JP2007165192A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2007165192A
JP2007165192A JP2005362142A JP2005362142A JP2007165192A JP 2007165192 A JP2007165192 A JP 2007165192A JP 2005362142 A JP2005362142 A JP 2005362142A JP 2005362142 A JP2005362142 A JP 2005362142A JP 2007165192 A JP2007165192 A JP 2007165192A
Authority
JP
Japan
Prior art keywords
gas flow
fuel cell
flow path
reaction gas
cathode gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005362142A
Other languages
English (en)
Inventor
Yoshihito Sugano
善仁 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005362142A priority Critical patent/JP2007165192A/ja
Publication of JP2007165192A publication Critical patent/JP2007165192A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池に関し、反応ガス流路の水詰まりを自律的に解消できるようにする。
【解決手段】反応ガス流路10と隣接する燃料電池セルの反応ガス流路10とを連通路40によって連通させる。連通路40は、反応ガス流路10のマニホールド120との合流部よりも上流であって、燃料電池セルの発電部2よりも下流に備える。
【選択図】図2

Description

本発明は、燃料電池に関し、特に、複数の燃料電池セルの積層体である燃料電池スタックとして構成される燃料電池に関する。
燃料電池は、通常、複数の燃料電池セルの積層体である燃料電池スタックとして構成されている。各燃料電池セルは、発電部である膜電極接合体の両側をセパレータで挟まれ、各セパレータと膜電極接合体との間に反応ガス(燃料ガス或いは酸化ガス)の流路が設けられている。
燃料電池の発電部では、発電時の化学反応によって水が生成される。この生成水によって反応ガス流路が閉塞されてしまうと、発電部への反応ガスの供給が妨げられて燃料電池の発電性能が低下してしまう(いわゆるフラッディング現象)。したがって、フラッディングを防止して高い発電性能を維持する上では、反応ガス流路内に水詰まりが生じたとき、反応ガス流路を閉塞している水を速やかに排除することが重要になる。
反応ガス流路内の水を排除するための技術としては、例えば特許文献1に記載された従来技術が知られている。この従来技術では、燃料電池に供給される空気を吸引する吸引ポンプを燃料電池の下流に設け、供給空気の圧力を制御する負圧制御弁を燃料電池の上流に設けている。そして、負圧制御弁と吸引ポンプの協調制御によって燃料電池内に負圧を作用させ、空気流量が多いほど負圧を大きくすることで、発電によって生じる生成水の排出を促すようにしている。
特開2002−33110号公報 特開2001−250568号公報 特開2001−143734号公報
上記の従来技術において、流路の水詰まりを防止しつつ目標発電量に応じた空気流量を得るためには、負圧制御弁と吸引ポンプの双方を的確に制御するための精度の高いマップを作成しておく必要がある。また、通常時の制御とは別に、実際に水詰まりが生じた場合に生成水を確実に排出するための制御も必要になる。つまり、上記従来技術のように外部から負圧を作用させて反応ガス流路内の水を排除する技術では、高精度で且つ複雑な負圧制御が要求されることになる。
しかしながら、燃料電池を用いた発電システム(燃料電池システム)では、信頼性等の観点においてシステムの制御は可能なかぎり簡単にしたいという要求がある。このような要求を満足するためには、燃料電池自体の構造によって反応ガス流路の水詰まりを自律的に解消できることが望まれる。
本発明は、上述のような課題を解決するためになされたもので、反応ガス流路の水詰まりを自律的に解消できるようにした燃料電池を提供することを目的とする。
第1の発明は、上記の目的を達成するため、燃料電池において、
複数の燃料電池セルを積層してなる燃料電池スタックと、
各燃料電池セルに形成されている反応ガス流路と、
前記燃料電池スタックの積層方向に設けられて各反応ガス流路が合流する排気マニホールドと、
各反応ガス流路の前記マニホールドとの合流部よりも上流であって、且つ、前記燃料電池セルの発電部よりも下流において、当該反応ガス流路を隣接する燃料電池セルの反応ガス流路と連通させる連通路と、
を備えることを特徴としている。
第2の発明は、第1の発明において、
前記連通路は前記マニホールドに比して流路断面積を小さく設定されていることを特徴としている。
第3の発明は、第1又は第2の発明において、
前記連通路は前記反応ガス流路の流路断面積が最も小さい部位に接続されていることを特徴としている。
第4の発明は、第1乃至第3の何れか1つの発明において、
前記連通路は前記反応ガス流路の流路幅と略同じ流路幅に形成されていることを特徴としている。
第1の発明によれば、隣接する燃料電池セル間において互いの反応ガス流路が連通路によって連通されることで、ある燃料電池セルの反応ガス流路において水詰まりが発生した場合、その隣の反応ガス流路を流れる反応ガスのベンチュリー効果により、水詰まりが生じている反応ガス流路の下流には負圧が発生する。しかも、水詰まりによる圧損が大きいほど隣の反応ガス流路のガス流速は大きくなり、このガス流速が大きいほどそのベンチュリー効果によって発生する負圧は大きくなる。したがって、ある反応ガス流路に水詰まりが生じた場合には、その水詰まりの程度に応じた負圧が自動的に反応ガス流路を閉塞している水に作用することになる。そして、この負圧の作用によって反応ガス流路を閉塞している水に動きが生じ、水詰まりは自律的に解消されることになる。
第2の発明によれば、連通路の流路断面積はマニホールドのそれよりも小さくすることで、反応ガス流路からマニホールドへの反応ガスの流れを妨げることがなく、また、連通路に大きな負圧を発生させることができる。
反応ガス流路のガス流速は、その流路断面積が最も小さい部位において最も速くなる。第3の発明によれば、反応ガスの流速が最も速くなる部位に連通路が接続されているので、ベンチュリー効果を最大限に発揮させて、より大きな負圧を連通路に発生させることができる。
第4の発明によれば、連通路の流路幅を反応ガス流路のそれと略同じにすることで、水詰まりが生じている反応ガス流路からその隣の反応ガス流路へ効率的に反応ガスを引き込むことができる。
以下、図1及び図2を参照して、本発明の実施の形態について説明する。
図1は、本発明の実施の形態としての燃料電池を構成するセパレータの平面図である。図2は、本発明の実施の形態としての燃料電池の構造を示す図であり、図1のA−A断面に相当する断面図である。
図2に示すように、燃料電池は、電解質膜をアノード電極とカソード電極とにより挟んで構成された膜電極接合体2を備えている。燃料電池は、膜電極接合体2をその両面から一対のセパレータ4,6で挟んだものを一つのセルとし、このセルが複数枚一方向に積層された燃料電池スタックとして使用される。セパレータ4,6には、膜電極接合体2のカソード電極側に接する第1セパレータ4と、アノード電極側に接する第2セパレータ6の2種類が用意されている。本実施形態では、セパレータ4,6として金属プレートをプレス成形したメタルセパレータが用いられている。
図1の平面図は、第1セパレータ4の膜電極接合体2に対向する積層面の平面形状を示している。この図に示すように、第1セパレータ4の左右の端部には、それぞれ3つの開口が並んで形成されている。図中、第1セパレータ4の右側端部に形成された開口は、上からカソードガス供給口112,冷却水排出口322,アノードガス排出口222である。また、第1セパレータ4の左側端部に形成された開口は、上からアノードガス供給口212,冷却水供給口312,カソードガス排出口122である。
第1セパレータ4の膜電極接合体2に対向する積層面には、カソードガス供給口112とカソードガス排出口122とを繋ぐようにして凹部10が形成されている。この凹部10は、図2に示すように第1セパレータ4が膜電極接合体2に積層されたときに、カソードガス供給口112からカソードガス排出口122へカソードガスが流れるガス流路となる。以下、この凹部10をカソードガス流路という。カソードガス流路10は、カソードガス供給口112からセルの発電部である膜電極接合体2にカソードガスを供給するとともに、反応後のオフガスをカソードガス排出口122へ排出する。
カソードガス流路10内には、左右に直線状に延びる複数の凸部14が形成されている。これら凸部14は、セパレータ4,6により膜電極接合体2を挟む際、膜電極接合体2に接触して膜電極接合体2を支持する支持面となる。カソードガス流路10は、これら凸部14によって平行な複数のガス流路12に分かれている。これら複数のガス流路12の入口とカソードガス供給口112との間には、カソードガスを各ガス流路12に分配するカソードガス分配部16が設けられている。また、上記複数のガス流路12の出口とカソードガス排出口122との間には、これらガス流路32を再び1つに集合させてカソードガス排出口122に接続するカソードガス集合部18が設けられている。カソードガス流路10の流路断面積は、カソードガス分配部16から複数のガス流路12に分岐することで一旦拡大し、分岐した複数のガス流路12が集合するカソードガス集合部18において再び縮小する。
第2セパレータ6の平面形状についての図示は省略するが、第2セパレータ6も第1セパレータ4と同様の平面形状を有しており、左右の端部にはそれぞれ3つの開口が並んで形成されている。第2セパレータ6に形成された各開口の位置は、第1セパレータ4に形成された各開口の位置にそれぞれ一致している。図2に示すように、セルが積層されて第1セパレータ4の開口(カソードガス排出口)122と第2セパレータ6の開口124とが交互に重なっていくことにより、燃料電池スタックを積層方向に貫通するマニホールド120が構成されている。なお、図2ではカソードガス排出マニホールド120の構成を示しているが、他のマニホールドも同様にして構成されている。
第2セパレータ6の膜電極接合体2に対向する積層面には、第2セパレータ6が膜電極接合体2に積層されたときにアノードガスのガス流路20となる凹部が形成されている。アノードガス流路20は、アノードガス供給マニホールドからセルの発電部である膜電極接合体2にアノードガスを供給するとともに、反応後のオフガスをアノードガス排出マニホールドへ排出する。
第1セパレータ4と隣接セルの第2セパレータ6との間には、冷却水が流れる冷却水流路30が形成されている。冷却水は冷却水供給マニホールドから冷却水流路30に供給され、冷却水流路30を流れながらセルを冷却した後、冷却水排出マニホールドに排出される。
以上の構成は、本発明が適用されていない従来の燃料電池にも通じる構成である。本実施形態の燃料電池の要部は、以下に説明するように、隣接するセル間において互いのカソードガス流路を連通路によって連通させた構成にある。
図1に示すように、第1セパレータ4のカソードガス流路10には、カソードガス供給口112及びカソードガス排出口122とは別の開口42が形成されている。この開口42は、カソードガス流路10におけるカソードガス集合部18に位置している。開口42の幅はカソードガス集合部18の流路幅と略同じに設定され、開口42の面積はカソードガス排出口122の面積よりも格段に小さく設定されている。
図2の断面図に示すように、第2セパレータ6には、第1セパレータ4の開口42の位置に合わせて開口44が形成されている。セルが積層されて第1セパレータ4の開口42と隣接セルの第2セパレータ6の開口44とが重なることで、カソードガス流路10を隣接セルのカソードガス流路10と連通させる連通路40が構成されている。この連通路40は、全ての隣接するセル間に設けられている。
このように、隣接するセル間において互いのカソードガス流路10が連通路40によって連通されることで、以下のような効果が生じる。
図2に示すように、あるカソードガス流路10Aにおいて水詰まりが発生したとする。通常、水詰まりが発生する場所は、セルの発電部、つまり、図1においてカソードガス流路10が複数のガス流路32に分岐している部位であり、連通路40が接続されているカソードガス集合部18よりも上流である。この場合、カソードガス流路10Aではガスの流速は減少するが、隣接セルのカソードガス流路10B,10Cでは正常にガスが流れている。
このように、水詰まりが生じているカソードガス流路10Aと、隣接セルのカソードガス流路10B,10Cとの間にはガス流速に速度差がある。これらガス流速に速度差があるカソードガス流路10A,10B,10Cが連通路40で接続されることで、カソードガス流路10B,10Cを流れるガスのベンチュリー効果により、カソードガス流路10A内のガスは連通路40を介してカソードガス流路10B,10Cへ吸引される(図2中に矢印で示すガスの流れを参照)。これにより、カソードガス流路10Aにおける水詰まり箇所の下流には負圧が発生する。しかも、水詰まりによるカソードガス流路10A内の圧損が大きいほど、隣接セルのカソードガス流路10B,10Cのガス流速が大きくなり、そのベンチュリー効果によってカソードガス流路10Aに発生する負圧も大きくなる。
したがって、図2に示すようにカソードガス流路10Aに水詰まりが生じた場合には、その水詰まりの程度に応じた負圧が自動的にカソードガス流路10Aを閉塞している水に作用することになる。その結果、負圧の作用によってカソードガス流路10Aを閉塞している水に動きが生じ、カソードガス流路10Aの水詰まりは自律的に解消されることになる。他のカソードガス流路10において水詰まりが生じた場合にも、同様の作用によって当該カソードガス流路10の水詰まりは自律的に解消される。
なお、本実施形態の燃料電池の構成において、連通路40の流路断面積(開口42の面積)をカソードガス排出マニホールド120のそれよりも小さくしているのは、カソードガス流路10からカソードガス排出マニホールド120へのガスの流れを妨げることなく、連通路40に大きな負圧を発生させるためである。連通路40の流路幅(開口42の幅)を連通路40が接続されているカソードガス集合部18のそれと略同じにしているのは、水詰まりが生じているカソードガス流路10から隣接するカソードガス流路10へ効率的にガスを引き込むためである。また、カソードガス流路10内のガス流速はカソードガス集合部18において最も速くなるので、カソードガス集合部18に連通路40を接続することには、ベンチュリー効果を最大限に発揮させて大きな負圧を連通路40に発生させることができるという効果がある。
以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、次のように変形して実施してもよい。
上記実施の形態では、隣接するセル間において互いのカソードガス流路を連通路によって連通させているが、互いのアノードガス流路を連通路によって連通させることもできる。その場合、連通路を設ける部位は、アノードガス流路のアノードガス排出マニホールドとの合流部よりも上流であって、セルの発電部よりも下流とする。
また、上記実施の形態では、反応ガス流路の流路構造としてストレート型を採用しているが、櫛型或いはサーペンタイン型等、本発明にかかる反応ガス流路の流路構造には限定がない。さらに、本発明は、膜電極接合体とセパレータとの間に多孔質体からなる層を挟み、この多孔質体層を反応ガス流路とする燃料電池にも適用することができる。
本発明の実施の形態としての燃料電池を構成するセパレータの平面図である。 本発明の実施の形態としての燃料電池の構造を示す図であり、図1のA−A断面に相当する断面図である。
符号の説明
2 膜電極接合体
4 第1セパレータ
6 第2セパレータ
10 カソードガス流路
18 カソードガス集合部
20 アノードガス流路
30 冷却水流路
40 連通路
42 連通路を構成する第1セパレータの開口
44 連通路を構成する第2セパレータの開口
112 カソードガス供給口
120 カソードガス排出マニホールド
122 カソードガス排出口
212 アノードガス供給口
222 アノードガス排出口
312 冷却水供給口
322 冷却水排出口

Claims (4)

  1. 複数の燃料電池セルを積層してなる燃料電池スタックと、
    各燃料電池セルに形成されている反応ガス流路と、
    前記燃料電池スタックの積層方向に設けられて各反応ガス流路が合流する排気マニホールドと、
    各反応ガス流路の前記マニホールドとの合流部よりも上流であって、且つ、前記燃料電池セルの発電部よりも下流において、当該反応ガス流路を隣接する燃料電池セルの反応ガス流路と連通させる連通路と、
    を備えることを特徴とする燃料電池。
  2. 前記連通路は前記マニホールドに比して流路断面積を小さく設定されていることを特徴とする請求項1記載の燃料電池。
  3. 前記連通路は前記反応ガス流路の流路断面積が最も小さい部位に接続されていることを特徴とする請求項1又は2記載の燃料電池。
  4. 前記連通路は前記反応ガス流路の流路幅と略同じ流路幅に形成されていることを特徴とする請求項1乃至3の何れか1項に記載の燃料電池。
JP2005362142A 2005-12-15 2005-12-15 燃料電池 Withdrawn JP2007165192A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362142A JP2007165192A (ja) 2005-12-15 2005-12-15 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362142A JP2007165192A (ja) 2005-12-15 2005-12-15 燃料電池

Publications (1)

Publication Number Publication Date
JP2007165192A true JP2007165192A (ja) 2007-06-28

Family

ID=38247866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362142A Withdrawn JP2007165192A (ja) 2005-12-15 2005-12-15 燃料電池

Country Status (1)

Country Link
JP (1) JP2007165192A (ja)

Similar Documents

Publication Publication Date Title
JP4960415B2 (ja) 燃料電池
JP4753599B2 (ja) 燃料電池
JP4623795B2 (ja) 燃料電池スタック
KR101990281B1 (ko) 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
JP2000012051A5 (ja)
JP4523089B2 (ja) 燃料電池スタック
WO2014136965A1 (ja) 燃料電池、燃料電池の配流装置、および燃料電池を備えた車両
JP2008103241A (ja) 燃料電池
WO2015049863A1 (ja) セパレータおよび燃料電池
CN112204783A (zh) 用于电化学系统的隔板
JP2006236612A (ja) 燃料電池
JP5082313B2 (ja) 燃料電池のセパレータ構造
JP2003077495A (ja) 燃料電池
JP5207440B2 (ja) 燃料電池
EP1422775B1 (en) Fuel cell with separator plates having comb-shaped gas passages
JP4578997B2 (ja) 燃料電池用セパレータ及び燃料電池
JP5385033B2 (ja) 燃料電池
JP2007165192A (ja) 燃料電池
JP7115838B2 (ja) 燃料電池セル
JP4617661B2 (ja) 燃料電池スタック
JP4881969B2 (ja) 燃料電池
JP4925078B2 (ja) 固体高分子形燃料電池
JP5073723B2 (ja) 燃料電池
KR102540924B1 (ko) 연료전지 스택
JP2008123901A (ja) 燃料電池

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303