JP2007169202A - Method for preparing abietane-type quinone methide compound - Google Patents

Method for preparing abietane-type quinone methide compound Download PDF

Info

Publication number
JP2007169202A
JP2007169202A JP2005367529A JP2005367529A JP2007169202A JP 2007169202 A JP2007169202 A JP 2007169202A JP 2005367529 A JP2005367529 A JP 2005367529A JP 2005367529 A JP2005367529 A JP 2005367529A JP 2007169202 A JP2007169202 A JP 2007169202A
Authority
JP
Japan
Prior art keywords
abietane
compound
group
general formula
following general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005367529A
Other languages
Japanese (ja)
Other versions
JP2007169202A5 (en
JP4852747B2 (en
Inventor
Masahiro Tada
全宏 多田
Kosaku Ishimaru
宏策 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2005367529A priority Critical patent/JP4852747B2/en
Publication of JP2007169202A publication Critical patent/JP2007169202A/en
Publication of JP2007169202A5 publication Critical patent/JP2007169202A5/ja
Application granted granted Critical
Publication of JP4852747B2 publication Critical patent/JP4852747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method suitable for the mass production of an abietane-type quinone methide compound useful as an antibacterial substance. <P>SOLUTION: The abietane-type quinone methide compound can be produced in two steps by oxidizing an abietane-type diterpene compound such as ferruginol or a rearrangement abietane-type diterpene compound in a liquid phase with the use of a halogenated benzoyl peroxide, reacting the product of the first half step with a reducing agent, and thereafter reacting the resulting product with an oxidizing agent. The halogenated benzoyl peroxide can be synthesized by reacting a halogenated perbenzoic acid with a carbodiimide compound, and by adding an abietane-type diterpene compound such as ferruginol or a rearrangement abietane-type diterpene compound to this reaction solution, the abietane-type quinone methide compound can be produced in one step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、フェルギノールやトタロール等のアビエタン型ジテルペン化合物からアビエタキノンメチド等のアビエタン型キノンメチド化合物を製造する方法に関し、より詳細には、抗菌物質として有用なアビエタン型キノンメチド化合物の大量生産に適した方法に関する。   The present invention relates to a method for producing an abietane quinone methide compound such as abietaquinone methide from an abietane diterpene compound such as ferruginol and totarol, and more particularly suitable for mass production of an abietane quinone metide compound useful as an antibacterial substance. Related to the method.

近年、各種の抗生物質に対して耐性を有する細菌、中でもMRSA(メチシリン耐性黄色ブドウ球菌)やVRE(バンコマイシン耐性腸球菌)による院内感染は医療現場で深刻な被害を与えており、強い抗MRSAや抗VRE活性を有する新規化合物の創製が望まれている。
本発明者らは、これまでに12種類のフエノール性アビエタン型−ジテルペンを全合成し、それらのMRSAやVREに対する構造活性相関を検討した結果、キノンメチドが新規の抗MRSA、抗VRE活性を有する抗菌物質であることを示した(特許文献1、2)。その中で、特に11-ヒドロキシ-12-オキソ-7,9(11),13-アビエタトリエンはMRSAやVREに対しても比較的強い活性を示したが、これはアフリカのシソ科植物より単離された寄生虫駆除薬でもあり、これまで慣用名がないアビエタン型キノンメチドであることから、以下アビエタキノンメチド(abietaquione methide)と呼ぶ。
これまでに本発明者らが報告したアビエタキノンメチドの合成法はステップ数が多く、収率も低かった(非特許文献1、2)。
In recent years, nosocomial infections caused by bacteria resistant to various antibiotics, especially MRSA (methicillin-resistant Staphylococcus aureus) and VRE (vancomycin-resistant enterococci), have caused serious damage in the medical field. Creation of a novel compound having anti-VRE activity is desired.
As a result of the total synthesis of 12 types of phenolic abietane-diterpenes so far, and the study of the structure-activity relationship with respect to MRSA and VRE, the present inventors have found that quinone methide has a novel anti-MRSA and anti-VRE activity. It was shown to be a substance (Patent Documents 1 and 2). Among them, 11-hydroxy-12-oxo-7,9 (11), 13-abietatriene showed relatively strong activity against MRSA and VRE, but it was isolated from African Labiatae plants. Since it is an abietane-type quinone methide that has not been used in the past, it is also referred to as abietaquinone methide.
The methods for synthesizing abietaquinone methide reported by the inventors so far have many steps and a low yield (Non-patent Documents 1 and 2).

特開2002-80419JP2002-80419 特開2003-267910JP2003-267910 J. Chem. Soc. Perkin 2657-2664(2000)J. Chem. Soc. Perkin 2657-2664 (2000) Bioorg. Med. Chem., 9(2), 347-356(2001)Bioorg. Med. Chem., 9 (2), 347-356 (2001)

これまでに本発明者らが報告したアビエタキノンメチドの合成経路では、合成中間体であるフェルギノール(ferruginol)をポリエンの環化反応を経て全合成した(非特許文献1、2)。このフェルギノールのオルト位の酸化によるアビエタキノンメチドの合成は、Seによるフェルギノールの直接酸化、異性化による合成法もしくはフェルギノールを過酸化ベンゾイル(benzoyl peroxide, BPO)による酸化、還元、空気酸化による方法であった。しかし、Se酸化はセレン自体が毒物であり、BPOが扱い方によっては爆発するの可能性があり日本では製造中止になっていることから、より安全なオルト位酸化反応の開発する必要があった。更に、この合成法はステップ数が多く、全収率も0.4%と低かった。
本発明は、従来の方法より安全かつ簡便で収率が高いアビエタキノンメチドを含むアビエタン型キノンメチド化合物(quinone methide compound with abietane skelton)の合成法を提供することを目的とする。
In the synthetic route of abietaquinone methide reported by the inventors so far, a synthetic intermediate, ferruginol, was totally synthesized through a cyclization reaction of polyene (Non-patent Documents 1 and 2). The synthesis of abietaquinone methide by oxidation at the ortho-position of ferguinol is based on direct oxidation of ferguinol by Se, synthesis by isomerization, or oxidation, reduction, and air oxidation of ferguinol with benzoyl peroxide (BPO). Met. However, Se oxidation itself is a toxic substance, and BPO may explode depending on how it is handled, and since it has been discontinued in Japan, it was necessary to develop a safer ortho-position oxidation reaction. . Furthermore, this synthesis method had many steps and the overall yield was as low as 0.4%.
An object of the present invention is to provide a method for synthesizing a quinone methide compound with abietane skelton containing abietaquinone methide that is safer, simpler and higher in yield than conventional methods.

本発明者らは、紙やプラスチックの添加剤や医薬などの工業原料として大量に生産され安価に入手できるデヒドロアビエチン酸を原料にしてフェルギノールを合成し、酸化剤としてハロゲン化過酸化ベンゾイルを用いてフェルギノールの酸化を行った。
その結果、高収率でアビエタキノンメチドを合成することができることを見出し、本発明を完成させるに至った。
The present inventors synthesized ferguinol from dehydroabietic acid, which is produced in large quantities as industrial raw materials such as paper and plastic additives and pharmaceuticals, and can be obtained at low cost, and using benzoyl peroxide as an oxidizing agent. Ferguinol was oxidized.
As a result, it has been found that abietaquinone methide can be synthesized in high yield, and the present invention has been completed.

即ち、本発明は、液相で下記一般式

Figure 2007169202
(式中、R〜Rは、それぞれ、水素原子、アルキル基、アリール基、水酸基、水酸基含有アルキル基、シアノ基、カルボキシル基、アルコキシカルボニル基、ハロゲン原子又はニトロ基を表し、R及びRは、いずれも水素原子である、一方が水素で他方が水酸基である、又は両者が結合する炭素原子と共にカルボニル基(=C=O)を形成する。以下「アビエタン型ジテルペン化合物I」という。)又は下記一般式
Figure 2007169202
(式中、R、R〜R、は上記と同様に定義される。以下「アビエタン型ジテルペン化合物II」という。)で表されるアビエタン型ジテルペン化合物と下記一般式
Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化過酸化ベンゾイルを反応させる段階、及び前段階の生成物を還元剤と反応させその後酸化剤と反応させる段階から成るアビエタン型キノンメチド化合物の製法であって、該アビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物Iの場合には、該アビエタン型キノンメチド化合物が下記一般式
Figure 2007169202
(式中、R〜Rは上記と同様に定義される。)で表され、該アビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物IIの場合には、該アビエタン型キノンメチド化合物が下記一般式
Figure 2007169202
(式中、R、R〜Rは上記と同様に定義される。)で表されるアビエタン型キノンメチド化合物の製法である。 That is, the present invention provides the following general formula in the liquid phase:
Figure 2007169202
(Wherein, R 1 to R 4 each represent a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group, a hydroxyl group-containing alkyl group, a cyano group, a carboxyl group, an alkoxycarbonyl group, a halogen atom or a nitro group, R 5 and R 6 is a hydrogen atom, one is hydrogen and the other is a hydroxyl group, or forms a carbonyl group (═C═O) with a carbon atom to which both are bonded, hereinafter referred to as “abietane type diterpene compound I”. Or the following general formula
Figure 2007169202
(Wherein R 1 , R 3 to R 6 are defined in the same manner as described above, hereinafter referred to as “abietane type diterpene compound II”) and the following general formula
Figure 2007169202
(Wherein X represents a halogen atom and n represents 1 or 2), and a step of reacting the benzoyl peroxide represented by the formula, and reacting the product of the previous step with a reducing agent, A method for producing an abietane quinone methide compound comprising a step of reacting, wherein the abietane diterpene compound I is an abietane diterpene compound I, the abietane quinone methide compound is represented by the following general formula:
Figure 2007169202
(Wherein R 1 to R 6 are defined in the same manner as above), and when the abietane diterpene compound is an abietane diterpene compound II, the abietane quinone methide compound is represented by the following general formula:
Figure 2007169202
(Wherein R 1 , R 3 to R 6 are defined in the same manner as described above), and a method for producing an abietane-type quinone methide compound.

また本発明は、液相で下記一般式

Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化過安息香酸と下記一般式
−N=C=N−R
(式中、Rは、同一であっても異なってもよく、アルキル基、シクロアルキル基、又はアリール基を表す。)で表されるカルボジイミド化合物を反応させる段階、前段階の反応液に上記アビエタン型ジテルペン化合物を混合する段階、及び前段階の生成物を還元剤と反応させその後酸化剤と反応させる段階から成る上記アビエタン型キノンメチド化合物の製法である。 The present invention also provides the following general formula in the liquid phase:
Figure 2007169202
(Wherein X represents a halogen atom and n represents 1 or 2) and the following general formula R 7 —N═C═N—R 7
(Wherein R 7 may be the same or different and each represents an alkyl group, a cycloalkyl group, or an aryl group). The step of reacting the carbodiimide compound represented by This is a process for producing the above-mentioned abietane-type quinonemethide compound, which comprises a step of mixing an abietane-type diterpene compound and a step of reacting the product of the previous step with a reducing agent and then reacting with an oxidizing agent.

更に、本発明は、液相で上記ハロゲン化過安息香酸と上記カルボジイミド化合物を反応させる段階、前段階の反応液に下記一般式

Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化安息香酸を混合する段階、前段階の反応液に上記アビエタン型ジテルペン化合物を混合する段階、及び前段階の生成物を還元剤と反応させその後酸化剤と反応させる段階から成る上記アビエタン型キノンメチド化合物の製法である。 Furthermore, the present invention is a step in which the halogenated perbenzoic acid and the carbodiimide compound are reacted in a liquid phase, and the reaction solution of the previous step is represented by the following general formula:
Figure 2007169202
(Wherein X represents a halogen atom and n represents 1 or 2), a step of mixing the halogenated benzoic acid represented by the step, a step of mixing the abiethane type diterpene compound with the reaction solution of the previous step, and This is a process for producing the above abietane-type quinonemethide compound, which comprises the step of reacting the product of the previous step with a reducing agent and then reacting with the oxidizing agent.

更にまた、本発明は、液相で上記ハロゲン化安息香酸と上記カルボジイミド化合物を反応させる段階、前段階の反応液に上記ハロゲン化過安息香酸を混合する段階、前段階の反応液に上記アビエタン型ジテルペン化合物を混合する段階、及び前段階の生成物を還元剤と反応させその後酸化剤と反応させる段階から成る上記アビエタン型キノンメチド化合物の製法である。   Furthermore, the present invention includes a step of reacting the halogenated benzoic acid and the carbodiimide compound in a liquid phase, a step of mixing the halogenated perbenzoic acid in a reaction solution of the previous step, and the abiethane type in the reaction solution of the previous step. This is a process for producing the above abietane-type quinone methide compound comprising a step of mixing a diterpene compound and a step of reacting the product of the previous step with a reducing agent and then reacting with an oxidizing agent.

本発明の製法の生成物であるアビエタン型キノンメチド化合物は、MRSAやVREに対して優れた抗菌作用を有することが示されていたが(特許文献1、2)、天然物から抽出する場合にはその量が極めて少なく、またその合成法も大量生産には向かない方法であったため、MRSAやVREに対する抗菌物質が望まれているにもかかわらず、そのような用途に供給できない状態であった。しかるに本発明により、アビエタン型キノンメチド化合物を大量に生産できる方法が開発されたことにより、抗菌物質としての検討や評価が容易に行なえるようになり、MRSAやVRE又はその他の菌に対する抗菌物資として大量に供給することのできる途が開かれたといえる。   The abietane quinone methide compound, which is a product of the production method of the present invention, has been shown to have an excellent antibacterial action against MRSA and VRE (Patent Documents 1 and 2), but when extracting from natural products The amount was extremely small, and the synthesis method was also not suitable for mass production. Therefore, although antibacterial substances against MRSA and VRE were desired, they could not be supplied for such use. However, according to the present invention, a method capable of producing a large amount of an abietane-type quinone methide compound has been developed, which makes it easy to study and evaluate as an antibacterial substance, and to produce a large amount as an antibacterial substance against MRSA, VRE or other bacteria. It can be said that the way to supply it is opened.

本発明の製法の出発物質であるアビエタン型ジテルペン化合物は下式のいずれかで表される。即ち、このアビエタン型ジテルペン化合物は下記一般式で

Figure 2007169202
表されるアビエタン型ジテルペン化合物I、及び下記一般式
Figure 2007169202
で表されるアビエタン型ジテルペン化合物IIを含む。アビエタン型ジテルペン化合物IIは、上記のアビエタン型ジテルペン化合物Iの水酸基と置換基Rが同様の位置関係を保ちながら転移したものであり、本発明における反応において同様の反応を行う(後述)。 The abietane type diterpene compound which is the starting material of the production method of the present invention is represented by any of the following formulae. That is, this abietane type diterpene compound has the following general formula:
Figure 2007169202
Abietane type diterpene compound I represented, and the following general formula
Figure 2007169202
An abietane type diterpene compound II represented by the formula: The abietane-type diterpene compound II is obtained by transferring the hydroxyl group of the above-mentioned abietane-type diterpene compound I and the substituent R 1 while maintaining the same positional relationship, and performs the same reaction in the reaction in the present invention (described later).

は、水素原子、アルキル基、アリール基、水酸基、水酸基含有アルキル基、シアノ基、カルボキシル基、アルコキシカルボニル基、ハロゲン原子又はニトロ基を表し、好ましくは、炭素数が4以下のアルキル基を表し、より好ましくはイソプロピル基を表す。
は、水素原子、アルキル基、アリール基、ヒドロキシメチル基、水酸基、水酸基含有アルキル基、シアノ基、カルボキシル基、アルコキシカルボニル基、ハロゲン原子又はニトロ基を表し、好ましくは、水素原子、アルキル基、又はシアノ基を表し、より好ましくは水素原子を表す。
は、水素原子、アルコキシカルボニル基、又はアシル基を表し、好ましくは水素原子を表す。
は、水素原子、アルキル基、アリール基、水酸基、水酸基含有アルキル基、シアノ基、カルボキシル基、アルコキシカルボニル基、ハロゲン原子又はニトロ基を表し、好ましくは、メチル基、ヒドロキシメチル基、アルコキシカルボニル基を表し、より好ましくはメチル基を表す。
R 1 represents a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group, a hydroxyl group-containing alkyl group, a cyano group, a carboxyl group, an alkoxycarbonyl group, a halogen atom or a nitro group, preferably an alkyl group having 4 or less carbon atoms. And more preferably an isopropyl group.
R 2 represents a hydrogen atom, an alkyl group, an aryl group, a hydroxymethyl group, a hydroxyl group, a hydroxyl group-containing alkyl group, a cyano group, a carboxyl group, an alkoxycarbonyl group, a halogen atom or a nitro group, preferably a hydrogen atom, an alkyl group Or a cyano group, more preferably a hydrogen atom.
R 3 represents a hydrogen atom, an alkoxycarbonyl group, or an acyl group, and preferably represents a hydrogen atom.
R 4 represents a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group, a hydroxyl group-containing alkyl group, a cyano group, a carboxyl group, an alkoxycarbonyl group, a halogen atom or a nitro group, preferably a methyl group, a hydroxymethyl group, an alkoxycarbonyl Represents a group, more preferably a methyl group.

ここで、アルキル基は、その炭素数が1〜10であり、直鎖状、分岐鎖状のものである。具体的には、メチル、エチル、プロピル、i−プロピル、n−ブチル、i−ブチル、t−ブチル、n−ペンチル、i−ペンチル、t−ペンチル、へキシル、ヘプチル、オクチル、ノニル、デカニルなどの基を挙げることができる。
アリール基は、好ましくは置換基を有しても有さなくてもよいフェニル基又はナフチル基である。
水酸基含有アルキル基は、好ましくはヒドロキシメチル基又はヒドロキシエチル基である。
アルコキシカルボニル基は、−COORで表され、Rとしてはアルキル基、好ましくは炭素数が4以下のアルキル基、より好ましくはメチル基、エチル基、プロピル基、イソプロピル基が挙げられる。
アシル基は、−COR9で表され、R9としてはアルキル基、好ましくは炭素数が4以下のアルキル基、より好ましくはメチル基、エチル基、プロピル基、イソプロピル基が挙げられる。
ハロゲン原子としてはフッ素原子、塩素原子又は臭素原子が好ましい。
Here, the alkyl group has 1 to 10 carbon atoms and is linear or branched. Specifically, methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-pentyl, i-pentyl, t-pentyl, hexyl, heptyl, octyl, nonyl, decanyl, etc. Can be mentioned.
The aryl group is preferably a phenyl group or a naphthyl group which may or may not have a substituent.
The hydroxyl group-containing alkyl group is preferably a hydroxymethyl group or a hydroxyethyl group.
The alkoxycarbonyl group is represented by —COOR 8 , and R 8 is an alkyl group, preferably an alkyl group having 4 or less carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or an isopropyl group.
The acyl group is represented by —COR 9 , and R 9 is an alkyl group, preferably an alkyl group having 4 or less carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, or an isopropyl group.
The halogen atom is preferably a fluorine atom, a chlorine atom or a bromine atom.

及びRは、いずれも水素原子である、一方が水素で他方が水酸基である、又は両者が結合する炭素原子と共にカルボニル基(=C=O)を形成する。R及びRは、好ましくは両者とも水素原子である。 R 5 and R 6 are both hydrogen atoms, one is hydrogen and the other is a hydroxyl group, or together with a carbon atom to which both are bonded, forms a carbonyl group (═C═O). R 5 and R 6 are preferably both hydrogen atoms.

本発明で用いるハロゲン化過酸化ベンゾイル(XBPO)は下記一般式で表される。

Figure 2007169202
Xはハロゲン原子、好ましくは塩素原子を表す。
nは1又は2を表し、好ましくは1である。
ハロゲン原子は、n=1の場合にはイプソ(ispo)位炭素に対して3位にあることが好ましく、n=2の場合には、3位と5位にあることが好ましい。 The benzoyl peroxide (XBPO) used in the present invention is represented by the following general formula.
Figure 2007169202
X represents a halogen atom, preferably a chlorine atom.
n represents 1 or 2, and is preferably 1.
The halogen atom is preferably in the 3rd position relative to the ispo carbon when n = 1, and preferably in the 3rd and 5th positions when n = 2.

このハロゲン化過酸化ベンゾイルは市販のものを用いてもよいし、合成して用いてもよい。合成する場合には、液相で下記一般式

Figure 2007169202
(式中、X及びnは上記と同様である。)で表されるハロゲン化過安息香酸と下記一般式
−N=C=N−R
(式中、Rは、同一であっても異なってもよく、好ましくは同一であり、アルキル基、シクロアルキル基、又はアリール基を表し、好ましくはシクロヘキシル基を表す。)で表されるカルボジイミド化合物を反応させることにより合成できる。 This halogenated benzoyl peroxide may be commercially available or synthesized. When synthesizing, the following general formula is used in the liquid phase:
Figure 2007169202
(Wherein X and n are as defined above) and the following general formula R 7 —N═C═N—R 7
(Wherein R 7 may be the same or different, preferably the same, and represents an alkyl group, a cycloalkyl group, or an aryl group, preferably a cyclohexyl group). It can be synthesized by reacting a compound.

また、この反応中に反応液に下記一般式

Figure 2007169202
(式中、X及びnは上記と同様である。)で表されるハロゲン化安息香酸を加えることによっても合成できる。
この場合、カルボジイミド化合物を含む反応液に、ハロゲン化過安息香酸及びハロゲン化安息香酸を加える順序はいずれが先でもよいが、これらを同時に加えるとこれらの間の反応によるものと思われるハロゲン化過酸化ベンゾイルの収率の低下が起こるため好ましくない。 In addition, the following general formula is added to the reaction solution during this reaction.
Figure 2007169202
(In the formula, X and n are the same as described above.) Synthesis can also be performed by adding a halogenated benzoic acid.
In this case, the order in which the halogenated perbenzoic acid and the halogenated benzoic acid are added to the reaction liquid containing the carbodiimide compound may be any first, but if they are added simultaneously, the halogenated perbenzoic acid is considered to be due to the reaction between them. Since the yield of benzoyl oxide decreases, it is not preferable.

本発明の生成物であるアビエタン型キノンメチド化合物は、反応の出発物質であるアビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物Iの場合には、下記一般式

Figure 2007169202
(式中、R〜Rは上記と同様に定義される。以下「アビエタン型キノンメチド化合物I」ともいう。)で表され、反応の出発物質であるアビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物IIの場合には、下記一般式
Figure 2007169202
(式中、R、R〜R、は上記と同様に定義される。以下「アビエタン型キノンメチド化合物II」ともいう。)で表される。 The abietane-type quinone metide compound, which is a product of the present invention, has the following general formula when the abietane-type diterpene compound that is the starting material of the reaction is an abietane-type diterpene compound I:
Figure 2007169202
(Wherein R 1 to R 6 are defined in the same manner as described above, hereinafter also referred to as “Abietane-type quinone metide compound I”), and the abietane-type diterpene compound, which is a starting material for the reaction, is an abietane-type diterpene compound II. In the case of
Figure 2007169202
(Wherein R 1 and R 3 to R 6 are defined in the same manner as described above. Hereinafter, they are also referred to as “abietane quinone metide compound II”).

以下、本発明によるアビエタン型ジテルペン化合物からアビエタン型キノンメチド化合物を合成する方法の概略を説明する。本発明に於ては、下記のいずれかの方法によりアビエタン型キノンメチド化合物を合成する。簡単のため、アビエタン型ジテルペン化合物としてフェルギノールやトタロールを用い、ハロゲン化過酸化ベンゾイルとしてm-クロロ過酸化ベンゾイル(mCBPO)を用いて説明する。そのほか、説明に用いる化合物により本発明は限定されない。   Hereinafter, an outline of a method for synthesizing an abietane quinone methide compound from an abietane diterpene compound according to the present invention will be described. In the present invention, an abietane quinone methide compound is synthesized by any of the following methods. For simplicity, feruginol and totarol are used as the abiethane diterpene compound, and m-chlorobenzoyl peroxide (mCBPO) is used as the halogenated benzoyl peroxide. In addition, the present invention is not limited by the compounds used for the description.

(1)この反応は液相の2段階の反応で行なわれる。反応機構を下式に示す。
アビエタン型ジテルペン化合物(例えば、フェルギノール)をmCPBOと反応させると、過酸エステルの生成、[3,3]シグマトロピー転位を経てアビエタン型ジテルペン化合物のオルト位が酸化された化合物8又は化合物8’が生成する。この際、化合物8からエステル交換により化合物9も生成する。エステル交換生成物の構造は化合物8,9のフェノールをアセチル化することによって確認することができる。次いで化合物8,9の混合物又は化合物8’を還元し、カテコール生成を経て、酸化することによりアビエタン型キノンメチド化合物が合成される。
(1) This reaction is carried out in a two-phase reaction in the liquid phase. The reaction mechanism is shown in the following equation.
Reaction of an abietane diterpene compound (for example, ferguinol) with mCPBO produces a peracid ester, a compound 8 or a compound 8 ′ in which the ortho position of the abietane diterpene compound is oxidized via a [3,3] sigmatropic rearrangement. To do. At this time, compound 9 is also produced from compound 8 by transesterification. The structure of the transesterification product can be confirmed by acetylating the phenols of compounds 8 and 9. Subsequently, the mixture of compounds 8 and 9 or compound 8 ′ is reduced, catechol-generated, and oxidized to synthesize an abietane-type quinone methide compound.

一段目の反応(化合物8,9の混合物又は化合物8’の合成まで)において、溶媒としては、塩化メチレン、クロロホルム又はトルエンが好ましい。各反応物の濃度は、0.1〜0.05M程度である。反応温度は、15〜80℃である。反応時間は、4〜24時間程度である。   In the first stage reaction (until the mixture of compounds 8 and 9 or the synthesis of compound 8 '), the solvent is preferably methylene chloride, chloroform or toluene. The concentration of each reactant is about 0.1 to 0.05M. The reaction temperature is 15-80 ° C. The reaction time is about 4 to 24 hours.

二段階目反応(化合物8,9の混合物又は化合物8’の還元反応以降)は、一段目の生成物を還元剤と反応させその後酸化剤と反応させる。一段目の生成物(下式の化合物8,9)は粉状の沈殿物であるため、一旦精製して用いることが好ましい。
還元剤としては、RnSnH4−n、RnSiH4−n、NaAlH4、LiAlHn(OR)m、LiAlH4-MX(MXとしてはAlCl3、BF3、FeCl3)、LiAlH4、i-Bu2AlH、AlH3、LiBHR3、KBHR3、LiBH4、NaBH3CN、NaBH4-MXn(MXとしてはAlCl3、BF3、FeCl3)、NaBH4、BH3、BRn H3−n(式中、Rは適当な炭化水素基を表す。)等が挙げられる。これらは単独または組み合わせて用いることができる。
酸化剤としては以下のものが挙げられる。酸素(酸素雰囲気又は酸素の吹き込みで用いることができる。酸素を含む空気を用いてもよい。)、AgO、Ag2O、MnO2、Cu(OH)2、Fe2O3、MoO3、V2O5、CuCl2-PdCl2等が挙げられる。これらは単独または組み合わせて用いることができる。
酸化剤の投与時期は還元反応の後が好ましいが、必ずしも還元反応の後でなくともよく、反応の最初から酸化剤を投与しておいてもよい。例えば、反応液に酸素又は空気を吹き込んでおいてそこに還元剤を投与してもよい。
還元剤と酸化剤の使用量はそれぞれ0.1〜0.03M程度である。溶媒はテロラヒドロフラン(THF)を用いる。反応温度は20〜40℃である。
In the second stage reaction (after the reduction reaction of the mixture of compounds 8 and 9 or compound 8 '), the first stage product is reacted with a reducing agent and then reacted with an oxidizing agent. Since the first-stage products (compounds 8 and 9 of the following formula) are powdery precipitates, it is preferable to use them after purification.
As the reducing agent, R n S n H 4- n, R n SiH 4-n, NaAlH 4, LiAlH n (OR) m, LiAlH 4 -MX n ( The MX AlCl 3, BF 3, FeCl 3), LiAlH 4 , i-Bu 2 AlH, AlH 3 , LiBHR 3 , KBHR 3 , LiBH 4 , NaBH 3 CN, NaBH 4 -MX n (MX is AlCl 3 , BF 3 , FeCl 3 ), NaBH 4 , BH 3 , BR n H 3−n (wherein R represents a suitable hydrocarbon group) and the like. These can be used alone or in combination.
Examples of the oxidizing agent include the following. Oxygen (can be used in oxygen atmosphere or oxygen blowing. Oxygen-containing air may be used), AgO, Ag 2 O, MnO 2 , Cu (OH) 2 , Fe 2 O 3 , MoO 3 , V 2 O 5 , CuCl 2 —PdCl 2 and the like. These can be used alone or in combination.
The timing of administration of the oxidizing agent is preferably after the reduction reaction, but not necessarily after the reduction reaction, and the oxidizing agent may be administered from the beginning of the reaction. For example, oxygen or air may be blown into the reaction solution, and the reducing agent may be administered there.
The amount of the reducing agent and the oxidizing agent used is about 0.1 to 0.03M. As the solvent, terahydrofuran (THF) is used. The reaction temperature is 20-40 ° C.

出発物質のアビエタン型ジテルペン化合物としてアビエタン型ジテルペン化合物I(化学式は上記参照、例えば、フェルギノール)を用いた場合の反応機構を下式に示す。

Figure 2007169202
The reaction mechanism in the case of using Abietane type diterpene compound I (the chemical formula is the above-mentioned reference, for example, Ferguinol) as the starting material Abietane type diterpene compound is shown in the following formula.
Figure 2007169202

出発物質のアビエタン型ジテルペン化合物としてアビエタン型ジテルペン化合物II(化学式は上記参照、例えば、トタロール)を用いた場合の反応機構を下式に示す。

Figure 2007169202
The reaction mechanism in the case of using Abietane diterpene compound II (refer to the above-mentioned chemical formula, for example, totarol) as the starting material abietane diterpene compound is shown in the following formula.
Figure 2007169202

(2)この方法はmCBPOの生成反応の際に生成する反応中間体であるmCBPA-DCC付加物を利用する。反応機構を下式に示す。
mCPBA-DCC付加物にアビエタン型ジテルペン化合物(例えば、フェルギノール)を加えると、化合物8,9又は化合物8’が生成する。得られた化合物8,9又は化合物8’を還元し、酸素雰囲気下でアビエタン型キノンメチド化合物が合成される。
この反応は液相で行なわれる。溶媒としては、塩化メチレン、クロロホルム又はトルエンが好ましい。各反応物の濃度は、0.1〜0.05M程度である。反応温度は、15〜80℃である。反応時間は、4〜24時間程度である。
2段目の反応は上記と同様である。
(2) This method utilizes the mCBPA-DCC adduct, which is a reaction intermediate produced during the mCBPO production reaction. The reaction mechanism is shown in the following equation.
When an abietane type diterpene compound (for example, ferguinol) is added to the mCPBA-DCC adduct, compound 8, 9 or compound 8 ′ is formed. The obtained compound 8, 9 or compound 8 ′ is reduced, and an abietane-type quinonemethide compound is synthesized in an oxygen atmosphere.
This reaction takes place in the liquid phase. As the solvent, methylene chloride, chloroform or toluene is preferable. The concentration of each reactant is about 0.1 to 0.05M. The reaction temperature is 15-80 ° C. The reaction time is about 4 to 24 hours.
The second stage reaction is the same as above.

Figure 2007169202
Figure 2007169202

(3)この(2)の反応において、ハロゲン化過酸化ベンゾイル(mCPBA)を用いる代わりに、上記のように、カルボジイミド化合物とハロゲン化過安息香酸との反応物や、カルボジイミド化合物とハロゲン化過安息香酸及びハロゲン化過安息香酸との反応物を用いてもよい。 (3) In the reaction of (2), instead of using halogenated benzoyl peroxide (mCPBA), as described above, a reaction product of a carbodiimide compound and a halogenated perbenzoic acid, or a reaction product of a carbodiimide compound and a halogenated perbenzoic acid. Reactants with acids and halogenated perbenzoic acids may be used.

上記の反応に用いるメタクロロ過酸化ベンゾイル(mCBPO)は以下のいずれかの方法で合成することができる。
(1)溶媒中でm-クロロ過安息香酸(mCPBA)に対して縮合剤としてジシクロヘキシルカルボジイミド(DCC)を反応させることにより、m-クロロ過酸化ベンゾイル(mCBPO)が結晶で得られる。このmCBPOが生成する反応機構は、下式に示すように、mCPBAとDCCからmCPBA-DCC付加物が生じ、その付加物と未反応のmCPBAとが反応し、mCBPOを生成する。

Figure 2007169202
この反応において、溶媒としては、塩化メチレン、クロロホルム又はトルエンが好ましい。各反応物の濃度は、0.1〜0.05M程度である。反応温度は、15〜30℃である。反応時間は、15時間程度である。 Metachlorobenzoyl peroxide (mCBPO) used in the above reaction can be synthesized by any of the following methods.
(1) By reacting m-chloroperbenzoic acid (mCPBA) with dicyclohexylcarbodiimide (DCC) as a condensing agent in a solvent, m-chlorobenzoyl peroxide (mCBPO) is obtained as crystals. As shown in the following formula, the reaction mechanism for generating mCBPO generates an mCPBA-DCC adduct from mCPBA and DCC, and the adduct and unreacted mCPBA react to generate mCBPO.
Figure 2007169202
In this reaction, the solvent is preferably methylene chloride, chloroform or toluene. The concentration of each reactant is about 0.1 to 0.05M. The reaction temperature is 15-30 ° C. The reaction time is about 15 hours.

(2)溶媒中でm-クロロ過安息香酸(mCPBA)をジシクロヘキシルカルボジイミド(DCC)と反応させることにより、mCBPA-DCC付加物が生成するが、この付加物にm-クロロ安息香酸(mCBA)を加えることによりm-クロロ過酸化ベンゾイル(mCBPO)が合成される。反応機構を下式に示す。

Figure 2007169202
この反応において、溶媒としては、塩化メチレン、クロロホルム又はトルエンが好ましい。各反応物の濃度は、0.4〜0.6M程度である。反応温度は、15〜30℃である。反応時間は、2〜3時間程度である。 (2) By reacting m-chloroperbenzoic acid (mCPBA) with dicyclohexylcarbodiimide (DCC) in a solvent, an mCBPA-DCC adduct is produced, and m-chlorobenzoic acid (mCBA) is added to this adduct. In addition, m-chlorobenzoyl peroxide (mCBPO) is synthesized. The reaction mechanism is shown in the following equation.
Figure 2007169202
In this reaction, the solvent is preferably methylene chloride, chloroform or toluene. The concentration of each reactant is about 0.4 to 0.6M. The reaction temperature is 15-30 ° C. The reaction time is about 2 to 3 hours.

(3)溶媒中でジシクロヘキシルカルボジイミド(DCC)をm-クロロ安息香酸(mCBA)と反応させ、この反応物にm-クロロ過安息香酸(mCPBA)を加えて反応させることによりm-クロロ過酸化ベンゾイル(mCBPO)が合成される。反応機構を下式に示す。

Figure 2007169202
この反応において、溶媒としては、塩化メチレン、クロロホルム又はトルエンが好ましい。各反応物の濃度は、0.4〜0.6M程度である。反応温度は、15〜30℃である。反応時間は、2〜3時間程度である。 (3) m-Chlorobenzoic acid (DCC) is reacted with m-chlorobenzoic acid (mCBA) in a solvent, and m-chloroperbenzoic acid (mCPBA) is added to the reaction to react. (mCBPO) is synthesized. The reaction mechanism is shown in the following equation.
Figure 2007169202
In this reaction, the solvent is preferably methylene chloride, chloroform or toluene. The concentration of each reactant is about 0.4 to 0.6M. The reaction temperature is 15-30 ° C. The reaction time is about 2 to 3 hours.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
合成例1(フェルギノールの合成)
本合成の経路を下式に示す。

Figure 2007169202
The following examples illustrate the invention but are not intended to limit the invention.
Synthesis Example 1 (Synthesis of Ferguinol)
The route of this synthesis is shown in the following formula.
Figure 2007169202

デヒドロアビエチン酸(化合物1)(和光純薬工業社製)(21.1039g, 70.24 mmol) を無水THF (50 ml) に溶解し、LAH (3.032 g, 79.87 mmol)を加え、アルゴン下、0℃で30分撹拌した後、更に室温で12時間撹拌した。EtOAc、水、1N HClを加えて反応を停止させ、EtOAcで液―液抽出した後、有機層を1N HCl、飽和NaHCO3、飽和食塩水で洗浄した。その後MgSO4で乾燥し、濃縮した後にシリカゲルカラムクロマトグラフィー (hexane:EtOAc =3:1)で精製し、7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)-methanol(化合物2)(18.8480 g, 65.80 mmol)を94 %の収率で得た。 Dehydroabietic acid (Compound 1) (manufactured by Wako Pure Chemical Industries, Ltd.) (21.1039 g, 70.24 mmol) was dissolved in anhydrous THF (50 ml), LAH (3.032 g, 79.87 mmol) was added, and argon was added at 0 ° C. After stirring for 30 minutes, the mixture was further stirred at room temperature for 12 hours. The reaction was quenched by adding EtOAc, water, and 1N HCl. After liquid-liquid extraction with EtOAc, the organic layer was washed with 1N HCl, saturated NaHCO 3 , and saturated brine. Thereafter, it was dried over MgSO 4 , concentrated and then purified by silica gel column chromatography (hexane: EtOAc = 3: 1), 7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a, 9,10 , 10a-octahydrophenanthren-1-yl) -methanol (Compound 2) (18.8480 g, 65.80 mmol) was obtained in 94% yield.

化合物2(30.2312 g, 105.54 mmol) をpyridine (100 ml) に溶解し、TsCl (26.157 g, 137.20 mmol) を加え、アルゴン下、室温で2時間撹拌した。氷冷中で1N HCl を加えて反応を停止させ、EtOAcで液―液抽出した後、有機層を1N HCl、飽和NaHCO3、飽和食塩水で洗浄した。その後MgSO4で乾燥し、濃縮した後にシリカゲルカラムクロマトグラフィー(hexane:EtOAc = 10 :1)で精製し、7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-ylmethyl para-toluenesulfonate (化合物3)(43.4673 g, 98.64 mmol) を93 %の収率で得た。 Compound 2 (30.2312 g, 105.54 mmol) was dissolved in pyridine (100 ml), TsCl (26.157 g, 137.20 mmol) was added, and the mixture was stirred at room temperature for 2 hours under argon. The reaction was stopped by adding 1N HCl in ice-cooling, followed by liquid-liquid extraction with EtOAc, and the organic layer was washed with 1N HCl, saturated NaHCO 3 , and saturated brine. Thereafter, it was dried over MgSO 4 , concentrated and then purified by silica gel column chromatography (hexane: EtOAc = 10: 1), 7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a, 9,10 , 10a-octahydrophenanthren-1-ylmethyl para-toluenesulfonate (Compound 3) (43.4673 g, 98.64 mmol) was obtained in a yield of 93%.

化合物3(1.634 g, 3.708 mmol)を無水DMF (15 ml) に溶解し、NaI (4.058 g, 27.07 mmol) と亜鉛粉末 (1.891 g, 28.92 mmol) を4回に分けて加え、アルゴン下、100℃で28時間撹拌した。1N HClを加えて反応を停止させた後、亜鉛を濾過した。hexaneで液―液抽出し、有機層を1N HCl、飽和NaHCO3、 飽和食塩水で洗浄した。その後MgSO4で乾燥し、濃縮した後にシリカゲルカラムクロマトグラフィー (hexane:EtOAc = 100:1)で精製し、7-Isopropyl-1,1,4a-trimethyl-1,2,3,4,4a,9,10,10a-octahydro-phenanthrene (化合物4)(832.3 mg, 3.077 mmol) を83 %の収率で得た。 Compound 3 (1.634 g, 3.708 mmol) was dissolved in anhydrous DMF (15 ml), NaI (4.058 g, 27.07 mmol) and zinc powder (1.891 g, 28.92 mmol) were added in 4 portions. Stir at 28 ° C. for 28 hours. After stopping the reaction by adding 1N HCl, zinc was filtered. Liquid-liquid extraction was performed with hexane, and the organic layer was washed with 1N HCl, saturated NaHCO 3 , and saturated saline. Thereafter, it was dried over MgSO 4 , concentrated, and then purified by silica gel column chromatography (hexane: EtOAc = 100: 1). 7-Isopropyl-1,1,4a-trimethyl-1,2,3,4,4a, 9 , 10,10a-octahydro-phenanthrene (Compound 4) (832.3 mg, 3.077 mmol) was obtained in a yield of 83%.

化合物4(500.0 mg, 1.85 mmol)を無水酢酸(5 ml) に溶解した。冷却しながら無水酢酸2.73 mlで希釈した濃硝酸270μlを加え、Ar下、室温で45分撹拌した。水100 mlに反応液を溶解後、EtOAcで液―液抽出し、有機層を1N NaOH、飽和NaHCO3、 飽和食塩水で洗浄した。その後MgSO4で乾燥し、濃縮した後、リカゲルカラムクロマトグラフィー(hexane:EtOAc = 5:1)で精製し、2-Isopropyl-3-nitro-4b,8,8-trimethyl-4b,5,6,7,8,8a, 9,10-octahydro-phenanthrene(化合物5)と2-Isopropyl-1-nitro-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthrene(化合物6)の混合物(410.0 mg, 1.30 mmol)を70 %の収率で得た。 Compound 4 (500.0 mg, 1.85 mmol) was dissolved in acetic anhydride (5 ml). While cooling, 270 μl of concentrated nitric acid diluted with 2.73 ml of acetic anhydride was added and stirred at room temperature for 45 minutes under Ar. The reaction solution was dissolved in 100 ml of water, followed by liquid-liquid extraction with EtOAc, and the organic layer was washed with 1N NaOH, saturated NaHCO 3 , and saturated brine. Then, after drying with MgSO 4 and concentrating, purification was performed by Rica gel column chromatography (hexane: EtOAc = 5: 1), 2-Isopropyl-3-nitro-4b, 8,8-trimethyl-4b, 5,6, 7,8,8a, 9,10-octahydro-phenanthrene (compound 5) and 2-Isopropyl-1-nitro-4b, 8,8-trimethyl-4b, 5,6,7,8,8a, 9,10- A mixture (410.0 mg, 1.30 mmol) of octahydrophenanthrene (compound 6) was obtained with a yield of 70%.

化合物5と6の混合物を (29.8 mg, 0.0945 mmol) をEtOH (2 ml) に溶解し、Pd/C (10 %)を4 mg加え、水素下、室温で23.5時間撹拌した。Pd/Cを濾過後、濃縮し、シリカゲルカラムクロマトグラフィー(hexane:EtOAc = 5:1)で精製し、2-Isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren-3-ylamine(化合物7)(15.2 mg, 0.0532 mmol) を84 %の収率で得た。   A mixture of compounds 5 and 6 (29.8 mg, 0.0945 mmol) was dissolved in EtOH (2 ml), 4 mg of Pd / C (10%) was added, and the mixture was stirred at room temperature under hydrogen for 23.5 hours. Pd / C was filtered, concentrated, and purified by silica gel column chromatography (hexane: EtOAc = 5: 1), 2-Isopropyl-4b, 8,8-trimethyl-4b, 5,6,7,8,8a , 9,10-octahydrophenanthren-3-ylamine (Compound 7) (15.2 mg, 0.0532 mmol) was obtained in a yield of 84%.

化合物7(700.2 mg, 2.45 mmol) をトリフルオロ酢酸 (8 ml) に溶解し、isopentyl nitrite (2.43 ml, 14.7 mmol) を加え、アルゴン下、室温で3時間撹拌した。さらにMeOH (4 ml)、炭酸カリウムを加え、アルゴン下、室温で1時間撹拌した。氷冷中で3N HCl を加えて反応を停止させ、EtOAcで液−液抽出した後、有機層を1N HCl、飽和NaHCO3、飽和食塩水で洗浄した。その後MgSO4で乾燥し、濃縮した後にシリカゲルカラムクロマトグラフィー(hexane:EtOAc = 5:1)で精製し、フェルギノール(612.4 mg, 2.14 mmol) を87 %の収率で得た。
colorless oil; 1H-NMR (CDCl3, 600 MHz)δ: 6.83 (1H, s), 6.63 (1H, s), 4.63 (1H, br), 3.11 (1H, sept, J = 7.0 Hz), 2.86 (1H, dd, J = 16.5, 6.6 Hz), 2.80-2.73 (1H, m), 2.19-2.14 (1H, m), 1.88-1.83 (1H, m), 1.75-1.56 (5H, m), 1.49-1.45 (1H, m), 1.41-1.35 (1H, m), 1.32 (1H, dd, J = 12.5, 2.2 Hz), 1.24 (3H, d, J = 7.0 Hz), 1.22 (3H, dd, J = 7.0 Hz) 1.17 (3H, s), 0.936 (3H, s), 0.914 (3H, s) ; 13C-NMR (CDCl3, 150 MHz)δ:150.67, 148.66, 131.34, 127.31, 126.61, 111.94, 50.36, 41.69, 38.87, 37.52, 33.45, 33.31, 29.76, 26.83, 24.77, 22.74, 22.54, 21.60, 19.36, 19.25; IR cm-1 (NaCl) 3396, 2960, 2941, 2922, 1713, 1616, 1506, 1548, 1416, 1373, 1230, 892;
Compound 7 (700.2 mg, 2.45 mmol) was dissolved in trifluoroacetic acid (8 ml), isopentyl nitrite (2.43 ml, 14.7 mmol) was added, and the mixture was stirred at room temperature for 3 hours under argon. Further, MeOH (4 ml) and potassium carbonate were added, and the mixture was stirred at room temperature for 1 hour under argon. The reaction was stopped by adding 3N HCl under ice-cooling, followed by liquid-liquid extraction with EtOAc, and then the organic layer was washed with 1N HCl, saturated NaHCO 3 , and saturated brine. Thereafter, it was dried over MgSO 4 , concentrated and purified by silica gel column chromatography (hexane: EtOAc = 5: 1) to obtain ferruginol (612.4 mg, 2.14 mmol) in a yield of 87%.
colorless oil; 1 H-NMR (CDCl 3 , 600 MHz) δ: 6.83 (1H, s), 6.63 (1H, s), 4.63 (1H, br), 3.11 (1H, sept, J = 7.0 Hz), 2.86 (1H, dd, J = 16.5, 6.6 Hz), 2.80-2.73 (1H, m), 2.19-2.14 (1H, m), 1.88-1.83 (1H, m), 1.75-1.56 (5H, m), 1.49 -1.45 (1H, m), 1.41-1.35 (1H, m), 1.32 (1H, dd, J = 12.5, 2.2 Hz), 1.24 (3H, d, J = 7.0 Hz), 1.22 (3H, dd, J = 7.0 Hz) 1.17 (3H, s), 0.936 (3H, s), 0.914 (3H, s); 13 C-NMR (CDCl 3 , 150 MHz) δ: 150.67, 148.66, 131.34, 127.31, 126.61, 111.94, 50.36, 41.69, 38.87, 37.52, 33.45, 33.31, 29.76, 26.83, 24.77, 22.74, 22.54, 21.60, 19.36, 19.25; IR cm -1 (NaCl) 3396, 2960, 2941, 2922, 1713, 1616, 1506, 1548 , 1416, 1373, 1230, 892;

合成例2(m-クロロ過酸化ベンゾイル(mCBPO)の合成−1)
m-クロロ過安息香酸mCBPA(関東化学 Pr.G)(1.000g, 5.79mmol)を塩化メチレン(15ml)に溶解し、DCC(関東化学 特級)(621.1mg, 3.01mmol)を加え、アルゴン気流下室温で1時間45分撹拌した。反応液を濃縮した後にセライト(関東化学535)により、dicyclohexylureaを濾過した。残液を濃縮し、生じた結晶をヘキサンと少量のEtOAcで濾過し、mCBPO(620.0mg, 1,99mmol)を69%の収率で得た。
m.p. 112-113℃; 1H-NMR (CDCl3, 600 MHz)δ: 8.06 (2H, t, J = 1.8 Hz), 7.98-7.95 (2H, m), 7.65 (2H, ddd, J = 8.1, 2.2, 1.1 Hz), 7.48 (2H, t, J = 8.1 Hz) ; 13C-NMR (CDCl3, 150 MHz)δ: 161.80, 135.18, 134.50, 130.25, 129.82, 127.90, 127.11; IR cm-1 (KBr) 3101, 3075, 1791, 1768, 1220, 1006, 811, 723;
Synthesis Example 2 (Synthesis of m-chlorobenzoyl peroxide (mCBPO) -1)
mCBPA (Kanto Chemical Pr.G) (1.000 g, 5.79 mmol) m-chloroperbenzoic acid is dissolved in methylene chloride (15 ml), DCC (Kanto Chemical Special Grade) (621.1 mg, 3.01 mmol) is added, and under argon flow Stir at room temperature for 1 hour 45 minutes. After concentrating the reaction solution, dicyclohexylurea was filtered through Celite (Kanto Chemical 535). The residue was concentrated and the resulting crystals were filtered with hexane and a small amount of EtOAc to give mCBPO (620.0 mg, 1,99 mmol) in 69% yield.
mp 112-113 ° C; 1 H-NMR (CDCl 3 , 600 MHz) δ: 8.06 (2H, t, J = 1.8 Hz), 7.98-7.95 (2H, m), 7.65 (2H, ddd, J = 8.1, 2.2, 1.1 Hz), 7.48 (2H, t, J = 8.1 Hz); 13 C-NMR (CDCl 3 , 150 MHz) δ: 161.80, 135.18, 134.50, 130.25, 129.82, 127.90, 127.11; IR cm -1 ( KBr) 3101, 3075, 1791, 1768, 1220, 1006, 811, 723;

合成例3(m-クロロ過酸化ベンゾイル(mCBPO)の合成−2)
mCBPA(500.0mg, 2.90mmol)を塩化メチレン(8ml)に溶解し、DCC(310.9mg, 1.51mmol)を加え、アルゴン気流下室温で20分撹拌した。さらにmCBPA(500.0mg, 2.90mmol)を加え、アルゴン気流下室温で2時間撹拌した。反応液を濃縮した後にセライトにより、dicyclohexylureaを濾過した。残液を濃縮し、生じた結晶をヘキサンと少量のEtOAcで濾過し、mCBPO(621.3mg, 2.00mmol)を69%の収率で得た。
Synthesis Example 3 (Synthesis of m-chlorobenzoyl peroxide (mCBPO) -2)
mCBPA (500.0 mg, 2.90 mmol) was dissolved in methylene chloride (8 ml), DCC (310.9 mg, 1.51 mmol) was added, and the mixture was stirred at room temperature for 20 minutes under an argon stream. Further, mCBPA (500.0 mg, 2.90 mmol) was added, and the mixture was stirred at room temperature for 2 hours under an argon stream. After the reaction solution was concentrated, dicyclohexylurea was filtered through celite. The residue was concentrated, and the resulting crystals were filtered with hexane and a small amount of EtOAc to obtain mCBPO (621.3 mg, 2.00 mmol) in 69% yield.

合成例4(m-クロロ過酸化ベンゾイル(mCBPO)の合成−3)
m-クロロ過安息香酸mCBPA(500.0mg, 2.90mmol)を塩化メチレン(5ml)に溶解し、DCC(598.0mg, 2.90mmol)を加え、アルゴン気流下室温で20分撹拌した。さらにmCBA(454.1mg, 2.90 mmmol)を加え、アルゴン気流下室温で2時間25分撹拌した。反応液を濃縮した後にセライトにより、dicyclohexylureaを濾過した。残液を濃縮し、生じた結晶をヘキサンと少量のEtOAcで濾過し、mCBPO(302.3mg, 0.972mmol)を67%の収率で得た。
Synthesis Example 4 (Synthesis of m-chlorobenzoyl peroxide (mCBPO) -3)
mCBPA (500.0 mg, 2.90 mmol) m-chloroperbenzoic acid was dissolved in methylene chloride (5 ml), DCC (598.0 mg, 2.90 mmol) was added, and the mixture was stirred at room temperature for 20 minutes under a stream of argon. Further, mCBA (454.1 mg, 2.90 mmmol) was added, and the mixture was stirred at room temperature for 2 hours and 25 minutes under an argon stream. After the reaction solution was concentrated, dicyclohexylurea was filtered through celite. The residue was concentrated and the resulting crystals were filtered with hexane and a small amount of EtOAc to give mCBPO (302.3 mg, 0.972 mmol) in 67% yield.

合成例5(m-クロロ過酸化ベンゾイル(mCBPO)の合成−4)
DCC(682.5 mg, 3.3 mmol)を塩化メチレン(8 ml)に溶解し、mCBA (471.5 mg, 3.0 mmol)を加え、アルゴン下、室温で20分撹拌した。さらにmCPBA (523.7 mg,3.0 mmol)を加え、アルゴン下、室温で4時間撹拌した。反応液を濃縮した後にセライトとEtOAcを用いて、dicyclohexylureaを濾過した。残液を濃縮し、生じた結晶をhexaneと少量のEtOAcで洗浄し、mCBPO (500.1 mg, 1.6 mmol)を53%の収率で得た。
Synthesis Example 5 (Synthesis of m-chlorobenzoyl peroxide (mCBPO) -4)
DCC (682.5 mg, 3.3 mmol) was dissolved in methylene chloride (8 ml), mCBA (471.5 mg, 3.0 mmol) was added, and the mixture was stirred at room temperature for 20 minutes under argon. Furthermore, mCPBA (523.7 mg, 3.0 mmol) was added, and the mixture was stirred at room temperature for 4 hours under argon. After concentrating the reaction solution, dicyclohexylurea was filtered using Celite and EtOAc. The residue was concentrated, and the resulting crystals were washed with hexane and a small amount of EtOAc to obtain mCBPO (500.1 mg, 1.6 mmol) in a yield of 53%.

実施例1
本実施例の合成経路は上記反応式(化8)に示したものである。
合成例1で得たフェルギノール(31.5mg, 0.110mmol)を塩化メチレン(3ml)に溶解し、合成例2で得たmCBPO(58.6mg, 0.188mmol)を加え、アルゴン気流下室温で4時間撹拌した。Na2S2O3(和光純薬 1級)を加えて反応を停止させ、EtOAcで液―液抽出した後、有機層をNa2S2O3及び飽和食塩水で洗浄した。その後MgSO4(関東化学 1級)で乾燥し、濃縮した後にシリカゲルカラムクロマトグラフィー(hexane:EtOAc = 5:1)で精製し、フェルギノールのオルト位酸化混合物(上記反応式(化8)の化合物8,9)(23.3mg, 0.0548mmol)を50%の収率で得た。
Example 1
The synthesis route of this example is shown in the above reaction formula (Formula 8).
Ferguinol (31.5 mg, 0.110 mmol) obtained in Synthesis Example 1 was dissolved in methylene chloride (3 ml), mCBPO (58.6 mg, 0.188 mmol) obtained in Synthesis Example 2 was added, and the mixture was stirred at room temperature for 4 hours under an argon stream. . The reaction was stopped by adding Na 2 S 2 O 3 (Wako Pure Chemical Industries, Ltd. Grade 1), followed by liquid-liquid extraction with EtOAc, and then the organic layer was washed with Na 2 S 2 O 3 and saturated brine. Then, it is dried with MgSO 4 (Kanto Chemical Grade 1), concentrated and purified by silica gel column chromatography (hexane: EtOAc = 5: 1) to give an ortho-oxidized mixture of ferguinol (compound 8 of the above reaction formula (Chemical Formula 8)). 9) (23.3 mg, 0.0548 mmol) was obtained in 50% yield.

上記で得たフェルギノールのオルト位酸化混合物(20.9mg)をTHF(5ml)に溶解し、水素化リチウムアルミニウム(LAH、関東化学社製、24115-25)(6.3mg, 0.166mmol)を加え、酸素気流下室温で3時間撹拌した。EtOAc,、水、1N HClを加えて反応を停止させ、EtOAcで液−液抽出した後、有機層を1N HCl、飽和NaHCO3、飽和食塩水で洗浄した。その後MgSO4で乾燥し、濃縮した後にTLCプレート(hexane:EtOAc =30:1)で精製し、アビエタキノンメチド(11-Hydroxy-12-oxo-7,9(11),13-abietatriene)(3.4mg, 0.0113mmol)を23%の収率で得た。生成物のデータを以下に示す。
colorless oil; 1H-NMR(CDCl3, 600 MHz)δ: 7.46(1H, s), 6.81(1H, dd, J = 7.0, 3.3 Hz), 6.78(1H, s), 3.07(1H, sept, J = 7.0 Hz), 3.02-2.98(1H, m), 2.58(1H, ddd, J = 20.9, 7.0, 3.7 Hz), 2.40(1H, ddd, J = 20.9, 12.1, 2.9 Hz), 1.71-1.56(4H, m), 1.49-1.44(2H, m), 1.19(3H, s), 1.15(3H, d, J = 7.0 Hz), 1.14(3H, d, J = 7.0 Hz), 0.977(3H, s), 0.933(3H, s); 13C-NMR(CDCl3, 150 MHz)δ: 181.42, 148.94, 143.86, 140.57, 136.10, 131.66, 127.33, 50.57, 41.76, 38.69, 36.82, 33.57, 33.30, 26.64, 25.85, 22.10, 21.82, 21.49, 18.94, 18.48
The ortho-oxidation mixture (20.9 mg) of Ferguinol obtained above was dissolved in THF (5 ml), lithium aluminum hydride (LAH, Kanto Chemical Co., 24115-25) (6.3 mg, 0.166 mmol) was added, and oxygen was added. The mixture was stirred at room temperature for 3 hours under a stream of air. The reaction was quenched by adding EtOAc, water and 1N HCl, and after liquid-liquid extraction with EtOAc, the organic layer was washed with 1N HCl, saturated NaHCO 3 and saturated brine. After drying with MgSO 4 and concentrating, it was purified with a TLC plate (hexane: EtOAc = 30: 1), and abietaquinone methide (11-Hydroxy-12-oxo-7,9 (11), 13-abietatriene) (3.4 mg, 0.0113 mmol) was obtained in 23% yield. The product data is shown below.
colorless oil; 1 H-NMR (CDCl 3 , 600 MHz) δ: 7.46 (1H, s), 6.81 (1H, dd, J = 7.0, 3.3 Hz), 6.78 (1H, s), 3.07 (1H, sept, J = 7.0 Hz), 3.02-2.98 (1H, m), 2.58 (1H, ddd, J = 20.9, 7.0, 3.7 Hz), 2.40 (1H, ddd, J = 20.9, 12.1, 2.9 Hz), 1.71-1.56 (4H, m), 1.49-1.44 (2H, m), 1.19 (3H, s), 1.15 (3H, d, J = 7.0 Hz), 1.14 (3H, d, J = 7.0 Hz), 0.977 (3H, s), 0.933 (3H, s); 13 C-NMR (CDCl 3 , 150 MHz) δ: 181.42, 148.94, 143.86, 140.57, 136.10, 131.66, 127.33, 50.57, 41.76, 38.69, 36.82, 33.57, 33.30, 26.64 , 25.85, 22.10, 21.82, 21.49, 18.94, 18.48

実施例2
本実施例では、フェルギノールのオルト位酸化混合物を実施例1とは別の方法(上記反応式(化10)に示す。)によって合成したものを用いた。
mCBPA(19.9mg, 0.116mmol)を塩化メチレン(5ml)に溶解し、DCC(23.9mg, 0.116mmol)を加え、アルゴン気流下室温で20分撹拌した。これに、合成例1で得たフェルギノール(26.0mg, 0.0908 mmmol)を加え、アルゴン気流下室温で15時間撹拌した。反応液を濃縮した後にシリカゲルカラムクロマトグラフィー(hexane:EtOAc = 10:1)で精製し、フェルギノールのオルト位酸化混合物(22.3mg, 0.0525mmol)を58%の収率で得た。以下実施例1と同様な方法によって、アビエタキノンメチドを得た。
Example 2
In this example, an ortho-oxidized mixture of ferguinol synthesized by a method different from that in Example 1 (shown in the above reaction formula (Formula 10)) was used.
mCBPA (19.9 mg, 0.116 mmol) was dissolved in methylene chloride (5 ml), DCC (23.9 mg, 0.116 mmol) was added, and the mixture was stirred at room temperature for 20 minutes under a stream of argon. Ferguinol (26.0 mg, 0.0908 mmmol) obtained in Synthesis Example 1 was added thereto, and the mixture was stirred at room temperature for 15 hours under an argon stream. The reaction solution was concentrated and purified by silica gel column chromatography (hexane: EtOAc = 10: 1) to obtain an ortho-oxidation mixture of ferguinol (22.3 mg, 0.0525 mmol) in a yield of 58%. Thereafter, abietaquinone methide was obtained in the same manner as in Example 1.

実施例3
本実施例では、実施例1と同様の方法によってアビエタキノンメチドを合成した。
mCBPA(19.9mg, 0.116mmol)を塩化メチレン(5ml)に溶解し、DCC(23.9mg, 0.116mmol)を加え、アルゴン気流下室温で20分撹拌した。さらにフェルギノール(26.0mg, 0.0908 mmmol)を加え、アルゴン気流下室温で15時間撹拌した。反応液を濃縮した後にシリカゲルカラムクロマトグラフィー(hexane:EtOAc = 10:1)で精製し、フェルギノールのオルト位酸化混合物 (22.3mg, 0.0525mmol)を58%の収率で得た。以下実施例1と同様な方法によって、アビエタキノンメチドを得た。
Example 3
In this example, abietaquinone methide was synthesized by the same method as in Example 1.
mCBPA (19.9 mg, 0.116 mmol) was dissolved in methylene chloride (5 ml), DCC (23.9 mg, 0.116 mmol) was added, and the mixture was stirred at room temperature for 20 minutes under a stream of argon. Ferguinol (26.0 mg, 0.0908 mmmol) was further added, and the mixture was stirred at room temperature for 15 hours under an argon stream. The reaction solution was concentrated and purified by silica gel column chromatography (hexane: EtOAc = 10: 1) to obtain an ortho-oxidation mixture of ferguinol (22.3 mg, 0.0525 mmol) with a yield of 58%. Thereafter, abietaquinone methide was obtained in the same manner as in Example 1.

Claims (7)

液相で下記一般式
Figure 2007169202
(式中、R〜Rは、それぞれ、水素原子、アルキル基、アリール基、水酸基、水酸基含有アルキル基、シアノ基、カルボキシル基、アルコキシカルボニル基、ハロゲン原子又はニトロ基を表し、R及びRは、いずれも水素原子である、一方が水素で他方が水酸基である、又は両者が結合する炭素原子と共にカルボニル基(=C=O)を形成する。以下「アビエタン型ジテルペン化合物I」という。)又は下記一般式
Figure 2007169202
(式中、R、R〜R、は上記と同様に定義される。以下「アビエタン型ジテルペン化合物II」という。)で表されるアビエタン型ジテルペン化合物と下記一般式
Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化過酸化ベンゾイルを反応させる段階、及び前段階の生成物を還元剤と反応させその後酸化剤と反応させる段階から成るアビエタン型キノンメチド化合物の製法であって、該アビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物Iの場合には、該アビエタン型キノンメチド化合物が下記一般式
Figure 2007169202
(式中、R〜Rは上記と同様に定義される。)で表され、該アビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物IIの場合には、該アビエタン型キノンメチド化合物が下記一般式
Figure 2007169202
(式中、R、R〜Rは上記と同様に定義される。)で表されるアビエタン型キノンメチド化合物の製法。
The following general formula in the liquid phase
Figure 2007169202
(Wherein, R 1 to R 4 each represent a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group, a hydroxyl group-containing alkyl group, a cyano group, a carboxyl group, an alkoxycarbonyl group, a halogen atom or a nitro group, R 5 and R 6 is a hydrogen atom, one is hydrogen and the other is a hydroxyl group, or forms a carbonyl group (═C═O) with a carbon atom to which both are bonded, hereinafter referred to as “abietane type diterpene compound I”. Or the following general formula
Figure 2007169202
(Wherein R 1 , R 3 to R 6 are defined in the same manner as described above, hereinafter referred to as “abietane type diterpene compound II”) and the following general formula
Figure 2007169202
(Wherein X represents a halogen atom and n represents 1 or 2), and a step of reacting the benzoyl peroxide represented by the formula, and reacting the product of the previous step with a reducing agent, A method for producing an abietane quinone methide compound comprising a step of reacting, wherein the abietane diterpene compound I is an abietane diterpene compound I, the abietane quinone methide compound is represented by the following general formula:
Figure 2007169202
(Wherein R 1 to R 6 are defined in the same manner as above), and when the abietane diterpene compound is an abietane diterpene compound II, the abietane quinone methide compound is represented by the following general formula:
Figure 2007169202
(Wherein R 1 , R 3 to R 6 are defined in the same manner as described above), and a method for producing an abietane-type quinone methide compound.
前記ハロゲン化過酸化ベンゾイルが、下記一般式
Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化過安息香酸と一般式
−N=C=N−R
(式中、Rは、同一であっても異なってもよく、アルキル基、シクロアルキル基、又はアリール基を表す。)で表されるカルボジイミド化合物を反応させることにより製造された請求項1に記載の製法。
The halogenated benzoyl peroxide has the following general formula:
Figure 2007169202
(Wherein X represents a halogen atom, and n represents 1 or 2) and a halogenated perbenzoic acid represented by the general formula R 2 —N═C═N—R 2
(Wherein R 2 may be the same or different and each represents an alkyl group, a cycloalkyl group, or an aryl group), and produced by reacting a carbodiimide compound represented by The manufacturing method described.
前記ハロゲン化過酸化ベンゾイルを製造する際に、更に下記一般式
Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化安息香酸を加えることから成る請求項2に記載の製法。
In preparing the benzoyl peroxide halide, the following general formula
Figure 2007169202
The process according to claim 2, comprising adding a halogenated benzoic acid represented by the formula (wherein X represents a halogen atom and n represents 1 or 2).
前記ハロゲン化過酸化ベンゾイルが、下記一般式
Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化安息香酸と一般式
−N=C=N−R
(式中、Rは、同一であっても異なってもよく、アルキル基、シクロアルキル基、又はアリール基を表す。)で表されるカルボジイミド化合物を反応させた後、ハロゲン化過安息香酸を加えることにより製造される請求項1に記載の製法。
The halogenated benzoyl peroxide has the following general formula:
Figure 2007169202
(Wherein X represents a halogen atom and n represents 1 or 2) and a general formula R 2 —N═C═N—R 2
(In the formula, R 2 may be the same or different and each represents an alkyl group, a cycloalkyl group, or an aryl group.) After reacting with the carbodiimide compound represented by 2. The process according to claim 1, wherein the process is produced by adding.
液相で下記一般式
Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化過安息香酸と下記一般式
−N=C=N−R
(式中、Rは、同一であっても異なってもよく、アルキル基、シクロアルキル基、又はアリール基を表す。)で表されるカルボジイミド化合物を反応させる段階、前段階の反応液に下記一般式
Figure 2007169202
(式中、R〜Rは、それぞれ、水素原子、アルキル基、アリール基、水酸基、水酸基含有アルキル基、シアノ基、カルボキシル基、アルコキシカルボニル基、ハロゲン原子又はニトロ基を表し、R及びRは、いずれも水素原子である、一方が水素で他方が水酸基である、又は両者が結合する炭素原子と共にカルボニル基(=C=O)を形成する。以下「アビエタン型ジテルペン化合物I」という。)又は下記一般式
Figure 2007169202
(式中、R、R〜Rは上記と同様に定義される。以下「アビエタン型ジテルペン化合物II」という。)で表されるアビエタン型ジテルペン化合物を混合する段階、及び前段階の生成物を還元剤と反応させその後酸化剤と反応させる段階から成るアビエタン型キノンメチド化合物の製法であって、該アビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物Iの場合には、該アビエタン型キノンメチド化合物が下記一般式
Figure 2007169202
(式中、R〜Rは上記と同様に定義される。)で表され、該アビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物IIの場合には、該アビエタン型キノンメチド化合物が下記一般式
Figure 2007169202
(式中、R、R〜Rは上記と同様に定義される。)で表されるアビエタン型キノンメチド化合物の製法。
The following general formula in the liquid phase
Figure 2007169202
(Wherein X represents a halogen atom and n represents 1 or 2) and the following general formula R 7 —N═C═N—R 7
(Wherein R 7 may be the same or different and each represents an alkyl group, a cycloalkyl group, or an aryl group). The step of reacting the carbodiimide compound represented by General formula
Figure 2007169202
(Wherein, R 1 to R 4 each represent a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group, a hydroxyl group-containing alkyl group, a cyano group, a carboxyl group, an alkoxycarbonyl group, a halogen atom or a nitro group, R 5 and R 6 is a hydrogen atom, one is hydrogen and the other is a hydroxyl group, or forms a carbonyl group (═C═O) with a carbon atom to which both are bonded, hereinafter referred to as “abietane type diterpene compound I”. Or the following general formula
Figure 2007169202
(Wherein R 1 , R 3 to R 6 are defined in the same manner as described above, hereinafter referred to as “abietane type diterpene compound II”), and the production of the previous step A method for producing an abietane-type quinone methide compound comprising a step of reacting a product with a reducing agent and then reacting with an oxidizing agent, wherein the abietane-type diterpene compound I is an abietane-type diterpene compound I. formula
Figure 2007169202
(Wherein R 1 to R 6 are defined in the same manner as above), and when the abietane diterpene compound is an abietane diterpene compound II, the abietane quinone methide compound is represented by the following general formula:
Figure 2007169202
(Wherein R 1 , R 3 to R 6 are defined in the same manner as described above), and a method for producing an abietane-type quinone methide compound.
前記ハロゲン化過安息香酸とカルボジイミド化合物を反応させた後に、更に下記一般式
Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化安息香酸を加えることから成る請求項5に記載の製法。
After reacting the halogenated perbenzoic acid and the carbodiimide compound, the following general formula
Figure 2007169202
The process according to claim 5, which comprises adding a halogenated benzoic acid represented by the formula (wherein X represents a halogen atom and n represents 1 or 2).
液相で下記一般式
Figure 2007169202

(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化安息香酸と下記一般式
−N=C=N−R
(式中、Rは、同一であっても異なってもよく、アルキル基、シクロアルキル基、又はアリール基を表す。)で表されるカルボジイミド化合物を反応させる段階、前段階の反応液に下記一般式
Figure 2007169202
(式中、Xはハロゲン原子を表し、nは1又は2を表す。)で表されるハロゲン化過安息香酸を混合する段階、前段階の反応液に下記一般式
Figure 2007169202
(式中、R〜Rは、それぞれ、水素原子、アルキル基、アリール基、水酸基、水酸基含有アルキル基、シアノ基、カルボキシル基、アルコキシカルボニル基、ハロゲン原子又はニトロ基を表し、R及びRは、いずれも水素原子である、一方が水素で他方が水酸基である、又は両者が結合する炭素原子と共にカルボニル基(=C=O)を形成する。以下「アビエタン型ジテルペン化合物I」という。)又は下記一般式
Figure 2007169202
(式中、R、R〜Rは上記と同様に定義される。以下「アビエタン型ジテルペン化合物II」という。)で表されるアビエタン型ジテルペン化合物を混合する段階、及び前段階の生成物を還元剤と反応させその後酸化剤と反応させる段階から成るアビエタン型キノンメチド化合物の製法であって、該アビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物Iの場合には、該アビエタン型キノンメチド化合物が下記一般式
Figure 2007169202
(式中、R〜Rは上記と同様に定義される。)で表され、該アビエタン型ジテルペン化合物がアビエタン型ジテルペン化合物IIの場合には、該アビエタン型キノンメチド化合物が下記一般式
Figure 2007169202
(式中、R、R〜Rは上記と同様に定義される。)で表されるアビエタン型キノンメチド化合物の製法。
The following general formula in the liquid phase
Figure 2007169202

(Wherein X represents a halogen atom, and n represents 1 or 2) and the following general formula R 7 —N═C═N—R 7
(Wherein R 7 may be the same or different and each represents an alkyl group, a cycloalkyl group, or an aryl group). The step of reacting the carbodiimide compound represented by General formula
Figure 2007169202
(Wherein X represents a halogen atom, and n represents 1 or 2) The step of mixing the halogenated perbenzoic acid represented by the following general formula
Figure 2007169202
(Wherein, R 1 to R 4 each represent a hydrogen atom, an alkyl group, an aryl group, a hydroxyl group, a hydroxyl group-containing alkyl group, a cyano group, a carboxyl group, an alkoxycarbonyl group, a halogen atom or a nitro group, R 5 and R 6 is a hydrogen atom, one is hydrogen and the other is a hydroxyl group, or forms a carbonyl group (═C═O) with a carbon atom to which both are bonded, hereinafter referred to as “abietane type diterpene compound I”. Or the following general formula
Figure 2007169202
(Wherein R 1 , R 3 to R 6 are defined in the same manner as described above, hereinafter referred to as “abietane type diterpene compound II”), and the production of the previous step A method for producing an abietane-type quinone methide compound comprising a step of reacting a product with a reducing agent and then reacting with an oxidizing agent, wherein the abietane-type diterpene compound I is an abietane-type diterpene compound I. formula
Figure 2007169202
(Wherein R 1 to R 6 are defined in the same manner as above), and when the abietane diterpene compound is an abietane diterpene compound II, the abietane quinone methide compound is represented by the following general formula:
Figure 2007169202
(Wherein R 1 , R 3 to R 6 are defined in the same manner as described above), and a method for producing an abietane-type quinone methide compound.
JP2005367529A 2005-12-21 2005-12-21 Production of abietane-type quinone methide compounds Active JP4852747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367529A JP4852747B2 (en) 2005-12-21 2005-12-21 Production of abietane-type quinone methide compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367529A JP4852747B2 (en) 2005-12-21 2005-12-21 Production of abietane-type quinone methide compounds

Publications (3)

Publication Number Publication Date
JP2007169202A true JP2007169202A (en) 2007-07-05
JP2007169202A5 JP2007169202A5 (en) 2008-11-27
JP4852747B2 JP4852747B2 (en) 2012-01-11

Family

ID=38296247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367529A Active JP4852747B2 (en) 2005-12-21 2005-12-21 Production of abietane-type quinone methide compounds

Country Status (1)

Country Link
JP (1) JP4852747B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065014A (en) * 2008-09-12 2010-03-25 Tokyo Univ Of Agriculture & Technology Anti-propionibacterium compound and production thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080419A (en) * 2000-09-01 2002-03-19 Japan Science & Technology Corp Antibacterial compound resistant to vre and/or mrsa

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080419A (en) * 2000-09-01 2002-03-19 Japan Science & Technology Corp Antibacterial compound resistant to vre and/or mrsa

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065014A (en) * 2008-09-12 2010-03-25 Tokyo Univ Of Agriculture & Technology Anti-propionibacterium compound and production thereof

Also Published As

Publication number Publication date
JP4852747B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5457555B2 (en) Method for producing tricyclic derivative
Huang et al. A facile and highly stereoselective synthesis of (2E)-,(2E, 4E)-unsaturated amides and related natural products
Lv et al. Diastereoselective building up polycyclic tetrahydrofurans via tandem annulation of 1, n-enynes with aliphatic acids
CN114380675A (en) Method for synthesizing aryl phenol by reaction of halogenated aromatic hydrocarbon and phenol compound induced by visible light
Nakata et al. A convenient method for the kinetic resolution of racemic 2-hydroxyalkanoates using diphenylacetic anhydride (DPHAA) and a chiral acyl-transfer catalyst
JP4852747B2 (en) Production of abietane-type quinone methide compounds
Konopelski et al. Enantiomerically pure vinyl ketene acetals as dienes in the Diels-Alder reaction
CN113061077A (en) Alpha, alpha-dideuteroalcohol compounds, deuterated drugs and preparation method thereof
De Groot et al. Selective Cleavage of tert-Butyldimethylsilylethers ortho to a Carbonyl Group by Ultrasound
TAKAHASHI et al. Heterocycles. XV. Enantioselective synthesis of chiral flavanonols and flavan-3, 4-diols
US20040087820A1 (en) Catalytic oxidation of C-H bonds
US5990322A (en) Alpha-tocopherol cyclopropylates, the new vitamin E derivatives and method for producing the same
CN108794396B (en) Oxidation method of 4-oxo-2, 3-dihydroquinoline compound
JPH03255066A (en) Production of beta-lactam derivative
JP7271009B2 (en) Method for synthesizing 1,3-diaryl-substituted tetrazolones inner salt
CN112010889B (en) Preparation method of 4-hydroxy-2-azetidinone compound
Fletcher et al. Three approaches to the synthesis of L-leucine selectively labelled with carbon-13 or deuterium in either diastereotopic methyl group
CN112126941B (en) Polysubstituted 10-hydroxy phenanthrene derivative and preparation method thereof
JP2017052729A (en) Method for manufacturing oxaziridine compound
JPS63239238A (en) Manufacture of optically active carbonyl compound
Montaña et al. Introduction of a new stereocenter on C1-functionalized 8-oxabicyclo [3.2. 1] oct-6-en 3-ones by a regio-and stereoselective electrophilic addition. Obtention of polyfunctionalized cycloheptanes with five stereocenters
JP2796749B2 (en) Method for producing isoxazole derivative
Kazimierski et al. Ethoxycarbonylation of 3-keto-4-methyl-5-oxacephams
JP2711754B2 (en) Method for producing optically active dihydropyran derivative
CN117720501A (en) Isochromone derivative and preparation method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Effective date: 20110822

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110829

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20111003

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150