酸三カリウム1.7g、テトラブチルアンモニウムブロミド0.3g、酢酸パラジウム18mgとジメチルホルムアミド25mlの混合溶液を窒素気流下、110℃で6時間加熱撹拌した。室温に冷却した後、水30mlを注入し、ろ過した。メタノール30mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥した後、3−(4−t−ブチルフェニル)−1,6−ジメチルピレン0.85gを得た。 Next, 0.84 g of 3-bromo-1,6-dimethylpyrene, 0.73 g of 4-t-butylphenylboronic acid, 1.7 g of tripotassium phosphate, 0.3 g of tetrabutylammonium bromide, 18 mg of palladium acetate and dimethyl A mixed solution of 25 ml of formamide was heated and stirred at 110 ° C. for 6 hours under a nitrogen stream. After cooling to room temperature, 30 ml of water was poured and filtered. After washing with 30 ml of methanol, purification by silica gel chromatography and vacuum drying gave 0.85 g of 3- (4-tert-butylphenyl) -1,6-dimethylpyrene.
次に、3−(4−t−ブチルフェニル)−1,6−ジメチルピレン0.85g、N−ブロモスクシンイミド0.84gとジメチルホルムアミド40mlの混合溶液を窒素気流下、60℃で2時間撹拌した後、水40mlを注入し、ろ過した。メタノール30mlで洗浄し、シリカゲルクロマトグラフィーにより精製し、真空乾燥した後、1−ブロモ−6−(t−ブチルフェニル)−3,8−ジメチルピレン0.27gを得た。 Next, a mixed solution of 0.85 g of 3- (4-t-butylphenyl) -1,6-dimethylpyrene, 0.84 g of N-bromosuccinimide and 40 ml of dimethylformamide was stirred at 60 ° C. for 2 hours under a nitrogen stream. Thereafter, 40 ml of water was injected and filtered. After washing with 30 ml of methanol, purifying by silica gel chromatography and vacuum drying, 0.27 g of 1-bromo-6- (t-butylphenyl) -3,8-dimethylpyrene was obtained.
次に、1−ブロモ−6−(t−ブチルフェニル)−3,8−ジメチルピレン0.27g、9−[4−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)フェニル]カルバゾール0.27g、リン酸三カリウム0.31g、テトラブチルアンモニウムブロミド0.05g、酢酸パラジウム3mgとジメチルホルムアミド6mlの混合溶液を窒素気流下、130℃で5時間加熱撹拌した。室温に冷却した後、水20mlを注入し、ろ過した。メタノール20mlで洗浄した後、シリカゲルカラムクロマトグラフィーにより精製し、さらにジメチルホルムアミドから再結晶し、真空乾燥した後、淡黄色結晶0.30gを得た。得られた粉末の1H−NMR分析結果は次の通りであり、上記で得られた淡黄色結晶が化合物〔39〕であることが確認された。
1H−NMR(CDCl3(d=ppm)):1.46(s, 9H), 3.02(ss, 6H), 7.30-8.35 (m, 22H)。
Next, 0.27 g of 1-bromo-6- (t-butylphenyl) -3,8-dimethylpyrene, 9- [4- (4,4,5,5-tetramethyl- [1,3,2]) Dioxaborolan-2-yl) phenyl] carbazole 0.27 g, tripotassium phosphate 0.31 g, tetrabutylammonium bromide 0.05 g, palladium acetate 3 mg and dimethylformamide 6 ml were heated at 130 ° C. for 5 hours under a nitrogen stream. Stir. After cooling to room temperature, 20 ml of water was poured and filtered. After washing with 20 ml of methanol, it was purified by silica gel column chromatography, recrystallized from dimethylformamide, and vacuum dried to obtain 0.30 g of pale yellow crystals. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the pale yellow crystals obtained above were the compound [39].
1 H-NMR (CDCl 3 (d = ppm)): 1.46 (s, 9H), 3.02 (ss, 6H), 7.30-8.35 (m, 22H).
尚、この化合物[40]は、油拡散ポンプを用いて1×10−3Paの圧力下、約270℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.8%、昇華精製後が99.9%であった。 This compound [40] was used as a light emitting device material after sublimation purification at about 270 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.8% before sublimation purification and 99.9% after sublimation purification.
実施例3(化合物[57]の合成方法)
ピレン4.1g、t−ブチルクロリド2gとジクロロメタン33mlの混合溶液を窒素気流下、0℃に冷やし、塩化アルミニウム2.7gを加えた。この混合溶液を室温で3時間撹拌した後、水30mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、2−t−ブチルピレン3g(含有率65%)を得た。
Example 3 (Synthesis Method of Compound [57])
A mixed solution of 4.1 g of pyrene, 2 g of t-butyl chloride and 33 ml of dichloromethane was cooled to 0 ° C. under a nitrogen stream, and 2.7 g of aluminum chloride was added. The mixed solution was stirred at room temperature for 3 hours, and then 30 ml of water was injected and extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. After purification by silica gel column chromatography and vacuum drying, 3 g (content 65%) of 2-t-butylpyrene was obtained.
次に、2−t−ブチルピレン3g(含有率65%)、ジクロロメタン50mlとメタノール15mlの混合溶液を窒素気流下、0℃に冷やし、ジクロロメタン10mlに溶解させたベンジルトリメチルアンモニウムトリブロマイド3.3gを滴下した。この混合溶液を室温で2時間撹拌した後、水50mlを注入し、ジクロロメタン50mlで抽出した。有機層を水50mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固体にメタノール10mlを加え、10分撹拌した後、ろ過した。さらにヘキサン30mlを加え、30分撹拌した後、ろ過した。真空乾燥した後、1−ブロモ−7−t−ブチルピレン2.3gを得た。 Next, 3 g of 2-t-butylpyrene (content 65%), a mixed solution of 50 ml of dichloromethane and 15 ml of methanol was cooled to 0 ° C. under a nitrogen stream, and 3.3 g of benzyltrimethylammonium tribromide dissolved in 10 ml of dichloromethane was added dropwise. did. After stirring this mixed solution at room temperature for 2 hours, 50 ml of water was poured and extracted with 50 ml of dichloromethane. The organic layer was washed twice with 50 ml of water, dried over magnesium sulfate and evaporated. 10 ml of methanol was added to the obtained solid, stirred for 10 minutes, and then filtered. Further, 30 ml of hexane was added and stirred for 30 minutes, followed by filtration. After vacuum drying, 2.3 g of 1-bromo-7-t-butylpyrene was obtained.
次に、1−ブロモ−7−t−ブチルピレン2.3g、フェニルボロン酸1.1g、リン酸三カリウム3.8g、テトラブチルアンモニウムブロミド0.58g、酢酸パラジウム12mgとジメチルホルムアミド30mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水30mlを注入し、ジクロロメタン50mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、7−t−ブチル−1−フェニルピレン1.5gを得た。 Next, a mixed solution of 2.3 g of 1-bromo-7-t-butylpyrene, 1.1 g of phenylboronic acid, 3.8 g of tripotassium phosphate, 0.58 g of tetrabutylammonium bromide, 12 mg of palladium acetate and 30 ml of dimethylformamide The mixture was heated and stirred at 130 ° C. for 2 hours under a nitrogen stream. After cooling to room temperature, 30 ml of water was injected and extracted with 50 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. After purification by silica gel column chromatography and vacuum drying, 1.5 g of 7-t-butyl-1-phenylpyrene was obtained.
次に、7−t−ブチル−1−フェニルピレン1.5g、ジクロロメタン25mlとメタノール8mlの混合溶液を窒素気流下、0℃に冷やし、ジクロロメタン5mlに溶解させたベンジルトリメチルアンモニウムトリブロマイド1.7gを滴下した。この混合溶液を室温で2時間撹拌した後、水20mlを注入し、ジクロロメタン20mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固体にメタノール10mlを加え、一晩放置した。析出した固体をろ過し、真空乾燥した後、1−ブロモ−7−t−ブチル−3−フェニルピレン1.9gを得た。 Next, 1.5 g of 7-t-butyl-1-phenylpyrene, 25 ml of dichloromethane and 8 ml of methanol were cooled to 0 ° C. under a nitrogen stream, and 1.7 g of benzyltrimethylammonium tribromide dissolved in 5 ml of dichloromethane was added. It was dripped. After stirring this mixed solution at room temperature for 2 hours, 20 ml of water was injected and extracted with 20 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. 10 ml of methanol was added to the obtained solid and left overnight. The precipitated solid was filtered and vacuum-dried to obtain 1.9 g of 1-bromo-7-t-butyl-3-phenylpyrene.
次に、1−ブロモ−7−t−ブチル−3−フェニルピレン1.9g、9−[4−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)フェニル]カルバゾール2.2g、リン酸三カリウム2.5g、テトラブチルアンモニウムブロミド0.38g、酢酸パラジウム27mgとジメチルホルムアミド40mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水40mlを注入し、ろ過した。メタノール40mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥した後、黄白色結晶2.5gを得た。得られた粉末の1H−NMR分析結果は次の通りであり、上記で得られた黄白色結晶が化合物〔57〕であることが確認された。
1H−NMR(CDCl3(d=ppm)):1.61(s, 9H), 7.30-8.35(m, 24H)。
Next, 1.9 g of 1-bromo-7-t-butyl-3-phenylpyrene, 9- [4- (4,4,5,5-tetramethyl- [1,3,2] dioxaborolan-2-yl ) A mixed solution of 2.2 g of phenyl] carbazole, 2.5 g of tripotassium phosphate, 0.38 g of tetrabutylammonium bromide, 27 mg of palladium acetate and 40 ml of dimethylformamide was heated and stirred at 130 ° C. for 2 hours under a nitrogen stream. After cooling to room temperature, 40 ml of water was poured and filtered. After washing with 40 ml of methanol, it was purified by silica gel chromatography and vacuum-dried to obtain 2.5 g of yellowish white crystals. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellowish white crystal obtained above was Compound [57].
1 H-NMR (CDCl 3 (d = ppm)): 1.61 (s, 9H), 7.30-8.35 (m, 24H).
尚、この化合物[57]は、油拡散ポンプを用いて1×10−3Paの圧力下、約250℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.4%、昇華精製後が99.6%であった。 This compound [57] was used as a light emitting device material after sublimation purification at about 250 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.4% before sublimation purification and 99.6% after sublimation purification.
実施例4(化合物[28]の合成方法)
1−ブロモ−7−t−ブチルピレン2.3g、4−ビフェニルボロン酸1.8g、リン酸三カリウム3.8g、テトラブチルアンモニウムブロミド0.58g、酢酸パラジウム12mgとジメチルホルムアミド30mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水30mlを注入し、ジクロロメタン50mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、7−t−ブチル−1−(4-ビフェニル)ピレン1.7gを得た。
Example 4 (Synthesis Method of Compound [28])
A mixed solution of 2.3 g of 1-bromo-7-t-butylpyrene, 1.8 g of 4-biphenylboronic acid, 3.8 g of tripotassium phosphate, 0.58 g of tetrabutylammonium bromide, 12 mg of palladium acetate and 30 ml of dimethylformamide was added to nitrogen. The mixture was heated and stirred at 130 ° C. for 2 hours under an air stream. After cooling to room temperature, 30 ml of water was injected and extracted with 50 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. After purification by silica gel column chromatography and vacuum drying, 1.7 g of 7-t-butyl-1- (4-biphenyl) pyrene was obtained.
次に、7−t−ブチル−1−(4-ビフェニル)ピレン1.7g、ジクロロメタン25mlとメタノール8mlの混合溶液を窒素気流下、0℃に冷やし、ジクロロメタン5mlに溶解させたベンジルトリメチルアンモニウムトリブロマイド1.7gを滴下した。この混合溶液を室温で2時間撹拌した後、水20mlを注入し、ジクロロメタン20mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固体にメタノール10mlを加え、一晩放置した。析出した固体をろ過し、真空乾燥した後、1−ブロモ−7−t−ブチル−3−(4−ビフェニル)ピレン2.0gを得た。 Next, benzyltrimethylammonium tribromide dissolved in 1.7 ml of 7-t-butyl-1- (4-biphenyl) pyrene, a mixed solution of 25 ml of dichloromethane and 8 ml of methanol was cooled to 0 ° C. in a nitrogen stream and dissolved in 5 ml of dichloromethane. 1.7 g was added dropwise. After stirring this mixed solution at room temperature for 2 hours, 20 ml of water was injected and extracted with 20 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. 10 ml of methanol was added to the obtained solid and left overnight. The precipitated solid was filtered and vacuum-dried, and 2.0 g of 1-bromo-7-t-butyl-3- (4-biphenyl) pyrene was obtained.
次に、1−ブロモ−7−t−ブチル−3−(4−ビフェニル)ピレン2.0g、9−[4−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)フェニル]カルバゾール2.2g、リン酸三カリウム2.5g、テトラブチルアンモニウムブロミド0.38g、酢酸パラジウム27mgとジメチルホルムアミド40mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水40mlを注入し、ろ過した。メタノール40mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥した後、黄白色結晶2.6gを得た。得られた粉末の1H−NMR分析結果は次の通りであり、上記で得られた黄白色結晶が化合物〔28〕であることが確認された。
1H−NMR(CDCl3(d=ppm)):1.61(s, 9H), 7.31-8.36(m, 28H)。
Next, 2.0 g of 1-bromo-7-t-butyl-3- (4-biphenyl) pyrene, 9- [4- (4,4,5,5-tetramethyl- [1,3,2] dioxaborolane 2-yl) phenyl] carbazole 2.2 g, tripotassium phosphate 2.5 g, tetrabutylammonium bromide 0.38 g, palladium acetate 27 mg and dimethylformamide 40 ml in a nitrogen stream at 130 ° C. for 2 hours with stirring. did. After cooling to room temperature, 40 ml of water was poured and filtered. After washing with 40 ml of methanol, the residue was purified by silica gel chromatography and vacuum-dried to obtain 2.6 g of yellowish white crystals. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellowish white crystals obtained above were the compound [28].
1 H-NMR (CDCl 3 (d = ppm)): 1.61 (s, 9H), 7.31-8.36 (m, 28H).
尚、この化合物[28]は、油拡散ポンプを用いて1×10−3Paの圧力下、約270℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.4%、昇華精製後が99.6%であった。 This compound [28] was used as a light emitting device material after sublimation purification at about 270 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.4% before sublimation purification and 99.6% after sublimation purification.
実施例5(化合物[27]の合成方法)
1−ブロモ−7−t−ブチルピレン2.3g、1−ナフチルボロン酸1.6g、リン酸三カリウム3.8g、テトラブチルアンモニウムブロミド0.58g、酢酸パラジウム12mgとジメチルホルムアミド30mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水30mlを注入し、ジクロロメタン50mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、7−t−ブチル−1−(1−ナフチル)ピレン1.6gを得た。
Example 5 (Synthesis method of compound [27])
A mixed solution of 2.3 g of 1-bromo-7-t-butylpyrene, 1.6 g of 1-naphthylboronic acid, 3.8 g of tripotassium phosphate, 0.58 g of tetrabutylammonium bromide, 12 mg of palladium acetate and 30 ml of dimethylformamide was added to nitrogen. The mixture was heated and stirred at 130 ° C. for 2 hours under an air stream. After cooling to room temperature, 30 ml of water was injected and extracted with 50 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. After purification by silica gel column chromatography and vacuum drying, 1.6 g of 7-t-butyl-1- (1-naphthyl) pyrene was obtained.
次に、7−t−ブチル−1−(1−ナフチル)ピレン1.6gg、ジクロロメタン25mlとメタノール8mlの混合溶液を窒素気流下、0℃に冷やし、ジクロロメタン5mlに溶解させたベンジルトリメチルアンモニウムトリブロマイド1.7gを滴下した。この混合溶液を室温で2時間撹拌した後、水20mlを注入し、ジクロロメタン20mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固体にメタノール10mlを加え、一晩放置した。析出した固体をろ過し、真空乾燥した後、1−ブロモ−7−t−ブチル−3−(1−ナフチル)ピレン1.9gを得た。 Next, benzyltrimethylammonium tribromide dissolved in 1.6 ml of 7-t-butyl-1- (1-naphthyl) pyrene, a mixed solution of 25 ml of dichloromethane and 8 ml of methanol was cooled to 0 ° C. in a nitrogen stream and dissolved in 5 ml of dichloromethane. 1.7 g was added dropwise. After stirring this mixed solution at room temperature for 2 hours, 20 ml of water was injected and extracted with 20 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. 10 ml of methanol was added to the obtained solid and left overnight. The precipitated solid was filtered and vacuum-dried to obtain 1.9 g of 1-bromo-7-t-butyl-3- (1-naphthyl) pyrene.
次に、1−ブロモ−7−t−ブチル−3−(1−ナフチル)ピレン1.9g、9−[4−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)フェニル]カルバゾール2.2g、リン酸三カリウム2.5g、テトラブチルアンモニウムブロミド0.38g、酢酸パラジウム27mgとジメチルホルムアミド40mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水40mlを注入し、ろ過した。メタノール40mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥した後、黄白色結晶2.5gを得た。得られた粉末の1H−NMR分析結果は次の通りであり、上記で得られた黄白色結晶が化合物〔27〕であることが確認された。
1H−NMR(CDCl3(d=ppm)):1.61(s, 9H), 7.30-8.35(m, 24H)。
Next, 1.9 g of 1-bromo-7-t-butyl-3- (1-naphthyl) pyrene, 9- [4- (4,4,5,5-tetramethyl- [1,3,2] dioxaborolane 2-yl) phenyl] carbazole 2.2 g, tripotassium phosphate 2.5 g, tetrabutylammonium bromide 0.38 g, palladium acetate 27 mg and dimethylformamide 40 ml in a nitrogen stream at 130 ° C. for 2 hours with stirring. did. After cooling to room temperature, 40 ml of water was poured and filtered. After washing with 40 ml of methanol, it was purified by silica gel chromatography and vacuum-dried to obtain 2.5 g of yellowish white crystals. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellowish white crystals obtained above were the compound [27].
1 H-NMR (CDCl 3 (d = ppm)): 1.61 (s, 9H), 7.30-8.35 (m, 24H).
尚、この化合物[27]は、油拡散ポンプを用いて1×10−3Paの圧力下、約260℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.5%、昇華精製後が99.7%であった。 This compound [27] was used as a light emitting device material after sublimation purification at about 260 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.5% before sublimation purification and 99.7% after sublimation purification.
実施例6(化合物[26]の合成方法)
1−ブロモ−7−t−ブチルピレン2.3g、4−メチルフェニルボロン酸1.2g、リン酸三カリウム3.8g、テトラブチルアンモニウムブロミド0.58g、酢酸パラジウム12mgとジメチルホルムアミド30mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水30mlを注入し、ジクロロメタン50mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、7−t−ブチル−1−(4−メチルフェニル)ピレン1.5gを得た。
Example 6 (Synthesis Method of Compound [26])
A mixed solution of 2.3 g of 1-bromo-7-t-butylpyrene, 1.2 g of 4-methylphenylboronic acid, 3.8 g of tripotassium phosphate, 0.58 g of tetrabutylammonium bromide, 12 mg of palladium acetate and 30 ml of dimethylformamide The mixture was heated and stirred at 130 ° C. for 2 hours under a nitrogen stream. After cooling to room temperature, 30 ml of water was injected and extracted with 50 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. After purification by silica gel column chromatography and vacuum drying, 1.5 g of 7-t-butyl-1- (4-methylphenyl) pyrene was obtained.
次に、7−t−ブチル−1−(4−メチルフェニル)ピレン1.5g、ジクロロメタン25mlとメタノール8mlの混合溶液を窒素気流下、0℃に冷やし、ジクロロメタン5mlに溶解させたベンジルトリメチルアンモニウムトリブロマイド1.7gを滴下した。この混合溶液を室温で2時間撹拌した後、水20mlを注入し、ジクロロメタン20mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。得られた固体にメタノール10mlを加え、一晩放置した。析出した固体をろ過し、真空乾燥した後、1−ブロモ−7−t−ブチル−3−(4−メチルフェニル)ピレン1.9gを得た。 Next, a mixed solution of 1.5 g of 7-t-butyl-1- (4-methylphenyl) pyrene, 25 ml of dichloromethane and 8 ml of methanol was cooled to 0 ° C. under a nitrogen stream and dissolved in 5 ml of dichloromethane. 1.7 g of bromide was added dropwise. After stirring this mixed solution at room temperature for 2 hours, 20 ml of water was injected and extracted with 20 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. 10 ml of methanol was added to the obtained solid and left overnight. The precipitated solid was filtered and vacuum-dried to obtain 1.9 g of 1-bromo-7-t-butyl-3- (4-methylphenyl) pyrene.
次に、1−ブロモ−7−t−ブチル−3−(4−メチルフェニル)ピレン1.9g、9−[4−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)フェニル]カルバゾール2.2g、リン酸三カリウム2.5g、テトラブチルアンモニウムブロミド0.38g、酢酸パラジウム27mgとジメチルホルムアミド40mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水40mlを注入し、ろ過した。メタノール40mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥した後、黄白色結晶2.4gを得た。得られた粉末の1H−NMR分析結果は次の通りであり、上記で得られた黄白色結晶が化合物〔26〕であることが確認された。
1H−NMR(CDCl3(d=ppm)):1.61(s, 9H), 2.51(s, 3H), 7.30-8.34(m, 23H)。
Next, 1.9 g of 1-bromo-7-t-butyl-3- (4-methylphenyl) pyrene, 9- [4- (4,4,5,5-tetramethyl- [1,3,2]) Dioxaborolan-2-yl) phenyl] carbazole 2.2 g, tripotassium phosphate 2.5 g, tetrabutylammonium bromide 0.38 g, palladium acetate 27 mg and dimethylformamide 40 ml mixed solution heated at 130 ° C. for 2 hours under nitrogen stream Stir. After cooling to room temperature, 40 ml of water was poured and filtered. After washing with 40 ml of methanol, it was purified by silica gel chromatography and vacuum-dried to obtain 2.4 g of yellowish white crystals. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellowish white crystal obtained above was compound [26].
1 H-NMR (CDCl 3 (d = ppm)): 1.61 (s, 9H), 2.51 (s, 3H), 7.30-8.34 (m, 23H).
尚、この化合物[26]は、油拡散ポンプを用いて1×10−3Paの圧力下、約260℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.4%、昇華精製後が99.6%であった。 This compound [26] was used as a light emitting device material after sublimation purification at about 260 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.4% before sublimation purification and 99.6% after sublimation purification.
実施例7(化合物[58]の合成方法)
1−ブロモ−7−t−ブチル−3−(4−メチルフェニル)ピレン1.9g、9−[3−(4,4,5,5−テトラメチル−[1,3,2]ジオキサボロラン−2−イル)フェニル]カルバゾール2.2g、リン酸三カリウム2.5g、テトラブチルアンモニウムブロミド0.38g、酢酸パラジウム27mgとジメチルホルムアミド40mlの混合溶液を窒素気流下、130℃で2時間加熱撹拌した。室温に冷却した後、水40mlを注入し、ろ過した。メタノール40mlで洗浄した後、シリカゲルクロマトグラフィーにより精製し、真空乾燥した後、黄白色結晶2.3gを得た。得られた粉末の1H−NMR分析結果は次の通りであり、上記で得られた黄白色結晶が化合物〔58〕であることが確認された。
1H−NMR(CDCl3(d=ppm)):1.59(s, 9H), 2.49(s, 3H), 7.26-8.31(m, 23H)。
Example 7 (Synthesis Method of Compound [58])
1.9 g of 1-bromo-7-t-butyl-3- (4-methylphenyl) pyrene, 9- [3- (4,4,5,5-tetramethyl- [1,3,2] dioxaborolane-2 -Ill) phenyl] carbazole 2.2g, tripotassium phosphate 2.5g, tetrabutylammonium bromide 0.38g, palladium acetate 27mg and dimethylformamide 40ml mixed solution was heated and stirred at 130 ° C for 2 hours under nitrogen stream. After cooling to room temperature, 40 ml of water was poured and filtered. After washing with 40 ml of methanol, the product was purified by silica gel chromatography and vacuum-dried to obtain 2.3 g of yellowish white crystals. The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the yellowish white crystal obtained above was Compound [58].
1 H-NMR (CDCl 3 (d = ppm)): 1.59 (s, 9H), 2.49 (s, 3H), 7.26-8.31 (m, 23H).
尚、この化合物[58]は、油拡散ポンプを用いて1×10−3Paの圧力下、約230℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.4%、昇華精製後が99.6%であった。 This compound [58] was used as a light emitting device material after sublimation purification at about 230 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.4% before sublimation purification and 99.6% after sublimation purification.
実施例8
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断し、ITO導電膜をフォトリソグラフィー法によりパターン加工して、発光部分および電極引き出し部分を作製した。得られた基板をアセトン、“セミコクリン56”(フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。続いて、イソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。素子を作製する直前にこの基板を1時間UV−オゾン処理し、さらに真空蒸着装置内に設置して、装置内の真空度が5×10−5Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入材料として、銅フタロシアニンを10nm、正孔輸送材料として、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニルを50nm蒸着した。次に、発光材料として、ホスト材料として、化合物[12]を、またドーパント材料として下記式に示すD−1をドープ濃度が5%になるように35nmの厚さに蒸着した。次に、電子輸送材料として、下記式に示すE−1を20nmの厚さに積層した。以上で形成した有機層上に、フッ化リチウムを0.5nmの厚さに蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニターの表示値である。この発光素子を10mA/cm2で直流駆動したところ、発光効率5.5lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は4000時間であった。
Example 8
A glass substrate (manufactured by Asahi Glass Co., Ltd., 15Ω / □, electron beam vapor-deposited product) on which an ITO transparent conductive film is deposited to 150 nm is cut to 30 × 40 mm, and the ITO conductive film is patterned by a photolithography method to produce a light emitting portion And the electrode extraction part was produced. The obtained substrate was ultrasonically cleaned with acetone, “Semicocrine 56” (manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. Subsequently, it was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes and dried. Immediately before the device was fabricated, this substrate was subjected to UV-ozone treatment for 1 hour, further placed in a vacuum vapor deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −5 Pa or less. By the resistance heating method, first, copper phthalocyanine was deposited as a hole injecting material at 10 nm, and 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl was deposited as a hole transporting material at 50 nm. Next, the compound [12] was deposited as a light-emitting material as a host material, and D-1 represented by the following formula was deposited as a dopant material to a thickness of 35 nm so that the doping concentration was 5%. Next, as an electron transport material, E-1 represented by the following formula was laminated to a thickness of 20 nm. On the organic layer formed as described above, lithium fluoride was vapor-deposited to a thickness of 0.5 nm, and then aluminum was vapor-deposited with a thickness of 1000 nm to form a 5 × 5 mm square device. The film thickness referred to here is a display value of a crystal oscillation type film thickness monitor. When this light emitting element was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a luminous efficiency of 5.5 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 4000 hours.
比較例1
ホスト材料として下記式に示すH−1を用いた以外は、実施例3と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率2.7lm/Wの青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、300時間で輝度半減した。
Comparative Example 1
A light emitting device was produced in the same manner as in Example 3 except that H-1 shown by the following formula was used as the host material. When this light emitting device was DC-driven at 10 mA / cm 2 , blue light emission with a luminous efficiency of 2.7 lm / W was obtained. When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 300 hours.
比較例2
ホスト材料として下記式に示すH−2を用いた以外は、実施例3と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率2.5lm/Wの青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、500時間で輝度半減した。
Comparative Example 2
A light emitting device was produced in the same manner as in Example 3 except that H-2 shown by the following formula was used as the host material. When this light emitting device was DC-driven at 10 mA / cm 2 , blue light emission with a luminous efficiency of 2.5 lm / W was obtained. When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 500 hours.
実施例9
ホスト材料として化合物[39]を用いた以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率5.0lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は3500時間であった。
Example 9
A light emitting device was produced in the same manner as in Example 8 except that the compound [39] was used as the host material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 5.0 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 3500 hours.
実施例10
ホスト材料として化合物[57]を用いた以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率5.7lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は8000時間であった。
Example 10
A light emitting device was produced in the same manner as in Example 8 except that the compound [57] was used as the host material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 5.7 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 8000 hours.
実施例11
ホスト材料として化合物[28]を用いた以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率5.5lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は7500時間であった。
Example 11
A light emitting device was produced in the same manner as in Example 8 except that the compound [28] was used as the host material. When this light emitting element was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a luminous efficiency of 5.5 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 7500 hours.
実施例12
ホスト材料として化合物[27]を用いた以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率5.2lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は7500時間であった。
Example 12
A light emitting device was produced in the same manner as in Example 8 except that the compound [27] was used as the host material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 5.2 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 7500 hours.
実施例13
ホスト材料として化合物[26]を用いた以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率6.0lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は8000時間であった。
Example 13
A light emitting device was produced in the same manner as in Example 8 except that the compound [26] was used as the host material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 6.0 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 8000 hours.
実施例14
ホスト材料として化合物[58]を用いた以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率6.2lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は7000時間であった。
Example 14
A light emitting device was produced in the same manner as in Example 8 except that the compound [58] was used as the host material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a luminous efficiency of 6.2 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 7000 hours.
実施例15
電子輸送材料として下記式に示すE−2を用いた以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率5.8lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は4500時間であった。
Example 15
A light emitting device was produced in the same manner as in Example 8 except that E-2 represented by the following formula was used as the electron transport material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 5.8 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 4500 hours.
実施例16
電子輸送材料として下記式に示すE−3を用いた以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率3.5lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は4000時間であった。
Example 16
A light emitting device was produced in the same manner as in Example 8 except that E-3 represented by the following formula was used as the electron transport material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 3.5 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 4000 hours.
実施例17
ドーパント材料として下記式に示すD−2を用い、ドープ濃度を2%とした以外は、実施例8と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、4.0lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は7000時間であった。
Example 17
A light emitting device was produced in the same manner as in Example 8 except that D-2 represented by the following formula was used as the dopant material and the doping concentration was set to 2%. When this light emitting device was DC-driven at 10 mA / cm 2 , 4.0 lm / W high-efficiency blue light emission was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 7000 hours.
実施例18
ホスト材料として化合物[57]を用いた以外は、実施例17と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率4.5lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は12000時間であった。
Example 18
A light emitting device was produced in the same manner as in Example 17 except that the compound [57] was used as the host material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 4.5 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 12000 hours.
実施例19
電子輸送材料としてE−2を用いた以外は、実施例18と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率4.8lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は12500時間であった。
Example 19
A light emitting device was produced in the same manner as in Example 18 except that E-2 was used as the electron transport material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 4.8 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 12,500 hours.
実施例20
電子輸送材料としてE−3を用いた以外は、実施例18と同様にして発光素子を作製した。この発光素子を10mA/cm2で直流駆動したところ、発光効率3.1lm/Wの高効率青色発光が得られた。この発光素子を10mA/cm2の直流で連続駆動したところ、輝度半減時間は10000時間であった。
Example 20
A light emitting device was produced in the same manner as in Example 18 except that E-3 was used as the electron transport material. When this light emitting device was DC-driven at 10 mA / cm 2 , high-efficiency blue light emission with a light emission efficiency of 3.1 lm / W was obtained. When this light emitting device was continuously driven at a direct current of 10 mA / cm 2 , the luminance half time was 10,000 hours.
実施例21
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断し、フォトリソグラフィー法によって300μmピッチ(残り幅270μm)×32本のストライプ状にパターン加工した。ITOストライプの長辺方向片側は外部との電気的接続を容易にするために1.27mmピッチ(開口部幅800μm)まで広げてある。得られた基板をアセトン、“セミコクリン56”(フルウチ化学(株)製)で各々15分間超音波洗浄してから、超純水で洗浄した。続いて、イソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔輸送材料として4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニルを150nm蒸着した。次に、ホスト材料として化合物〔12〕を、またドーパント材料としてD−1をドープ濃度が2%になるように35nmの厚さに蒸着した。次に、電子輸送材料としてE−1を20nmの厚さに積層した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。次に、厚さ50μmのコバール板にウエットエッチングによって16本の250μmの開口部(残り幅50μm、300μmピッチに相当)を設けたマスクを、真空中でITOストライプに直交するようにマスク交換し、マスクとITO基板が密着するように裏面から磁石で固定した。そしてフッ化リチウムを0.5nm蒸着した後、アルミニウムを200nm蒸着して32×16ドットマトリクス素子を作製した。本素子をマトリクス駆動させたところ、クロストークなく文字表示できた。
Example 21
A glass substrate (manufactured by Asahi Glass Co., Ltd., 15Ω / □, electron beam evaporation product) on which an ITO transparent conductive film is deposited to 150 nm is cut into 30 × 40 mm, and a 300 μm pitch (remaining width 270 μm) × 32 pieces is obtained by photolithography. Patterned into stripes. One side of the ITO stripe in the long side direction is expanded to a pitch of 1.27 mm (opening width 800 μm) in order to facilitate electrical connection with the outside. The obtained substrate was ultrasonically washed with acetone and “Semicocrine 56” (manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, respectively, and then washed with ultrapure water. Subsequently, it was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes and dried. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. First, 4,4′-bis (N- (1-naphthyl) -N-phenylamino) biphenyl was deposited as a hole transport material by a resistance heating method to a thickness of 150 nm. Next, Compound [12] as a host material and D-1 as a dopant material were vapor-deposited to a thickness of 35 nm so that the doping concentration was 2%. Next, E-1 was laminated to a thickness of 20 nm as an electron transport material. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. Next, the mask provided with 16 250 μm openings (corresponding to the remaining width of 50 μm and 300 μm pitch) by wet etching on a 50 μm thick Kovar plate was replaced with a mask so as to be orthogonal to the ITO stripe in vacuum, It fixed with the magnet from the back surface so that a mask and an ITO board | substrate might closely_contact | adhere. Then, after 0.5 nm of lithium fluoride was deposited, 200 nm of aluminum was deposited to prepare a 32 × 16 dot matrix element. When this element was driven in matrix, characters could be displayed without crosstalk.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006038930A JP2007169581A (en) | 2005-11-25 | 2006-02-16 | Light-emitting element material and light emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005339821 | 2005-11-25 | ||
JP2006038930A JP2007169581A (en) | 2005-11-25 | 2006-02-16 | Light-emitting element material and light emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007169581A true JP2007169581A (en) | 2007-07-05 |
Family
ID=38296562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006038930A Pending JP2007169581A (en) | 2005-11-25 | 2006-02-16 | Light-emitting element material and light emitting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007169581A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008108256A1 (en) * | 2007-03-07 | 2008-09-12 | Toray Industries, Inc. | Light-emitting device material and light-emitting device |
JP2008308467A (en) * | 2007-06-18 | 2008-12-25 | Canon Inc | Phenanthrene derivative and organic el element using the same |
EP2100941A3 (en) * | 2008-03-14 | 2010-10-06 | Gracel Display Inc. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
WO2011077690A1 (en) * | 2009-12-21 | 2011-06-30 | 出光興産株式会社 | Pyrene derivative and organic electroluminescent element using the same |
WO2011138907A1 (en) * | 2010-05-06 | 2011-11-10 | Canon Kabushiki Kaisha | Novel organic compound |
JP2012049159A (en) * | 2010-08-24 | 2012-03-08 | Toray Ind Inc | Light emitter |
JP5012998B2 (en) * | 2009-03-30 | 2012-08-29 | 東レ株式会社 | Light emitting device material and light emitting device |
JP2013179320A (en) * | 2008-07-01 | 2013-09-09 | Toray Ind Inc | Light-emitting element |
US8628863B2 (en) | 2008-11-06 | 2014-01-14 | Canon Kabushiki Kaisha | Indenopyrene compound and organic light-emitting device using the compound |
KR20140027948A (en) | 2011-04-12 | 2014-03-07 | 유디씨 아일랜드 리미티드 | Organic electroluminescent element |
CN103814453A (en) * | 2011-09-16 | 2014-05-21 | 东丽株式会社 | Light-emitting element material and light-emitting element |
US9512137B2 (en) | 2010-08-05 | 2016-12-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US9608207B2 (en) | 2011-04-12 | 2017-03-28 | Udc Ireland Limited | Organic electroluminescence element |
JP2018006772A (en) * | 2010-10-04 | 2018-01-11 | 株式会社半導体エネルギー研究所 | Composite material, light-emitting element, light-emitting device, electronic device, and lighting system |
CN110283084A (en) * | 2019-07-02 | 2019-09-27 | 武汉华星光电半导体显示技术有限公司 | Electroluminescent material, the preparation method of electroluminescent material and luminescent device |
-
2006
- 2006-02-16 JP JP2006038930A patent/JP2007169581A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5326568B2 (en) * | 2007-03-07 | 2013-10-30 | 東レ株式会社 | Light emitting device material and light emitting device |
WO2008108256A1 (en) * | 2007-03-07 | 2008-09-12 | Toray Industries, Inc. | Light-emitting device material and light-emitting device |
EP2128217A4 (en) * | 2007-03-07 | 2011-01-19 | Toray Industries | Light-emitting device material and light-emitting device |
EP2128217A1 (en) * | 2007-03-07 | 2009-12-02 | Toray Industries, Inc. | Light-emitting device material and light-emitting device |
US7989802B2 (en) | 2007-03-07 | 2011-08-02 | Toray Industries, Inc. | Light emitting device material and light emitting device |
JP2008308467A (en) * | 2007-06-18 | 2008-12-25 | Canon Inc | Phenanthrene derivative and organic el element using the same |
EP2100941A3 (en) * | 2008-03-14 | 2010-10-06 | Gracel Display Inc. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
JP2013179320A (en) * | 2008-07-01 | 2013-09-09 | Toray Ind Inc | Light-emitting element |
US8628863B2 (en) | 2008-11-06 | 2014-01-14 | Canon Kabushiki Kaisha | Indenopyrene compound and organic light-emitting device using the compound |
JP5012998B2 (en) * | 2009-03-30 | 2012-08-29 | 東レ株式会社 | Light emitting device material and light emitting device |
US9169274B2 (en) | 2009-12-21 | 2015-10-27 | Idemitsu Kosan Co., Ltd. | Pyrene derivative and organic electroluminescent element using the same |
WO2011077690A1 (en) * | 2009-12-21 | 2011-06-30 | 出光興産株式会社 | Pyrene derivative and organic electroluminescent element using the same |
JP5690283B2 (en) * | 2009-12-21 | 2015-03-25 | 出光興産株式会社 | Pyrene derivative and organic electroluminescence device using the same |
JP2011236135A (en) * | 2010-05-06 | 2011-11-24 | Canon Inc | New organic compound |
WO2011138907A1 (en) * | 2010-05-06 | 2011-11-10 | Canon Kabushiki Kaisha | Novel organic compound |
US9073812B2 (en) | 2010-05-06 | 2015-07-07 | Canon Kabushiki Kaisha | Organic compound |
US9512137B2 (en) | 2010-08-05 | 2016-12-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
JP2012049159A (en) * | 2010-08-24 | 2012-03-08 | Toray Ind Inc | Light emitter |
JP2018006772A (en) * | 2010-10-04 | 2018-01-11 | 株式会社半導体エネルギー研究所 | Composite material, light-emitting element, light-emitting device, electronic device, and lighting system |
KR20140027948A (en) | 2011-04-12 | 2014-03-07 | 유디씨 아일랜드 리미티드 | Organic electroluminescent element |
US9608207B2 (en) | 2011-04-12 | 2017-03-28 | Udc Ireland Limited | Organic electroluminescence element |
CN103814453A (en) * | 2011-09-16 | 2014-05-21 | 东丽株式会社 | Light-emitting element material and light-emitting element |
CN103814453B (en) * | 2011-09-16 | 2016-12-28 | 东丽株式会社 | Light emitting element material and light-emitting component |
CN110283084A (en) * | 2019-07-02 | 2019-09-27 | 武汉华星光电半导体显示技术有限公司 | Electroluminescent material, the preparation method of electroluminescent material and luminescent device |
CN110283084B (en) * | 2019-07-02 | 2023-05-26 | 武汉华星光电半导体显示技术有限公司 | Electroluminescent material, preparation method of electroluminescent material and light-emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5062374B2 (en) | Light emitting device material and light emitting device | |
JP4830750B2 (en) | Light emitting device material and light emitting device | |
JP4807013B2 (en) | Light emitting device material and light emitting device | |
JP4962314B2 (en) | Light emitting device material and light emitting device | |
JP5029013B2 (en) | Light emitting device material and light emitting device | |
JP5326280B2 (en) | Light emitting device material and light emitting device | |
JP5326568B2 (en) | Light emitting device material and light emitting device | |
JP5608978B2 (en) | Light emitting device material and light emitting device | |
JP5012998B2 (en) | Light emitting device material and light emitting device | |
JP4968333B2 (en) | Light emitting device material and light emitting device | |
JP2007169581A (en) | Light-emitting element material and light emitting element | |
JP5168787B2 (en) | Light emitting device material and light emitting device | |
JP2007131722A (en) | Electroluminescent element material and electroluminescent element | |
JP2008195841A (en) | Material for light-emitting element and the resulting light-emitting element | |
JP5315998B2 (en) | Light emitting device material and light emitting device | |
JP2007131723A (en) | Electroluminescent element material and electroluminescent element | |
JP4835425B2 (en) | Light emitting device material and light emitting device | |
JP2007077185A (en) | Light-emitting device material using pyrene compound and light-emitting device | |
JP5017884B2 (en) | Light emitting device material and light emitting device | |
JP2008184566A (en) | Luminescent element material and luminescent element | |
JP2009096946A (en) | Light-emitting device material and light-emitting device | |
JP5194649B2 (en) | Light emitting device material and light emitting device | |
JP2006265515A (en) | Light emitting element material and light emitting element | |
JP2008081704A (en) | Luminescent element material and luminescent element |