JP2007166697A - Charging type power supply device - Google Patents

Charging type power supply device Download PDF

Info

Publication number
JP2007166697A
JP2007166697A JP2005356400A JP2005356400A JP2007166697A JP 2007166697 A JP2007166697 A JP 2007166697A JP 2005356400 A JP2005356400 A JP 2005356400A JP 2005356400 A JP2005356400 A JP 2005356400A JP 2007166697 A JP2007166697 A JP 2007166697A
Authority
JP
Japan
Prior art keywords
secondary battery
power supply
main power
voltage
backup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005356400A
Other languages
Japanese (ja)
Inventor
Teruhiko Yamamura
照彦 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2005356400A priority Critical patent/JP2007166697A/en
Publication of JP2007166697A publication Critical patent/JP2007166697A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging type power supply device that can drive an electric apparatus for a long time, and can prevent the lowering of a voltage even if a large current flows into the electric apparatus. <P>SOLUTION: The charging type power supply device 1 comprises a main power supply secondary battery 2, a backup secondary battery 3 that can discharge a large current, and a control means connected to these secondary batteries. The control means has a function that detects that a voltage of the main power supply secondary battery has been lowered to a reference voltage or lower when discharging electricity to the electric apparatus from the main power supply secondary battery, and discharges electricity to the electric apparatus by switching the main power supply secondary battery to the backup secondary battery on the basis of the detection result. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、機器に搭載される充電式電源装置の改良に関する。   The present invention relates to an improvement of a rechargeable power supply device mounted on a device.

携帯電話、ノート型パーソナルコンピュータ、電動アシスト自転車、電動自動二輪車等の各種電気機器には、充電式電源装置が内蔵されている。これらの電気機器に使用されている充電式電源装置としては、ニッケル水素二次電池やリチウムイオン二次電池などが主流となっており、高エネルギー密度を生かした大容量電池で、長時間の機器駆動を可能にしている。   Various electric devices such as mobile phones, notebook personal computers, electrically assisted bicycles, and electric motorcycles have built-in rechargeable power supply devices. Rechargeable power supply devices used in these electrical devices are mainly nickel metal hydride secondary batteries and lithium ion secondary batteries, which are high-capacity batteries that take advantage of high energy density and long-time equipment. Drive is possible.

ところで、各種電気機器は通常、起動時に大電流が流れる。例えば、パーソナルコンピュータでは立ち上げ時に大電流が流れる。電気自動車の場合には、発進時の数秒という短時間で大電流が流れる。このため、これら電気機器に搭載される充電式電源装置から大電流の放電がなされる。通常の二次電池を有する充電式電源装置において、大電流放電がなされると、その内部インピーダンスの影響が生じて、電池電圧の電圧降下が大きくなり、過放電電圧以下となって放電できなくなる虞がある。   By the way, various electric devices usually have a large current flowing at startup. For example, a large current flows at startup in a personal computer. In the case of an electric vehicle, a large current flows in a short time of several seconds after starting. For this reason, a large current is discharged from the rechargeable power supply device mounted on these electric devices. In a rechargeable power supply device having a normal secondary battery, if a large current is discharged, the effect of the internal impedance is generated, and the voltage drop of the battery voltage becomes large, and there is a risk that it becomes impossible to discharge below the overdischarge voltage. There is.

このようなことから、特許文献1には大電流放電可能な非水電解質二次電池が開示されている。この二次電池を充電式電源装置に組み込むことによって、電気機器に大電流が流れても、電圧降下を防ぐことが可能になる。   For this reason, Patent Document 1 discloses a nonaqueous electrolyte secondary battery capable of discharging a large current. By incorporating this secondary battery into the rechargeable power supply device, it is possible to prevent a voltage drop even if a large current flows through the electrical equipment.

しかしながら、大電流放電可能な非水電解質二次電池は通常の非水電解質二次電池に比べて容量が小さいために、搭載される電気機器の種類によってはその駆動時間が制限される。
特開2005−123183
However, since the capacity of the nonaqueous electrolyte secondary battery capable of discharging a large current is smaller than that of a normal nonaqueous electrolyte secondary battery, the drive time is limited depending on the type of electric equipment to be mounted.
JP-A-2005-123183

本発明は、長時間の電気機器の駆動を可能にすると共に、電気機器に大電流が流れたときでも電圧降下を防ぐことが可能な充電式電源装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a rechargeable power supply device that can drive an electric device for a long time and can prevent a voltage drop even when a large current flows through the electric device.

本発明によると、主電源用二次電池と、大電流放電可能なバックアップ用二次電池と、これらの二次電池に接続された制御手段とを備え、
前記制御手段は、前記主電源用二次電池から電気機器に放電する場合においてその二次電池の電圧が基準電圧以下になったことを検出し、かつこの検出結果に基づいて前記主電源用二次電池から前記バックアップ用二次電池に切り替えて前記電気機器に放電を行う機能を有することを特徴とする充電式電源装置が提供される。
According to the present invention, comprising a secondary battery for a main power source, a backup secondary battery capable of discharging a large current, and a control means connected to these secondary batteries,
The control means detects that the voltage of the secondary battery is equal to or lower than a reference voltage when discharging from the main power supply secondary battery to an electrical device, and based on the detection result, the main power supply secondary battery. There is provided a rechargeable power supply device having a function of switching from a secondary battery to the backup secondary battery to discharge the electric device.

本発明は、長時間の電気機器の駆動を可能にすると共に、電気機器に大電流が流れたときでも電圧降下を防いで、電気機器の継続的な駆動を達成した高信頼性で高性能の充電式電源装置を提供することができる。   The present invention makes it possible to drive an electric device for a long time, prevent a voltage drop even when a large current flows through the electric device, and achieve continuous driving of the electric device with high reliability and high performance. A rechargeable power supply device can be provided.

以下、本発明の実施形態に係る充電式電源装置を図面を参照して詳細に説明する。   Hereinafter, a rechargeable power supply device according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、実施形態に係る充電式電源装置を示す概略図である。実施形態に係る充電式電源装置1は、大容量の主電源用二次電池2、大電流放電可能なバックアップ用二次電池3、制御器4および第1、第2のスイッチ用FET5,6を備えている。   FIG. 1 is a schematic diagram illustrating a rechargeable power supply device according to an embodiment. The rechargeable power supply device 1 according to the embodiment includes a secondary battery 2 having a large capacity, a backup secondary battery 3 capable of discharging a large current, a controller 4, and first and second switch FETs 5 and 6. I have.

主ラインL1、補助ラインL2は、2本のバスラインL3,L4により互いに平行して接続されている。電気機器11は、前記主ラインL1の一端に接続されている。   The main line L1 and the auxiliary line L2 are connected in parallel to each other by two bus lines L3 and L4. The electric device 11 is connected to one end of the main line L1.

前記主電源用二次電池2は、前記主ラインL1に接続されている。前記第1のスイッチ用FET5は、前記主電源用二次電池2と前記電気機器11側のバスラインL3の交点との間に位置する前記主ラインL1に接続されている。前記バックアップ用二次電池3は、前記補助ラインL2に接続されている。前記第2のスイッチ用FET6は、前記バックアップ用二次電池3とバスラインL3の交点との間に位置する前記補助ラインL2に接続されている。なお、前記バックアップ用二次電池3の電圧に応じて、昇圧回路(図示せず)バックアップ用二次電池3と第2のスイッチ用FET6の間に位置する前記補助ラインL2に接続してもよい。   The main power supply secondary battery 2 is connected to the main line L1. The first switch FET 5 is connected to the main line L1 located between the main power source secondary battery 2 and the intersection of the bus line L3 on the electric equipment 11 side. The backup secondary battery 3 is connected to the auxiliary line L2. The second switch FET 6 is connected to the auxiliary line L2 located between the backup secondary battery 3 and the intersection of the bus line L3. Depending on the voltage of the backup secondary battery 3, a booster circuit (not shown) may be connected to the auxiliary line L2 located between the backup secondary battery 3 and the second switch FET 6. .

前記制御器4は、例えばマイコンからなる。この制御器4は、検出信号ラインS1,S2を通して前記主電源用二次電池2前後の主ラインL1に接続され、その二次電池2の電圧を検出する機能を有する。前記制御器4は、信号ラインS3を通して前記第1のスイッチ用FET5に接続され、このFET5の開閉を行う。また、前記制御器4は信号ラインS4を通して前記第2のスイッチ用FET6に接続され、このFET6の開閉を行う。このような制御器4において、前記主電源用二次電池2の電圧を検出信号ラインS1,S2を通して検出し、その検出電圧を基準電圧と比較し、基準電圧より下がると、前記信号ラインS3を通して前記第1のスイッチ用FET5を閉じ、前記信号ラインS4を通して前記第2のスイッチ用FET6を開く機能を有する。すなわち、前記主電源用二次電池2の電圧が基準電圧より下がると、この二次電池2からバックアップ用二次電池3に切り替わって電気機器11に接続される。なお、基準電圧は前記主電源用二次電池2の電圧により一概に規定できないが、主電源用二次電池2の初期電圧の80〜85%下げた電圧にすることが好ましい。   The controller 4 is composed of, for example, a microcomputer. The controller 4 is connected to the main line L1 around the main power supply secondary battery 2 through the detection signal lines S1 and S2, and has a function of detecting the voltage of the secondary battery 2. The controller 4 is connected to the first switching FET 5 through the signal line S3, and opens and closes the FET 5. The controller 4 is connected to the second switching FET 6 through a signal line S4, and opens and closes the FET 6. In such a controller 4, the voltage of the secondary battery 2 for main power supply is detected through the detection signal lines S 1 and S 2, and the detected voltage is compared with the reference voltage. The first switching FET 5 is closed, and the second switching FET 6 is opened through the signal line S4. That is, when the voltage of the main power source secondary battery 2 falls below the reference voltage, the secondary battery 2 is switched to the backup secondary battery 3 and connected to the electrical device 11. The reference voltage cannot be generally defined by the voltage of the secondary battery 2 for main power supply, but is preferably set to a voltage that is 80 to 85% lower than the initial voltage of the secondary battery 2 for main power supply.

また、前記制御器4は前記バックアップ用二次電池3から前記主電源用二次電池2を前記電気機器11に再度接続する復帰機能を有する。すなわち、前記主電源用二次電池2からバックアップ用二次電池3への切り替え、所望の待機時間が経過後に前記信号ラインS3を通して前記第1のスイッチ用FET5を開き、前記信号ラインS4を通して前記第2のスイッチ用FET6を閉じて前記バックアップ用二次電池3から前記主電源用二次電池2を前記電気機器11に接続する、復帰機能を有する。復帰するまでの待機時間は、制御器4のレジスタのようなタイマーでなされ、その待機時間は例えば電気機器11に大電流が流れる時間を考慮して設定される。   The controller 4 has a return function for reconnecting the main power supply secondary battery 2 to the electrical device 11 from the backup secondary battery 3. That is, switching from the main power supply secondary battery 2 to the backup secondary battery 3, the first switch FET 5 is opened through the signal line S 3 after a desired standby time has elapsed, and the first switch FET 5 is opened through the signal line S 4. 2 to close the switch FET 6 and connect the main power supply secondary battery 2 from the backup secondary battery 3 to the electrical device 11. The standby time until the return is made by a timer such as a register of the controller 4, and the standby time is set in consideration of the time during which a large current flows through the electrical device 11, for example.

前記大容量の主電源用二次電池2、大電流放電可能なバックアップ用二次電池3は、例えば図2に示すアルミニウムラミネートフィルムからなる外装部材を有する薄型電池が用いられる。なお、図4中の21はセパレータを挟んで正極および負極を重ね、渦巻状に捲回した後プレス成形した扁平状電極群と電解液を収納した外装部材である。22は、一端が前記正極に接続され、他端が外装部材21の一側面から延出された正極端子である。23は、一端が前記負極に接続され、他端が外装部材21の一側面から延出された負極端子である。   As the large-capacity main power source secondary battery 2 and the backup secondary battery 3 capable of discharging a large current, for example, a thin battery having an exterior member made of an aluminum laminate film shown in FIG. 2 is used. Reference numeral 21 in FIG. 4 denotes an outer package member in which a positive electrode and a negative electrode are stacked with a separator sandwiched between them, wound into a spiral shape, and press-molded into a flat electrode group and an electrolytic solution. Reference numeral 22 denotes a positive electrode terminal having one end connected to the positive electrode and the other end extending from one side surface of the exterior member 21. Reference numeral 23 denotes a negative electrode terminal having one end connected to the negative electrode and the other end extending from one side surface of the exterior member 21.

前記主電源用二次電池2は、例えばアルミニウムラミネートフィルムからなる外装部材のような容器と、この容器内に収容された非水電解質と、前記容器内に収納された正極と、前記容器内に収納され、銅箔または銅合金箔よりなる負極集電体に炭素質材料からなる負極活物質を含む負極層が担持された負極とを備えた構造を有する。   The secondary battery 2 for main power supply includes, for example, a container such as an exterior member made of an aluminum laminate film, a nonaqueous electrolyte housed in the container, a positive electrode housed in the container, A negative electrode current collector made of copper foil or copper alloy foil is housed and has a negative electrode layer on which a negative electrode layer containing a negative electrode active material made of a carbonaceous material is supported.

前記バックアップ用二次電池3は、最大放電電流が30C,2分間であることが好ましい。また、このバックアップ用二次電池3は10C充電、放電深度100%、1000サイクルでの劣化が1%であることが好ましい。ここで、『C』は充放電率を表す単位であり、完全放電から完全充電(または完全充電から完全放電)までを定電流充電した場合に計算上1時間で行えるレートを1Cとして表現する。1/10時間の場合、10Cと表現する。したがって、例えば10C充電とは、1C充電の10倍の電流が必要になる。   The backup secondary battery 3 preferably has a maximum discharge current of 30 C for 2 minutes. The backup secondary battery 3 preferably has 10C charge, a discharge depth of 100%, and a deterioration at 1000 cycles of 1%. Here, “C” is a unit representing a charge / discharge rate, and a rate that can be calculated in one hour when a constant current charge from complete discharge to full charge (or from full charge to complete discharge) is calculated is expressed as 1C. In the case of 1/10 hour, it is expressed as 10C. Therefore, for example, 10C charging requires 10 times as much current as 1C charging.

このような大電流放電可能なバックアップ用二次電池3は、前述した特許文献1に示されるような例えばアルミニウムラミネートフィルムからなる外装部材のような容器と、この容器内に収容された非水電解質と、前記容器内に収納された正極と、前記容器内に収納され、アルミニウム箔またはアルミニウム合金箔よりなる負極集電体に平均粒子径が1μm以下の粒度分布を有するリチウムイオンを吸蔵・放出するチタン酸リチウムのような物質を負極活物質粒子として含む負極層が担持された負極とを備えた構造を有する。   Such a backup secondary battery 3 capable of discharging a large current includes a container such as an exterior member made of, for example, an aluminum laminate film as shown in Patent Document 1 described above, and a nonaqueous electrolyte accommodated in the container. And occludes / releases lithium ions having a particle size distribution with an average particle size of 1 μm or less in a negative electrode current collector made of aluminum foil or aluminum alloy foil and housed in the container and the positive electrode housed in the container. And a negative electrode on which a negative electrode layer containing a material such as lithium titanate as negative electrode active material particles is supported.

次に、前述した図1に示す実施形態に係る充電式電源装置による電気機器への放電操作を説明する。   Next, the discharge operation to the electric equipment by the rechargeable power supply device according to the embodiment shown in FIG. 1 will be described.

制御器4により信号ラインS3を通して第1のスイッチ用FET5を開き、信号ラインS4を通して前記第2のスイッチ用FET6を閉じて、主電源用二次電池2を主ラインL1を通して電気機器11に接続し、所定電圧を電気機器11に放電して駆動する。このとき、制御器4により検出信号ラインS1,S2を通して主電源用二次電池2の電圧を検出し、その検出電圧が基準電圧以下か、否かを判定する。   The controller 4 opens the first switch FET 5 through the signal line S3, closes the second switch FET 6 through the signal line S4, and connects the main power source secondary battery 2 to the electrical equipment 11 through the main line L1. Then, a predetermined voltage is discharged to the electric device 11 and driven. At this time, the controller 4 detects the voltage of the secondary battery 2 for main power supply through the detection signal lines S1 and S2, and determines whether or not the detected voltage is lower than the reference voltage.

検出電圧が基準電圧以下になったことを判定、つまり電気機器11に大電流が流れ、主電源用二次電池2の電圧降下が判定されると、制御器4により信号ラインS3を通して第1のスイッチ用FET5を閉じ、前記信号ラインS4を通して前記第2のスイッチ用FET6を開く。これらのFET5,6の開閉により、主電源用二次電池2からバックアップ用二次電池3に切り替えられ、バックアップ用二次電池3はバスラインL3および主ラインL1を通して電気機器11に接続され、大電流放電がなされる。このバックアップ用二次電池3は大電流放電が可能(例えば最大放電電流が30C,2分間)であるため、電気機器11に大電流が流れても、電圧降下を招かずにほぼ初期電圧を維持して電気機器11を駆動する。   When it is determined that the detected voltage is equal to or lower than the reference voltage, that is, when a large current flows through the electric device 11 and a voltage drop of the secondary battery 2 for main power supply is determined, the controller 4 passes the first line through the signal line S3. The switch FET 5 is closed, and the second switch FET 6 is opened through the signal line S4. By opening and closing these FETs 5 and 6, the main power supply secondary battery 2 is switched to the backup secondary battery 3, and the backup secondary battery 3 is connected to the electrical equipment 11 through the bus line L3 and the main line L1. Current discharge is performed. The backup secondary battery 3 can discharge a large current (for example, the maximum discharge current is 30 C for 2 minutes), so even if a large current flows through the electrical equipment 11, it maintains an initial voltage without causing a voltage drop. Then, the electric device 11 is driven.

すなわち、50%の放電時の電圧−電流特性を示す図3のように大容量の主電源用二次電池、例えば高容量リチウムイオン二次電池:18650タイプ/1600mAh、(特性線A)では放電電流が高くなると電圧降下が大きくなり、特に放電電流が5Aになると、急激な電圧降下により電圧測定が不能になる。これに対し、大電流放電可能な二次電池、例えば容量が600mAhで、最大放電電流が30C,2分間のリチウムイオン二次電池(図3中の特性線B)では、放電電流30Aでも放電電流1Aのときの電圧とほぼ変わらない高い電圧を維持できる。その結果、前述したように電気機器11に大電流が流れても、電圧降下を招かずにほぼ初期電圧を維持して電気機器11を駆動することが可能になる。   That is, as shown in FIG. 3 showing the voltage-current characteristics at 50% discharge, a large-capacity secondary battery for main power source, for example, a high-capacity lithium ion secondary battery: 18650 type / 1600 mAh, (characteristic line A) is discharged. When the current becomes high, the voltage drop becomes large. Particularly when the discharge current becomes 5 A, the voltage measurement becomes impossible due to the rapid voltage drop. In contrast, in a secondary battery capable of discharging a large current, for example, a lithium ion secondary battery having a capacity of 600 mAh and a maximum discharge current of 30 C for 2 minutes (characteristic line B in FIG. 3), the discharge current is 30 A A high voltage almost the same as the voltage at 1 A can be maintained. As a result, even if a large current flows through the electrical device 11 as described above, the electrical device 11 can be driven while maintaining the initial voltage without causing a voltage drop.

このようなバックアップ用二次電池3による電気機器11への大電流放電の後(所望の待機時間が経過後)に制御器4により前記信号ラインS3を通して前記第1のスイッチ用FET5を開き、前記信号ラインS4を通して前記第2のスイッチ用FET6を閉じて前記バックアップ用二次電池3から前記主電源用二次電池2を前記電気機器11に接続、復帰する。つまり、主電源用二次電池2による定常的な電気機器11の駆動がなされる。   After such a large current discharge to the electrical device 11 by the backup secondary battery 3 (after a desired standby time has elapsed), the controller 4 opens the first switch FET 5 through the signal line S3, and The second switch FET 6 is closed through the signal line S4, and the main power supply secondary battery 2 is connected to the electrical device 11 from the backup secondary battery 3 and returned. That is, the stationary electric device 11 is driven by the main power source secondary battery 2.

以上、実施形態によれば高容量の主電源用二次電池2と、大電流放電可能なバックアップ用二次電池3と、前記主電源用二次電池2から電気機器11に放電する場合においてその二次電池2の電圧が設定電圧下になったことを検出し、かつこの検出結果に基づいて前記主電源用二次電池2から前記バックアップ用二次電池3に切り替えて前記電気機器11に放電を行う機能を有する制御器4とを備えることによって、長時間の電気機器11の駆動を可能にすると共に、電気機器11に大電流が流れたときでも前記バックアップ用二次電池3に切り替えて電圧降下を防いで電気機器11の駆動を続行できる。その結果、電気機器11に大電流が流れた際も、その電気機器11の継続的な駆動を達成した高信頼性で高性能の充電式電源装置1を提供することができる。   As described above, according to the embodiment, when the secondary battery 2 for high-power main power source, the secondary battery for backup 3 capable of discharging a large current, and the main power source secondary battery 2 are discharged to the electrical device 11, It is detected that the voltage of the secondary battery 2 has fallen below the set voltage, and based on the detection result, the secondary battery for main power supply 2 is switched to the secondary battery for backup 3 and discharged to the electric device 11. The controller 4 having a function of performing the operation enables the electric device 11 to be driven for a long time, and switches to the backup secondary battery 3 even when a large current flows through the electric device 11. The drive of the electric equipment 11 can be continued while preventing the descent. As a result, even when a large current flows through the electrical device 11, it is possible to provide a highly reliable and high-performance rechargeable power supply device 1 that achieves continuous driving of the electrical device 11.

また、バックアップ用二次電池3による電気機器11への大電流放電の後(所望の待機時間が経過後)に制御器4により前記バックアップ用二次電池3から前記主電源用二次電池2を前記電気機器11に接続させる復帰を行うことによって、容量の小さいバックアップ用二次電池3から電気機器11に必要以上の長い時間に亘って放電されるのを防ぐことが可能になる。その結果、より長時間に亘って電気機器11を駆動することができる。   In addition, after the large current discharge to the electrical device 11 by the backup secondary battery 3 (after a desired standby time has elapsed), the controller 4 removes the main power supply secondary battery 2 from the backup secondary battery 3. By performing the restoration to be connected to the electrical device 11, it is possible to prevent the backup secondary battery 3 having a small capacity from being discharged to the electrical device 11 for an unnecessarily long time. As a result, the electric device 11 can be driven for a longer time.

本発明の実施形態に係る充電式電源装置を示す概略図。Schematic which shows the rechargeable power supply device which concerns on embodiment of this invention. 実施形態に係る充電式電源装置に組み込まれる二次電池を示す正面図。The front view which shows the secondary battery integrated in the rechargeable power supply device which concerns on embodiment. 大容量の主電源用二次電池および大電流放電可能な二次電池における50%の放電時の電圧−電流特性図。The voltage-current characteristic view at the time of discharge of 50% in a secondary battery for a large capacity main power source and a secondary battery capable of discharging a large current.

符号の説明Explanation of symbols

1…充電式電源装置、2…大容量の主電源用二次電池、3…大電流放電可能なバックアップ用二次電池、4…制御器、11…電気機器、21…外装部材、22…正極端子、23…負極端子。   DESCRIPTION OF SYMBOLS 1 ... Rechargeable power supply device, 2 ... Secondary battery for large-capacity main power supply, 3 ... Backup secondary battery capable of discharging a large current, 4 ... Controller, 11 ... Electrical equipment, 21 ... Exterior member, 22 ... Positive electrode Terminal, 23 ... negative electrode terminal.

Claims (3)

主電源用二次電池と、大電流放電可能なバックアップ用二次電池と、これらの二次電池に接続された制御手段とを備え、
前記制御手段は、前記主電源用二次電池から電気機器に放電する場合においてその二次電池の電圧が基準電圧以下になったことを検出し、かつこの検出結果に基づいて前記主電源用二次電池から前記バックアップ用二次電池に切り替えて前記電気機器に放電を行う機能を有することを特徴とする充電式電源装置。
A secondary battery for main power supply, a backup secondary battery capable of discharging a large current, and a control means connected to these secondary batteries,
The control means detects that the voltage of the secondary battery is equal to or lower than a reference voltage when discharging from the main power supply secondary battery to an electrical device, and based on the detection result, the main power supply secondary battery. A rechargeable power supply device having a function of switching from a secondary battery to the backup secondary battery to discharge the electrical device.
前記大電流放電が可能なバックアップ用二次電池は、10C充電、放電深度100%、1000サイクルでの劣化が1%であることを特徴とする請求項1記載の充電式電源装置。   2. The rechargeable power supply device according to claim 1, wherein the secondary battery for backup capable of discharging a large current has 10 C charge, a discharge depth of 100%, and deterioration at 1000 cycles of 1%. 前記制御手段は、前記バックアップ用二次電池から前記主電源用二次電池を電気機器に接続させるための復帰機能をさらに有することを特徴とする請求項1記載の充電式電源装置。   2. The rechargeable power supply device according to claim 1, wherein the control unit further has a return function for connecting the main power supply secondary battery from the backup secondary battery to an electric device.
JP2005356400A 2005-12-09 2005-12-09 Charging type power supply device Withdrawn JP2007166697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005356400A JP2007166697A (en) 2005-12-09 2005-12-09 Charging type power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005356400A JP2007166697A (en) 2005-12-09 2005-12-09 Charging type power supply device

Publications (1)

Publication Number Publication Date
JP2007166697A true JP2007166697A (en) 2007-06-28

Family

ID=38248973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005356400A Withdrawn JP2007166697A (en) 2005-12-09 2005-12-09 Charging type power supply device

Country Status (1)

Country Link
JP (1) JP2007166697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188862A (en) * 2008-02-08 2009-08-20 Ricoh Co Ltd Backup power supply circuit for real-time clock circuit, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188862A (en) * 2008-02-08 2009-08-20 Ricoh Co Ltd Backup power supply circuit for real-time clock circuit, and semiconductor device

Similar Documents

Publication Publication Date Title
JP2581082Y2 (en) Battery device
US9413031B2 (en) Apparatus and system for an internal fuse in a battery cell
JP5372495B2 (en) Secondary battery protection circuit and secondary battery having the same
KR100659856B1 (en) Pouch Type Li Secondary Battery
JP4497372B2 (en) Pouch-type lithium secondary battery
US20060263649A1 (en) Electrode assembly having super-capacitor and lithium secondary battery having the same
US10629963B2 (en) Battery cell having a detection interface
JPH04331425A (en) Overcharge preventing device and overdischarge preventing device
JP2006310281A (en) Secondary battery
JP2006324239A (en) Wound electrode assembly and lithium secondary battery with same
JP2011109833A (en) Method and device for charging secondary battery
WO2003067700A1 (en) Lithium secondary battery having internal protection circuit
JP4928099B2 (en) Battery pack, mobile device and battery pack charging method
CN112510296A (en) Battery assembly, heating method thereof and electronic equipment
US20080166624A1 (en) Li-ion battery pack and method of outputting DC power supply from the Li-ion battery pack to a power hand tool
JP3574843B2 (en) Lithium secondary battery with safety mechanism
JP5491169B2 (en) Power supply system, portable device including power supply system, charging method of power supply system, discharging method of power supply system, and charging / discharging method of power supply system
JP2007166697A (en) Charging type power supply device
JP2006172985A (en) Battery module
KR20190005402A (en) Battery module and battery pack including the same
JP2002056900A (en) Nonaqueous electrolyte type battery device and battery pack
JP2012028044A (en) Lithium ion battery
JP2007295713A (en) Secondary battery pack
KR100664575B1 (en) Battery
JP4618025B2 (en) Battery pack and charge control method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080306

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303