JP2007164082A - Non-magnetic one component toner - Google Patents

Non-magnetic one component toner Download PDF

Info

Publication number
JP2007164082A
JP2007164082A JP2005363567A JP2005363567A JP2007164082A JP 2007164082 A JP2007164082 A JP 2007164082A JP 2005363567 A JP2005363567 A JP 2005363567A JP 2005363567 A JP2005363567 A JP 2005363567A JP 2007164082 A JP2007164082 A JP 2007164082A
Authority
JP
Japan
Prior art keywords
toner
particles
weight
parts
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005363567A
Other languages
Japanese (ja)
Inventor
Hiroaki Miyazawa
洋晃 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIMEKKUSU KK
Original Assignee
AIMEKKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIMEKKUSU KK filed Critical AIMEKKUSU KK
Priority to JP2005363567A priority Critical patent/JP2007164082A/en
Publication of JP2007164082A publication Critical patent/JP2007164082A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-magnetic one component toner with which toner thin film formation on a developing roller is maintained even in printing for a long period, an electrostatic charge quantity is stabilized, and high-quality images of high density and satisfactory uniformity free of fogging are obtained, and the fusion to a blade and selective development are prevented, and to make the toner applicable appropriately even for a recycling cartridge in which a developing roller, regulating roller, supply roller, etc., are recycled. <P>SOLUTION: The non-magnetic one component toner is prepared by adding (A) 0.5 to 3 parts by weight inorganic oxide particles of volume resistivity 1×10<SP>5</SP>to 5×10<SP>7</SP>Ωcm and number average grain size 0.35 to 0.65 μm, (B) 0.3 to 3 parts by weight hydrophobic silica of average primary particle diameter ≥5 nm to <30 nm, and (C) 0.3 to 3 parts by weight hydrophobic silica of average primary particle diameter ≥30 nm to <80 nm to 100 parts by weight toner base particles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非磁性1成分トナーに関する。さらに詳しくは、本発明は、長期の印字においても現像ローラ上のトナー薄膜形成が維持され、帯電量が安定化し、高濃度でベタ均一性が良好でカブリのない高画質の画像が得られ、ブレードへの融着や選択現像が防止され、特に現像ローラ、規制ブレード、供給ローラなどが再利用される再生カートリッジに好適に適用することができる非磁性1成分トナーに関する。   The present invention relates to a nonmagnetic one-component toner. More specifically, the present invention maintains the formation of a toner thin film on the developing roller even during long-term printing, stabilizes the charge amount, and provides a high-quality image with high density, good solid uniformity, and no fogging, The present invention relates to a non-magnetic one-component toner that can be suitably applied to a reproduction cartridge in which fusing to a blade and selective development are prevented, and in particular, a developing roller, a regulating blade, a supply roller, and the like are reused.

電子写真方式を利用した画像形成方法においては、感光体を一様に帯電させ、次いで感光体を露光して露光部分の電荷を消散させることにより静電荷的な潜像を形成し、静電荷像にトナーを付着させることにより可視化して現像し、可視化像を紙などの材料に転写し、転写された像を加熱などの手段により定着させる。現像方式には、磁性又は非磁性トナー1種類のみを用いる1成分方式と、トナーとキャリアの2種類の粉体を用いる2成分方式がある。1成分方式の現像法は、装置の小型化、簡略化が可能であり、特に非磁性1成分トナーは、鮮やかなカラートナーが可能であるという特徴を有する。
非磁性1成分現像の画像形成装置においては、長期の印字における現像ローラ上のトナーの帯電量の均一化のために、トナー母粒子に疎水化シリカ、酸化チタン、アルミナ、酸化スズなどの金属酸化物、ポリメタクリル酸メチルなどの樹脂微粉子などが添加されている。近年にいたり、再生カートリッジが、高品質化と地球環境保護の観点から普及してきた。しかし、再生カートリッジには、現像ローラ、規制ブレード、供給ローラなどを再利用する場合、これらの部材の劣化で印字不良が発生するという問題がある。例えば、現像ローラでは、ローラ表面の劣化やトナー含有物質による汚染のために、トナー搬送が不良となり、ベタ画像のカスレ、帯電不良によるカブリなどが発生する。規制ブレードでは、現像ローラとの接触部の摩耗のために、トナーの帯電不良によるカブリが発生する。また、金属製の規制ブレードの場合は、金属のひび割れを生じ、そこを起点にブレードへのトナーの融着が起こる。供給ローラは、材質がスポンジで構成されることが多く、スポンジの表面が破損して、現像ローラへのトナー供給不良でベタ画像のムラが発生する。また、未現像トナーの剥離性が低下し、トナー層の厚さが増大して帯電不良となり、現像ローラのトルクが上昇し、ギアの破損という最悪の事態に至る場合もある。
トナー母粒子への無機微粒子の添加によりトナーを改質する試みが、さまざまになされている。例えば、均一な摩擦帯電性を効率よく立ち上げ、高画質画像を達成できる現像剤として、母体粒子の表面に異種元素を含有する酸化亜鉛を担持した微粒子が存在し、Zn/母体粒子の質量比が0.01〜2、異種元素/Znのモル比が0.001〜0.3、体積平均径が0.1〜5μm、粒径5μm以上の粒子が3個数%未満、抵抗が1×109Ωcm以下である現像剤が提案されている(特許文献1)。実施例では、磁性1成分現像システムと2成分現像システムが例示されているが、非磁性1成分現像に適用すると、長期の画像印字においてブレード融着が発生するおそれがある。
また、長期の連続印字においても画像濃度が低下せず、回収トナーを再利用できる1成分現像剤の現像方法として、体積固有抵抗1×1015Ω・cm以上の熱可塑性樹脂、体積固有抵抗1×105〜1×1012Ω・cmの帯電安定剤、着色剤、体積固有抵抗1×105〜1×108Ω・cm、平均粒径0.05〜1.0μmの金属酸化物微粒子0.05〜5重量%を含有する1成分トナーを用いる方法が提案されている(特許文献2)。この方法では、トナー電荷リークにより帯電量を調整し、画像濃度の安定化を図っているが、実施例は500枚までの印字結果が開示されているだけで、長期の画像印字においては問題が残る。また、部材が劣化した再生カートリッジに適用すると、ベタ画像のムラ、カブリ、ブレード融着の問題が発生して使用することができない。
カブリが少なく、黒ベタ再現性に優れ、転写性が良好な画像特性に優れる非磁性1成分現像用トナーとして、Al23含有量が90重量%以上であるアルミナ粒子、疎水性シリカ粒子及び磁性粉が、トナー粒子の表面に付着してなる非磁性1成分現像用トナーが提案されている(特許文献3)。その効果として、トナー個々の粒子の摩擦帯電安定化による画質向上が挙げられているが、アルミナは純度と粒子径の規定、マグネタイトは粒子径のみの規定なので、長期の画像印字においてブレード融着や、所定の粒度のトナーのみが選択的に現像され、長期の印字においてトナーホッパーに残るトナーの粒度分布が大きく変化する選択現像が発生し、非磁性1成分トナーとして改良の余地がある。また、再生カートリッジには、上記の問題が著しく使用することができない。
特開2003−57872号公報 特開平6−175392号公報 特開2001−318486号公報
In the image forming method using the electrophotographic method, the photosensitive member is uniformly charged, and then the photosensitive member is exposed to dissipate the charge on the exposed portion to form an electrostatic latent image. The toner image is visualized and developed by adhering to the toner, the visualized image is transferred to a material such as paper, and the transferred image is fixed by means such as heating. Development methods include a one-component method using only one type of magnetic or non-magnetic toner and a two-component method using two types of powder, toner and carrier. The one-component development method can reduce the size and simplification of the apparatus. In particular, the non-magnetic one-component toner is characterized by vivid color toner.
In an image forming apparatus for non-magnetic one-component development, metal oxide such as hydrophobic silica, titanium oxide, alumina, tin oxide, etc. is used on the toner mother particles in order to make the charge amount of the toner on the developing roller uniform in long-term printing. And resin fine particles such as polymethyl methacrylate are added. In recent years, remanufactured cartridges have become widespread from the viewpoint of improving quality and protecting the global environment. However, in the case of reusing the developing roller, the regulating blade, the supply roller, etc., the reproduction cartridge has a problem that defective printing occurs due to deterioration of these members. For example, in the developing roller, the toner surface is deteriorated due to deterioration of the roller surface or contamination due to the toner-containing substance, causing solid image blurring or fogging due to charging failure. In the regulation blade, fogging due to poor charging of toner occurs due to wear of the contact portion with the developing roller. Further, in the case of a metal regulating blade, a metal crack is generated, and toner is fused to the blade starting from the crack. The material of the supply roller is often made of a sponge, and the surface of the sponge is damaged, and solid images are uneven due to defective supply of toner to the developing roller. Further, the peelability of undeveloped toner is lowered, the thickness of the toner layer is increased, resulting in poor charging, the torque of the developing roller is increased, and the worst situation of gear breakage may occur.
Various attempts have been made to modify the toner by adding inorganic fine particles to the toner base particles. For example, there is a fine particle carrying zinc oxide containing a different element on the surface of the base particle as a developer capable of efficiently starting up uniform triboelectric chargeability and achieving a high-quality image, and the mass ratio of Zn / base particle Is 0.01-2, the molar ratio of foreign element / Zn is 0.001-0.3, the volume average diameter is 0.1-5 μm, the number of particles having a particle diameter of 5 μm or more is less than 3% by number, and the resistance is 1 × 10 A developer having a resistance of 9 Ωcm or less has been proposed (Patent Document 1). In the embodiment, a magnetic one-component development system and a two-component development system are exemplified. However, when applied to non-magnetic one-component development, blade fusion may occur in long-term image printing.
Further, as a developing method of a one-component developer that does not decrease the image density even in long-term continuous printing and can reuse the collected toner, a thermoplastic resin having a volume resistivity of 1 × 10 15 Ω · cm or more, a volume resistivity of 1 X10 5 to 1 × 10 12 Ω · cm of charge stabilizer, colorant, volume resistivity 1 × 10 5 to 1 × 10 8 Ω · cm, average particle diameter of 0.05 to 1.0 μm A method using a one-component toner containing 0.05 to 5% by weight has been proposed (Patent Document 2). In this method, the charge amount is adjusted by toner charge leakage to stabilize the image density, but the embodiment only discloses printing results up to 500 sheets, and there is a problem in long-term image printing. Remains. In addition, when applied to a reproduction cartridge having deteriorated members, problems such as solid image unevenness, fogging, and blade fusion cannot be used.
As non-magnetic one-component developing toner that has low fog, excellent black solid reproducibility, and excellent transfer characteristics, alumina particles, hydrophobic silica particles having an Al 2 O 3 content of 90% by weight or more, and A nonmagnetic one-component developing toner in which magnetic powder is adhered to the surface of toner particles has been proposed (Patent Document 3). As its effect, improvement of image quality by stabilizing triboelectric charge of individual particles of toner is mentioned, but alumina is a specification of purity and particle size, and magnetite is a specification of only particle size, so blade fusion and long-term image printing Only the toner having a predetermined particle size is selectively developed, and the selective development in which the particle size distribution of the toner remaining in the toner hopper greatly changes during long-term printing occurs, and there is room for improvement as a non-magnetic one-component toner. Further, the above-mentioned problem cannot be remarkably used for the reproduction cartridge.
JP 2003-57872 A JP-A-6-175392 JP 2001-318486 A

本発明は、長期の印字においても現像ローラ上のトナー薄膜形成が維持され、帯電量が安定化し、高濃度でベタ均一性が良好でカブリのない高画質の画像が得られ、ブレードへの融着や選択現像が防止され、特に現像ローラ、規制ブレード、供給ローラなどが再利用される再生カートリッジに好適に適用することができる非磁性1成分トナーを提供することを目的としてなされたものである。   The present invention maintains the formation of a toner thin film on the developing roller even during long-term printing, stabilizes the charge amount, provides a high-quality image with high density, good solid uniformity, and no fogging. It is an object of the present invention to provide a non-magnetic one-component toner that can be suitably applied to a remanufactured cartridge that is prevented from being attached and selectively developed and in particular, a developing roller, a regulating blade, a supply roller, and the like are reused. .

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、トナー母粒子に体積抵抗率1×105〜5×107Ω・cm、個数平均粒径0.35〜0.65μmである無機酸化物粒子と、平均一次粒子径の小さい疎水性シリカと、平均一次粒子径の大きい疎水性シリカを添加することにより、長期間の印字においても安定して良好な画像が得られることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)トナー母粒子100重量部に対して、(A)体積抵抗率1×105〜5×107Ω・cm、個数平均粒径0.35〜0.65μmである無機酸化物粒子0.5〜3重量部、(B)平均一次粒子径5nm以上30nm未満の疎水性シリカ0.3〜3重量部、及び、(C)平均一次粒子径30nm以上80nm未満の疎水性シリカ0.3〜3重量部を添加してなることを特徴とする非磁性1成分トナー、及び、
(2)無機酸化物粒子が、吸油量25mL/100g未満の八面体マグネタイトである(1)記載の非磁性1成分トナー、
を提供するものである。
As a result of intensive studies to solve the above problems, the present inventor has found that the toner base particles have a volume resistivity of 1 × 10 5 to 5 × 10 7 Ω · cm and a number average particle size of 0.35 to 0.65 μm. By adding inorganic oxide particles, hydrophobic silica having a small average primary particle size, and hydrophobic silica having a large average primary particle size, stable and good images can be obtained even for long-term printing. As a result, the present invention has been completed based on this finding.
That is, the present invention
(1) Inorganic oxide particles 0 having a volume resistivity of 1 × 10 5 to 5 × 10 7 Ω · cm and a number average particle size of 0.35 to 0.65 μm with respect to 100 parts by weight of toner base particles. 0.5 to 3 parts by weight, (B) 0.3 to 3 parts by weight of hydrophobic silica having an average primary particle size of 5 nm to less than 30 nm, and (C) 0.3 to 3 parts by weight of hydrophobic silica having an average primary particle size of 30 nm to less than 80 nm A non-magnetic one-component toner obtained by adding ˜3 parts by weight, and
(2) The nonmagnetic one-component toner according to (1), wherein the inorganic oxide particles are octahedral magnetite having an oil absorption of less than 25 mL / 100 g.
Is to provide.

本発明の非磁性1成分トナーは、(A)体積抵抗率が低く、個数平均粒径が0.35〜0.65μmで、粒径の大きい粒子の含有量が少ない無機酸化物粒子、(B)平均一次粒子径の小さい疎水性シリカ及び(C)平均一次粒子径の大きい疎水性シリカをトナー母粒子に添加することにより、容易に製造することができ、トナー凝集度が低く流動性が良好であり、長期間にわたって安定して高画質の印字画像を得ることができる。本発明の非磁性1成分トナーは、ローラやブレードなどへの融着が防止され、現像ローラ、規制ブレード、供給ローラなどが再利用される再生カートリッジに好適に適用することができる。   The non-magnetic one-component toner of the present invention comprises (A) inorganic oxide particles having a low volume resistivity, a number average particle size of 0.35 to 0.65 μm, and a small content of particles having a large particle size, (B It can be easily manufactured by adding hydrophobic silica having a small average primary particle size and (C) hydrophobic silica having a large average primary particle size to the toner base particles, and has low toner cohesion and good fluidity. Therefore, it is possible to obtain a high-quality printed image stably over a long period of time. The non-magnetic one-component toner of the present invention can be suitably applied to a remanufactured cartridge in which fusing to a roller, a blade, or the like is prevented, and a developing roller, a regulating blade, a supply roller, etc. are reused.

本発明の非磁性1成分トナーは、トナー母粒子100重量部に対して、(A)体積抵抗率1×105〜5×107Ω・cm、個数平均粒径0.35〜0.65μmである無機酸化物粒子0.5〜3重量部、(B)平均一次粒子径5nm以上30nm未満の疎水性シリカ0.3〜3重量部、及び、(C)平均一次粒子径30nm以上80nm未満の疎水性シリカ0.3〜3重量部を添加してなる非磁性1成分トナーである。
本発明に用いる(A)無機酸化物粒子としては、例えば、酸化アルミニウム、酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化スズ、酸化銅、酸化鉄、酸化セリウム、酸化チタン、チタン酸バリウム、チタン酸ストロンチウムなどの粒子を挙げることができる。これらの中で、酸化鉄粒子を好適に用いることができ、マグネタイトをより好適に用いることができ、八面体マグネタイトをさらに好適に用いることができる。八面体マグネタイトは、マグネタイトの中で体積抵抗率が最も低く、少量の添加により非磁性1成分トナーの性能を効果的に改良することができる。本発明に用いるマグネタイトは、JIS K 5101にしたがってあまに油を用いて測定した吸油量が、25mL/100g未満であることが好ましい。吸油量25mL/100g未満のマグネタイトは、凝集体が少ないので、非磁性1成分トナーの添加剤として好適に用いることができる。
The non-magnetic one-component toner of the present invention has (A) volume resistivity of 1 × 10 5 to 5 × 10 7 Ω · cm and a number average particle size of 0.35 to 0.65 μm with respect to 100 parts by weight of toner base particles. 0.5-3 parts by weight of inorganic oxide particles, (B) 0.3-3 parts by weight of hydrophobic silica having an average primary particle size of 5 nm or more and less than 30 nm, and (C) an average primary particle size of 30 nm or more and less than 80 nm Is a non-magnetic one-component toner obtained by adding 0.3 to 3 parts by weight of hydrophobic silica.
Examples of (A) inorganic oxide particles used in the present invention include aluminum oxide, magnesium oxide, calcium oxide, zinc oxide, tin oxide, copper oxide, iron oxide, cerium oxide, titanium oxide, barium titanate, and strontium titanate. And the like. Among these, iron oxide particles can be suitably used, magnetite can be more suitably used, and octahedral magnetite can be more suitably used. Octahedron magnetite has the lowest volume resistivity among magnetites, and the performance of non-magnetic one-component toner can be effectively improved by addition of a small amount. The magnetite used in the present invention preferably has an oil absorption of less than 25 mL / 100 g as measured with oil according to JIS K 5101. Magnetite having an oil absorption of less than 25 mL / 100 g has few aggregates and can be suitably used as an additive for non-magnetic one-component toner.

本発明に用いる(A)無機酸化物粒子は、体積抵抗率が1×105〜5×107Ω・cmであり、より好ましくは1×106〜3×107Ω・cmである。体積抵抗率が1×105Ω・cm未満であると、トナー粒子の帯電量が低下し、カブリが発生するおそれがある。体積抵抗率が5×107Ω・cmを超えると、長期間の印字において帯電量の上昇を抑制することができず、供給ローラの剥離性が不十分でトナーの入れ替わりがなく、選択現像とブレード融着が生ずるおそれがあり、また、トナー粒子の帯電電位が高くなりすぎて、濃度低下やベタ画像にムラが生ずるおそれがある。
本発明において、(A)無機酸化物粒子の個数平均粒径は、走査型電子顕微鏡(SEM)により観察したトナー粒子の表面に付着した無機酸化物粒子50個について求めた値である。本発明に用いる無機酸化物粒子は、個数平均粒径が0.35〜0.65μmであり、より好ましくは0.45〜0.60μmである。無機酸化物粒子の平均一次粒子径は0.35μm未満でも良く、トナーに外添したときに凝集した状態でトナー表面に存在し、そのときの個数平均粒径が0.35〜0.65μmであれば良い。無機酸化物粒子の個数平均粒径が0.35μm未満であると、粒径が小さすぎてトナー粒子間のスペーサにならず、トナー粒子同士の摩擦帯電が生じて帯電が不均一化し、カブリを生ずるおそれがあり、また、トナー粒子と現像ローラ間の付着力を抑制することができず、供給ローラの剥離性が不十分となり、選択現像とブレード融着が生ずるおそれがある。無機酸化物粒子の個数平均粒径が0.65μmを超えると、トナー粒子から遊離しやすく、無機酸化物粒子を添加した効果が十分に発現しないおそれがある。
The (A) inorganic oxide particles used in the present invention have a volume resistivity of 1 × 10 5 to 5 × 10 7 Ω · cm, more preferably 1 × 10 6 to 3 × 10 7 Ω · cm. If the volume resistivity is less than 1 × 10 5 Ω · cm, the charge amount of the toner particles may be reduced, and fogging may occur. When the volume resistivity exceeds 5 × 10 7 Ω · cm, the increase in the charge amount cannot be suppressed in long-term printing, the supply roller is not sufficiently peelable, and the toner is not replaced. Blade fusion may occur, and the charged potential of the toner particles may become too high, resulting in a decrease in density and unevenness in the solid image.
In the present invention, the number average particle diameter of (A) inorganic oxide particles is a value determined for 50 inorganic oxide particles adhering to the surface of the toner particles observed with a scanning electron microscope (SEM). The inorganic oxide particles used in the present invention have a number average particle size of 0.35 to 0.65 μm, more preferably 0.45 to 0.60 μm. The average primary particle diameter of the inorganic oxide particles may be less than 0.35 μm, and is present on the toner surface in an aggregated state when externally added to the toner. The number average particle diameter at this time is 0.35 to 0.65 μm. I need it. If the number average particle diameter of the inorganic oxide particles is less than 0.35 μm, the particle diameter is too small to be a spacer between the toner particles, and frictional charging between the toner particles occurs, resulting in uneven charging and fogging. In addition, the adhesive force between the toner particles and the developing roller cannot be suppressed, and the peelability of the supply roller becomes insufficient, which may cause selective development and blade fusion. When the number average particle diameter of the inorganic oxide particles exceeds 0.65 μm, the inorganic oxide particles are easily released from the toner particles, and the effect of adding the inorganic oxide particles may not be sufficiently exhibited.

本発明に用いる無機酸化物粒子は、粒径0.8μm以上の粒子が25個数%未満であることが好ましく、22個数%未満であることがより好ましい。本発明において、(A)無機酸化物粒子の粒径0.8μm以上の粒子の個数%は、走査型電子顕微鏡(SEM)により観察したトナー粒子の表面に付着した無機酸化物粒子50個について求めた値である。粒径0.8μm以上の粒子が25個数%以上であると、トナー粒子から遊離する無機酸化物粒子が多くなり、無機酸化物粒子を添加した効果が十分に発現しないおそれがある。
本発明において、(A)無機酸化物粒子の添加量は、トナー母粒子100重量部に対して0.5〜3重量部であり、より好ましくは1〜2重量部である。無機酸化物粒子の添加量がトナー母粒子100重量部に対して0.5重量部未満であると、トナー粒子間スペーサとして不十分なため、トナー粒子同士の摩擦帯電が生じて帯電が不均一化し、カブリを生ずるおそれがある。無機酸化物粒子の添加量がトナー母粒子100重量部に対して3重量部を超えると、感光体表面の摩耗が激しかったり、トナーの流動性が悪化し、現像ローラへの搬送が不良となるおそれがある。
本発明においては、(A)無機酸化物粒子として、シリコーンオイルやシランカップリング剤などで表面処理した無機酸化物粒子を使用することができる。
The inorganic oxide particles used in the present invention preferably contain less than 25% by number of particles having a particle size of 0.8 μm or more, and more preferably less than 22% by number. In the present invention, (A) the number% of inorganic oxide particles having a particle size of 0.8 μm or more is determined for 50 inorganic oxide particles adhering to the surface of the toner particles observed with a scanning electron microscope (SEM). Value. When the number of particles having a particle size of 0.8 μm or more is 25% by number or more, the amount of inorganic oxide particles released from the toner particles increases, and the effect of adding the inorganic oxide particles may not be sufficiently exhibited.
In the present invention, the amount of (A) inorganic oxide particles added is 0.5-3 parts by weight, more preferably 1-2 parts by weight, per 100 parts by weight of toner base particles. If the amount of the inorganic oxide particles added is less than 0.5 parts by weight based on 100 parts by weight of the toner base particles, the toner particles are insufficient as a spacer between the toner particles, resulting in frictional charging between the toner particles and uneven charging. May cause fogging. When the added amount of the inorganic oxide particles exceeds 3 parts by weight with respect to 100 parts by weight of the toner base particles, the surface of the photoreceptor is severely worn, the fluidity of the toner is deteriorated, and the conveyance to the developing roller becomes poor. There is a fear.
In the present invention, (A) inorganic oxide particles surface-treated with silicone oil or a silane coupling agent can be used as the inorganic oxide particles.

本発明の非磁性1成分トナーにおいては、トナー母粒子100重量部に対して、(B)平均一次粒子径5nm以上30nm未満、より好ましくは平均一次粒子径7nm以上20nm未満の疎水性シリカ0.3〜3重量部、より好ましくは0.4〜2重量部を添加する。トナー母粒子に平均一次粒子径5nm以上30nm未満の疎水性シリカを添加することにより、非磁性1成分トナーの流動性を向上することができる。疎水性シリカの平均一次粒子径が5nm未満であると、疎水性シリカがトナー母粒子に埋め込まれ、流動性向上効果が十分に発現しないおそれがある。平均一次粒子径5nm以上30nm未満の疎水性シリカの添加量がトナー母粒子100重量部に対して0.3重量部未満であると、非磁性1成分トナーの流動性が向上せず、現像ローラへの搬送が不良となるおそれがあり、この傾向は再利用品において特に顕著に現れるおそれがある。平均一次粒子径5nm以上30nm未満の疎水性シリカの添加量がトナー母粒子100重量部に対して3重量部を超えると、トナー粒子の帯電電位が高くなりすぎて、濃度低下やベタ画像にムラが発生するおそれがある。   In the non-magnetic one-component toner of the present invention, (B) hydrophobic silica having an average primary particle size of 5 nm or more and less than 30 nm, more preferably an average primary particle size of 7 nm or more and less than 20 nm, relative to 100 parts by weight of toner base particles. Add 3 to 3 parts by weight, more preferably 0.4 to 2 parts by weight. By adding hydrophobic silica having an average primary particle diameter of 5 nm or more and less than 30 nm to the toner base particles, the fluidity of the nonmagnetic one-component toner can be improved. If the average primary particle size of the hydrophobic silica is less than 5 nm, the hydrophobic silica is embedded in the toner base particles, and the fluidity improving effect may not be sufficiently exhibited. When the addition amount of hydrophobic silica having an average primary particle diameter of 5 nm or more and less than 30 nm is less than 0.3 part by weight with respect to 100 parts by weight of the toner base particles, the fluidity of the nonmagnetic one-component toner is not improved, and the developing roller There is a risk that the transport to the product becomes defective, and this tendency may be particularly noticeable in the reused product. If the added amount of hydrophobic silica having an average primary particle size of 5 nm or more and less than 30 nm exceeds 3 parts by weight with respect to 100 parts by weight of the toner base particles, the charged potential of the toner particles becomes too high, resulting in a decrease in density or unevenness in the solid image. May occur.

本発明の非磁性1成分トナーにおいては、トナー母粒子100重量部に対して、(C)平均一次粒子径30nm以上80nm未満、より好ましくは平均一次粒子径35nm以上60nm未満の疎水性シリカ0.3〜3重量部、より好ましくは0.6〜2重量部を添加する。トナー母粒子に平均一次粒子径30nm以上80nm未満の疎水性シリカを添加することにより、疎水性シリカのトナー母粒子への埋没を防止でき、長期の繰り返しの画像形成においても良好な画像品質が得られる。疎水性シリカの平均一次粒子径が80nmを超えると、疎水性シリカがトナー母粒子から遊離して、耐久性向上効果が十分に発現しないおそれがある。平均一次粒子径30nm以上80nm未満の疎水性シリカの添加量がトナー母粒子100重量部に対して0.3重量部未満であると、耐久性が向上せず、ブレード融着が発生しやすくなるおそれがある。平均一次粒子径30nm以上80nm未満の疎水性シリカの添加量がトナー母粒子100重量部に対して3重量部を超えると、非磁性1成分トナーの流動性が低下するおそれがある。
本発明において、疎水性シリカとして、(B)平均一次粒子径5nm以上30nm未満の疎水性シリカのみを添加すると、疎水性シリカのトナー母粒子への埋没を防止できず、長期の繰り返しの画像形成において安定した画像品質が得られず、また、ブレード融着も発生しやすくなるおそれがある。本発明において、疎水性シリカとして、(C)平均一次粒子径30nm以上80nm未満の疎水性シリカのみを添加すると、非磁性1成分トナーの流動性が低下するおそれがある。
In the non-magnetic one-component toner of the present invention, (C) hydrophobic silica having an average primary particle diameter of 30 nm or more and less than 80 nm, more preferably an average primary particle diameter of 35 nm or more and less than 60 nm, relative to 100 parts by weight of toner mother particles. Add 3 to 3 parts by weight, more preferably 0.6 to 2 parts by weight. By adding hydrophobic silica having an average primary particle diameter of 30 nm or more and less than 80 nm to the toner base particles, embedding of the hydrophobic silica in the toner base particles can be prevented, and good image quality can be obtained even in long-term repeated image formation. It is done. When the average primary particle diameter of the hydrophobic silica exceeds 80 nm, the hydrophobic silica is liberated from the toner base particles, and the durability improving effect may not be sufficiently exhibited. When the addition amount of hydrophobic silica having an average primary particle size of 30 nm or more and less than 80 nm is less than 0.3 parts by weight with respect to 100 parts by weight of the toner base particles, durability is not improved and blade fusion is likely to occur. There is a fear. If the added amount of hydrophobic silica having an average primary particle size of 30 nm or more and less than 80 nm exceeds 3 parts by weight with respect to 100 parts by weight of the toner base particles, the fluidity of the nonmagnetic one-component toner may be lowered.
In the present invention, when only hydrophobic silica (B) having an average primary particle diameter of 5 nm or more and less than 30 nm is added as hydrophobic silica, embedding of hydrophobic silica in toner base particles cannot be prevented, and long-term repeated image formation In this case, stable image quality cannot be obtained, and blade fusion may occur easily. In the present invention, if only (C) hydrophobic silica having an average primary particle diameter of 30 nm or more and less than 80 nm is added as the hydrophobic silica, the fluidity of the non-magnetic one-component toner may be lowered.

本発明に用いるシリカの製造方法に特に制限はなく、例えば、乾式法シリカ、湿式沈降法シリカ、湿式ゲル法シリカなどのいずれをも用いることができる。本発明に用いる疎水性シリカは、これらのシリカを、シランカップリング剤、シリコーンオイルなどを用いて表面処理することにより製造することができる。シランカップリング剤としては、例えば、ヘキサメチルジシラザン、トリエチルアミノシランなどのアミン官能シラン、(3−グリシジルオキシプロピル)トリメトキシシランなどのエポキシ官能シラン、3−メルカプトプロピルトリメトキシシランなどのメルカプト官能シランなどを挙げることができる。
本発明に用いるトナー母粒子の製造方法に特に制限はなく、例えば、バインダー樹脂、着色剤、電荷制御剤、離型剤などを溶融混練し、粉砕し、分級により粗粒子と微粒子を除去して粒径分布を狭くして、トナー母粒子とすることができる。バインダー樹脂としては、例えば、ポリエステル系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、スチレン−(メタ)アクリル酸エステル共重合体、ポリアミド系樹脂、アクリル系樹脂、ケトン樹脂、マレイン酸樹脂、クマロン樹脂、フェノール樹脂、エポキシ樹脂、テルペン樹脂、石油樹脂、ポリスチレン、スチレン−ブタジエン共重合体、スチレン−マレイン酸共重合体などを挙げることができる。本発明方法に用いるバインダー樹脂は、ガラス転移温度が50〜75℃であることが好ましく、55〜70℃であることがより好ましい。ガラス転移温度が50℃未満であると、非磁性1成分トナーの保存性が低下するおそれがある。ガラス転移温度が75℃を超えると、非磁性1成分トナーの低温定着性が不十分となるおそれがある。着色剤としては、例えば、カーボンブラック、四三酸化鉄、パーマネントイエロー、キナクリドン、銅フタロシアニンなどを挙げることができる。電荷制御剤としては、例えば、アセチルアセトン金属化合物、芳香族ヒドロキシカルボン酸、モノアゾ金属化合物、含金属サリチル酸系化合物などの負帯電性電荷制御剤や、トリフェニルメタン染料、ニグロシン、4級アンモニウム塩などの正帯電性電荷制御剤などを挙げることができる。離型剤としては、例えば、カルナウバワックス、パラフィンワックス、モンタンワックス、ポリエチレンワックス、ポリプロピレンワックス、エステル系ワックスなどを挙げることができる。
There is no restriction | limiting in particular in the manufacturing method of the silica used for this invention, For example, any of dry method silica, wet precipitation method silica, wet gel method silica, etc. can be used. The hydrophobic silica used in the present invention can be produced by surface-treating these silicas using a silane coupling agent, silicone oil or the like. Examples of the silane coupling agent include amine functional silanes such as hexamethyldisilazane and triethylaminosilane, epoxy functional silanes such as (3-glycidyloxypropyl) trimethoxysilane, and mercapto functional silanes such as 3-mercaptopropyltrimethoxysilane. And so on.
There are no particular restrictions on the method for producing toner base particles used in the present invention. For example, a binder resin, a colorant, a charge control agent, a release agent, etc. are melt-kneaded, pulverized, and coarse particles and fine particles are removed by classification. The particle size distribution can be narrowed to obtain toner base particles. Examples of the binder resin include polyester resins, polyurethane resins, polyolefin resins, styrene- (meth) acrylate copolymers, polyamide resins, acrylic resins, ketone resins, maleic resins, coumarone resins, phenols. Examples thereof include resins, epoxy resins, terpene resins, petroleum resins, polystyrene, styrene-butadiene copolymers, and styrene-maleic acid copolymers. The binder resin used in the method of the present invention preferably has a glass transition temperature of 50 to 75 ° C, more preferably 55 to 70 ° C. If the glass transition temperature is less than 50 ° C., the storage stability of the non-magnetic one-component toner may be reduced. If the glass transition temperature exceeds 75 ° C, the low-temperature fixability of the non-magnetic one-component toner may be insufficient. Examples of the colorant include carbon black, triiron tetroxide, permanent yellow, quinacridone, copper phthalocyanine, and the like. Examples of charge control agents include negatively chargeable charge control agents such as acetylacetone metal compounds, aromatic hydroxycarboxylic acids, monoazo metal compounds, metal-containing salicylic acid compounds, triphenylmethane dyes, nigrosine, quaternary ammonium salts, and the like. A positively chargeable charge control agent can be used. Examples of the mold release agent include carnauba wax, paraffin wax, montan wax, polyethylene wax, polypropylene wax, and ester wax.

本発明において、バインダー樹脂、着色剤、電荷制御剤、離型剤などを溶融混練する方法に特に制限はなく、例えば、これらの材料をリボン型混合機、二重円錐型混合機、高速混合機、円錐型スクリュー混合機などを用いてあらかじめ混合したのち、バンバリーミキサー、二軸混練押出機、3本ロールなどを用いて溶融混練することができる。溶融混練物は、冷却後、粉砕される。用いる粉砕機としては、例えば、インパクトクラッシャー、ハンマークラッシャーなどの衝撃式粉砕機、ロッドミル、ボールミルなどの打撃式粉砕機、カウンタージェットミルなどの圧縮空気源を利用したジェット式粉砕機などを挙げることができる。粉砕された粒子は、分級することにより粗粒子と微粒子を除いて粒径分布の狭いトナー粒子とすることが好ましい。分級する方法に特に制限はなく、例えば、気流式分級装置などを用いて分級することができる。
本発明において、トナー母粒子に、(A)無機酸化物粒子、(B)平均一次粒子径5nm以上30nm未満の疎水性シリカ及び(C)平均一次粒子径30nm以上80nm未満の疎水性シリカを添加、混合する方法に特に制限はなく、例えば、水平円筒型混合機、撹拌羽根付きV型混合機、二重円錐型混合機、振動回転型混合機、短軸リボン型混合機、複軸パドル型混合機、回転鋤型混合機、二軸遊星撹拌型混合機、円錐スクリュー型混合機、高速撹拌型混合機、回転円盤型混合機、ローラ付き回転容器型混合機、撹拌付き回転容器型混合機、高速楕円ロータ型混合機、気流撹拌型混合機、無撹拌型混合機などを用いて添加、混合することができる。これらの中でも、高速撹拌型混合機[三井鉱山(株)、ヘンシェルミキサー(登録商標)]で羽根の周速30m/s以上で混合することが好ましい。トナー母粒子に、(A)無機酸化物粒子、(B)平均一次粒子径5nm以上30nm未満の疎水性シリカ及び(C)平均一次粒子径30nm以上80nm未満の疎水性シリカを添加して混合することにより、無機酸化物粒子と平均一次粒子径の異なる2種類の疎水性シリカは、トナー母粒子の表面に付着する。
本発明の非磁性1成分現像用トナーは、長期間の印字においても、現像ローラ上のトナー薄膜形成が維持され、帯電量が安定化し、高濃度でベタ均一性が良好でカブリもなく、ブレード融着や選択現像が防止される。本発明の非磁性1成分トナーは、特に再生カートリッジにおいて、現像ローラや規制ブレードや供給ローラが再利用される場合にも、良好な画像品質が得られる。
In the present invention, there is no particular limitation on the method of melt-kneading the binder resin, colorant, charge control agent, release agent, etc. For example, these materials can be mixed into a ribbon mixer, a double cone mixer, a high speed mixer. Then, after mixing in advance using a conical screw mixer or the like, it can be melt-kneaded using a Banbury mixer, a twin-screw kneading extruder, three rolls, or the like. The melt-kneaded product is pulverized after cooling. Examples of the pulverizer used include impact pulverizers such as impact crushers and hammer crushers, impact pulverizers such as rod mills and ball mills, and jet pulverizers using a compressed air source such as a counter jet mill. it can. The pulverized particles are preferably classified into toner particles having a narrow particle size distribution by removing coarse particles and fine particles. There is no restriction | limiting in particular in the classification method, For example, it can classify | categorize using an airflow classifier etc.
In the present invention, (A) inorganic oxide particles, (B) hydrophobic silica having an average primary particle diameter of 5 nm or more and less than 30 nm, and (C) hydrophobic silica having an average primary particle diameter of 30 nm or more and less than 80 nm are added to the toner base particles. The mixing method is not particularly limited. For example, a horizontal cylindrical mixer, a V-type mixer with stirring blades, a double cone type mixer, a vibratory rotary type mixer, a short axis ribbon type mixer, a double axis paddle type Mixer, rotary saddle type mixer, twin-shaft planetary stirring type mixer, conical screw type mixer, high speed stirring type mixer, rotary disk type mixer, rotary container type mixer with roller, rotary container type mixer with stirring These can be added and mixed using a high-speed elliptical rotor type mixer, an air-flow stirring type mixer, a non-stirring type mixer, or the like. Among these, it is preferable to mix at a peripheral speed of 30 m / s or more with a high-speed stirring mixer [Mitsui Mining Co., Ltd., Henschel Mixer (registered trademark)]. To the toner base particles, (A) inorganic oxide particles, (B) hydrophobic silica having an average primary particle diameter of 5 nm or more and less than 30 nm, and (C) hydrophobic silica having an average primary particle diameter of 30 nm or more and less than 80 nm are added and mixed. As a result, the two types of hydrophobic silica having different average primary particle diameters from the inorganic oxide particles adhere to the surface of the toner base particles.
The non-magnetic one-component developing toner of the present invention maintains the toner thin film formation on the developing roller even during long-term printing, stabilizes the charge amount, has high density, good solid uniformity, no fog, Fusing and selective development are prevented. The non-magnetic one-component toner of the present invention can provide good image quality even when a developing roller, a regulating blade, and a supply roller are reused, particularly in a reproduction cartridge.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例において、評価は下記の方法により行った。
(1)バインダー樹脂の軟化温度
JIS K 7199に規定するキャピラリーレオメータ[(株)島津製作所、CFT−500C]を用い、シリンダ内径11.329mm、キャピラリーダイ内径1mm、長さ1mmとし、シリンダ内に樹脂1.0gを充填し、ピストンに荷重98Nをかけ、50℃から5℃/分で昇温し、充填された樹脂の2分の1が流出したときの温度をフローテスタT1/2とする。
(2)吸油量
JIS K 5101にしたがって、あまに油を用いて測定する。
(3)外添の無機酸化物の体積抵抗率
両端が金属で構成された直径1.29mmの円筒状容器にトナー1.0gを充填し、タッピングを3回行ったのち、電圧100Vを印加して測定する。
(4)トナー粒子表面上の無機酸化物の粒子径
走査型電子顕微鏡[日本電子(株)、JSM−5200]により、トナー表面に付着する無機酸化物50個の粒子径を調べ、個数平均と、0.8μm以上の粒子の割合を求める。
(5)トナーの凝集度
パウダーテスター[ホソカワミクロン(株)]を用いて、100メッシュ、200メッシュ、440メッシュの篩を3段重ねにし、最上位置の100メッシュ篩にトナー5gを載置し、15秒間振動させたのち、各篩の上のトナー重量を測定し、次式により凝集度を算出する。
凝集度(%)={[5×(100メッシュ残量)+3×(200メッシュ残量)+(440メッシュ残量)]/(5×5)}×100
(6)画像濃度
マクベス濃度計[マクベス社、RD−19]を用いて測定する。
○:1.11以上(良好)
△:1.05以上1.11未満(実用上問題ない)
×:1.05未満(不良)
(7)ベタ均一性
目視により判定する。
○:全く濃淡がない(良好)
△:ベタ印字画像を透かして見たときに濃淡が確認される(実用上問題ない)
×:明らかに濃淡が確認される(不良)
(8)カブリ
JIS P 8152にしたがって、色彩色差計[ミノルタ(株)]を用いて未使用紙の反射率と画像白地部の反射率を測定し、その差を求める。
○:1.0%未満(良好)
△:1.0%以上2.0%未満(実用上問題ない)
×:2.0%以上(不良)
(9)トナー消費量
A4版用紙6,000枚に印字率5%で印字し、印字試験前と印字試験後のカートリッジ現像器ユニットの重量差から使用されたトナー量を算出し、印字枚数で除する。
○:26mg/枚未満(良好)
△:26mg/枚以上29mg/枚未満(実用上問題ない)
×:29mg/枚以上(不良)
(10)ブレード融着
画像上の白抜けの縦スジを目視により観察し、縦スジ発生までの印字用紙枚数を記録する。また、評価終了後にドクターブレードを観察し、トナーの融着物(固着物)の有無を確認し、融着物がある場合は、画像上の白抜けの位置と一致するか確認する。
(11)現像ローラ上のトナー搬送量
現像ローラ上のトナーを1cm×5cmのメンディングテープ[ニチバン製]で採取して、トナー重量を測定し、測定値を5cm2で除して、単位面積当たりのトナー搬送量を算出する。
(12)選択現像
印字試験前と6,000枚印字後のトナーの体積平均粒径を、コールターマルチサイザーII[コールター社]を用いてアパチャー径100μmのアパチャーチューブを使用して測定し、試験前後の体積平均粒径の差を評価する。
○:体積平均粒径の差1.0μm未満(良好)
△:体積平均粒径の差1.0μm以上2.0μm未満(実用上問題ない)
×:体積平均粒径の差2.0μm以上(トナー消費量増加、ベタ均一性悪化により、実用上問題あり)
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples, the evaluation was performed by the following method.
(1) Softening temperature of binder resin Using a capillary rheometer specified by JIS K 7199 (Shimadzu Corporation, CFT-500C), the inner diameter of the cylinder is 11.329 mm, the inner diameter of the capillary die is 1 mm, and the length is 1 mm. 1.0 g is charged, a load of 98 N is applied to the piston, the temperature is raised from 50 ° C. to 5 ° C./min, and the temperature when half of the filled resin flows out is defined as a flow tester T 1/2 . .
(2) Oil absorption amount According to JIS K 5101, the oil absorption is measured using oil.
(3) Volume resistivity of externally added inorganic oxide 1.0 g of toner is filled in a cylindrical container with a diameter of 1.29 mm, both ends of which are made of metal, and after tapping three times, a voltage of 100 V is applied. To measure.
(4) Particle diameter of inorganic oxide on the toner particle surface The particle diameter of 50 inorganic oxides adhering to the toner surface was examined with a scanning electron microscope [JEOL Ltd., JSM-5200]. The ratio of particles of 0.8 μm or more is obtained.
(5) Agglomeration degree of toner Using a powder tester [Hosokawa Micron Co., Ltd.], 100 mesh, 200 mesh, and 440 mesh sieves are stacked in three stages, and 5 g of toner is placed on the uppermost 100 mesh sieve. After vibrating for 2 seconds, the toner weight on each sieve is measured, and the degree of aggregation is calculated by the following equation.
Aggregation degree (%) = {[5 × (100 mesh remaining amount) + 3 × (200 mesh remaining amount) + (440 mesh remaining amount)] / (5 × 5)} × 100
(6) Image density Measured using a Macbeth densitometer [Macbeth, RD-19].
○: 1.11 or higher (good)
Δ: 1.05 or more and less than 1.11 (no problem in practical use)
×: Less than 1.05 (defect)
(7) Solid uniformity Determined by visual inspection.
○: No shading (good)
Δ: Contrast is confirmed when a solid print image is viewed through (no problem in practice)
X: The density is clearly confirmed (defect)
(8) Fog According to JIS P8152, the reflectance of the unused paper and the reflectance of the white background of the image are measured using a color difference meter [Minolta Co., Ltd.], and the difference is obtained.
○: Less than 1.0% (good)
Δ: 1.0% or more and less than 2.0% (no problem in practical use)
×: 2.0% or more (defect)
(9) Toner consumption Amount of toner used is calculated from the weight difference of the cartridge developer unit before and after the print test, printed on 6,000 sheets of A4 size paper at a print rate of 5%. Divide.
○: Less than 26 mg / sheet (good)
Δ: 26 mg / sheet or more and less than 29 mg / sheet (no problem in practical use)
×: 29 mg / sheet or more (defect)
(10) Blade fusion The white lines on the image are visually observed, and the number of print sheets until the vertical lines are generated is recorded. Also, after the evaluation is completed, the doctor blade is observed to check for the presence or absence of a fused product (fixed product) of the toner. If there is a fused product, it is confirmed whether it matches the position of the white spot on the image.
(11) Toner transport amount on the developing roller The toner on the developing roller is collected with a 1 cm × 5 cm mending tape [manufactured by Nichiban], the toner weight is measured, and the measured value is divided by 5 cm 2 to obtain a unit area. The amount of toner transport per hit is calculated.
(12) Selective development The volume average particle diameter of the toner before printing test and after printing 6,000 sheets was measured using an aperture tube with an aperture diameter of 100 μm using Coulter Multisizer II [Coulter, Inc.], before and after the test. The difference of the volume average particle diameter of is evaluated.
○: Difference in volume average particle size of less than 1.0 μm (good)
Δ: Volume average particle size difference of 1.0 μm or more and less than 2.0 μm (no problem in practical use)
X: Difference in volume average particle diameter of 2.0 μm or more (practical problem due to increased toner consumption and solid uniformity deterioration)

実施例1
ポリエステル樹脂[数平均分子量4,000、重量平均分子量206,000、酸価5.5mgKOH/g、ガラス転移温度61℃、フローテスタT1/2136℃]91.6重量部、カーボンブラック[キャボット社、Black Pearls L]5.0重量部、電荷制御剤[オリエント化学工業(株)、E−304]0.9重量部及び離型剤[三洋化成工業(株)、ユーメックス110TS]2.5重量部を予め高速撹拌混合機[三井鉱山(株)、ヘンシェルミキサー(登録商標)]を用いて混合し、得られた混合物を二軸押出機[(株)池貝、PCM30]を用いて150℃で溶融混練したのち、ジェット式粉砕機[ホソカワミクロン(株)、カウンタージェットミル]で体積平均粒径9μmに粉砕し、気流式分級装置[日鉄鉱業(株)、エルボージェットEJ−PURO]を用いて粗粉と微粉を分級し、粒度分布が狭いトナー母粒子を得た。
このトナー母粒子100重量部、八面体マグネタイト[体積抵抗率1.4×107Ω・cm、吸油量19.2mL/100g]1.5重量部、疎水性シリカ[キャボット社、TS−530、平均一次粒子径7nm、ヘキサメチルジシラザンにより疎水化処理]0.5重量部及び疎水性シリカ[日本アエロジル(株)、RX−50、平均一次粒子径40nm、ヘキサメチルジシラザンにより疎水化処理]1.0重量部をヘンシェルミキサー[三井鉱山(株)]を用いて周速40m/s相当の回転数で混合し、さらに200メッシュスクリーンを備えた超音波振動篩を通して、非磁性1成分トナーを得た。
走査型電子顕微鏡[日本電子(株)、JSM−5200]を用いてトナー粒子の表面上の八面体マグネタイトの粒径を観察したところ、個数平均粒径0.55μm、粒径0.8μm以上の粒子20個数%であった。トナーの凝集度は、27.7%であった。
非磁性1成分現像方式のレーザープリンタ[Samsung社、ML−2150]を用いて、先ず純正カートリッジにてA4版用紙に印字率5%の画像パターンの3枚連続印字と30秒間の休止を繰り返す3枚間欠モードで6,000枚印字したのち、カートリッジを分解、清掃して再度組み立てて上記の非磁性1成分トナー220gを充填し、3枚間欠モードで印字して、初期、3,000枚目及び6,000枚目に評価を行った。
画像濃度は、初期1.52、3,000枚目1.54、6,000枚目1.50であった。ベタ均一性は、初期と3,000枚目は良好であり、6,000枚目は実用上問題ないレベルではあるがやや不良であった。カブリは、初期0.42%、3,000枚目0.39%、6,000枚目0.77%であった。トナー消費量は、25.4mg/枚であった。画像上に白抜けの縦スジはなく、ブレード融着は発生しなかった。現像ローラ上のトナー搬送量は、初期0.66mg/cm2、3,000枚目0.62mg/cm2、6,000枚目0.66mg/cm2であった。トナー粒子の体積平均粒径は、印字試験開始前9.2μm、6,000枚の印字試験終了後10.1μmであった。
Example 1
Polyester resin [number average molecular weight 4,000, weight average molecular weight 206,000, acid value 5.5 mg KOH / g, glass transition temperature 61 ° C., flow tester T 1/2 136 ° C.] 91.6 parts by weight, carbon black [Cabot Company, Black Pearls L] 5.0 parts by weight, charge control agent [Orient Chemical Industries, Ltd., E-304] 0.9 parts by weight and mold release agent [Sanyo Chemical Industries, Ltd., Umex 110TS] 2.5 Part by weight was previously mixed using a high-speed stirring mixer [Mitsui Mining Co., Ltd., Henschel Mixer (registered trademark)], and the resulting mixture was mixed at 150 ° C. using a twin-screw extruder [Ikegai, PCM30]. After being melt-kneaded with a jet type crusher [Hosokawa Micron Co., Ltd., counter jet mill], it is pulverized to a volume average particle size of 9 μm, and an airflow classifier [Nippon Mining Co., Ltd., Elbow Jet EJ-PURO]. Classified coarse powder and fine powder using a particle size distribution was obtained narrow toner mother particles.
100 parts by weight of the toner base particles, octahedral magnetite [volume resistivity 1.4 × 10 7 Ω · cm, oil absorption 19.2 mL / 100 g] 1.5 parts by weight, hydrophobic silica [Cabot, TS-530, Average primary particle size 7 nm, hydrophobized with hexamethyldisilazane] 0.5 parts by weight and hydrophobic silica [Nippon Aerosil Co., Ltd., RX-50, average primary particle size 40 nm, hydrophobized with hexamethyldisilazane] 1.0 part by weight is mixed with a Henschel mixer [Mitsui Mining Co., Ltd.] at a rotational speed equivalent to a peripheral speed of 40 m / s, and further passed through an ultrasonic vibrating screen equipped with a 200 mesh screen to obtain non-magnetic one-component toner. Obtained.
When the particle size of octahedral magnetite on the surface of the toner particles was observed using a scanning electron microscope [JEOL Ltd., JSM-5200], the number average particle size was 0.55 μm, and the particle size was 0.8 μm or more. The number of particles was 20%. The degree of aggregation of the toner was 27.7%.
Using a non-magnetic one-component development type laser printer [Samsung, ML-2150], first, three continuous printing of an image pattern with a printing rate of 5% and a pause for 30 seconds are repeated with a genuine cartridge on an A4 size sheet 3 After printing 6,000 sheets in intermittent sheet mode, disassemble, clean and reassemble the cartridge, fill with 220 g of the above-mentioned non-magnetic one-component toner, print in intermittent mode with three sheets, and the initial 3,000 sheet And the evaluation was performed on the 6,000th sheet.
The image density was 1.52 at the initial stage, 1.54 for the 3,000th sheet, and 1.50 for the 6,000th sheet. The solid uniformity was good at the initial stage and the 3,000th sheet, and the 6,000th sheet was slightly poor although it was at a level of no practical problem. The fog was 0.42% at the initial stage, 0.39% at the 3,000th sheet, and 0.77% at the 6,000th sheet. The toner consumption was 25.4 mg / sheet. There were no white vertical stripes on the image, and no blade fusion occurred. Toner conveyance amount on the developing roller, the initial 0.66 mg / cm 2, 3,000 sheet 0.62 mg / cm 2, was 6,000 sheet 0.66 mg / cm 2. The volume average particle diameter of the toner particles was 9.2 μm before the start of the print test and 10.1 μm after the end of the print test of 6,000 sheets.

比較例1
八面体マグネタイトの代わりに、チタン酸バリウム[体積抵抗率1.0×108Ω・cm]1.5重量部を配合した以外は、実施例1と同様にして、非磁性1成分トナーを製造し、印字試験を行った。
走査型電子顕微鏡を用いてトナー粒子の表面上のチタン酸バリウムの粒径を観察したところ、個数平均粒径0.70μm、粒径0.8μm以上の粒子27個数%であった。トナーの凝集度は、37.9%であった。
印字試験において、2,000枚目にブレード融着が発生したために、試験を中止した。初期において、画像濃度は1.54、ベタ均一性は良好、カブリは0.31%、2,000枚までのトナー消費量は24.5mg/枚、現像ローラ上のトナー搬送量は0.60mg/cm2であった。
比較例2
八面体マグネタイトの代わりに、チタン酸バリウム[体積抵抗率1.2×109Ω・cm]1.5重量部を配合した以外は、実施例1と同様にして、非磁性1成分トナーを製造し、印字試験を行った。
走査型電子顕微鏡を用いてトナー粒子の表面上のチタン酸バリウムの粒径を観察したところ、個数平均粒径0.60μm、粒径0.8μm以上の粒子10個数%であった。トナーの凝集度は、44.6%であった。
画像濃度は、初期1.54、3,000枚目1.53、6,000枚目1.51であった。ベタ均一性は、初期は良好であり、3,000枚目は実用上問題ないレベルではあるがやや不良であり、6,000枚目は不良であった。カブリは、初期0.53%、3,000枚目0.56%、6,000枚目0.80%であった。トナー消費量は、24.1mg/枚であった。画像上に白抜けの縦スジはなく、ブレード融着は発生しなかった。現像ローラ上のトナー搬送量は、初期0.64mg/cm2、3,000枚目0.74mg/cm2、6,000枚目0.76mg/cm2であった。トナー粒子の体積平均粒径は、印字試験開始前9.1μm、6,000枚の印字試験終了後10.8μmであった。
Comparative Example 1
A non-magnetic one-component toner is produced in the same manner as in Example 1 except that 1.5 parts by weight of barium titanate [volume resistivity 1.0 × 10 8 Ω · cm] is blended in place of octahedral magnetite. Then, a printing test was conducted.
When the particle size of barium titanate on the surface of the toner particles was observed using a scanning electron microscope, the number average particle size was 0.70 μm, and the number of particles having a particle size of 0.8 μm or more was 27% by number. The degree of aggregation of the toner was 37.9%.
In the printing test, blade fusion occurred on the 2,000th sheet, so the test was stopped. Initially, the image density is 1.54, the solid uniformity is good, the fog is 0.31%, the toner consumption up to 2,000 sheets is 24.5 mg / sheet, and the toner conveyance amount on the developing roller is 0.60 mg. / Cm 2 .
Comparative Example 2
A non-magnetic one-component toner is produced in the same manner as in Example 1 except that 1.5 parts by weight of barium titanate [volume resistivity 1.2 × 10 9 Ω · cm] is blended instead of octahedral magnetite. Then, a printing test was conducted.
When the particle diameter of barium titanate on the surface of the toner particles was observed using a scanning electron microscope, the number average particle diameter was 0.60 μm, and the number of particles having a particle diameter of 0.8 μm or more was 10% by number. The degree of aggregation of the toner was 44.6%.
The image density was 1.54 at the initial stage, 1.53 for the 3,000th sheet, and 1.51 for the 6,000th sheet. The solid uniformity was good in the initial stage, and the 3,000th sheet was slightly defective although it was a level that was not problematic for practical use, and the 6,000th sheet was unsatisfactory. The fog was 0.53% at the initial stage, 0.556% at the 3,000th sheet, and 0.80% at the 6,000th sheet. The toner consumption was 24.1 mg / sheet. There were no white vertical stripes on the image, and no blade fusion occurred. Toner conveyance amount on the developing roller, the initial 0.64 mg / cm 2, 3,000 sheet 0.74 mg / cm 2, was 6,000 sheet 0.76 mg / cm 2. The volume average particle size of the toner particles was 9.1 μm before the start of the print test and 10.8 μm after the end of the print test of 6,000 sheets.

比較例3
無機酸化物粒子として、球形マグネタイト[体積抵抗率4.3×1010Ω・cm、吸油量17.0mL/g、シリコーンオイルにより表面処理]1.5重量部を配合した以外は、実施例1と同様にして、非磁性1成分トナーを製造し、印字試験を行った。
走査型電子顕微鏡を用いてトナー粒子の表面上の球形マグネタイトの粒径を観察したところ、個数平均粒径0.20μm、粒径0.8μm以上の粒子5個数%であった。トナーの凝集度は、35.2%であった。
印字試験において、初期からカブリが激しく、250枚目でも良くならないので、試験を中止した。初期において、画像濃度は1.44、ベタ均一性は実用上問題ないレベルではあるがやや不良、カブリは2.17%、現像ローラ上のトナー搬送量は0.64mg/cm2であった。
比較例4
無機酸化物粒子として、不定形マグネタイト[チタン工業(株)、RB−BL、体積抵抗率1.0×106Ω・cm、吸油量19.0mL/g]3.0重量部を配合した以外は、実施例1と同様にして、非磁性1成分トナーを製造し、印字試験を行った。
走査型電子顕微鏡を用いてトナー粒子の表面上の不定形マグネタイトの粒径を観察したところ、個数平均粒径0.80μm、粒径0.8μm以上の粒子50個数%であった。トナーの凝集度は、39.6%であった。
印字試験において、5,000枚目にブレード融着が発生したが、そのまま6,000枚目まで試験を継続した。画像濃度は、初期と3,000枚目は1.46、6,000枚目1.27であった。ベタ均一性は、初期は良好であり、3,000枚目は実用上問題ないレベルではあるがやや不良であり、6,000枚目は不良であった。カブリは、初期0.82%、3,000枚目0.76%、6,000枚目1.39%であった。トナー消費量は、30.2mg/枚であった。現像ローラ上のトナー搬送量は、初期0.54mg/cm2、3,000枚目0.60mg/cm2、6,000枚目0.72mg/cm2であった。トナー粒子の体積平均粒径は、印字試験開始前9.2μm、6,000枚の印字試験終了後12.5μmであった。
比較例5
無機酸化物粒子として、酸化チタン[体積抵抗率1.2×106Ω・cm]1.5重量部を配合した以外は、実施例1と同様にして、非磁性1成分トナーを製造し、印字試験を行った。
走査型電子顕微鏡を用いてトナー粒子の表面上の酸化チタンの粒径を観察したところ、個数平均粒径0.30μm、粒径0.8μm以上の粒子7個数%であった。トナーの凝集度は、25.7%であった。
印字試験において、3,000枚目にブレード融着が発生したので、試験を中止した。画像濃度は、初期1.51、3,000枚目1.52であった。ベタ均一性は、初期は良好であり、3,000枚目は実用上問題ないレベルではあるがやや不良であった。カブリは、初期0.63%、3,000枚目0.71%であった。3,000枚までのトナー消費量は、29.4mg/枚であった。現像ローラ上のトナー搬送量は、初期0.60mg/cm2、3,000枚目0.66mg/cm2であった。
Comparative Example 3
Example 1 except that 1.5 parts by weight of spherical magnetite [volume resistivity 4.3 × 10 10 Ω · cm, oil absorption 17.0 mL / g, surface treatment with silicone oil] was blended as inorganic oxide particles. In the same manner as above, a non-magnetic one-component toner was manufactured and a printing test was conducted.
When the particle size of the spherical magnetite on the surface of the toner particles was observed using a scanning electron microscope, the number average particle size was 0.20 μm and the number of particles having a particle size of 0.8 μm or more was 5% by number. The degree of aggregation of the toner was 35.2%.
In the printing test, fogging was intense from the beginning, and even the 250th sheet was not good, so the test was stopped. Initially, the image density was 1.44, the solid uniformity was at a level that was not a problem for practical use, but was slightly poor, the fog was 2.17%, and the toner conveyance amount on the developing roller was 0.64 mg / cm 2 .
Comparative Example 4
As inorganic oxide particles, except for blending 3.0 parts by weight of amorphous magnetite [Titanium Industry Co., Ltd., RB-BL, volume resistivity 1.0 × 10 6 Ω · cm, oil absorption 19.0 mL / g] In the same manner as in Example 1, a nonmagnetic one-component toner was produced and a printing test was conducted.
When the particle size of the irregular magnetite on the surface of the toner particles was observed using a scanning electron microscope, the number average particle size was 0.80 μm, and the number of particles having a particle size of 0.8 μm or more was 50% by number. The degree of aggregation of the toner was 39.6%.
In the printing test, blade fusion occurred on the 5,000th sheet, but the test was continued up to the 6,000th sheet. The image density was 1.46 for the initial and 3,000th sheets and 1.27 for the 6,000th sheet. The solid uniformity was good in the initial stage, and the 3,000th sheet was slightly defective although it was a level that was not problematic for practical use, and the 6,000th sheet was unsatisfactory. The fog was 0.82% at the initial stage, 0.76% at the 3,000th sheet, and 1.39% at the 6,000th sheet. The toner consumption was 30.2 mg / sheet. Toner conveyance amount on the developing roller, the initial 0.54 mg / cm 2, 3,000 sheet 0.60 mg / cm 2, was 6,000 sheet 0.72 mg / cm 2. The volume average particle diameter of the toner particles was 9.2 μm before the start of the print test and 12.5 μm after the end of the print test of 6,000 sheets.
Comparative Example 5
A nonmagnetic one-component toner was produced in the same manner as in Example 1 except that 1.5 parts by weight of titanium oxide [volume resistivity 1.2 × 10 6 Ω · cm] was blended as inorganic oxide particles. A printing test was conducted.
When the particle size of titanium oxide on the surface of the toner particles was observed using a scanning electron microscope, the number average particle size was 0.30 μm, and the number of particles having a particle size of 0.8 μm or more was 7% by number. The degree of aggregation of the toner was 25.7%.
In the printing test, blade fusion occurred on the 3,000th sheet, so the test was stopped. The image density was 1.51 at the initial stage and 1.52 at the 3000th sheet. The solid uniformity was good in the initial stage, and the 3,000th sheet was slightly poor although it was at a level where there was no practical problem. The fog was 0.63% at the initial stage and 0.71% at the 3000th sheet. The toner consumption up to 3,000 sheets was 29.4 mg / sheet. Toner conveyance amount on the developing roller, the initial 0.60 mg / cm 2, was 3,000 sheet 0.66 mg / cm 2.

比較例6
実施例1で調製したトナー母粒子100重量部に、八面体マグネタイト[体積抵抗率1.4×107Ω・cm、吸油量19.2mL/100g]1.5重量部と疎水性シリカ[キャボット社、TS−530、平均一次粒子径7nm、ヘキサメチルジシラザンにより疎水化処理]1.5重量部を配合した以外は、実施例1と同様にして、非磁性1成分トナーを製造し、印字試験を行った。
走査型電子顕微鏡を用いてトナー粒子の表面上の八面体マグネタイトの粒径を観察したところ、個数平均粒径0.55μm、粒径0.8μm以上の粒子20個数%であった。トナーの凝集度は、21.0%であった。
印字試験において1,000枚目でブレード融着が発生したため、試験を中止した。画像濃度は、初期1.53であった。ベタ均一性は、初期は良好であり、カブリは、初期0.59%であった。現像ローラ上のトナー搬送量は、初期0.64mg/cm2であった。
比較例7
実施例1で調製したトナー母粒子100重量部に、八面体マグネタイト[体積抵抗率1.4×107Ω・cm、吸油量19.2mL/100g]1.5重量部と疎水性シリカ[日本アエロジル(株)、RX−50、平均一次粒子径40nm、ヘキサメチルジシラザンにより疎水化処理]1.5重量部を配合した以外は、実施例1と同様にして、非磁性1成分トナーを製造し、印字試験を行った。
走査型電子顕微鏡を用いてトナー粒子の表面上の八面体マグネタイトの粒径を観察したところ、個数平均粒径0.55μm、粒径0.8μm以上の粒子20個数%であった。トナーの凝集度は、48.2%であった。
画像濃度は、初期1.41、3,000枚目1.36、6,000枚目1.17であった。ベタ均一性は、初期は実用上問題ないレベルであり、3,000枚目と6,000枚目は不良であった。カブリは、初期0.22%、3,000枚目0.38%、6,000枚目0.34%であった。トナー消費量は、19.6mg/枚であった。ブレード融着は、発生しなかった。現像ローラ上のトナー搬送量は、初期0.44mg/cm2、3,000枚目0.38mg/cm2、6,000枚目0.34mg/cm2であった。トナー粒子の体積平均粒径は、印字試験開始前9.1μm、6,000枚の印字試験終了後10.6μmであった。
実施例1及び比較例1〜7の無機酸化物及び疎水性シリカの性状と添加量を第1表に、得られた非磁性1成分トナーの試験結果を第2表に示す。
Comparative Example 6
To 100 parts by weight of the toner base particles prepared in Example 1, 1.5 parts by weight of octahedral magnetite [volume resistivity 1.4 × 10 7 Ω · cm, oil absorption 19.2 mL / 100 g] and hydrophobic silica [Cabot TS-530, average primary particle diameter 7 nm, hydrophobized with hexamethyldisilazane] A non-magnetic one-component toner was produced and printed in the same manner as in Example 1 except that 1.5 parts by weight were blended. A test was conducted.
When the particle size of octahedral magnetite on the surface of the toner particles was observed using a scanning electron microscope, the number average particle size was 0.55 μm, and the number of particles having a particle size of 0.8 μm or more was 20% by number. The degree of aggregation of the toner was 21.0%.
In the printing test, blade fusion occurred at the 1,000th sheet, so the test was stopped. The initial image density was 1.53. The solid uniformity was good initially, and the fog was 0.59% initially. The toner conveyance amount on the developing roller was initially 0.64 mg / cm 2 .
Comparative Example 7
To 100 parts by weight of toner base particles prepared in Example 1, 1.5 parts by weight of octahedral magnetite [volume resistivity 1.4 × 10 7 Ω · cm, oil absorption 19.2 mL / 100 g] and hydrophobic silica [Japan Aerosil Co., Ltd., RX-50, average primary particle size 40 nm, hydrophobized with hexamethyldisilazane] A non-magnetic one-component toner is produced in the same manner as in Example 1 except that 1.5 parts by weight is blended. Then, a printing test was conducted.
When the particle size of octahedral magnetite on the surface of the toner particles was observed using a scanning electron microscope, the number average particle size was 0.55 μm, and the number of particles having a particle size of 0.8 μm or more was 20% by number. The degree of aggregation of the toner was 48.2%.
The image density was 1.41 at the initial stage, 1.36th at the 3,000th sheet, and 1.17 at the 6,000th sheet. The solid uniformity was at a level where there was no practical problem in the initial stage, and the 3,000th and 6,000th sheets were poor. The fog was 0.22% at the initial stage, 0.38% at the 3,000th sheet, and 0.34% at the 6,000th sheet. The toner consumption was 19.6 mg / sheet. Blade fusion did not occur. Toner conveyance amount on the developing roller, the initial 0.44 mg / cm 2, 3,000 sheet 0.38 mg / cm 2, was 6,000 sheet 0.34 mg / cm 2. The volume average particle diameter of the toner particles was 9.1 μm before the start of the print test and 10.6 μm after the end of the print test of 6,000 sheets.
Table 1 shows the properties and addition amounts of the inorganic oxide and hydrophobic silica of Example 1 and Comparative Examples 1 to 7, and Table 2 shows the test results of the obtained nonmagnetic one-component toner.

Figure 2007164082
Figure 2007164082

Figure 2007164082
Figure 2007164082

第1表及び第2表に見られるように、トナー母粒子100重量部に、体積抵抗率1.4×107Ω・cm、個数平均粒径0.55μm、粒径0.8μm以上の粒子20個数%の八面体マグネタイト1.5重量部、平均一次粒子径7nmの疎水性シリカ0.5重量部及び平均一次粒子径40nmの疎水性シリカ1.0重量部を添加した実施例1の非磁性1成分トナーは、凝集度が小さく、6,000枚の印字試験において、画像濃度が1.50〜1.54で安定し、ベタ均一性は3,000枚までは良好で、6,000枚でも実用上問題ないレベルであり、カブリは発生せず、トナー消費量が少なく、ブレード融着が発生せず、トナー搬送量は0.62〜0.66mg/cm2で安定し、6,000枚印刷後の体積平均粒径の増加は0.9μmである。
これに対して、八面体マグネタイトの代わりに、体積抵抗率1.0×108Ω・cm、個数平均粒径0.70μm、粒径0.8μm以上の粒子27個数%のチタン酸バリウムを添加した比較例1の非磁性1成分トナーは、トナー凝集度が大きく、2,000枚でブレード融着が発生している。体積抵抗率1.2×109Ω・cmのチタン酸バリウムを添加した比較例2の非磁性1成分トナーは、トナー凝集度が大きく、印刷枚数が増すとベタ均一性が低下し、トナー搬送量が増加し、6,000枚印刷後の体積平均粒径の増加が1.7μmとやや大きい。
無機酸化物粒子として、体積抵抗率4.3×1010Ω・cm、個数平均粒径0.20μmの球形マグネタイトを添加した比較例3の非磁性1成分トナーは、トナー凝集度が大きく、印刷初期にカブリが発生している。体積平均粒径0.80μm、粒径0.8μm以上の粒子50個数%の不定形マグネタイトを添加した比較例4の非磁性1成分トナーは、トナー凝集度が大きく、画像濃度が薄く、印刷枚数が増すとベタ均一性が低下し、トナー搬送量が増加し、トナー消費量が多く、5,000枚でブレード融着が発生し、6,000枚印刷後の体積平均粒径の増加が3.3μmであって大きい。体積平均粒径0.30μmの酸化チタンを添加した比較例5の非磁性1成分トナーは、3,000枚でブレード融着が発生している。
疎水性シリカとして、平均一次粒子径7nmの疎水性シリカのみを添加した比較例6の非磁性1成分トナーは、初期の濃度、カブリとも良好であるが、1,000枚でブレード融着が発生したため、試験を中止した。平均一次粒子径40nmの疎水性シリカのみを添加した比較例7の非磁性1成分トナーは、流動性が悪く、初期から現像ローラ上のトナー搬送が不十分で、低濃度やベタ均一性が不良となる結果である。
As seen in Tables 1 and 2, 100 parts by weight of the toner base particles are particles having a volume resistivity of 1.4 × 10 7 Ω · cm, a number average particle size of 0.55 μm, and a particle size of 0.8 μm or more. Example 1 in which 1.5 parts by weight of 20% by number of octahedral magnetite, 0.5 parts by weight of hydrophobic silica having an average primary particle diameter of 7 nm and 1.0 part by weight of hydrophobic silica having an average primary particle diameter of 40 nm were added. The magnetic one-component toner has a low degree of aggregation and is stable at an image density of 1.50 to 1.54 in a print test of 6,000 sheets. The solid uniformity is good up to 3,000 sheets. Even on a sheet, the level is practically acceptable, fog does not occur, toner consumption is small, blade fusion does not occur, toner conveyance amount is stable at 0.62 to 0.66 mg / cm 2 , The increase in volume average particle size after printing 000 sheets is 0.9 μm.
On the other hand, instead of octahedral magnetite, barium titanate having a volume resistivity of 1.0 × 10 8 Ω · cm, a number average particle size of 0.70 μm, and 27% by number of particles having a particle size of 0.8 μm or more is added. The nonmagnetic one-component toner of Comparative Example 1 has a high toner aggregation degree, and blade fusion occurs on 2,000 sheets. The non-magnetic one-component toner of Comparative Example 2 to which barium titanate having a volume resistivity of 1.2 × 10 9 Ω · cm is added has a large toner aggregation degree, and as the number of printed sheets increases, the solid uniformity decreases and the toner conveyance The amount increases and the increase of the volume average particle size after printing 6,000 sheets is slightly large as 1.7 μm.
The non-magnetic one-component toner of Comparative Example 3 to which spherical magnetite having a volume resistivity of 4.3 × 10 10 Ω · cm and a number average particle size of 0.20 μm is added as the inorganic oxide particles has a large toner aggregation degree and printing. Initial fog is occurring. The non-magnetic one-component toner of Comparative Example 4 to which 50% by number of amorphous magnetite having a volume average particle size of 0.80 μm and a particle size of 0.8 μm or more is added has a high toner aggregation degree, a low image density, and the number of printed sheets. As the toner content increases, the solid uniformity decreases, the toner conveyance amount increases, the toner consumption is large, blade fusion occurs at 5,000 sheets, and the increase in volume average particle diameter after printing 6,000 sheets is 3 .3 μm and large. In the nonmagnetic monocomponent toner of Comparative Example 5 to which titanium oxide having a volume average particle size of 0.30 μm was added, blade fusion occurred on 3,000 sheets.
The non-magnetic one-component toner of Comparative Example 6 to which only hydrophobic silica having an average primary particle diameter of 7 nm is added as hydrophobic silica has good initial density and fog, but blade fusion occurs with 1,000 sheets. Therefore, the test was stopped. The nonmagnetic one-component toner of Comparative Example 7 to which only hydrophobic silica having an average primary particle size of 40 nm is added has poor fluidity, insufficient toner conveyance on the developing roller from the beginning, and low density and solid uniformity are poor. This is the result.

本発明の非磁性1成分トナーは、(A)体積抵抗率が低く、個数平均粒径が0.35〜0.65μmで、粒径の大きい粒子の含有量が少ない無機酸化物粒子、(B)平均一次粒子径の小さい疎水性シリカ及び(C)平均一次粒子径の大きい疎水性シリカをトナー母粒子に添加することにより、容易に製造することができ、トナー凝集度が低く流動性が良好であり、長期間にわたって安定して高画質の印字画像を得ることができる。本発明の非磁性1成分トナーは、ローラやブレードなどへの融着が防止され、現像ローラ、規制ブレード、供給ローラなどが再利用される再生カートリッジに好適に適用することができる。   The non-magnetic one-component toner of the present invention comprises (A) inorganic oxide particles having a low volume resistivity, a number average particle size of 0.35 to 0.65 μm, and a small content of particles having a large particle size, (B It can be easily manufactured by adding hydrophobic silica having a small average primary particle size and (C) hydrophobic silica having a large average primary particle size to the toner base particles, and has low toner cohesion and good fluidity. Therefore, it is possible to obtain a high-quality printed image stably over a long period of time. The non-magnetic one-component toner of the present invention can be suitably applied to a remanufactured cartridge in which fusing to a roller, a blade, or the like is prevented, and a developing roller, a regulating blade, a supply roller, etc. are reused.

Claims (2)

トナー母粒子100重量部に対して、(A)体積抵抗率1×105〜5×107Ω・cm、個数平均粒径0.35〜0.65μmである無機酸化物粒子0.5〜3重量部、(B)平均一次粒子径5nm以上30nm未満の疎水性シリカ0.3〜3重量部、及び、(C)平均一次粒子径30nm以上80nm未満の疎水性シリカ0.3〜3重量部を添加してなることを特徴とする非磁性1成分トナー。 (A) Inorganic oxide particles having a volume resistivity of 1 × 10 5 to 5 × 10 7 Ω · cm and a number average particle size of 0.35 to 0.65 μm with respect to 100 parts by weight of toner mother particles 0.5 to 3 parts by weight, (B) 0.3-3 parts by weight of hydrophobic silica having an average primary particle diameter of 5 nm or more and less than 30 nm, and (C) 0.3-3 parts by weight of hydrophobic silica having an average primary particle diameter of 30 nm or more and less than 80 nm A non-magnetic one-component toner obtained by adding a part. 無機酸化物粒子が、吸油量25mL/100g未満の八面体マグネタイトである請求項1記載の非磁性1成分トナー。   The non-magnetic one-component toner according to claim 1, wherein the inorganic oxide particles are octahedral magnetite having an oil absorption of less than 25 mL / 100 g.
JP2005363567A 2005-12-16 2005-12-16 Non-magnetic one component toner Pending JP2007164082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005363567A JP2007164082A (en) 2005-12-16 2005-12-16 Non-magnetic one component toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363567A JP2007164082A (en) 2005-12-16 2005-12-16 Non-magnetic one component toner

Publications (1)

Publication Number Publication Date
JP2007164082A true JP2007164082A (en) 2007-06-28

Family

ID=38247001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363567A Pending JP2007164082A (en) 2005-12-16 2005-12-16 Non-magnetic one component toner

Country Status (1)

Country Link
JP (1) JP2007164082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9075340B2 (en) 2011-08-22 2015-07-07 Sumitomo Rubber Industries, Ltd. Developing roller
JP2017111282A (en) * 2015-12-16 2017-06-22 京セラドキュメントソリューションズ株式会社 Positively chargeable toner and production method of positively chargeable toner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9075340B2 (en) 2011-08-22 2015-07-07 Sumitomo Rubber Industries, Ltd. Developing roller
JP2017111282A (en) * 2015-12-16 2017-06-22 京セラドキュメントソリューションズ株式会社 Positively chargeable toner and production method of positively chargeable toner

Similar Documents

Publication Publication Date Title
JP2009042571A (en) Toner, two-component developer, developing device and image forming apparatus
JP4283800B2 (en) Toner for developing electrostatic image and method for producing the same
JP2001117267A (en) Nonmagnetic single component developer and developing device using that developer
JPH11174730A (en) Electrophotographic toner and its production
JP2007164082A (en) Non-magnetic one component toner
JPH07271090A (en) Magnetic toner, its production and electrophotographic method
JP4579779B2 (en) Image forming method
JP2004102028A (en) Electrophotographic nonmagnetic one-component toner and developing method
JPH06317933A (en) Magnetic toner and electrophotographic method
JPH07295282A (en) Magnetic toner and electrophotographic method
JP4165822B2 (en) Full color toner kit, process cartridge, image forming method and image forming apparatus
JP3863584B2 (en) toner
JP2009103787A (en) Electrostatic charge image developing carrier, electrostatic charge image developer, electrostatic charge image developer cartridge, process cartridge, image forming apparatus and image forming method
JPH08248674A (en) Toner
JP3734844B2 (en) Electrophotographic method
JPH0246469A (en) Electrophotographic toner and electrophotographic developing agent
JP2009168861A (en) Toner, method for manufacturing the same, developer, development device and image forming apparatus
JPH1039537A (en) Electrophotographic toner and its production
JP2008292819A (en) Image forming apparatus and image forming method
JPH07306543A (en) Electrophotographic method
JP2000352837A (en) Recyclable toner and its production
JP2003177645A (en) Image forming method, image forming device and image forming process unit
JPH07120970A (en) Magnetic toner and electrophotographic method
JPH10221880A (en) Electrophotographic developer and developing device using that
JPH10301326A (en) Negative charge type magnetic developer and image forming method using same