JP2007164411A - Machining path data generation method - Google Patents

Machining path data generation method Download PDF

Info

Publication number
JP2007164411A
JP2007164411A JP2005358905A JP2005358905A JP2007164411A JP 2007164411 A JP2007164411 A JP 2007164411A JP 2005358905 A JP2005358905 A JP 2005358905A JP 2005358905 A JP2005358905 A JP 2005358905A JP 2007164411 A JP2007164411 A JP 2007164411A
Authority
JP
Japan
Prior art keywords
shape
machining
area
tool path
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005358905A
Other languages
Japanese (ja)
Inventor
Takeshi Hosoda
剛 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005358905A priority Critical patent/JP2007164411A/en
Publication of JP2007164411A publication Critical patent/JP2007164411A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently generate a tool path allowing for highly precise machining. <P>SOLUTION: Based on a Z-map model of a product shape in an unmachined area of a workpiece and a predetermined inclination angle value, the unmachined area is divided into a contour machining area 11 of large inclination and a shape following machining area 12 of small inclination. In the contour machining area 11, a contour tool path is generated. In the shape following machining area 12, a shape tool path including a portion for tool move with varying cutting depth is generated with a pitch adjusted according to machining conditions and Z-axial shape variation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、3次元形状モデルデータに基づきNC工作機械の工具によりワークの未加工領域に加工を行うための工具経路を生成する加工経路データ生成方法に関する。     The present invention relates to a machining path data generation method for generating a tool path for machining an unmachined area of a workpiece with a tool of an NC machine tool based on three-dimensional shape model data.

NC(数値制御)切削加工においては、ボールエンドミル等の切削工具をワーク(金属材料)の加工面において所定の工具経路で移動させている。この切削加工において、切削工具のZ軸方向の切り込み量を一定として等高線状に移動させ、次いで切り込み量を変えて同じく等高線状に移動させる、というように切り込み量をZ軸方向に所定ピッチで段階的に変化させていく等高線加工は広く採用されている。しかし、この等高線加工では、製品形状の斜面の傾斜が緩やかな部分では傾斜が急な部分に比べて相隣る工具経路の間隔が広くなり、加工精度が低くなる。     In NC (numerical control) cutting, a cutting tool such as a ball end mill is moved along a predetermined tool path on the processing surface of a workpiece (metal material). In this cutting process, the cutting amount of the cutting tool is moved in a contour line with a constant cutting amount in the Z-axis direction, and then the cutting amount is changed in the same contour line by changing the cutting amount, and the cutting amount is stepped at a predetermined pitch in the Z-axis direction. Contour line processing that changes continuously is widely adopted. However, in this contour processing, the interval between adjacent tool paths is widened in a portion where the slope of the product-shaped slope is gentle compared to a portion where the slope is steep, and machining accuracy is lowered.

この問題に対して、等高線加工において、工具経路の間隔が広くなる加工領域では、その広くなった部分に工具経路を追加することにより、加工精度が低下することを避けるという手法が知られている(特許文献1参照)。
特開平11−3110号公報
To solve this problem, a technique is known that, in contour machining, in a machining region where the interval between tool paths is wide, a tool path is added to the widened portion to avoid a reduction in machining accuracy. (See Patent Document 1).
Japanese Patent Laid-Open No. 11-3110

しかし、相隣る等高線工具経路の間隔は全周にわたって一定ではなく、製品形状が複雑である場合には、途中から狭くなったり広くなったり種々に変化したものになる。従って、そのような間隔が変化した部位へ工具経路を既設の等高線工具経路に沿うように適切な間隔、長さ、本数で配置することは難しい。     However, the interval between adjacent contour tool paths is not constant over the entire circumference, and when the product shape is complicated, it becomes narrower or wider from the middle and variously changes. Therefore, it is difficult to arrange the tool path at an appropriate interval, length, and number so as to follow the existing contour tool path to the part where the distance has changed.

そこで、本発明は、製品形状の傾斜が複雑に変化している未加工領域であっても、精度の高い加工を行なうことができる工具経路を効率良く生成できるようにすることを課題とする。     Therefore, an object of the present invention is to efficiently generate a tool path capable of performing highly accurate machining even in an unmachined region where the inclination of the product shape changes in a complicated manner.

本発明は、このような課題を解決するために、未加工領域を対応する製品形状の傾斜角度に基いて等高線加工領域と形状沿い加工領域とに区分して、その傾斜角度に応じた適切な工具経路を生成できるようにした。     In order to solve such a problem, the present invention divides an unprocessed region into a contour processing region and a processing region along the shape based on the inclination angle of the corresponding product shape, and an appropriate amount according to the inclination angle. The tool path can be generated.

請求項1に係る発明は、3次元形状モデルデータに基づきNC工作機械の工具によりワークの未加工領域に加工を行うための工具経路を生成する加工経路データ生成方法であって、
上記未加工領域における製品形状のZ軸方向の高さ情報に示すZマップモデルと所定の傾斜角度判定値とに基いて、該未加工領域を傾斜が大きい等高線加工領域と傾斜が小さい形状沿い加工領域とに区分し、
上記等高線加工領域では、加工条件に応じたZ軸方向のピッチで等高線工具経路を生成し、
上記形状沿い加工領域では、切り込み量を変化させながら工具を移動させる形状沿い工具経路を加工条件に応じたピッチで生成することを特徴とする。
The invention according to claim 1 is a machining path data generation method for generating a tool path for machining an unmachined region of a workpiece with a tool of an NC machine tool based on three-dimensional shape model data,
Based on the Z map model indicated by the height information in the Z-axis direction of the product shape in the unprocessed area and a predetermined inclination angle determination value, the unprocessed area is processed along the contour process area having a large inclination and the shape having a small inclination. Divided into areas,
In the contour line machining area, a contour tool path is generated at a pitch in the Z-axis direction according to the machining conditions,
In the machining area along the shape, a tool path along the shape for moving the tool while changing the cutting amount is generated at a pitch corresponding to the machining conditions.

従って、本発明によれば、未加工領域のうち傾斜が大きい部分を等高線加工領域とし傾斜が緩やかな部分を形状沿い加工領域として区分するから、その傾斜に応じた加工精度の高い適切な工具経路を短時間で生成することができる。ここに、未加工領域とは、ワークに対して加工を未だ施していない部分の他、前加工で削ることができなかった所謂削り残し領域を含み、本発明はこの削り残し領域での工具経路の生成に特に有効である。     Therefore, according to the present invention, a portion having a large inclination in the unmachined region is classified as a contour processing region and a portion having a gentle inclination is classified as a machining region along the shape. Therefore, an appropriate tool path with high machining accuracy corresponding to the inclination is obtained. Can be generated in a short time. Here, the unmachined area includes a so-called uncut area that could not be cut by the pre-machining in addition to a part that has not yet been machined to the workpiece, and the present invention provides a tool path in the uncut area. It is particularly effective for the generation of

請求項2に係る発明は、請求項1において、
上記未加工領域の製品形状Zマップモデルの最外周辺に沿って並ぶグリッド群から上記傾斜角度判定値以上の傾斜角度で隣り合うグリッドを抽出し、この抽出処理を順次グリッド1つ内側で並ぶ各グリッド群に対して外側から内側へ進めていき、その抽出したグリッドに基いて、該未加工領域を上記等高線加工領域と上記形状沿い加工領域とに区分することを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The adjacent grids are extracted from the group of grids arranged along the outermost periphery of the product shape Z map model of the unprocessed region at an inclination angle equal to or greater than the inclination angle determination value, and this extraction processing is sequentially arranged inside one grid. The grid group is advanced from the outside to the inside, and based on the extracted grid, the unprocessed region is divided into the contour processing region and the shape-altered processing region.

従って、全ての相隣るグリッド間の傾斜角度を判定するのではなく、未加工領域の周方向に隣り合うグリッド間の傾斜角度を判定するようにし、この判定作業を外側から順次内側へ進めていくから、短時間で傾斜が大きな等高線加工領域と傾斜が小さい形状沿い加工領域とに区分する上で有利になる。     Therefore, instead of determining the inclination angle between all adjacent grids, the inclination angle between adjacent grids in the circumferential direction of the unprocessed region is determined, and this determination operation proceeds in order from the outside to the inside. Therefore, it is advantageous in dividing into a contour processing region having a large inclination and a processing region along a shape having a small inclination in a short time.

特に、この手法は、形状沿い加工に関して、未加工領域の最外周辺から順次所定距離ずつ内側にオフセットして周方向全長に延びる多重の閉じた工具経路を生成し、最外周側から内側へと形状沿い加工を進めていくケースに適する。すなわち、上記傾斜角度の判定を未加工領域の周方向に隣り合うグリッド間で行なったときに、その傾斜角度が緩やかであるということは、その部分が、上述の周方向に工具を移動させる形状沿い加工に適しているということであり、全ての隣り合うグリッド間の傾斜角度を判定しなくても、形状沿い加工領域を適切に区分することができる。     In particular, this method generates multiple closed tool paths that are offset inward by a predetermined distance sequentially from the outermost periphery of the unprocessed region and extend along the entire length in the circumferential direction with respect to the machining along the shape. Suitable for cases in which processing along the shape proceeds. That is, when the inclination angle is determined between grids adjacent to each other in the circumferential direction of the unprocessed area, the inclination angle is gentle, which means that the portion moves the tool in the circumferential direction described above. This means that the processing region along the shape can be appropriately classified without determining the inclination angles between all the adjacent grids.

一方、上述の如く、周方向に並ぶグリッド群の傾斜角度の判定を行なうようにした場合、周方向に並ぶグリッド群のうち例えば水平方向(XY平面と平行)に相隣るグリッド間では、等高線加工に適した領域のグリッドであっても、その傾斜角度は小さいと判定される。従って、傾斜角度大と判定されたグリッドの集合部に、傾斜角度小と判定されたグリッドが含まれているときは、当該グリッドとその外側又は内側に隣り合うグリッドとの間で傾斜角度の判定を行なって補正すればよい。     On the other hand, as described above, when the inclination angle of the grid groups arranged in the circumferential direction is determined, contour lines between the grid groups arranged in the circumferential direction that are adjacent to each other in the horizontal direction (parallel to the XY plane), for example. Even if the grid has a region suitable for processing, the inclination angle is determined to be small. Therefore, when a grid determined to have a small tilt angle is included in the set of grids determined to have a large tilt angle, the tilt angle is determined between the grid and a grid adjacent to the outside or the inside of the grid. To correct it.

請求項3に係る発明は、請求項1又は請求項2において、
上記形状沿い加工領域では、該領域の最外周辺に沿って巡る工具経路と、該工具経路に沿ってその内側を巡る工具経路とを少なくとも有する、複数の内外に間隔をおいて配置された工具経路を設定し、工具を外側の工具経路から内側の工具経路に順次シフトさせて加工を行なうものであり、
上記形状沿い加工領域を投影したZ=0の2次元平面において、内外の工具経路生成用ラインを設定した後、両ラインを上記2次元平面から対応する上記製品形状モデル上に投影し、該製品形状モデル上での当該内外の投影線の間隔が全周にわたって所定の範囲に収まるように、上記2次元平面における上記ラインの位置を補正して工具経路を生成することを特徴とする。
The invention according to claim 3 is the invention according to claim 1 or claim 2,
In the machining area along the shape, a plurality of tools arranged at intervals inside and outside, having at least a tool path that goes around the outermost periphery of the area and a tool path that goes around the inside along the tool path. The path is set and machining is performed by sequentially shifting the tool from the outer tool path to the inner tool path.
After setting the inner and outer tool path generation lines on the Z = 0 two-dimensional plane onto which the machining area along the shape is projected, both lines are projected onto the corresponding product shape model from the two-dimensional plane, and the product The tool path is generated by correcting the position of the line on the two-dimensional plane so that the interval between the internal and external projection lines on the shape model falls within a predetermined range over the entire circumference.

従って、2次元平面において工具経路の間隔を設定するから、工具経路を短時間で生成する上で有利になり、また、2次元平面で設定した間隔が3次元の製品形状モデルに投影したときに予定よりも広くなるときは、これを適正な間隔になるように2次元平面で補正するから、加工精度の高い形状沿い工具経路を生成することができる。     Therefore, since the interval of the tool path is set on the two-dimensional plane, it is advantageous for generating the tool path in a short time, and when the interval set on the two-dimensional plane is projected onto the three-dimensional product shape model When it becomes wider than planned, it is corrected with a two-dimensional plane so that it becomes an appropriate interval, so that a tool path along the shape with high machining accuracy can be generated.

請求項1に係る発明によれば、ワークの未加工領域における製品形状のZマップモデルと所定の傾斜角度判定値とに基いて、該未加工領域を等高線加工領域と形状沿い加工領域とに区分し、この区分した各領域の加工に適した工具経路を生成するようにしたから、加工精度の高い適切な工具経路を短時間で生成することができる。     According to the first aspect of the present invention, based on the Z map model of the product shape in the unmachined area of the workpiece and the predetermined inclination angle determination value, the unmachined area is divided into a contour line machining area and a machining area along the shape. And since the tool path | route suitable for the process of this divided | segmented each area | region was produced | generated, the appropriate tool path | route with high machining precision can be produced | generated in a short time.

請求項2に係る発明によれば、未加工領域のZマップのグリッドのうちから、上記傾斜角度判定値以上の傾斜で隣り合うグリッドを抽出する作業を、該未加工領域の最外周辺に沿って全周にわたって並ぶグリッド群から始めて、その作業を順次グリッド1つ分ずつ内側に並ぶグリッド群にシフトさせていき、その抽出したグリッドに基いて、該未加工領域を上記等高線加工領域と上記形状沿い加工領域とに区分するから、未加工領域を短時間で等高線加工領域と形状沿い加工領域とに区分する上で有利になる。     According to the invention according to claim 2, the work of extracting adjacent grids with an inclination equal to or greater than the inclination angle determination value from the Z map grid of the unprocessed area is performed along the outermost periphery of the unprocessed area. Starting from a grid group arranged all around, the work is sequentially shifted to the grid group arranged inward one grid at a time. Based on the extracted grid, the unprocessed area is converted into the contour line processed area and the shape. Since it is divided into the along machining area, it is advantageous to divide the unmachined area into the contour machining area and the shape machining area in a short time.

請求項3に係る発明によれば、形状沿い加工領域を投影したZ=0の2次元平面において、内外の工具経路生成用ラインを設定した後、両ラインを上記2次元平面から対応する上記製品形状モデル上に投影し、該製品形状モデル上での当該内外の投影線の間隔が全周にわたって所定の範囲に収まるように、上記2次元平面における上記ラインの位置を補正するから、加工精度の高い形状沿い工具経路を短時間で生成する上で有利になる。     According to the invention according to claim 3, after setting the inner and outer tool path generation lines in the Z = 0 two-dimensional plane on which the machining area along the shape is projected, the two-dimensional plane corresponds to the both products from the two-dimensional plane. Projecting on the shape model and correcting the position of the line on the two-dimensional plane so that the interval between the inner and outer projection lines on the product shape model is within a predetermined range over the entire circumference. This is advantageous in generating a tool path along a high shape in a short time.

以下、本発明の実施形態を図面に基づいて説明する。     Hereinafter, embodiments of the present invention will be described with reference to the drawings.

ワークのNC切削加工によって例えば金型を製作する場合、基本的には工具径の大きい工具から始めて工具径を順次小さくしていく。これは、製品全体を仕上げる場合にはできるだけ大きな径の工具で全体を仕上げた方が工具経路のピッチを大きくすることができ加工効率が良いためであり、そして、細かい形状部において削り残りが出た部分を小径工具で切削していくことにより、加工効率を高めるものである。但し、その場合でも、前加工での削り残し領域を簡単に且つ正確に抽出することができなければ、各径の工具の経路が重複したり、工具経路の抜けを生じ、加工が不安定になるとともに、加工効率の向上に不利になる。     For example, when a die is manufactured by NC cutting of a workpiece, the tool diameter is basically reduced starting from a tool having a large tool diameter. This is because, when finishing the entire product, the tool path pitch can be increased by finishing the whole with a tool with as large a diameter as possible, and machining efficiency is improved. The cutting efficiency is increased by cutting the cut portion with a small diameter tool. However, even in that case, if the remaining uncut area in the pre-processing cannot be extracted easily and accurately, the tool paths of each diameter will overlap or the tool path may be lost, making the processing unstable. At the same time, it is disadvantageous for improving the processing efficiency.

そこで、まず、前加工による削り残し領域(ワークの未加工領域)抽出する方法を、工具としてボールエンドミルを用いるケースで説明し、次いで削り残し領域の工具経路生成方法を説明する。この削り残し領域の抽出及び工具経路の生成はCAD/CAMシステムを用いて行なう。     Therefore, first, a method for extracting an uncut region (unworked region of a workpiece) by pre-machining will be described in the case of using a ball end mill as a tool, and then a tool path generation method for the uncut region will be described. The extraction of the uncut region and the generation of the tool path are performed using a CAD / CAM system.

<削り残し領域(未加工領域)の抽出>
−製品形状多面体モデルの工具経路面Aの生成−
図1は最終形状となる製品形状の多面体モデルPであり、図2に示すように、この多面体モデルPと、後加工で用いるボールエンドミル1の形状データTとにより、多面体モデルPについての工具経路面Aを生成する。すなわち、ボールエンドミル1の逆形状を、その中心が常に多面体モデルPの表面に存在するように保ちつつ滑らせたときの掃引形状を求めて、この掃引形状の最上面を逆オフセット処理することにより、Zマップモデル形式で工具経路面Aを得る。この点を以下に具体的に説明する。
<Extraction of uncut area (unprocessed area)>
-Generation of tool path plane A of product shape polyhedron model-
FIG. 1 shows a final product shape polyhedron model P. As shown in FIG. 2, the tool path for the polyhedron model P is determined by the polyhedron model P and the shape data T of the ball end mill 1 used in post-processing. Surface A is generated. That is, by obtaining a sweep shape when the reverse shape of the ball end mill 1 is slid while keeping its center always on the surface of the polyhedron model P, the top surface of the sweep shape is subjected to reverse offset processing. The tool path plane A is obtained in the Z map model format. This point will be specifically described below.

多面体モデルPの表面形状は、図3に示すように、ラフに間引いた(間引き長さは10mm以内)多面体近似データP2に変換する。この多面体近似データP2は、微少な大きさとされた多数の三角形2の集合面である。次いで、ボールエンドミル1の逆形状を、その中心が常に多面体近似データP2からなる多面体モデルPの表面に存在するように保ちつつ滑らせたときの掃引形状を求めこの掃引形状の最上面を逆オフセット処理して工具経路面AをZマップモデル形式で生成する。     As shown in FIG. 3, the surface shape of the polyhedron model P is converted into polyhedron approximate data P2 which is roughly thinned (thinning length is within 10 mm). The polyhedral approximate data P2 is a set surface of a large number of triangles 2 having a very small size. Next, a sweep shape is obtained when the ball end mill 1 is slid while keeping its center always on the surface of the polyhedron model P composed of the polyhedron approximate data P2, and the top surface of the sweep shape is reverse offset. The tool path plane A is generated in the Z map model format by processing.

すなわち、図4に示すように、XY直交座標上に、三角形2の頂点となる位置においてボールエンドミル1の半径rに相当する球を配置し、各球同士を半径rの円筒形で連結し(各頂点同士をつなぐ辺に半径rの円筒を配置する)、各球と円筒形とで囲まれた領域を半径rの2倍の厚みを有する三角形板を配置した単位領域を設定する(単位領域は三角形の数分だけ存在する)。上記球、円筒、三角形板を図5に示す。次いで、XY平面上に直交格子(単位長さ0.02mm程度の格子)を用意し、各格子点について単位領域のZ軸方向の最上部点4を取得する。これにより、多面体近似データP2から工具経路面Aが図6に示すZマップモデル形式で生成されることとなる。なお、ボールエンドミル1以外のエンドミルを用いる場合は、上記球、円筒径、三角板の代わりに、そのエンドミル形状に応じた適切な図形を配置すればよい。     That is, as shown in FIG. 4, spheres corresponding to the radius r of the ball end mill 1 are arranged on the XY orthogonal coordinates at the vertexes of the triangle 2, and the spheres are connected by a cylindrical shape having a radius r ( A unit region in which a triangular plate having a thickness twice as large as the radius r is set in a region surrounded by each sphere and the cylindrical shape (unit region is arranged on the side connecting the vertices) Exist for the number of triangles). The sphere, cylinder, and triangular plate are shown in FIG. Next, an orthogonal lattice (a lattice having a unit length of about 0.02 mm) is prepared on the XY plane, and the uppermost point 4 in the Z-axis direction of the unit region is obtained for each lattice point. As a result, the tool path surface A is generated from the polyhedral approximate data P2 in the Z map model format shown in FIG. When an end mill other than the ball end mill 1 is used, an appropriate figure corresponding to the end mill shape may be arranged in place of the sphere, cylindrical diameter, and triangular plate.

−ワーク形状モデルの工具径路面Bの生成−
次に、加工残りを含むワーク形状モデルWと、ボールエンドミル1の形状データTとから、工作物の形状モデルWについての工具経路面BをZマップモデル形式で生成する。なお、各工具経路面AとBとは、XY平面上の同一解像度、同一位置の直交格子に基づいて生成する。以下、具体的に説明する。
-Generation of tool radius road surface B of workpiece shape model-
Next, the tool path plane B for the workpiece shape model W is generated in the Z map model format from the workpiece shape model W including the machining residue and the shape data T of the ball end mill 1. The tool path surfaces A and B are generated based on orthogonal lattices at the same resolution and the same position on the XY plane. This will be specifically described below.

図7の右側はワーク形状の多面体モデルWをZマップモデルで示したものであり、その表面を覆う点群は、X軸とY軸に平行な格子状に配置されている。そこで、図7左側に示すように、これらの点群を、X軸(若しくはY軸)に沿って順に辿り、X軸(若しくはY軸)方向にジグザグ往復する折れ線状経路5を得る。     The right side of FIG. 7 shows a polyhedral model W having a work shape as a Z map model, and the point group covering the surface is arranged in a lattice shape parallel to the X axis and the Y axis. Therefore, as shown on the left side of FIG. 7, these point groups are sequentially traced along the X axis (or Y axis) to obtain a polygonal path 5 that reciprocates in the X axis (or Y axis) direction.

次いで、図8に示すように、ボールエンドミル1の逆形状を上記折れ線状経路で移動させ、その掃引形状を定義する。図9はその様子を図2(工具径路面Aを生成するケース)と同様にして示している。図10に示すように、掃引形状の上端は球と円筒形が交互に連なった形となる。ボールエンドミル1以外の工具を用いる場合は、球と円筒形に代えて、その工具形状に応じた掃引形状の上端を構成する図形を用いればよい。しかる後、XY平面上に直交格子(工具経路面Aの生成に用いたものと同じ格子)を用意し、各格子点について掃引形状のZ軸方向の最上部点6を取得する。これにより、工具経路面Bが図11に示すZマップモデル形式で生成されることとなる。     Next, as shown in FIG. 8, the reverse shape of the ball end mill 1 is moved along the broken line path, and the sweep shape is defined. FIG. 9 shows the state in the same manner as FIG. 2 (case in which the tool path surface A is generated). As shown in FIG. 10, the upper end of the sweep shape has a shape in which spheres and cylinders are alternately connected. When a tool other than the ball end mill 1 is used, a figure constituting the upper end of the sweep shape corresponding to the tool shape may be used instead of the sphere and the cylindrical shape. Thereafter, an orthogonal lattice (the same lattice as that used for generating the tool path surface A) is prepared on the XY plane, and the uppermost point 6 in the Z-axis direction of the sweep shape is obtained for each lattice point. As a result, the tool path plane B is generated in the Z map model format shown in FIG.

−削り残し領域の判定−
上記工具経路面A,Bは、Z軸方向を共通とし、XY平面上の同一解像度、同一位置の直交格子に基づいて生成されていることから、図12に示すように、互いに重ね合わせることができる。工具経路面Bの一部は、前加工で削り残った部分に基づいて生成されているので、工具経路面Aの上にはみ出す部分、つまり、削り残し領域7を生じる。そこで、工具経路面AとBとを構成する点群の高さを、Zマップの基になった直交格子の格子ごとに比較して、工具経路面Bの方が工具経路面Aよりも上に存在している格子群を選び出す。そうして、この格子群に対応する工具経路面Aの点群を選び、それらを包含する多角形を削り残し領域線とする。
-Determination of uncut area-
Since the tool path planes A and B have the same Z-axis direction and are generated based on orthogonal grids having the same resolution and the same position on the XY plane, they can overlap each other as shown in FIG. it can. Since a part of the tool path surface B is generated based on a portion left uncut by the previous machining, a portion that protrudes on the tool path surface A, that is, an uncut region 7 is generated. Therefore, the height of the point group constituting the tool path planes A and B is compared for each lattice of the orthogonal grid on which the Z map is based, and the tool path plane B is higher than the tool path plane A. Select the lattice group that exists in. Then, a point group of the tool path surface A corresponding to this lattice group is selected, and a polygon including them is set as an uncut region line.

<工具経路の生成>
図13及び図14に示すフローに沿って説明する。図13に示すスタート後のステップS1で入力パラメータを読み込む。この入力パラメータは、上述の削り残し領域線、製品形状のZマップモデル、傾斜角度判定値及び工具経路生成条件(工具径、経路ピッチ、トレランス(加工精度)等)である。
<Generation of tool path>
Description will be made along the flow shown in FIGS. 13 and 14. Input parameters are read in step S1 after the start shown in FIG. The input parameters are the above-mentioned uncut region line, the product shape Z map model, the inclination angle determination value, and the tool path generation conditions (tool diameter, path pitch, tolerance (machining accuracy), etc.).

−削り残し領域の区分−
続くステップS2において、Zマップのグリッド角度と上記傾斜角度判定値とに基いて、削り残し領域を等高線加工領域と形状沿い加工領域とに区分する。具体的には、図13のステップS1,S2横に模式的に示すように、削り残し領域線8内のZマップのグリッド9を抽出する。図15の左端に示すように、削り残し領域内の最外周辺に存するグリッドを周方向に結ぶ外周線の角度を調べる。すなわち、上記傾斜角度判定値以上の傾斜で周方向に隣り合っているグリッド(黒丸で示す)を抽出する。このグリッド抽出作業を当該外周線の全周にわたって実行し、さらに、グリッド一つ分ずつ順次内側へオフセットさせて各周方向に延びる線において同様に行なっていくことにより、全グリッドについて実行する(図15の中央図参照)。
-Uncut area classification-
In the subsequent step S2, the uncut region is divided into a contour processing region and a shape processing region based on the grid angle of the Z map and the tilt angle determination value. Specifically, as schematically shown beside Steps S1 and S2 in FIG. 13, a grid 9 of the Z map in the uncut region line 8 is extracted. As shown at the left end of FIG. 15, the angle of the outer peripheral line connecting the grids existing in the outermost periphery in the uncut region is checked in the circumferential direction. In other words, grids (indicated by black circles) adjacent in the circumferential direction with an inclination equal to or greater than the inclination angle determination value are extracted. This grid extraction operation is performed over the entire circumference of the perimeter line, and is performed on all grids by performing the same operation on the lines extending in the circumferential direction by sequentially offset one grid at a time (see FIG. (See 15 central view).

上記グリッド抽出作業では、傾斜角度が大きい領域に存するグリッドであっても、例えば水平方向に相隣るグリッド間ではその傾斜角度は小さいと判定される。すなわち、図15の中央に示すように、削り残し領域の上辺部では、黒丸グリッドに囲まれた白丸グリッド(傾斜角度が小さいと判定されたグリッド)が出てくる。そこで、傾斜角度大グリッド群で囲まれた傾斜角度小グリッドについては、図15の右側に示すように、当該グリッドとその外側又は内側に隣り合うグリッドとの間で傾斜角度の再判定を行なう。     In the grid extraction operation, even if the grid exists in a region where the tilt angle is large, for example, it is determined that the tilt angle is small between grids adjacent in the horizontal direction. That is, as shown in the center of FIG. 15, a white circle grid surrounded by black circle grids (a grid determined to have a small inclination angle) appears at the upper side of the uncut region. Therefore, for the small inclination angle grid surrounded by the large inclination angle grid group, as shown on the right side of FIG. 15, the inclination angle is re-determined between the grid and the grid adjacent to the outside or the inside thereof.

そうして、以上の傾斜角度判定に基いて、上記削り残し領域を傾斜角度大の等高線加工領域(黒丸グリッド側)11と傾斜角度小の形状沿い加工領域(白丸グリッド側)12とに区分する。     Then, based on the determination of the inclination angle, the uncut region is divided into a contour processing area (black circle grid side) 11 having a large inclination angle and a machining area along a shape having a small inclination angle (white circle grid side) 12. .

このように、削り残し領域の区分にあたっては、全ての相隣るグリッド間の傾斜角度を判定する必要はなく、短時間で傾斜が大きな等高線加工領域11と傾斜が小さい形状沿い加工領域12とに区分する上で有利になる。また、傾斜角度大グリッド群で囲まれた傾斜角度小グリッドが存在するときは、傾斜角度の判定方向を変更して再チェックするようにしたから、抽出洩れを避けることができる。     Thus, in classifying the uncut region, it is not necessary to determine the inclination angle between all adjacent grids, and the contour processing region 11 with a large inclination and the machining region 12 with a small inclination along the shape are formed in a short time. It becomes advantageous in dividing. In addition, when there is a small inclination angle grid surrounded by the large inclination angle grid group, since the determination direction of the inclination angle is changed and rechecked, extraction omission can be avoided.

−形状沿い工具経路(形状沿い軌跡)の生成−
図13に示すように、続くステップ3において、削り残し領域(形状沿い加工領域)線をZ=0の2次元平面に投影して2次元領域線13を求める。次いで、この2次元平面において、2次元領域線13を内側に所定ピッチオフセットさせたオフセット線14を求める(ステップS4)。そうして、2次元領域線13及びオフセット線14を製品形状モデルの該当する曲面部に投影する(ステップS5)。当該投影線を符号13a,14aで示す。
-Generation of tool path along shape (trajectory along shape)-
As shown in FIG. 13, in a subsequent step 3, a two-dimensional area line 13 is obtained by projecting an uncut area (processed area along the shape) line on a two-dimensional plane with Z = 0. Next, in this two-dimensional plane, an offset line 14 obtained by offsetting the two-dimensional region line 13 inward by a predetermined pitch is obtained (step S4). Then, the two-dimensional area line 13 and the offset line 14 are projected onto the corresponding curved surface portion of the product shape model (step S5). The projection lines are denoted by reference numerals 13a and 14a.

製品形状モデルへの上記投影線13a,14aのピッチ間隔を全周にわたって求め、所定ピッチよりも大であるときは、そのピッチ間隔を補正する(ステップS6)。すなわち、投影線13a,14aのピッチ間隔が所定ピッチになるように、2次元平面において、オフセット線14のピッチ間隔大となっている部分を外側へ移動させる。     The pitch interval of the projection lines 13a and 14a to the product shape model is obtained over the entire circumference, and when the pitch interval is larger than the predetermined pitch, the pitch interval is corrected (step S6). That is, the part where the pitch interval of the offset line 14 is large is moved outward in the two-dimensional plane so that the pitch interval of the projection lines 13a and 14a becomes a predetermined pitch.

同様にして上記オフセット線14の内側にオフセット線15を求め、製品形状モデルに投影してピッチ間隔を補正する作業を、順次内側へ進めていき、得られた形状沿い工具経路16をNCデータとして書き出す(ステップS7)。     Similarly, the offset line 15 is obtained inside the offset line 14, projected onto the product shape model, and the work for correcting the pitch interval is sequentially advanced inward, and the obtained tool path 16 along the shape is used as NC data. Writing out (step S7).

以上のように、2次元平面において工具経路の間隔を設定するから、工具経路を短時間で生成する上で有利になり、また、2次元平面で設定した間隔が3次元の製品形状モデルに投影したときに予定よりも広くなるときは、これを適正な間隔になるように2次元平面で補正するから、加工精度の高い形状沿い工具経路16を生成することができる。     As described above, since the interval of the tool path is set on the two-dimensional plane, it is advantageous for generating the tool path in a short time, and the interval set on the two-dimensional plane is projected onto the three-dimensional product shape model. When it becomes wider than planned, the tool path 16 along the shape with high machining accuracy can be generated because it is corrected with a two-dimensional plane so as to have an appropriate interval.

−等高線工具経路(等高線軌跡)の生成−
一方、等高線工具経路の生成にあたっては、図14に示すように、まず、等高線加工領域のZマップグリッドをXY直交座標のX軸方向の線及びY軸方向の線で結ぶ(ステップS8)。次いで、この等高線加工領域を所定ピッチのZ平面(Z軸と垂直な平面)でスライスしてX軸線及びY軸線との交点を求める(ステップS9)。次いで、その交点を結ぶことにより、等高線の経路を求め(ステップS10)、等高線工具経路17をNCデータとして書き出す(ステップS11)。
-Generation of contour tool path (contour trajectory)-
On the other hand, in generating the contour tool path, as shown in FIG. 14, first, the Z map grid of the contour line machining region is connected by the X-axis direction line and the Y-axis direction line of the XY orthogonal coordinates (step S8). Next, this contour line processing region is sliced with a Z plane (plane perpendicular to the Z axis) of a predetermined pitch to obtain the intersection point with the X axis line and the Y axis line (step S9). Next, a contour path is obtained by connecting the intersections (step S10), and the contour tool path 17 is written as NC data (step S11).

以上のように、上記実施形態によれば、削り残し領域のうち傾斜が大きい部分を等高線加工領域とし傾斜が緩やかな部分を形状沿い加工領域として区分するから、その傾斜に応じた加工精度の高い適切な工具経路を短時間で生成することができる。     As described above, according to the above-described embodiment, a portion having a large slope in the uncut region is segmented as a contour processing region and a portion having a gentle slope is classified as a machining region along the shape. Therefore, machining accuracy according to the slope is high. An appropriate tool path can be generated in a short time.

製品形状の多面体モデルの一例を示す図である。It is a figure which shows an example of the polyhedron model of a product shape. 製品形状に対応した工具経路面を得る様子を示す説明図である。It is explanatory drawing which shows a mode that the tool path surface corresponding to a product shape is obtained. 製品形状モデルの多面体近似データを示す図である。It is a figure which shows the polyhedron approximation data of a product shape model. 多面体近似データからZマップを得る様子を示す説明図である。It is explanatory drawing which shows a mode that Z map is obtained from polyhedral approximate data. Zマップを得るための工具形状に応じた図形の組み合わせ例を示す図である。It is a figure which shows the example of a combination of the figure according to the tool shape for obtaining Z map. 製品形状の工具経路面をZマップモデル形式で示す図である。It is a figure which shows the tool path surface of a product shape in a Z map model format. ワーク形状のZマップモデルから工具経路面を生成するための折れ線状経路を得る手法を説明する図である。It is a figure explaining the method of obtaining the broken line path | route for producing | generating a tool path surface from the Z map model of a workpiece | work shape. 折れ線状経路から工具経路面(掃引形状)を得る様子を示す説明図である。It is explanatory drawing which shows a mode that a tool path surface (sweep shape) is obtained from a broken line path. ワーク形状に対応した工具経路面を得る様子を示す説明図である。It is explanatory drawing which shows a mode that the tool path surface corresponding to a workpiece | work shape is obtained. 掃引形状の上端を示す図である。It is a figure which shows the upper end of sweep shape. ワーク形状の工具経路面をZマップモデル形式で示す図である。It is a figure which shows the tool path surface of a workpiece | work shape in a Z map model format. 製品形状及びワーク形状各々の工具経路面を重ね合わせて削り残し領域を示す図である。It is a figure which shows the uncut part area | region which overlaps the tool path surface of each product shape and workpiece | work shape. 工具経路生成のフローを示す図である。It is a figure which shows the flow of tool path | route production | generation. 等高線工具経路生成のフローを示す図である。It is a figure which shows the flow of contour line tool path generation. 削り残し領域を区分する手法を説明する図である。It is a figure explaining the method of classifying the uncut region.

符号の説明Explanation of symbols

P 製品形状の多面体モデル
P2 多面体近似データ
A 製品形状の工具経路面
W ワーク形状の多面体モデル
B ワーク形状の工具経路面
1 切削工具
2 三角形(パッチ)
7 削り残し領域(未加工領域)
8 削り残し領域線
9 グリッド
11 等高線加工領域
12 形状沿い加工領域
13 2次元領域線
13a 投影線
14 オフセット線
14a 投影線
15 オフセット線
16 形状沿い工具経路
17 等高線工具経路
P Product shape polyhedron model P2 Polyhedron approximation data A Product shape tool path surface W Work shape polyhedron model B Work shape tool path surface 1 Cutting tool 2 Triangle (patch)
7 Uncut area (unprocessed area)
8 Unremoved area line 9 Grid 11 Contour line machining area 12 Machining area along shape 13 Two-dimensional area line 13a Projection line 14 Offset line 14a Projection line 15 Offset line 16 Tool path along shape 17 Contour line tool path

Claims (3)

3次元形状モデルデータに基づきNC工作機械の工具によりワークの未加工領域に加工を行うための工具経路を生成する加工経路データ生成方法であって、
上記未加工領域における製品形状のZ軸方向の高さ情報に示すZマップモデルと所定の傾斜角度判定値とに基いて、該未加工領域を傾斜が大きい等高線加工領域と傾斜が小さい形状沿い加工領域とに区分し、
上記等高線加工領域では、加工条件に応じたZ軸方向のピッチで等高線工具経路を生成し、
上記形状沿い加工領域では、切り込み量を変化させながら工具を移動させる形状沿い工具経路を加工条件に応じたピッチで生成することを特徴とする加工経路データ生成方法。
A machining path data generation method for generating a tool path for machining an unmachined area of a workpiece with a tool of an NC machine tool based on three-dimensional shape model data,
Based on the Z map model indicated by the height information in the Z-axis direction of the product shape in the unprocessed area and a predetermined inclination angle determination value, the unprocessed area is processed along the contour process area having a large inclination and the shape having a small inclination. Divided into areas,
In the contour line machining area, a contour tool path is generated at a pitch in the Z-axis direction according to the machining conditions,
A machining path data generation method characterized in that, in the machining area along the shape, a tool path along the shape for moving the tool while changing the cutting amount is generated at a pitch according to machining conditions.
請求項1において、
上記未加工領域の製品形状Zマップモデルの最外周辺に沿って並ぶグリッド群から上記傾斜角度判定値以上の傾斜角度で隣り合うグリッドを抽出し、この抽出処理を順次グリッド1つ内側で並ぶ各グリッド群に対して外側から内側へ進めていき、その抽出したグリッドに基いて、該未加工領域を上記等高線加工領域と上記形状沿い加工領域とに区分することを特徴とする加工経路データ生成方法。
In claim 1,
The adjacent grids are extracted from the group of grids arranged along the outermost periphery of the product shape Z map model of the unprocessed area at an inclination angle equal to or greater than the inclination angle determination value, and this extraction process is sequentially arranged inside one grid. A machining path data generation method characterized by proceeding from the outside to the inside with respect to the grid group, and dividing the unmachined area into the contour line machining area and the shape along the shape based on the extracted grid .
請求項1又は請求項2において、
上記形状沿い加工領域では、該領域の最外周辺に沿って巡る工具経路と、該工具経路に沿ってその内側を巡る工具経路とを少なくとも有する、複数の内外に間隔をおいて配置された工具経路を設定し、工具を外側の工具経路から内側の工具経路に順次シフトさせて加工を行なうものであり、
上記形状沿い加工領域を投影したZ=0の2次元平面において、内外の工具経路生成用ラインを設定した後、両ラインを上記2次元平面から対応する上記製品形状モデル上に投影し、該製品形状モデル上での当該内外の投影線の間隔が全周にわたって所定の範囲に収まるように、上記2次元平面における上記ラインの位置を補正して工具経路を生成することを特徴とする加工経路データ生成方法。
In claim 1 or claim 2,
In the machining area along the shape, a plurality of tools arranged at intervals inside and outside, having at least a tool path that goes around the outermost periphery of the area and a tool path that goes around the inside along the tool path. The path is set and machining is performed by sequentially shifting the tool from the outer tool path to the inner tool path.
After setting the inner and outer tool path generation lines on the Z = 0 two-dimensional plane onto which the machining area along the shape is projected, both lines are projected onto the corresponding product shape model from the two-dimensional plane, and the product Machining path data for generating a tool path by correcting the position of the line on the two-dimensional plane so that the interval between the internal and external projection lines on the shape model falls within a predetermined range over the entire circumference. Generation method.
JP2005358905A 2005-12-13 2005-12-13 Machining path data generation method Pending JP2007164411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358905A JP2007164411A (en) 2005-12-13 2005-12-13 Machining path data generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005358905A JP2007164411A (en) 2005-12-13 2005-12-13 Machining path data generation method

Publications (1)

Publication Number Publication Date
JP2007164411A true JP2007164411A (en) 2007-06-28

Family

ID=38247243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358905A Pending JP2007164411A (en) 2005-12-13 2005-12-13 Machining path data generation method

Country Status (1)

Country Link
JP (1) JP2007164411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051057A (en) * 2009-09-01 2011-03-17 Matsuura Machinery Corp Cam system
CN114711668A (en) * 2022-03-31 2022-07-08 苏州三六零机器人科技有限公司 Sweeping method, sweeping device, sweeper and computer readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051057A (en) * 2009-09-01 2011-03-17 Matsuura Machinery Corp Cam system
CN114711668A (en) * 2022-03-31 2022-07-08 苏州三六零机器人科技有限公司 Sweeping method, sweeping device, sweeper and computer readable storage medium

Similar Documents

Publication Publication Date Title
CN1303487C (en) Method of directing movement of tool as part of process to remove material from block of material
JP5309288B2 (en) Computer program for machining error prediction, machining error prediction device, and device for correcting tool path based on the prediction result
KR102390584B1 (en) A method of machining the surface of a workpiece using a laser
US10481567B2 (en) Gear tooth profile simulation apparatus and method, and machining tool edge surface simulation apparatus and method
TW201443595A (en) Numerical control machining program creation device
CN111666645B (en) Modeling method, system and medium of spiral bevel gear based on discrete point data
TW201443598A (en) Numerical control machining program creation device
JP2009037381A (en) Apparatus, method, and program for creating tool reference plane
CN112230602B (en) Cavity secondary rough cutter path planning method and device and storage medium
JP2007164411A (en) Machining path data generation method
US20170343982A1 (en) Method for machining a workpiece by means of a chip-removing tool on a numerically-controlled machine tool
WO2014096412A2 (en) Method for determining the workpiece location
US20200082042A1 (en) Method For Parallelized Simulation Of The Movement Of A Machine Component In Or Near A Work Object
JP2006244067A (en) Interference decision method for machine tool
JP2009211255A (en) Die working data changing method
JP3925504B2 (en) Machining path generation method, machining path generation program, and storage medium
JP2021179861A (en) Shape recognition device and shape recognition method
CN107977502A (en) A kind of cylindrical work screw processing section profile calculation method based on OpenGL
JP2005056307A (en) Method for detecting tool interference, and device for detecting tool interference
CN102566509A (en) Envelope theory-based universal cutter scanning body generating method in numerically controlled processing simulation process
JP6894591B2 (en) Measurement data generator, machining program generation system, measurement data generation method
JP2010194639A (en) Design method for tool electrode of die sinking electrical discharge machining
JP2001242919A (en) Calculation method for cutter reference surface, computer readable storage medium to store program of cutter reference surface calculation and computer equipment for it
Manolescu et al. Recognizing algorithm for digitized rotational parts
JP2003044110A (en) Cutter path generating method for nc contour cutting