JP2007169349A - Method for production of chlorinated vinyl chloride resin - Google Patents

Method for production of chlorinated vinyl chloride resin Download PDF

Info

Publication number
JP2007169349A
JP2007169349A JP2005365706A JP2005365706A JP2007169349A JP 2007169349 A JP2007169349 A JP 2007169349A JP 2005365706 A JP2005365706 A JP 2005365706A JP 2005365706 A JP2005365706 A JP 2005365706A JP 2007169349 A JP2007169349 A JP 2007169349A
Authority
JP
Japan
Prior art keywords
vinyl chloride
solvent
resin
chloride resin
chlorinated vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005365706A
Other languages
Japanese (ja)
Inventor
Tomoyuki Yoshimi
智之 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005365706A priority Critical patent/JP2007169349A/en
Publication of JP2007169349A publication Critical patent/JP2007169349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing chlorinated vinyl chloride resin attaining an effective elimination of hydrogen chloride, reducing the load to the facilities in removing the by-product hydrogen chloride in the chlorinating reaction relating to a method for producing the chlorinated vinyl chloride resin obtained by chlorination of a vinyl chloride resin. <P>SOLUTION: The invention relates to the method for production of chlorinated vinyl chloride resin comprising addition of a solvent having solubility parameter of 16-20 (MPa)<SP>1/2</SP>and ≤1% of saturated solubility of water, to a water slurry of the chlorinated vinyl chloride resin obtained by chlorinating the vinyl chloride resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、塩化ビニル系樹脂を塩素化して、塩素化塩化ビニル系樹脂を製造する方法に関する。   The present invention relates to a method for producing a chlorinated vinyl chloride resin by chlorinating a vinyl chloride resin.

塩素化塩化ビニル系樹脂(以下簡単のため「CPVC」と記す)は耐熱性に優れた汎用樹脂の一つである。耐熱性はCPVCの分子に含まれる塩素量(塩素化度)が多い程有利であり、その製造方法としては以下の方法が一般的に用いられている。すなわち水性媒体中に塩化ビニル系樹脂(以下簡単のため「PVC」と記す)を懸濁させて、これに気体状又は液体状の塩素を供給して、PVCの塩素化反応を行う方法である。さらにこのような塩素化方法の中では、光(紫外線)を用いる光塩素化法と熱を用いる熱塩素化法が工業的に実施されている。(特許文献1)
この塩素化反応の反応プロセスは、次の3つのプロセスから成り立っていると考えられている。
(1)Cl →2Cl・ (ラジカル生成反応)
(2)PVC + Cl・ → PVC・ + HCl (水素引抜き反応)
(3)PVC・ + Cl・ → CPVC (塩素化反応)
(1)は、光又は熱によって、塩素を塩素ラジカルにするラジカル生成反応であり、(2)は、塩素ラジカルによって、PVCから水素が引抜かれる水素引抜き反応であり、(3)は、ポリマーラジカル(PVC・)と塩素ラジカル又は塩素によって、CPVCが生成する反応である。(1)から(3)の反応式をまとめて下記反応式(A)で示される。
(A) PVC + Cl → CPVC + HCl
従って、(A)の様な塩素化反応においては、原料塩素の約半分のみが塩素化反応に利用され、半分は塩酸副生に消費される。そのため塩素化反応後のスラリー中の塩酸濃度が例えば、5〜12%となり反応器、乾燥機などの設備腐食が著しくなる為、設備の腐食を防止するため高価な金属などで設備をコーティングするなどの処置が必要であった。また、塩素化反応終了後のスラリー排水中の塩酸は、遠心分離または濾過後の樹脂に対し約20,000ppmにもなるため、その洗浄に多量の水を必要とするという工業的課題があった。
A chlorinated vinyl chloride resin (hereinafter referred to as “CPVC” for simplicity) is one of general-purpose resins having excellent heat resistance. The heat resistance is more advantageous as the amount of chlorine (degree of chlorination) contained in the CPVC molecule is larger, and the following methods are generally used as its production method. That is, it is a method in which a vinyl chloride resin (hereinafter referred to as “PVC” for simplicity) is suspended in an aqueous medium, and gaseous or liquid chlorine is supplied thereto to perform a chlorination reaction of PVC. . Furthermore, among such chlorination methods, a photochlorination method using light (ultraviolet rays) and a thermal chlorination method using heat are industrially implemented. (Patent Document 1)
The reaction process of this chlorination reaction is considered to be composed of the following three processes.
(1) Cl 2 → 2Cl. (Radical generation reaction)
(2) PVC + Cl · → PVC · + HCl (hydrogen abstraction reaction)
(3) PVC ・ + Cl ・ → CPVC (chlorination reaction)
(1) is a radical generation reaction in which chlorine is converted into chlorine radicals by light or heat, (2) is a hydrogen abstraction reaction in which hydrogen is extracted from PVC by chlorine radicals, and (3) is a polymer radical. This is a reaction in which CPVC is generated by (PVC.) And a chlorine radical or chlorine. The reaction formulas (1) to (3) are collectively represented by the following reaction formula (A).
(A) PVC + Cl 2 → CPVC + HCl
Therefore, in the chlorination reaction as in (A), only about half of the raw material chlorine is used for the chlorination reaction, and half is consumed as a by-product of hydrochloric acid. Therefore, the concentration of hydrochloric acid in the slurry after the chlorination reaction becomes 5 to 12%, for example, and equipment corrosion of reactors and dryers becomes remarkable. Therefore, equipment is coated with expensive metals to prevent equipment corrosion. Treatment was necessary. Moreover, since the hydrochloric acid in the slurry wastewater after the chlorination reaction is about 20,000 ppm with respect to the resin after centrifugation or filtration, there is an industrial problem that a large amount of water is required for washing. .

これを改善する為に、水性媒体中にPVCを懸濁させたスラリーに次亜塩素酸金属塩を加え、これにプロトン酸を添加して塩素化する方法が提案されている(特許文献2)。確かにこの方法によれば反応後のスラリーに含まれる酸の量は少なくなる。しかし該方法ではプロトン酸を系外から投入する為PVC内部での塩素化反応が起こりにくく、不安定なビニリデン構造(−CCl−)が生成したり、次亜塩素酸金属塩が反応後の樹脂中に残留して初期着色や熱安定性が悪化したりする等、実用上の問題がある。また、水性媒体中にPVCを懸濁させたスラリーに次亜塩素酸塩を加え、塩素ガスを吹き込みながら塩素化反応で副生する塩酸と次亜塩素酸塩を反応させて塩素ガスとして再生させることでトータルの塩酸生成量を抑える方法も提案されている(特許文献3)。この方法によれば塩酸生成量を抑えた塩素化反応が可能となるが、高温下では次亜塩素酸塩自体の分解が起こり、原料塩素に対する製品収率に改善の余地があった。 In order to improve this, there has been proposed a method of adding a hypochlorite metal salt to a slurry in which PVC is suspended in an aqueous medium and adding a protonic acid thereto to chlorinate (Patent Document 2). . Certainly, according to this method, the amount of acid contained in the slurry after the reaction is reduced. However, in this method, since a protic acid is introduced from outside the system, the chlorination reaction inside the PVC hardly occurs, an unstable vinylidene structure (—CCl 2 —) is generated, or a metal hypochlorite is reacted after the reaction. There are practical problems such as residual coloring in resin and deterioration of initial coloration and thermal stability. Also, hypochlorite is added to the slurry in which PVC is suspended in an aqueous medium, and hydrochloric acid and by-chlorite produced as a by-product in the chlorination reaction are reacted while blowing chlorine gas to regenerate it as chlorine gas. Thus, a method of suppressing the total amount of hydrochloric acid produced has also been proposed (Patent Document 3). According to this method, chlorination reaction can be performed while suppressing the amount of hydrochloric acid produced, but hypochlorite itself decomposes at high temperatures, and there is room for improvement in product yield relative to raw material chlorine.

一方、副生する塩酸を中和するためにクエン酸やその各種塩を用いる方法(特許文献4)も提案されているが、それらが不純物となるためその使用と洗浄に多大なコストを要することからこれも改善の余地があった。   On the other hand, a method using citric acid and various salts thereof to neutralize by-product hydrochloric acid has also been proposed (Patent Document 4). However, since these become impurities, their use and cleaning are very expensive. There was also room for improvement.

この様に、従来におけるCPVCの製造においては、スラリー中の塩酸による設備腐食の問題、初期着色性や透明性低下の問題、といった種々の工業的課題があり、これらのバランスを高める技術開発は、当業者の長年の課題となっている。
特公昭46−17128号公報 特開2001−11116号公報 特開2004−099669号公報 米国特許第5359011号
Thus, in the production of conventional CPVC, there are various industrial problems such as the problem of equipment corrosion due to hydrochloric acid in the slurry, the problem of initial colorability and a decrease in transparency, and technological development to improve these balances, It has long been a challenge for those skilled in the art.
Japanese Examined Patent Publication No. 46-17128 JP 2001-11116 A JP 2004-099669 A US Pat. No. 5,359,011

塩素化反応の副生塩酸による設備の塩酸除去にかかる負荷を軽減するべく効率的な塩酸除去を達成した塩素化塩化ビニル系樹脂の製造方法を提供する。   Provided is a method for producing a chlorinated vinyl chloride resin that achieves efficient hydrochloric acid removal in order to reduce the load of hydrochloric acid removal of equipment by by-product hydrochloric acid of chlorination reaction.

本願発明者らは、上記課題に鑑み、鋭意検討の結果、本発明を完成するに到ったものである。   In view of the above problems, the present inventors have completed the present invention as a result of intensive studies.

すなわち、本発明は、
塩化ビニル系樹脂を塩素化して得られる塩素化塩化ビニル系樹脂の水スラリーと、溶解度パラメーターが16〜20(MPa)1/2、かつ水の飽和溶解度が1%以下である溶剤を、混合することを特徴とする塩素化塩化ビニル系樹脂の製造方法(請求項1)に関する、
塩素化塩化ビニル系樹脂と溶剤を混合して撹拌混合後油相と水相を分離し、油相側の溶剤を除去、乾燥することで固体樹脂を得ることを特徴とする請求項1記載の塩素化塩化ビニル系樹脂の製造方法(請求項2)に関する、
溶剤が、ハロゲン化炭化水素を含む溶剤であることを特徴とする請求項1又は請求項2記載の塩素化塩化ビニル系樹脂の製造方法(請求項3)に関する、ものである。
That is, the present invention
A water slurry of a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin and a solvent having a solubility parameter of 16 to 20 (MPa) 1/2 and a saturated solubility of water of 1% or less are mixed. A method for producing a chlorinated vinyl chloride resin (claim 1),
2. A solid resin is obtained by mixing a chlorinated vinyl chloride resin and a solvent, stirring and mixing, separating an oil phase and an aqueous phase, removing the solvent on the oil phase side and drying. Regarding a method for producing a chlorinated vinyl chloride resin (claim 2),
3. The method for producing a chlorinated vinyl chloride resin according to claim 1 or 2, wherein the solvent is a solvent containing a halogenated hydrocarbon (claim 3).

本発明によれば、塩素化反応で副生される塩酸を効率的に除去することができる。   According to the present invention, hydrochloric acid produced as a by-product in the chlorination reaction can be efficiently removed.

本発明における塩化ビニル系樹脂とは、塩化ビニルの単独重合体、または塩化ビニルと他の共重合可能な単量体(例えば、エチレン、プロピレン、酢酸ビニル、塩化アリル、アリルグリシジルエーテル、アクリル酸エステル、ビニルエーテル等)との共重合体を示す。これらの単量体を部分鹸化のポリビニルアルコール、メチルセルロース、ヒドロキシプロピルメチルセルロース、ポリエチレンオキサイドなどの分散剤及びラウロイルパーオキサイド、ジ−2−エチルヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、α、α’−アゾビス−2,4−ジメチルバレロニトリルなどの油溶性重合開始剤を使用して懸濁重合で重合される。その中でも、粘度平均重合度が350〜1250のポリ塩化ビニル単独樹脂が好ましく用いられる。粘度平均重合度が350〜1250の範囲のポリ塩化ビニル単独樹脂を使用すると、塩素化塩化ビニル樹脂の耐熱性能、及び成形加工を両立することができるために好ましい。   The vinyl chloride resin in the present invention is a vinyl chloride homopolymer or a vinyl chloride and other copolymerizable monomer (for example, ethylene, propylene, vinyl acetate, allyl chloride, allyl glycidyl ether, acrylate ester). , Vinyl ether, etc.). Dispersants such as partially saponified polyvinyl alcohol, methyl cellulose, hydroxypropyl methyl cellulose, polyethylene oxide, and lauroyl peroxide, di-2-ethylhexyl peroxyneodecanoate, t-butylperoxyneodecanoate , Α, α′-azobis-2,4-dimethylvaleronitrile and other oil-soluble polymerization initiators are used for polymerization by suspension polymerization. Among them, a polyvinyl chloride single resin having a viscosity average polymerization degree of 350 to 1250 is preferably used. The use of a single polyvinyl chloride resin having a viscosity average polymerization degree in the range of 350 to 1250 is preferable because both the heat resistance performance of the chlorinated vinyl chloride resin and the molding process can be achieved.

このようにして得られた塩化ビニル系樹脂を、水性懸濁下で10〜40重量%の樹脂濃度で塩素化して塩素化塩化ビニル系樹脂を得るのが望ましい。10〜40重量%の範囲であれば生産性、水性懸濁溶液の粘度安定性、及び撹拌時の均一混合性の観点から、好ましい。20〜35重量%の範囲であれば、生産性と撹拌の均一混合の観点から更に好ましい。10重量%以下の樹脂濃度で塩素化する場合でも、生産コストとのバランスをとる必要があるが、さらに塩酸濃度を低減させることができ、塩酸濃度を極力低減させる必要がある場合には、効果的な方法となり得る。塩素化反応には特別の制限はなく、水銀灯で紫外線を照射する塩素化方法、あるいは触媒を用いて塩素化する方法、熱を加える方法、更にはその組み合わせが可能である。   It is desirable to obtain a chlorinated vinyl chloride resin by chlorinating the vinyl chloride resin thus obtained in an aqueous suspension at a resin concentration of 10 to 40% by weight. The range of 10 to 40% by weight is preferable from the viewpoints of productivity, viscosity stability of the aqueous suspension solution, and uniform mixing during stirring. If it is the range of 20 to 35 weight%, it is still more preferable from a viewpoint of uniform mixing of productivity and stirring. Even when chlorinating at a resin concentration of 10% by weight or less, it is necessary to balance the production cost. However, if the hydrochloric acid concentration can be further reduced and the hydrochloric acid concentration needs to be reduced as much as possible, it is effective. Method. The chlorination reaction is not particularly limited, and a chlorination method in which ultraviolet rays are irradiated with a mercury lamp, a chlorination method using a catalyst, a method of applying heat, or a combination thereof is possible.

例えば水銀灯で紫外線を照射する塩素化反応装置を例に挙げると、特に限定されるものではないが、撹拌機、冷却ジャケット、塩素供給装置、水銀灯で紫外線を照射する方法であればさらに水銀灯が付設されていればよい。反応器内は大量の塩酸が副生物として生成するために、耐酸性金属でコーティングした槽あるいはグラスライニング槽が好適に用いられる。   For example, a chlorination reactor that irradiates ultraviolet rays with a mercury lamp is not particularly limited. However, a mercury lamp is additionally provided if the method is to irradiate ultraviolet rays with a stirrer, cooling jacket, chlorine supply device, or mercury lamp. It only has to be done. Since a large amount of hydrochloric acid is generated as a by-product in the reactor, a tank coated with an acid-resistant metal or a glass lining tank is preferably used.

本発明では、水性媒体に供給する塩素は、気体状であっても液体状であっても良いが、取扱いの容易さの観点から、気体状の塩素ガスを水性媒体中に供給する方法が好ましい。   In the present invention, chlorine supplied to the aqueous medium may be gaseous or liquid, but from the viewpoint of easy handling, a method of supplying gaseous chlorine gas into the aqueous medium is preferable. .

使用する溶剤は、溶解度パラメーターが16〜20(MPa)1/2の範囲内であればよい。 The solvent used should just have a solubility parameter in the range of 16-20 (MPa) 1/2 .

ここで溶解度パラメーターとは、「溶剤ポケットブック」有機合成化学協会編,旺文社に記載されているように、溶剤の対溶剤あるいは対固体物質の溶解性を示す指標として一般的に用いられている物性パラメーターである。   Here, the solubility parameter is a physical property generally used as an index indicating the solubility of a solvent in a solvent or in a solid substance, as described in “Solvent Pocket Book” edited by Organic Synthetic Chemistry Association, Sobunsha. It is a parameter.

溶解度パラメーターが16(MPa)1/2〜20(MPa)1/2の範囲にあると、塩素化塩化ビニル樹脂との相溶性、塩酸除去効果の観点から好ましい。また、溶解度パラメーターが18.5〜19.3(MPa)1/2の範囲内は塩素化塩化ビニル樹脂の溶解度パラメーター値(19.0(MPa)1/2)に近くなるため、塩素化塩化ビニル樹脂を溶解させてしまい、良好な樹脂粉体製品が得られなくなる可能性があるが、塩酸除去性能は有するため、例えばストリッピングや薄膜蒸発機、脱揮ベントつきの押し出し機処理などの方法による再造粒を行って樹脂粉体を得るなど、本発明の目的を奏する範囲で適宜可能な処理方法を用いることができる。 When the solubility parameter is in the range of 16 (MPa) 1/2 to 20 (MPa) 1/2 , it is preferable from the viewpoint of compatibility with the chlorinated vinyl chloride resin and hydrochloric acid removal effect. Moreover, since solubility parameter of from 18.5 to 19.3 (MPa) within 1/2 of the range to be close to the solubility parameter value of the chlorinated vinyl chloride resin (19.0 (MPa) 1/2), chlorinated chloride The vinyl resin may be dissolved and a good resin powder product may not be obtained. However, since it has hydrochloric acid removal performance, it can be removed by methods such as stripping, thin film evaporator, and extruder treatment with a devolatilizing vent. A treatment method that can be appropriately used can be used as long as the object of the present invention is achieved, such as re-granulation to obtain a resin powder.

また、使用する溶剤の水の飽和溶解度とは、25℃雰囲気下での溶剤への水の飽和溶解度を意味する。   Further, the saturated solubility of water in the solvent used means the saturated solubility of water in the solvent at 25 ° C. atmosphere.

この水の飽和溶解度が1%以下であると、樹脂表面を満たしている塩酸水溶液と溶剤が置き換わることで塩酸の除去効果の観点から好ましい。   If the saturated solubility of water is 1% or less, the aqueous hydrochloric acid solution and the solvent filling the resin surface are preferably replaced from the viewpoint of hydrochloric acid removal effect.

ここでいう溶剤とは、「溶剤ポケットブック」有機合成化学協会編,旺文社に記載されているように、通常は液相の状態をとる溶液を扱うにあたり、溶液において溶媒となる物質をいう。本願では塩素化塩化ビニル系樹脂の溶媒としての溶剤をいう。   As used herein, the solvent means a substance that becomes a solvent in a solution in handling a solution that is normally in a liquid phase, as described in “Solvent Pocket Book” edited by the Society of Synthetic Organic Chemistry, Sobunsha. In the present application, it refers to a solvent as a solvent for a chlorinated vinyl chloride resin.

使用する溶剤種としては、特に限定されないが、塩酸除去後樹脂を含む油相と塩酸を含む水相の分離がしやすいよう比重が1以上のハロゲン化炭化水素が好ましい。   The solvent species to be used is not particularly limited, but a halogenated hydrocarbon having a specific gravity of 1 or more is preferable so that the oil phase containing the resin after removal of hydrochloric acid and the aqueous phase containing hydrochloric acid can be easily separated.

ハロゲン化炭化水素としては、特に限定されないが、例えばクロロホルム、塩化エチル、塩化ブチル、塩化ヘキシル、塩化メチル、塩化メチレン、クロロベンゼン、クロロホルム、四塩化炭素、塩化エチレン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、1,1,2,2−テトラクロロエタン、1,2−ジクロロプロパン、塩化ブチル、アリルクロリド、塩化アミル、塩化イソプロピル、塩化エチル、塩化ヘキシル、1,1−ジクロロエタン、1,2−ジクロロエタン、1,1−ジクロロエチレン、1,2−ジクロロエチレン、ジブロモペンタン、臭化アリル、臭化イソプロピル、臭化エチル、臭化ブチル、臭化プロピル、臭化メチル、テトラクロロエチレン、ブロモクロロエタンなどを挙げることができる。これらは単独で用いてもよいし、溶解度パラメーターと比重のバランスの関係から他の溶剤群との混合溶剤として用いてもよい。中でも単独で用いる場合は、その後の分離のしやすさの観点から、クロロホルム、1,1,1−トリクロロエタン、四塩化炭素、1,2−ジクロロプロパン、塩化ブチルなどを好適に用いることができる。   The halogenated hydrocarbon is not particularly limited. For example, chloroform, ethyl chloride, butyl chloride, hexyl chloride, methyl chloride, methylene chloride, chlorobenzene, chloroform, carbon tetrachloride, ethylene chloride, 1,1,1-trichloroethane, 1 , 1,2-trichloroethane, trichloroethylene, 1,1,2,2-tetrachloroethane, 1,2-dichloropropane, butyl chloride, allyl chloride, amyl chloride, isopropyl chloride, ethyl chloride, hexyl chloride, 1,1-dichloroethane 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloroethylene, dibromopentane, allyl bromide, isopropyl bromide, ethyl bromide, butyl bromide, propyl bromide, methyl bromide, tetrachloroethylene, bromochloroethane Etc. Can. These may be used singly or may be used as a mixed solvent with other solvent groups in view of the balance between solubility parameter and specific gravity. Among these, when used alone, chloroform, 1,1,1-trichloroethane, carbon tetrachloride, 1,2-dichloropropane, butyl chloride and the like can be suitably used from the viewpoint of ease of subsequent separation.

また、混合する他の溶剤としては、特に限定されないが、キシレン、シクロヘキサン、シクロヘキセン、シクロペンタン、トルエン、ブタン、プロパン、ヘキサン、ヘプタン、ベンゼン、ペンタン、メチルシクロヘキサン、メチルシクロペンタンなどの炭化水素、クラウンエーテル、フラン、メチルフラン、モノクロロジエチルエーテルなどのエーテル類、メチルイソブチルケトン、メチルエチルケトン、メチル−n−ブチルケトン、メチル−n−プロピルケトンなどのケトン類、ギ酸イソアミル、ギ酸イソブチル、ギ酸ブチル、ギ酸ヘキシル、酢酸アミル、酢酸アリル、酢酸イソアミル、酢酸イソブチル、酢酸イソプロピル、酢酸エチル、酢酸n−ブチル、酢酸s−ブチル、酢酸プロピル、乳酸アミル、プロピオン酸メチル、マロン酸ジイソプロピル、酪酸イソプロピル、酪酸エチル、酪酸メチルなどのエステル類などを挙げることができる。中でもコストと安全性の観点からシクロヘキサン、ヘキサン、トルエンなどを好適に用いることができる。   Other solvents to be mixed are not particularly limited, but hydrocarbons such as xylene, cyclohexane, cyclohexene, cyclopentane, toluene, butane, propane, hexane, heptane, benzene, pentane, methylcyclohexane, methylcyclopentane, crown Ethers such as ether, furan, methylfuran, monochlorodiethyl ether, ketones such as methyl isobutyl ketone, methyl ethyl ketone, methyl-n-butyl ketone, methyl-n-propyl ketone, isoamyl formate, isobutyl formate, butyl formate, hexyl formate, Amyl acetate, allyl acetate, isoamyl acetate, isobutyl acetate, isopropyl acetate, ethyl acetate, n-butyl acetate, s-butyl acetate, propyl acetate, amyl lactate, methyl propionate, dii malonate Propyl, isopropyl butyrate, ethyl butyrate, and the like esters such as methyl butyrate. Of these, cyclohexane, hexane, toluene and the like can be suitably used from the viewpoint of cost and safety.

溶剤と塩素化塩化ビニル系樹脂を混合する方法としては、撹拌槽による方法が一般的であるが、スタティックミキサーなどのライン混合、ミルや各種混合機を用いた方法によっても良い。混合する塩素化塩化ビニル系樹脂の水スラリーの形態は、反応器内のスラリー状のままでも、濾過あるいは遠心分離などの方法によってケーキ状にしたものであっても良い。また、その混合方法は、水スラリーの入った反応器にポンプで溶剤を仕込む方法でも良いし、すでに別の槽に仕込まれた溶剤に対して濾過あるいは遠心分離したケーキ状樹脂をその槽に供給する方法でもかまわない。   As a method of mixing the solvent and the chlorinated vinyl chloride resin, a method using a stirring tank is generally used, but a method using line mixing such as a static mixer, a mill or various mixers may be used. The form of the water slurry of the chlorinated vinyl chloride resin to be mixed may be in the form of a slurry in the reactor or in the form of a cake by a method such as filtration or centrifugation. Moreover, the mixing method may be a method in which a solvent is charged into a reactor containing water slurry by a pump, or a cake-like resin that has been filtered or centrifuged with respect to a solvent already charged in another tank is supplied to the tank. It does not matter how you do it.

塩素化塩化ビニル系樹脂と溶剤の混合比率は、特に限定されないが、生産コストと混合後の溶剤スラリーの取り扱いの容易さの観点から樹脂固形分100重量部に対して10〜1000重量部が好ましく、20〜300重量部がさらに好ましい。   The mixing ratio of the chlorinated vinyl chloride resin and the solvent is not particularly limited, but is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the resin solids from the viewpoint of production cost and easy handling of the solvent slurry after mixing. More preferred is 20 to 300 parts by weight.

溶剤と塩素化塩化ビニル系樹脂を混合する温度は、特に限定されないが、水分の除去の容易さと生産コストの観点から0〜100℃が好ましく、10〜80℃がエネルギーコストの観点から更に好ましい。   The temperature at which the solvent and the chlorinated vinyl chloride resin are mixed is not particularly limited, but is preferably 0 to 100 ° C. from the viewpoint of ease of moisture removal and production cost, and more preferably 10 to 80 ° C. from the viewpoint of energy cost.

塩素化塩化ビニル系樹脂より除去された塩酸水と樹脂の含まれる溶剤とを分離する装置としては、一般的な槽類による静置分離や遠心分離などを用いることができる。さらに、各種濾過機、遠心分離機などによって大半の溶剤を樹脂から除去することができる。本操作の油相と水相の分離および樹脂からの溶剤除去による樹脂の含液率つまり溶剤除去後の樹脂と同伴されて乾燥機に送られる樹脂のうち液状揮発成分量の割合は、特に制限されるものではないが、含溶剤樹脂に対して10〜50重量%とすることが、乾燥でのエネルギー効率の点で有効である。10〜35重量%であれば乾燥でのエネルギー効率がさらに高まって更に良い。また、塩酸水と溶剤の二相が混在したまま遠心分離や濾過によって含溶剤樹脂のみを取り出す方法でも良好に回収できる。   As an apparatus for separating the hydrochloric acid water removed from the chlorinated vinyl chloride resin and the solvent containing the resin, static separation using a general tank or centrifugal separation can be used. Further, most of the solvent can be removed from the resin by various filters, centrifuges, and the like. The liquid content of the resin by separating the oil phase from the aqueous phase in this operation and removing the solvent from the resin, that is, the proportion of the liquid volatile component in the resin sent to the dryer accompanying the resin after removal of the solvent is particularly limited. However, it is effective in terms of energy efficiency in drying to be 10 to 50% by weight with respect to the solvent-containing resin. If it is 10 to 35% by weight, the energy efficiency in drying is further increased, which is even better. Moreover, it can also be satisfactorily recovered by a method in which only the solvent-containing resin is taken out by centrifugation or filtration while the two phases of hydrochloric acid and solvent are mixed.

また、溶剤を含有する樹脂の乾燥には各種乾燥機を用いることができる。例えば伝導伝熱方式では、溝型撹拌乾燥機など、熱風受熱方式では流動乾燥機などを用いることにより、固体樹脂として製品粉粒体とすることができる。ここでいう固体樹脂とは乾燥前に残存していた溶剤を乾燥で揮発させた後の樹脂をいう。   Various dryers can be used for drying the resin containing the solvent. For example, it is possible to obtain a product powder as a solid resin by using a grooved agitation dryer in the conduction heat transfer method and a fluidized dryer in the hot air heat reception method. The solid resin here means a resin after the solvent remaining before drying is volatilized by drying.

ここで、乾燥工程は、樹脂に塩酸を含んだままの乾燥操作となり、溶剤を揮発させた後も、滞留時間、つまり乾燥させるために必要な時間を十分取ったり、2段目の乾燥機を用意するような、塩酸を揮発させる方式などを採用することができる。このとき、乾燥機に樹脂とともに同伴する塩酸量が少なければ、より滞留時間を減らすあるいは乾燥機多段化の必要性が少なくなり、更に乾燥機設備の耐久性が高まるなどの効果も期待できる。   Here, the drying step is a drying operation in which hydrochloric acid is contained in the resin, and even after the solvent is volatilized, a sufficient residence time, that is, a time necessary for drying is taken, or a second-stage dryer is installed. A method of volatilizing hydrochloric acid as prepared can be employed. At this time, if the amount of hydrochloric acid accompanying the dryer together with the resin is small, it is possible to expect the effect that the residence time is further reduced or the necessity of multi-stage dryers is reduced and the durability of the dryer equipment is further increased.

以下に実施例を示して、本発明の具体的な実施形態をより詳細に説明するが、これらは何ら本発明を限定するものではない。   EXAMPLES Examples are shown below to describe specific embodiments of the present invention in more detail, but these do not limit the present invention at all.

なお例中、塩酸濃度は、25℃において、対象サンプルのうち樹脂で1g相当分を水100mlに入れ、0.1N苛性ソーダ水溶液を用いて滴定してpHが7.0となった時点の滴定量から算出し、サンプルを投入しない場合(ブランク)の滴定量を差し引くことにより定量したものである。   In the examples, the hydrochloric acid concentration was 25 ° C. The titration amount at the time when the pH of the target sample corresponding to 1 g of the resin was placed in 100 ml of water and titrated with 0.1N sodium hydroxide aqueous solution to become 7.0. , And quantified by subtracting the titer when no sample is added (blank).

(実施例1)
外径19.5cmの1段8枚ディスクタービン撹拌翼、冷却用ジャケット、紫外線照射ランプ、塩素ガス吹き込みノズル(スパージャー)を付設した内容積50L(内径55cm)の反応器に、重合度670の塩化ビニル樹脂15kg、イオン交換水35kgを仕込み、500rpmで撹拌しながら反応器内の真空脱気と窒素置換を所定時間おこなった後、塩素ガスを系内に吹き込み、紫外線を照射して塩素化反応を開始した。なお反応器内の温度及び圧力はそれぞれ50℃、0.02MPaに制御した。経時的に塩酸濃度を測定し、予め作成した検量線より、塩素化度64重量%に到達した時点で、紫外線照射を停止し塩素化反応を終了し、CPVCスラリーを得た。
Example 1
A reactor with an internal volume of 50 L (inner diameter: 55 cm) equipped with a one-stage eight disk turbine agitating blade having an outer diameter of 19.5 cm, a cooling jacket, an ultraviolet irradiation lamp, and a chlorine gas blowing nozzle (sparger) having a polymerization degree of 670 Charge 15 kg of vinyl chloride resin and 35 kg of ion-exchanged water, perform vacuum degassing and nitrogen replacement in the reactor for a predetermined time while stirring at 500 rpm, then blow chlorine gas into the system and irradiate with ultraviolet rays to chlorinate. Started. The temperature and pressure in the reactor were controlled at 50 ° C. and 0.02 MPa, respectively. The hydrochloric acid concentration was measured over time, and when the degree of chlorination reached 64% by weight from a calibration curve prepared in advance, the UV irradiation was stopped and the chlorination reaction was terminated to obtain a CPVC slurry.

得られたCPVCスラリー500mlを、外径5cmの1段6枚ディスクタービン撹拌翼を付設した内容積2L(内径11cm)の撹拌槽に入れた後、1,1,1−トリクロロエタン(溶解度パラメーター17.4(MPa)1/2、水の飽和溶解度500ppm)を500ml追加し、5分間600rpmで撹拌後静置した。これによって油水が良好に分離され、スラリー中の樹脂が溶剤相にすべて移行した。撹拌槽下部から樹脂含有溶剤相を抜き出し、濾過して溶剤含有樹脂に含まれる塩酸濃度を測定したところ樹脂に対して6,000ppmであった。結果を表1に示す。 500 ml of the obtained CPVC slurry was placed in a stirring tank having an inner volume of 2 L (inner diameter: 11 cm) equipped with a one-stage six-disc turbine stirring blade having an outer diameter of 5 cm, and then 1,1,1-trichloroethane (solubility parameter 17. 500 ml of 4 (MPa) 1/2 , saturated solubility of water 500 ppm) was added, and the mixture was allowed to stand after stirring at 600 rpm for 5 minutes. As a result, the oily water was well separated, and all the resin in the slurry was transferred to the solvent phase. The resin-containing solvent phase was extracted from the lower part of the stirring tank, filtered, and the hydrochloric acid concentration contained in the solvent-containing resin was measured. The results are shown in Table 1.

(実施例2)
実施例1と同様に、CPVCスラリー500mlを、外径5cmの1段6枚ディスクタービン撹拌翼を付設した内容積2Lの撹拌槽に入れ、それに対し、クロロベンゼン(溶解度パラメーター19.4(MPa)1/2、水の飽和溶解度330ppm)を500ml追加し、5分間600rpmで撹拌後静置した。これによって油水が良好に分離され、スラリー中の樹脂が溶剤相にすべて移行した。撹拌槽下部から樹脂含有溶剤相を抜き出し、濾過して溶剤含有樹脂に含まれる塩酸濃度を測定したところ樹脂に対して7,000ppmであった。結果を表1に併せて示す。
(Example 2)
In the same manner as in Example 1, 500 ml of CPVC slurry was placed in a stirring tank having an inner volume of 2 L equipped with a one-stage six-disc turbine blade having an outer diameter of 5 cm, and chlorobenzene (solubility parameter 19.4 (MPa) 1 / 2 , saturation saturation water of 330 ppm) was added, and the mixture was allowed to stand after stirring at 600 rpm for 5 minutes. As a result, the oily water was well separated, and all the resin in the slurry was transferred to the solvent phase. The resin-containing solvent phase was extracted from the lower part of the stirring tank, filtered, and the hydrochloric acid concentration contained in the solvent-containing resin was measured and found to be 7,000 ppm with respect to the resin. The results are also shown in Table 1.

(実施例3)
実施例1と同様に、CPVCスラリー500mlを、外径5cmの1段6枚ディスクタービン撹拌翼を付設した内容積2Lの撹拌槽に入れ、それに対し、塩化ブチルとシクロヘキサン(混合比率は体積比で9:1)の混合溶剤(溶解度パラメーター16.5(MPa)1/2、水の飽和溶解度700ppm)を500ml追加し、5分間600rpmで撹拌後静置した。これによってスラリー中の樹脂が溶剤相にすべて移行した。溶剤比重が低いため樹脂を含む油相中に塩酸水滴が混在している状態となったが、全量を濾過することによって塩酸水滴を除去して溶剤含有樹脂に含まれる塩酸濃度を測定したところ樹脂に対して4,000ppmであった。結果を表1に併せて示す。
(Example 3)
In the same manner as in Example 1, 500 ml of CPVC slurry was placed in a 2 L stirring tank equipped with a 1-stage 6-disc turbine stirring blade having an outer diameter of 5 cm, while butyl chloride and cyclohexane (mixing ratio in volume ratio). 9: 1) mixed solvent (solubility parameter 16.5 (MPa) 1/2 , saturated solubility of water 700 ppm) was added in an amount of 500 ml, and the mixture was allowed to stand after stirring at 600 rpm for 5 minutes. As a result, all of the resin in the slurry was transferred to the solvent phase. Since the solvent specific gravity was low, hydrochloric acid water droplets were mixed in the oil phase containing the resin, but when the hydrochloric acid water droplets were removed by filtering the entire volume and measuring the hydrochloric acid concentration contained in the solvent-containing resin, the resin The amount was 4,000 ppm. The results are also shown in Table 1.

(比較例1)
溶剤を添加しないで、撹拌槽下部からCPVCスラリーを濾過したこと以外は、実施例1と同様の操作を行って樹脂を得たところ、含水樹脂中の塩酸濃度は20,000ppmであった。結果を表1に併せて示す。
(Comparative Example 1)
A resin was obtained by performing the same operation as in Example 1 except that the CPVC slurry was filtered from the lower part of the stirring tank without adding a solvent. As a result, the hydrochloric acid concentration in the water-containing resin was 20,000 ppm. The results are also shown in Table 1.

(比較例2)
実施例1と同様に、CPVCスラリー500mlを、外径5cmの1段6枚ディスクタービン撹拌翼を付設した内容積2Lの撹拌槽に入れ、それに対し、テトラヒドロフラン(溶解度パラメーター19.0(MPa)1/2、水と完全に相溶)を500ml追加し、5分間600rpmで撹拌後静置した。するとCPVC樹脂は溶剤相内で溶解してしまい、さらに水とテトロヒドロフランが完全に相溶してしまい、塩酸除去できなかった。結果を表1に併せて示す。
(Comparative Example 2)
In the same manner as in Example 1, 500 ml of CPVC slurry was placed in a stirring tank having an inner volume of 2 L provided with a 6-stage 1-stage disk turbine stirring blade having an outer diameter of 5 cm, while tetrahydrofuran (solubility parameter 19.0 (MPa) 1 / 2 , completely compatible with water), 500 ml was added, and the mixture was stirred for 5 minutes at 600 rpm and allowed to stand. Then, the CPVC resin was dissolved in the solvent phase, and water and tetrohydrofuran were completely compatible, and hydrochloric acid could not be removed. The results are also shown in Table 1.

(比較例3)
実施例1と同様に、CPVCスラリー500mlを、外径5cmの1段6枚ディスクタービン撹拌翼を付設した内容積2Lの撹拌槽に入れ、それに対し、ヘキサン(溶解度パラメーター15.1(MPa)1/2、水はヘキサンに不溶(50ppm以下))を500ml追加し、5分間600rpmで撹拌後静置した。静置後水相と油相は容易に分離できたが樹脂は溶剤相に移行せず、塩酸水中のままであり、含水樹脂中の塩酸濃度も20,000ppmとなり低塩酸濃度の樹脂は得られなかった。結果を表1に併せて示す。
(Comparative Example 3)
In the same manner as in Example 1, 500 ml of CPVC slurry was placed in a stirring tank having an inner volume of 2 L equipped with a one-stage six-disk turbine stirring blade having an outer diameter of 5 cm, and hexane (solubility parameter 15.1 (MPa) 1 / 2 , 500 ml of water insoluble in hexane (50 ppm or less) was added, and the mixture was allowed to stand after stirring at 600 rpm for 5 minutes. After standing, the water phase and the oil phase could be easily separated, but the resin did not migrate to the solvent phase and remained in hydrochloric acid water, and the hydrochloric acid concentration in the water-containing resin was 20,000 ppm, and a low hydrochloric acid concentration resin was obtained. There wasn't. The results are also shown in Table 1.

以上のように、実施例1および2で得られたCPVC樹脂は濾過処理後の塩酸濃度の低いものであり、本願発明の方法によって、その後の乾燥処理の塩酸除去負荷を軽減することができた。 As described above, the CPVC resin obtained in Examples 1 and 2 has a low hydrochloric acid concentration after filtration, and the load of removing hydrochloric acid in the subsequent drying treatment could be reduced by the method of the present invention. .

Claims (3)

塩化ビニル系樹脂を塩素化して得られる塩素化塩化ビニル系樹脂の水スラリーと、溶解度パラメーターが16〜20(MPa)1/2、かつ水の飽和溶解度が1%以下である溶剤を、混合することを特徴とする塩素化塩化ビニル系樹脂の製造方法。 A water slurry of a chlorinated vinyl chloride resin obtained by chlorinating a vinyl chloride resin and a solvent having a solubility parameter of 16 to 20 (MPa) 1/2 and a saturated solubility of water of 1% or less are mixed. A method for producing a chlorinated vinyl chloride resin characterized by the above. 塩素化塩化ビニル系樹脂と溶剤を混合して撹拌混合後油相と水相を分離し、油相側の溶剤を除去、乾燥することで固体樹脂を得ることを特徴とする請求項1記載の塩素化塩化ビニル系樹脂の製造方法。   2. A solid resin is obtained by mixing a chlorinated vinyl chloride resin and a solvent, stirring and mixing, separating an oil phase and an aqueous phase, removing the solvent on the oil phase side and drying. A method for producing a chlorinated vinyl chloride resin. 溶剤が、ハロゲン化炭化水素を含む溶剤であることを特徴とする請求項1又は請求項2記載の塩素化塩化ビニル系樹脂の製造方法。   The method for producing a chlorinated vinyl chloride resin according to claim 1 or 2, wherein the solvent is a solvent containing a halogenated hydrocarbon.
JP2005365706A 2005-12-20 2005-12-20 Method for production of chlorinated vinyl chloride resin Pending JP2007169349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365706A JP2007169349A (en) 2005-12-20 2005-12-20 Method for production of chlorinated vinyl chloride resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365706A JP2007169349A (en) 2005-12-20 2005-12-20 Method for production of chlorinated vinyl chloride resin

Publications (1)

Publication Number Publication Date
JP2007169349A true JP2007169349A (en) 2007-07-05

Family

ID=38296351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365706A Pending JP2007169349A (en) 2005-12-20 2005-12-20 Method for production of chlorinated vinyl chloride resin

Country Status (1)

Country Link
JP (1) JP2007169349A (en)

Similar Documents

Publication Publication Date Title
JP2020183532A (en) Methods for providing polyvinyl chloride particles for producing chlorinated polyvinyl chloride
US20070173611A1 (en) Method for producing chlorinated vinyl chloride resin
CA1216099A (en) Chlorination of poly(vinyl chloride) in liquid chlorine and chlorinated poly(vinyl chloride) compositions
US8759567B2 (en) Process for producing perfluoro organic peroxide
JP4894265B2 (en) Method for producing isobutylene resin particles
CN109071705B (en) Method for preparing chlorinated polyvinyl chloride resin
JP2006328166A (en) Chlorinated polyvinyl chloride-based resin and its molding
JP2007283272A (en) Recovery method of triethylamine in water
JP2010501677A (en) Termination of bromination of styrenic polymers in bromination reaction mixtures.
EP3127926A1 (en) Production method for chlorinated vinyl chloride resin
WO2016075567A1 (en) Preparation of chlorinated polyvinyl chloride
JP5199572B2 (en) Method for producing chlorinated vinyl chloride resin
EP3574024B1 (en) A process for the preparation of dry chlorinated polyvinyl chloride
JPS5938967B2 (en) Cleaning method for polycarbonate organic solvent solution
JP2008031265A (en) Method for preparing chlorinated vinyl chloride resin
JP2007169349A (en) Method for production of chlorinated vinyl chloride resin
JP2007297631A (en) Method for removing solvent from bead polymers
JP2007246852A (en) Method for producing chlorinated vinyl chloride-based resin
JPS63105028A (en) Cleaning of organic solvent solution of polycarbonate
EP0264982A1 (en) Process for the preparation of vinylhalogenide polymers modified by polymers from oxygen heterocycles polymers
JP2007517106A (en) Recovery of antimony catalyst residue from bromination reaction
JPH1088146A (en) Converting treatment of halogen-containing resin into oil
US20040048945A1 (en) Method and apparatus for producing chlorinated vinyl chloride resin
CN1668557A (en) Method for producing chlorinated hydrocarbon having chlorinated tertiary carbon
JPH08512081A (en) Method for producing chlorinated and chlorosulfonated olefin polymer