JP2007165662A - Thermoelectric conversion material and its manufacturing method - Google Patents

Thermoelectric conversion material and its manufacturing method Download PDF

Info

Publication number
JP2007165662A
JP2007165662A JP2005361133A JP2005361133A JP2007165662A JP 2007165662 A JP2007165662 A JP 2007165662A JP 2005361133 A JP2005361133 A JP 2005361133A JP 2005361133 A JP2005361133 A JP 2005361133A JP 2007165662 A JP2007165662 A JP 2007165662A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
raw material
conversion material
material powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005361133A
Other languages
Japanese (ja)
Inventor
Yasutaka Fukuda
泰隆 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005361133A priority Critical patent/JP2007165662A/en
Publication of JP2007165662A publication Critical patent/JP2007165662A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material of a polycrystal object with excellent thermoelectric conversion efficiency, and to provide its manufacturing method. <P>SOLUTION: In the thermoelectric conversion material, the ab surface of crystal grain of hexagonal system compound defined by the chemical formula of A<SB>X</SB>BO<SB>2</SB>, in which the element A shows one kind or more than two kinds among Na, K and Li, and the element B shows one kind or more than two kinds among Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag and In while showing X by a numerical value within the range of 0.45-0.55 is oriented in one direction so as to satisfy the degree of orientation F≥0.3 operated by F=(P-P<SB>0</SB>)/(1-P<SB>0</SB>). The thickness of an A-depleted phase whose X is not more than 0.5 in the surface of the crystal grain is not more than 100 nm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、優れた熱電変換効率を有する熱電変換材料とその製造方法に関するものである。   The present invention relates to a thermoelectric conversion material having excellent thermoelectric conversion efficiency and a method for producing the same.

近年、世界的規模でエネルギー消費量が増大する中で、地球温暖化や環境汚染等の地球環境に関わる問題が重要な課題として様々な観点から検討されている。なかでも化石燃料は、燃焼することによってCO2 のみならず種々の有害物質を発生するので、使用量の削減が求められている。また核燃料は、放射性物質の漏出や放射性廃棄物の処理が未解決の課題として残されている。 In recent years, as energy consumption increases on a global scale, problems related to the global environment such as global warming and environmental pollution have been studied as important issues from various viewpoints. In particular, fossil fuels generate not only CO 2 but also various harmful substances when burned, and therefore reduction of the amount of use is required. In addition, leakage of radioactive materials and disposal of radioactive waste remain as unsolved issues for nuclear fuel.

そこで化石燃料や核燃料に代わるエネルギー源の一つとして、各種のプラントや工場で発生する廃熱を利用する技術が種々検討されている。たとえば、廃熱をボイラーに供給して熱エネルギーを回収し、得られた水蒸気でタービンを回転することによって発電を行なう技術は、従来から広く採用されている。しかし、この発電技術は、ボイラーやタービン等を備えた大規模な発電設備が必要となるので、立地条件の制約を受けるプラントや工場に導入するのは困難である。   Therefore, as one of energy sources that replace fossil fuels and nuclear fuels, various technologies using waste heat generated in various plants and factories have been studied. For example, a technique of generating power by supplying waste heat to a boiler to recover thermal energy and rotating a turbine with the obtained water vapor has been widely used. However, since this power generation technology requires a large-scale power generation facility equipped with a boiler, a turbine, etc., it is difficult to introduce the power generation technology into a plant or factory that is restricted by location conditions.

これに対して、熱エネルギーを電気エネルギーに直接変換(以下、熱電変換という)することによって発電を行なう技術は、大規模な設備が不要であるから立地条件の制約を受けず、広大な工場やプラントのみならず、狭小な工場やプラントにも導入することが可能である。
熱電変換を効率良く行なうためには、優れたエネルギー変換効率を有し、かつ優れた耐熱性を有する材料が必要である。熱電変換のエネルギー変換効率を評価する指標としては、下記の (2)式で算出されるZT値が知られている。このZT値が大きいほど、優れたエネルギー変換効率を有することを意味する。
On the other hand, the technology that generates electricity by directly converting thermal energy into electrical energy (hereinafter referred to as thermoelectric conversion) does not require large-scale facilities, so it is not limited by location conditions. It can be introduced not only in plants but also in small factories and plants.
In order to efficiently perform thermoelectric conversion, a material having excellent energy conversion efficiency and excellent heat resistance is required. As an index for evaluating the energy conversion efficiency of thermoelectric conversion, a ZT value calculated by the following equation (2) is known. It means that it has the outstanding energy conversion efficiency, so that this ZT value is large.

ZT=(TS2)/(ρκ) ・・・ (2)
T:温度(K)
S:ゼーベック係数(VK-1
ρ:比抵抗(Ωm)
κ:熱伝導度(Wm-1-1
熱エネルギーを電気エネルギーに変換する材料(以下、熱電変換材料という)は、
(a) 単結晶体、
(b) 結晶が一定の方向に配列した多結晶体
に大別される。たとえば、熱電変換材料として使用されるβFeSi2 多結晶のZT値(530℃)は0.5程度である。その他に種々の成分の熱電変換材料が開発されているが、ZT値が0.6を超えるものは少ない。
ZT = (TS 2 ) / (ρκ) (2)
T: Temperature (K)
S: Seebeck coefficient (VK -1 )
ρ: Specific resistance (Ωm)
κ: Thermal conductivity (Wm −1 K −1 )
Materials that convert thermal energy into electrical energy (hereinafter referred to as thermoelectric conversion materials)
(A) single crystal,
(B) Broadly divided into polycrystals in which crystals are arranged in a certain direction. For example, the βFeSi 2 polycrystal used as a thermoelectric conversion material has a ZT value (530 ° C.) of about 0.5. In addition, various thermoelectric conversion materials have been developed, but few have a ZT value exceeding 0.6.

すでに開発された熱電変換材料の中では、Na0.5CoO2単結晶のZT値が1を超えることが報告されている。しかしNa0.5CoO2単結晶は、現状では数mm程度の小さいものしか作製できないので、熱電変換による発電設備に採用するのは困難である。そこでNa0.5CoO2多結晶体からなる大寸法の熱電変換材料を、粉末冶金技術で作製する試みがなされているが、未だ実用化に至っていない。 Among the thermoelectric conversion materials that have already been developed, it has been reported that the Na 0.5 CoO 2 single crystal has a ZT value exceeding 1. However, since Na 0.5 CoO 2 single crystals can only be produced as small as a few millimeters at present, it is difficult to adopt them for power generation facilities using thermoelectric conversion. Therefore, attempts have been made to produce a large-sized thermoelectric conversion material composed of Na 0.5 CoO 2 polycrystal by powder metallurgy technology, but it has not yet been put into practical use.

特許文献1には、金属酸化物の粉末を成形して放電プラズマ焼結を施し、さらにホットプラズマ焼結を行なうことによって多結晶体の熱電変換材料を作製する技術が開示されている。しかし、この技術で得られる熱電変換材料のZT値は0.2〜0.3程度であり、熱電変換による発電設備に採用するには不十分である。
特開2003-95741号公報
Patent Document 1 discloses a technique for forming a polycrystalline thermoelectric conversion material by forming a metal oxide powder, performing discharge plasma sintering, and further performing hot plasma sintering. However, the ZT value of the thermoelectric conversion material obtained by this technique is about 0.2 to 0.3, which is insufficient for adoption in power generation equipment by thermoelectric conversion.
JP 2003-95741 A

本発明は上記のような問題を解消し、優れた熱電変換効率を有する多結晶体の熱電変換材料とその製造方法を提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a polycrystalline thermoelectric conversion material having excellent thermoelectric conversion efficiency and a method for producing the same.

本発明者は、多結晶体の熱電変換材料を実用化するために、その熱電変換効率について鋭意研究を行なった。その結果、
(A)熱電変換材料は結晶粒のab面の比抵抗が小さく、たとえばNaXCoO2の結晶は、ab面の比抵抗(室温)が0.2〜0.3mΩcmであるのに対して、c軸方向の比抵抗は8mΩcmであり、異方性が認められる、
(B)比抵抗の小さいab面方向に電流が流れるようにNaXCoO2の結晶粒を並べることによって、比抵抗の小さい多結晶体を得ることができる、
(C)多結晶体を構成する結晶粒の粒界の比抵抗を低減することによって、比抵抗の小さい多結晶体を得ることができる、
(D) 多結晶体の相対密度を増加させて、比抵抗の小さい多結晶体を得ることができる、
という知見を得た。本発明は、これらの知見に基づいてなされたものである。
In order to put a polycrystalline thermoelectric conversion material into practical use, the present inventor conducted intensive studies on the thermoelectric conversion efficiency. as a result,
(A) The thermoelectric conversion material has a small specific resistance of the ab plane of the crystal grains. For example, Na x CoO 2 crystals have a specific resistance (room temperature) of the ab plane of 0.2 to 0.3 mΩcm, whereas the c axis direction Specific resistance is 8 mΩcm, anisotropy is observed,
(B) By arranging the crystal grains of Na x CoO 2 so that current flows in the ab plane direction having a small specific resistance, a polycrystalline body having a small specific resistance can be obtained.
(C) By reducing the specific resistance of the grain boundary of the crystal grains constituting the polycrystal, a polycrystal having a small specific resistance can be obtained.
(D) By increasing the relative density of the polycrystal, a polycrystal having a small specific resistance can be obtained.
I got the knowledge. The present invention has been made based on these findings.

すなわち本発明は、Na,KおよびLiのうちの1種または2種以上を元素Aとし、Cr,Mn,Fe,Co,Ni,Cu,Zn,AgおよびInのうちの1種または2種以上を元素Bとし、Xを0.45〜0.55の範囲内の数値として、化学式AXBO2で定義される六方晶系化合物の結晶粒のab面が下記の(1)式で算出される配向度F≧0.3を満足するように一定の方向に配向し、かつ結晶粒の表面に存在するXが0.5未満のA欠乏相の厚みが100nm(ナノメートル)以下である熱電変換材料である。 That is, according to the present invention, one or more of Na, K and Li is element A, and one or more of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag and In are used. Is the element B, X is a numerical value in the range of 0.45 to 0.55, and the ab plane of the crystal grains of the hexagonal compound defined by the chemical formula A X BO 2 is the degree of orientation F calculated by the following formula (1) The thermoelectric conversion material is oriented in a certain direction so as to satisfy ≧ 0.3, and the thickness of the A-deficient phase with X of less than 0.5 existing on the surface of the crystal grains is 100 nm (nanometers) or less.

F=(P−P0 )/(1−P0 ) ・・・ (1)
P :配向した結晶粒におけるΣI(hk0)/ΣI(hk1)
0:配向していない結晶粒におけるΣI(hk0)/ΣI(hk1)
ΣI(hk0):(hk0)面からのX線回折強度和
ΣI(hk1):全ての面からのX線回折強度総和
本発明の熱電変換材料においては、六方晶系化合物の相対密度が98%以上であることが好ましい。
F = (P−P 0 ) / (1−P 0 ) (1)
P: ΣI (hk0) / ΣI (hk1) in oriented crystal grains
P 0 : ΣI (hk0) / ΣI (hk1) in non-oriented crystal grains
ΣI (hk0): Sum of X-ray diffraction intensities from (hk0) plane ΣI (hk1): Sum of X-ray diffraction intensities from all planes In the thermoelectric conversion material of the present invention, the relative density of the hexagonal compound is 98%. The above is preferable.

また本発明は、粉末混合法もしくは噴霧熱分解法によって前記した本発明の熱電変換材料を得る方法であり、後者がより好適である。粉末混合法とは、たとえばA炭酸塩とB酸化物をボールミルで混合,培焼,粉砕する。粉砕にはボールミルやジェットミル等の手法を適用できるが、これらに限定されるものではない。一方、熱分解法は、AとBを含有する水溶液を750〜950℃の温度範囲で噴霧熱分解してAxBO2原料粉を製造する方法である。いずれの粉末製造方法においても、必要に応じて分級工程を加えることができる。得られた原料粉は5T以上の磁界中で配向しながら成形し、次いで焼成する熱電変換材料の製造方法である。 Moreover, this invention is a method of obtaining the thermoelectric conversion material of this invention mentioned above by the powder mixing method or the spray pyrolysis method, and the latter is more suitable. In the powder mixing method, for example, A carbonate and B oxide are mixed, cultured, and pulverized by a ball mill. A method such as a ball mill or a jet mill can be applied to the pulverization, but the method is not limited thereto. On the other hand, the thermal decomposition method is a method for producing an A x BO 2 raw material powder by spray pyrolysis of an aqueous solution containing A and B in a temperature range of 750 to 950 ° C. In any powder production method, a classification step can be added as necessary. The obtained raw material powder is a method for producing a thermoelectric conversion material that is shaped while being oriented in a magnetic field of 5 T or more and then fired.

本発明の熱電変換材料の製造方法においては、細粒原料粉中にアスペクト比1〜2の粉粒子が50質量%以上存在することが好ましい。また、焼成した後でHIP処理を行なうことが好ましい。
なお、50%粒径とは、レーザー回折粒度分布による正規分布の50%粒径を指す。アスペクト比とは、細粒原料粉(すなわち単結晶)のab面方向の平均長さ/c軸方向の長さで算出される値を指す。HIP処理とは、熱間等方圧加圧法(Hot Isostatic Pressing)を指す。
In the method for producing a thermoelectric conversion material of the present invention, it is preferable that 50% by mass or more of powder particles having an aspect ratio of 1 to 2 are present in the fine raw material powder. Moreover, it is preferable to perform a HIP process after baking.
The 50% particle size refers to a 50% particle size of a normal distribution by laser diffraction particle size distribution. The aspect ratio refers to a value calculated by the average length in the ab plane direction / length in the c-axis direction of the fine-grained raw material powder (that is, single crystal). HIP processing refers to hot isostatic pressing.

本発明によれば、優れた熱電変換効率を有する多結晶体の熱電変換材料を得ることができる。   According to the present invention, a polycrystalline thermoelectric conversion material having excellent thermoelectric conversion efficiency can be obtained.

本発明では、熱電変換効率の向上に有効な元素として、アルカリ金属元素のうちのNa,K,Liから選ばれる1種または2種以上を元素Aとし、金属元素のうちのCr,Mn,Fe,Co,Ni,Cu,Zn,Ag,Inから選ばれる1種または2種以上を元素Bとする。
本発明では熱電変換材料を作製するにあたって、噴霧分解法では元素Aのイオンと元素Bのイオンを含有する水溶液を750〜950℃の温度範囲で噴霧熱分解を行ない、熱電変換材料の原料となる粉末(以下、原料粉という)を製造する。
In the present invention, as an element effective for improving the thermoelectric conversion efficiency, one or more selected from Na, K, Li among alkali metal elements is element A, and Cr, Mn, Fe among metal elements are used. , Co, Ni, Cu, Zn, Ag, In, or one or more selected from elemental element B.
In producing the thermoelectric conversion material in the present invention, in the spray decomposition method, an aqueous solution containing the ions of the element A and the ions of the element B is subjected to spray pyrolysis in a temperature range of 750 to 950 ° C. to become a raw material of the thermoelectric conversion material. A powder (hereinafter referred to as raw material powder) is produced.

水溶液の噴霧熱分解を行なう温度が750℃未満では、六方晶系化合物AXBO2の結晶が十分に成長しない。一方、950℃を超えると、別の化合物(たとえばCo酸化物等)が生成する。したがって、噴霧熱分解を行なう温度は750〜950℃の範囲内を満足する必要がある。なお、Xは0.45〜0.55の範囲内の数値である。
このようにして製造した原料粉を分級して、50%粒径が10μm以下の細粒の粉末(以下、細粒原料粉という)を選別する。その理由は、50%粒径が10μm以下の細粒原料粉の粒子は六方晶系化合物AXBO2の単結晶であるのに対して、50%粒径が10μmを超えると多結晶の細粒原料粉が混入するからである。細粒原料粉の粒子が単結晶であれば、後述する成形を行なう際に磁界を印加することによって、結晶構造を一定の方向に配列することが可能である。一方、50%粒径が0.1μm未満では、細粒原料粉の粒子が過剰に微細化されるので、配向するときのトルクが小さくなって配向性が劣化する、あるいは後述する成形を行なう際に、成形装置の周辺に飛散したり、搬送機器の目詰まりを起こす等の問題が生じる。したがって、50%粒径が0.1〜10μmの原料粉を選別して細粒原料粉として使用するのが好ましい。なお、50%粒径とは、レーザー回折粒度分布による正規分布の50%粒径を指す。
If the temperature at which the aqueous solution is subjected to spray pyrolysis is less than 750 ° C., the crystals of the hexagonal compound A X BO 2 do not grow sufficiently. On the other hand, when it exceeds 950 ° C., another compound (for example, Co oxide or the like) is generated. Therefore, the temperature at which spray pyrolysis is performed needs to satisfy the range of 750 to 950 ° C. X is a numerical value within the range of 0.45 to 0.55.
The raw material powder thus produced is classified to select fine powder having a 50% particle size of 10 μm or less (hereinafter referred to as fine raw material powder). The reason is that the fine raw material particles with a 50% particle size of 10 μm or less are single crystals of the hexagonal compound A X BO 2 , whereas if the 50% particle size exceeds 10 μm, the polycrystalline fine particles This is because the raw material powder is mixed. If the particles of the fine raw material powder are single crystals, it is possible to arrange the crystal structure in a certain direction by applying a magnetic field when performing molding described later. On the other hand, if the 50% particle size is less than 0.1 μm, the fine raw material particles are excessively refined, so that the torque during orientation decreases and the orientation deteriorates, or when molding described later is performed. Problems such as scattering around the molding apparatus and clogging of the conveying device occur. Therefore, it is preferable to select a raw material powder having a 50% particle size of 0.1 to 10 μm and use it as a fine-grain raw material powder. The 50% particle size refers to a 50% particle size of a normal distribution by laser diffraction particle size distribution.

このようして選別した細粒原料粉は、アスペクト比が1〜2の範囲内の粒子が50質量%以上存在することでZT値を極大とすることができる。かつ、アスペクト比1〜2の範囲内の粒子が50質量%未満の細粒原料粉は、後述する成形を行なう際に細粒原料粉(すなわち六方晶系化合物AXBO2の単結晶)の配列が不均一になり、熱電変換材料として使用するときの熱電変換効率が低下する。なお、アスペクト比とは、細粒原料粉のab面方向の平均長さ/c軸方向の長さで算出される値を指す。 The fine raw material powder thus selected can maximize the ZT value when particles having an aspect ratio in the range of 1 to 2 are present in an amount of 50% by mass or more. In addition, the fine raw material powder having an aspect ratio in the range of 1 to 2 is less than 50% by mass of the fine raw material powder (that is, a single crystal of hexagonal compound A X BO 2 ) when performing molding described later. The arrangement becomes non-uniform, and the thermoelectric conversion efficiency when used as a thermoelectric conversion material is lowered. The aspect ratio refers to a value calculated by the average length in the ab plane direction / length in the c-axis direction of the fine-grain raw material powder.

次に、選別した細粒原料粉に磁界を印加しながら成形する。細粒原料粉の成形は、所定の形状の型枠に細粒原料粉を充填して押圧するプレス成形と呼ばれる技術が好適である。細粒原料粉を成形する際に印加する磁界は5T以上とする。磁界を印加しながら成形することによって、単結晶である細粒原料粉の結晶構造が一定の方向に配列(以下、配向という)される。磁界が5T未満では、細粒原料粉を配向させる効果が得られないので、熱電変換材料として使用するときの熱電変換効率が低下する。一方、20Tを超える磁界を印加するためには、多大な電力を消費するばかりでなく、設備が高価となるので、熱電変換材料の製造コストが上昇する。したがって、細粒原料粉を成形する際に印加する磁界は5T以上、より好ましくは5〜20Tである。   Next, it shape | molds, applying a magnetic field to the selected fine raw material powder. For forming the fine-grained raw material powder, a technique called press molding in which a fine-shaped raw material powder is filled in a form having a predetermined shape and pressed is suitable. The magnetic field applied when forming the fine raw material powder is 5T or more. By forming while applying a magnetic field, the crystal structure of the fine-grain raw material powder that is a single crystal is arranged in a certain direction (hereinafter referred to as orientation). If the magnetic field is less than 5T, the effect of orienting the fine-grain raw material powder cannot be obtained, so that the thermoelectric conversion efficiency when used as a thermoelectric conversion material is lowered. On the other hand, in order to apply a magnetic field exceeding 20 T, not only a great amount of electric power is consumed, but also the equipment becomes expensive, and the manufacturing cost of the thermoelectric conversion material increases. Therefore, the magnetic field applied when molding the fine raw material powder is 5T or more, more preferably 5 to 20T.

磁界を印加しながら成形することによって、細粒原料粉(すなわち六方晶系化合物AXBO2の単結晶)が一方向に配向して成形体を構成する。下記の(1)式で算出される指標F(すなわち配向度)を用いて成形体の配向の度合を評価すると、5T以上の磁界を印加しつつ成形することによって、AXBO2単結晶からなる成形体の配向度Fは0.3以上となる。F値が0.3以上であれば、熱電変換材料として使用するときに十分な熱電変換効率が得られる。なお、多結晶体のF値が大きいほど、一定の方向に配列(すなわち配向)する結晶粒の割合が高いことを意味する。 By forming while applying a magnetic field, the fine-grain raw material powder (that is, a single crystal of hexagonal compound A X BO 2 ) is oriented in one direction to constitute a formed body. When the degree of orientation of the molded body is evaluated using the index F (that is, the degree of orientation) calculated by the following equation (1), by molding while applying a magnetic field of 5T or more, the A X BO 2 single crystal The degree of orientation F of the resulting molded body is 0.3 or more. When the F value is 0.3 or more, sufficient thermoelectric conversion efficiency can be obtained when used as a thermoelectric conversion material. In addition, it means that the ratio of the crystal grain arranged in a fixed direction (namely, orientation) is so high that F value of a polycrystal is large.

F=(P−P0)/(1−P0) ・・・ (1)
P :配向した結晶粒におけるΣI(hk0)/ΣI(hk1)
0 :配向していない結晶粒におけるΣI(hk0)/ΣI(hk1)
ΣI(hk0):(hk0)面からのX線回折強度和
ΣI(hk1):全ての面からのX線回折強度総和
次いで、細粒原料粉の成形体を焼成炉に装入して焼成を施して、所定の形状を有する熱電変換材料(すなわち六方晶系化合物AXBO2の多結晶体)とする。このとき、元素Aの濃度が低い相(前記Xが0.5未満の相、以下、A欠乏相という)を熱電変換材料の結晶粒表面が形成されるが、そのA欠乏相の厚みは100nm以下とすると好適である。
F = (P−P 0 ) / (1−P 0 ) (1)
P: ΣI (hk0) / ΣI (hk1) in oriented crystal grains
P 0 : ΣI (hk0) / ΣI (hk1) in non-oriented crystal grains
ΣI (hk0): Sum of X-ray diffraction intensities from (hk0) plane ΣI (hk1): Sum of X-ray diffraction intensities from all planes Next, the compact of the raw material powder is charged into a firing furnace and fired. Thus, a thermoelectric conversion material having a predetermined shape (that is, a polycrystal of a hexagonal compound A X BO 2 ) is obtained. At this time, a phase with a low concentration of element A (the phase where X is less than 0.5, hereinafter referred to as an A-deficient phase) is formed on the crystal grain surface of the thermoelectric conversion material. The thickness of the A-deficient phase is 100 nm or less. It is preferable.

A欠乏相の厚みが100nmを超えると、下記の(2)式で算出される指標ZT値が低下して熱電変換材料の比抵抗が増大する。しかし、上記した条件で焼成を行なうことによってA欠乏相の厚みを100nm以下になるので、熱電変換材料の比抵抗が減少し、熱電変換効率が向上する。
ZT=(TS2)/(ρκ) ・・・ (2)
T:温度(K)
S:ゼーベック係数(VK-1
ρ:比抵抗(Ωm)
κ:熱伝導度(Wm-1-1
さらに、細粒原料粉の成形体に焼成を施した後、熱間等方圧加圧法(いわゆるHIP処理)を行なうことが好ましい。その理由は、HIP処理によって、熱電変換材料(約100MPa)の相対密度を98%以上に高めることができるからである。たとえば純O2中、1000気圧,750℃で2時間HIP処理を行なうと好ましいが、この条件に限定されるものではない。熱電変換材料の相対密度が98%以上であれば、熱電変換材料の比抵抗を著しく低減し、熱電変換効率を一層高めることができる。
When the thickness of the A-deficient phase exceeds 100 nm, the index ZT value calculated by the following equation (2) decreases and the specific resistance of the thermoelectric conversion material increases. However, since the thickness of the A-deficient phase is reduced to 100 nm or less by firing under the above-described conditions, the specific resistance of the thermoelectric conversion material is reduced and the thermoelectric conversion efficiency is improved.
ZT = (TS 2 ) / (ρκ) (2)
T: Temperature (K)
S: Seebeck coefficient (VK -1 )
ρ: Specific resistance (Ωm)
κ: Thermal conductivity (Wm −1 K −1 )
Furthermore, it is preferable to perform a hot isostatic pressing method (so-called HIP treatment) after firing the compact of the raw material powder. The reason is that the relative density of the thermoelectric conversion material (about 100 MPa) can be increased to 98% or more by HIP treatment. For example, it is preferable to perform the HIP treatment in pure O 2 at 1000 atm and 750 ° C. for 2 hours, but it is not limited to this condition. If the relative density of the thermoelectric conversion material is 98% or more, the specific resistance of the thermoelectric conversion material can be significantly reduced, and the thermoelectric conversion efficiency can be further increased.

以上に説明した通り、本発明によれば、優れた熱電変換効率を有する多結晶体の熱電変換材料を得ることができる。   As described above, according to the present invention, a polycrystalline thermoelectric conversion material having excellent thermoelectric conversion efficiency can be obtained.

噴霧熱分解法と粉末混合法によって、化学式(Na1-Y YX(Co1-Z Z)O2 で定義される六方晶系化合物の原料粉を製造した。記号Cで示す元素はK,Liの中から選択し、記号Dで示す元素はCr,Mn,Fe,Ni,Cu,Zn,Agの中から選択した。その組合せは表1に示す通りである。また、数値X,Y,Zは表1に示す通りである。 A raw material powder of a hexagonal compound defined by the chemical formula (Na 1-Y C Y ) X (Co 1-Z D Z ) O 2 was produced by a spray pyrolysis method and a powder mixing method. The element indicated by symbol C was selected from K and Li, and the element indicated by symbol D was selected from Cr, Mn, Fe, Ni, Cu, Zn, and Ag. The combinations are as shown in Table 1. Numerical values X, Y, and Z are as shown in Table 1.

Figure 2007165662
噴霧熱分解法は、NaとCoを塩化物水溶液で混合し、さらに750〜950℃で雰囲気中に噴霧することによって原料粉を製造した。
粉末混合法は、Na炭酸塩とCo酸化物を乳鉢で混合した後、850℃で仮焼し、さらに乳鉢粉砕→成形→焼結(900℃)→乳鉢粉砕→ジェットミル粉砕という手順を経て原料粉を製造した。
Figure 2007165662
In the spray pyrolysis method, Na and Co were mixed with an aqueous chloride solution and further sprayed into the atmosphere at 750 to 950 ° C. to produce a raw material powder.
In the powder mixing method, Na carbonate and Co oxide are mixed in a mortar, then calcined at 850 ° C., and then mortar pulverized, molded, sintered (900 ° C.), mortar pulverized, jet mill pulverized, and then the raw material Powder was produced.

これらの原料粉の50%粒径とアスペクト比は表1に示す通りである。また、原料粉の各粒子は単結晶である。
表1に示す原料粉を超電導磁石の中で磁界を印加しながら成形した後、得られた成形体を900℃(大気中)で焼結して、熱電変換材料を作製した。一部の熱電変換材料にはHIP処理(750℃,1000気圧)を施した。成形の際に印加した磁界は表1に示す通りである。
Table 1 shows the 50% particle size and aspect ratio of these raw material powders. Each particle of the raw material powder is a single crystal.
After forming the raw material powder shown in Table 1 while applying a magnetic field in a superconducting magnet, the obtained molded body was sintered at 900 ° C. (in the air) to produce a thermoelectric conversion material. Some thermoelectric conversion materials were subjected to HIP treatment (750 ° C., 1000 atm). The magnetic field applied during molding is as shown in Table 1.

このようにして作製した熱電変換材料の配向度,密度,A欠乏相の厚み,ZT値は表1に示す通りである。表1から明らかなように、高いZT値を有する熱電変換材料が得られたことが分かる。
Table 1 shows the degree of orientation, density, thickness of the A-deficient phase, and ZT value of the thermoelectric conversion material thus prepared. As is apparent from Table 1, it can be seen that a thermoelectric conversion material having a high ZT value was obtained.

Claims (5)

Na、KおよびLiのうちの1種または2種以上を元素Aとし、Cr、Mn、Fe、Co、Ni、Cu、Zn、AgおよびInのうちの1種または2種以上を元素Bとし、Xを0.45〜0.55の範囲内の数値として、化学式AX BO2で定義される六方晶系化合物の結晶粒のab面が下記の (1)式で算出される配向度F≧0.3 を満足するように一定の方向に配向し、かつ結晶粒の表面において前記Xが0.5未満のA欠乏相の厚みが 100nm以下であることを特徴とする熱電変換材料。
F=(P−P0 )/(1−P0 ) ・・・ (1)
P :配向した結晶粒におけるΣI(hk0)/ΣI(hk1)
0:配向していない結晶粒におけるΣI(hk0)/ΣI(hk1)
ΣI(hk0):(hk0)面からのX線回折強度和
ΣI(hk1):全ての面からのX線回折強度総和
One or more of Na, K and Li is element A, and one or more of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag and In is element B. When X is a numerical value in the range of 0.45 to 0.55, the ab plane of the crystal grains of the hexagonal compound defined by the chemical formula A X BO 2 satisfies the orientation degree F ≧ 0.3 calculated by the following formula (1): A thermoelectric conversion material characterized in that the thickness of the A-deficient phase, which is oriented in a certain direction and whose X is less than 0.5 on the crystal grain surface, is 100 nm or less.
F = (P−P 0 ) / (1−P 0 ) (1)
P: ΣI (hk0) / ΣI (hk1) in oriented crystal grains
P 0 : ΣI (hk0) / ΣI (hk1) in non-oriented crystal grains
ΣI (hk0): Sum of X-ray diffraction intensities from (hk0) plane ΣI (hk1): Sum of X-ray diffraction intensities from all planes
前記六方晶系化合物の相対密度が98%以上であることを特徴とする請求項1に記載の熱電変換材料。   The thermoelectric conversion material according to claim 1, wherein the hexagonal compound has a relative density of 98% or more. Na、KおよびLiのうちの1種または2種以上を元素Aとし、Cr、Mn、Fe、Co、Ni、Cu、Zn、AgおよびInのうちの1種または2種以上を元素Bとし、前記元素Aのイオンを含有する水溶液を750〜950℃の温度範囲で噴霧熱分解して、あるいは粉末混合法を用いて原料粉を製造し、前記原料粉を分級して50%粒径が10μm以下の細粒原料粉を選別し、前記細粒原料粉を5T以上の磁界中で配向しながら成形し、次いで焼成することを特徴とする熱電変換材料の製造方法。   One or more of Na, K and Li is element A, and one or more of Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag and In is element B. An aqueous solution containing the ions of the element A is spray pyrolyzed in a temperature range of 750 to 950 ° C. or a raw material powder is produced using a powder mixing method, and the raw material powder is classified to give a 50% particle size of 10 μm. A method for producing a thermoelectric conversion material, comprising: selecting the following fine raw material powder, forming the fine raw material powder while being oriented in a magnetic field of 5 T or more, and then firing the fine raw material powder. 前記細粒原料粉中にアスペクト比1〜2の粉粒子が50質量%以上存在することを特徴とする請求項3に記載の熱電変換材料の製造方法。   The method for producing a thermoelectric conversion material according to claim 3, wherein 50 mass% or more of powder particles having an aspect ratio of 1 to 2 are present in the fine raw material powder. 前記焼成した後でHIP処理を行なうことを特徴とする請求項3または4に記載の熱電変換材料の製造方法。   5. The method for producing a thermoelectric conversion material according to claim 3, wherein HIP treatment is performed after the firing.
JP2005361133A 2005-12-15 2005-12-15 Thermoelectric conversion material and its manufacturing method Pending JP2007165662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005361133A JP2007165662A (en) 2005-12-15 2005-12-15 Thermoelectric conversion material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005361133A JP2007165662A (en) 2005-12-15 2005-12-15 Thermoelectric conversion material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007165662A true JP2007165662A (en) 2007-06-28

Family

ID=38248208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005361133A Pending JP2007165662A (en) 2005-12-15 2005-12-15 Thermoelectric conversion material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007165662A (en)

Similar Documents

Publication Publication Date Title
CN102931335B (en) A kind of Graphene is combined thermoelectric material of cobalt stibide based skutterudite and preparation method thereof
CN101736173B (en) Method for preparing AgSbTe2 thermoelectric material by combining melt rotatable swinging and spark plasma sintering
EP3026719B1 (en) Thermoelectric materials and their manufacturing method
CN105765748B (en) The copper selenide of nanostructure and preparation method thereof with high thermoelectric figure of merit
CN109650435B (en) Copper sulfide-based thermoelectric composite material and preparation method thereof
JP2007246294A (en) Aluminum-containing zinc oxide sintered compact and method of manufacturing the same
KR101673315B1 (en) Thermoelectric materials and their manufacturing method
Behnami et al. Synthesis of WC powder through microwave heating of WO 3–C mixture
JP2013219308A (en) Bismuth-tellurium based thermoelectric material
CN106129241A (en) Solid reaction process prepares the method for stacking faults chalcogenide thermoelectric material
CN108242500A (en) A kind of copper seleno nano composite thermoelectric materials and preparation method thereof
JP3867134B2 (en) Method for producing composite oxide sintered body
JP2009004542A (en) Thermoelectric material and manufacturing method thereof
US9761778B2 (en) Method for manufacturing thermoelectric materials
CN108546108B (en) Bi2O2Se-based thermoelectric material, preparation method thereof and thermoelectric device
JP4139884B2 (en) Method for producing metal oxide sintered body
JP3981716B2 (en) Metal oxide polycrystal, thermoelectric material, thermoelectric element and method for producing the same
CN104716254A (en) Preparation method of thermoelectric material with electrical properties adjusted by slot filling
JP2006261384A (en) Structure of oxide thermoelectric conversion material
EP2924747A1 (en) Thermoelectric material
JP2007165662A (en) Thermoelectric conversion material and its manufacturing method
JP2008124404A (en) Thermoelectric material and manufacturing method of thermoelectric material
EP2924746B1 (en) Method for manufacturing thermoelectric material
JP4273692B2 (en) Method for producing thermoelectric conversion material
KR101114731B1 (en) METHOD FOR MANUFACTURING Ca3Co4O9-BASED THERMOELECTRIC MATERIALS USING SOLUTION COMBUSTION PROCESS