JP2007163640A - Manufacturing method and manufacturing apparatus for liquid crystal display device - Google Patents

Manufacturing method and manufacturing apparatus for liquid crystal display device Download PDF

Info

Publication number
JP2007163640A
JP2007163640A JP2005357469A JP2005357469A JP2007163640A JP 2007163640 A JP2007163640 A JP 2007163640A JP 2005357469 A JP2005357469 A JP 2005357469A JP 2005357469 A JP2005357469 A JP 2005357469A JP 2007163640 A JP2007163640 A JP 2007163640A
Authority
JP
Japan
Prior art keywords
ion beam
ion
region
manufacturing
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005357469A
Other languages
Japanese (ja)
Other versions
JP4901203B2 (en
JP2007163640A5 (en
Inventor
Atsushi Takeda
篤 武田
Seiji Tsutsui
誠二 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Matsushita Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Matsushita Display Technology Co Ltd filed Critical Toshiba Matsushita Display Technology Co Ltd
Priority to JP2005357469A priority Critical patent/JP4901203B2/en
Publication of JP2007163640A publication Critical patent/JP2007163640A/en
Publication of JP2007163640A5 publication Critical patent/JP2007163640A5/ja
Application granted granted Critical
Publication of JP4901203B2 publication Critical patent/JP4901203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing apparatus of a liquid crystal display device, wherein a uniform ion implantation amount can be obtained over the entire surface of a TFT formation region of a substrate even when ion implantation is performed for every divided region of the TFT formation region and an expensive and large-sized apparatus is not needed. <P>SOLUTION: The apparatus implanting a prescribed ion by irradiating respective divided regions 4l and 4r formed by dividing the TFT formation region of the substrate 4 in the longitudinal direction of an ion beam whose sectional shape is a nearly oblong shape with the ion beam for every divided region 4l and 4r while the position in the short direction is sequentially changed is provided with a mask 15 forming the sectional shape of the ion beam between an ion source 2 of the ion beam and the surface of the substrate 4. The mask 15 is provided with oblong apertures 17 each having aperture amount reduced parts 18 at both end parts thereof and when the adjacent divided regions 4l and 4r are irradiated with the ion beam, at least a part of an irradiation reduced region irradiated with the ion beam by using one aperture amount reduced part 18 is irradiated again with the ion beam by using the other aperture amount reduced part 18. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば薄膜トランジスタを備えた液晶表示装置の製造方法及び製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a liquid crystal display device including, for example, a thin film transistor.

薄膜トランジスタ(TFT)を用いた駆動回路により液晶ディスプレイ(LCD)を駆動する液晶表示装置にあっては、その製造過程において、例えばガラス基板上に非晶質シリコン薄膜を成膜し、これをポリシリコン膜(ポリSi膜)とした後、ガラス基板のTFT形成領域のポリSi膜をパターニングし、ゲート絶縁膜を成膜し、さらに、ゲート電極を成膜後パターニングして形成する。続いて、ゲート電極をマスクとしてTFTのソース−ドレイン形成領域のポリSi膜に、ボロン(B)やリン(P)などの不純物イオンの注入を行う。その後、注入したイオンの活性化を行い、絶縁膜の形成や画素電極の形成等が行われる。   In a liquid crystal display device in which a liquid crystal display (LCD) is driven by a driving circuit using thin film transistors (TFT), an amorphous silicon thin film is formed on a glass substrate, for example, in the manufacturing process, and this is formed into polysilicon. After forming the film (poly-Si film), the poly-Si film in the TFT formation region of the glass substrate is patterned, a gate insulating film is formed, and further, the gate electrode is formed and patterned. Subsequently, impurity ions such as boron (B) and phosphorus (P) are implanted into the poly-Si film in the TFT source-drain formation region using the gate electrode as a mask. Thereafter, the implanted ions are activated to form an insulating film, a pixel electrode, and the like.

こうした液晶表示装置の製造過程における不純物イオンの注入工程では、ガラス基板のTFT形成領域の横幅より長い横断面形状が略細長方形状(リボン状)のイオンビームを用い、これを対向配置したイオン源から照射しながら、イオンビームの短手方向(TFT形成領域の縦方向)の走査を1回行うことにより、TFT形成領域全面へのイオンの注入を行っている。   In the process of implanting impurity ions in the manufacturing process of such a liquid crystal display device, an ion source in which a cross-sectional shape longer than the lateral width of the TFT formation region of the glass substrate has a substantially thin rectangular shape (ribbon shape) is used and is opposed to the ion source. In this way, ions are implanted into the entire surface of the TFT formation region by scanning the ion beam in the short direction (longitudinal direction of the TFT formation region) once.

こうしたなか、生産性を高めるための大きなガラス基板を用いた液晶表示装置の製造の要求や、液晶表示装置の表示画面に対する大型化の要求があり、これに伴いガラス基板のTFT形成領域も大きなものとする必要がある。このような状況のもと、上記のTFT形成領域の横幅より長い略細長方形状のイオンビームを用いてイオン注入しようとした場合、それに要するイオン源も大型のものとなってしまい、またイオン源から放射するイオンビームについては、長寸法にわたりイオン密度が均一でなければならない。このため、イオン源は設備が大型化したものとなり、非常に高額のものとなってしまう。   Under these circumstances, there is a demand for manufacturing a liquid crystal display device using a large glass substrate for increasing productivity and a demand for an increase in the size of the display screen of the liquid crystal display device, and accordingly, the TFT formation region of the glass substrate is also large. It is necessary to. Under such circumstances, when ion implantation is performed using an ion beam having a substantially thin rectangular shape longer than the width of the TFT formation region, the ion source required for the ion implantation becomes large, and the ion source For ion beams emanating from, the ion density must be uniform over the long dimension. For this reason, the ion source becomes a large-sized facility and becomes very expensive.

そこで、大きなTFT形成領域に対し、その横幅より短い略細長方形状のイオンビームを用い、イオンビームの長手方向に分割した分割領域を、各分割領域毎に短手方向に順次走査し、大きなTFT形成領域全面にイオン注入することが考えられる。なお、イオン注入を分割して行うものとしては、イオン注入領域を選択的に設定する開口部を有するシャッタ機構を半導体ウェハ前方に設け、シャッタ機構によって切替え選択されたウェハのイオン注入領域にイオンビームを照射し、半導体ウェハ全面にイオン注入可能とした多分割イオン注入装置が有る(例えば、特許文献1参照)。   Therefore, a large TFT formation region is scanned using a substantially narrow rectangular ion beam shorter than the lateral width, and the divided regions divided in the longitudinal direction of the ion beam are sequentially scanned in the short direction for each divided region. It is conceivable to ion-implant the entire formation region. In order to perform ion implantation separately, a shutter mechanism having an opening for selectively setting the ion implantation region is provided in front of the semiconductor wafer, and an ion beam is applied to the ion implantation region of the wafer selected by the shutter mechanism. Is applied to the entire surface of the semiconductor wafer to allow ion implantation (see, for example, Patent Document 1).

しかし、上記のように大きなTFT形成領域を分割した各分割領域を走査しイオン注入を行った場合には、イオンビームの走査位置によっては、隣接する分割領域が接する境界部分に、他の部分(境界部分以外の部分)よりも多量のイオン注入が行われるなどして、イオン注入量のピークなどの不均一注入部分が形成され、イオン注入量が均一となっている有効なTFT形成領域が減少してしまう虞がある。
特開平9−245722号公報
However, when each of the divided regions obtained by dividing the large TFT formation region is scanned and ion implantation is performed as described above, depending on the scanning position of the ion beam, another portion ( The ion implantation is performed in a larger amount than the portion other than the boundary part), so that a non-uniform implantation portion such as a peak of the ion implantation amount is formed, and the effective TFT forming region where the ion implantation amount is uniform is reduced. There is a risk of it.
Japanese Patent Laid-Open No. 9-245722

上記のような状況に鑑みて本発明はなされたもので、その目的とするところは、基板のTFT形成領域を分割した分割領域を、各分割領域毎にイオン注入を行っても、TFT形成領域全面にわたってイオン注入量を均一なものとすることができ、また大型設備とならず、高額なものとならない液晶表示装置の製造方法及び製造装置を提供することにある。   The present invention has been made in view of the above situation, and the object of the present invention is to provide a TFT formation region even if ion implantation is performed for each divided region of a divided region obtained by dividing the TFT formation region of the substrate. An object of the present invention is to provide a method and an apparatus for manufacturing a liquid crystal display device that can make the ion implantation amount uniform over the entire surface, are not large-sized equipment, and are not expensive.

本発明の液晶表示装置の製造方法及び製造装置は、
液晶表示装置の製造方法が、
基板の薄膜トランジスタ形成領域に、横断面形状が略細長方形状のイオンビームを短手方向に順次位置を変えながら照射して所定のイオンを注入するイオン注入工程を有する液晶表示装置の製造方法において、
前記イオン注入工程は、前記薄膜トランジスタ形成領域を前記イオンビームの長手方向に分割した分割領域を、各領域毎に順次位置を変えながら前記イオンビームで照射するものであると共に、前記イオンビームが長手方向両側部分に断面積減少部分を有するものであって、隣合う前記分割領域をそれぞれ照射する際、前記断面積減少部分の一方で照射された照射減少領域を、次の前記断面積減少部分の他方を用いて重ねて照射することを特徴とする方法であり、
また、液晶表示装置の製造装置が、
基板の薄膜トランジスタ形成領域を横断面形状が略細長方形状のイオンビームの長手方向に分割して形成した各分割領域に、該分割領域毎に前記イオンビームを短手方向の位置を順次変えながら照射して所定イオンを注入する液晶表示装置の製造装置であって、
前記イオンビームを放射するイオン源と前記基板表面の間に、該イオンビームの断面形状を成形するマスクを備えると共に、前記マスクが両端部に開口量減少部分を有する細長方形状の開口を備えたものであり、隣合う前記分割領域を前記イオンビームでそれぞれ照射する際に、前記開口量減少部分の一方で照射した照射減少領域を、前記開口量減少部分の他方を用いて少なくとも一部重ねて照射するよう形成されていることを特徴とするものである。
The manufacturing method and the manufacturing apparatus of the liquid crystal display device of the present invention include:
A manufacturing method of a liquid crystal display device
In a manufacturing method of a liquid crystal display device having an ion implantation process of implanting predetermined ions by sequentially irradiating a thin film transistor forming region of a substrate with an ion beam having a substantially thin rectangular cross-sectional shape while sequentially changing the position in the lateral direction,
The ion implantation step irradiates a divided region obtained by dividing the thin film transistor formation region in the longitudinal direction of the ion beam with the ion beam while sequentially changing the position for each region. The cross-sectional area decreasing portion is provided on both side portions, and when the adjacent divided regions are respectively irradiated, the irradiation reduced region irradiated on one side of the cross-sectional area decreasing portion is set to the other of the next cross-sectional area decreasing portions. It is a method characterized by irradiating repeatedly using
Moreover, the manufacturing apparatus of a liquid crystal display device is
Irradiate each thin film transistor formation region of the substrate by dividing the ion beam in the longitudinal direction of the ion beam having a substantially thin rectangular shape while sequentially changing the position of the ion beam in each lateral region. A liquid crystal display manufacturing apparatus for injecting predetermined ions,
A mask for shaping the cross-sectional shape of the ion beam is provided between the ion source that emits the ion beam and the surface of the substrate, and the mask has a narrow rectangular opening having a reduced opening portion at both ends. When the adjacent divided regions are each irradiated with the ion beam, the irradiation reduced region irradiated with one of the opening amount reduced portions is overlapped at least partially using the other of the opening amount reduced portions. It is formed so that it may irradiate.

本発明によれば、基板のTFT形成領域を分割した分割領域を、各分割領域毎にイオン注入を行っても、TFT形成領域全面にわたってイオン注入量を均一なものとすることができ、また、それに要する装置も大型設備とならず、高額なものとはならない等の効果を有する。   According to the present invention, even if ion implantation is performed for each divided region of the divided region obtained by dividing the TFT formation region of the substrate, the ion implantation amount can be made uniform over the entire TFT formation region. The apparatus required for this is not a large-scale facility, and there is an effect that it is not expensive.

以下本発明の一実施形態を、図1乃至図6を参照して説明する。図1は液晶表示装置の製造装置の概略構成を示す横断面図であり、図2はマスクを説明するために示す図で、図2(a)はマスクを模式的に示す平面図、図2(b)は成形されたイオンビームのイオン量を模式的に示す図であり、図3はイオン注入の第1工程を示す平面図であり、図4はイオン注入の第2工程を示す平面図であり、図5はイオン注入の第1、第2工程におけるイオンビームを説明するために示す図で、図5(a)は各工程において照射するイオン量を模式的に示す図、図5(b)は両工程における合成イオン量を模式的に示す図であり、図6はマスクの各変形形態を模式的に示す平面図である。   An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a cross-sectional view showing a schematic configuration of a manufacturing apparatus for a liquid crystal display device, FIG. 2 is a view for explaining the mask, FIG. 2A is a plan view schematically showing the mask, and FIG. (B) is a diagram schematically showing the ion amount of the shaped ion beam, FIG. 3 is a plan view showing a first step of ion implantation, and FIG. 4 is a plan view showing a second step of ion implantation. FIG. 5 is a view for explaining ion beams in the first and second steps of ion implantation. FIG. 5A is a view schematically showing the amount of ions irradiated in each step. b) is a diagram schematically showing the amount of synthesized ions in both steps, and FIG. 6 is a plan view schematically showing each modified form of the mask.

先ず、図1において、液晶表示装置の製造装置であるイオン注入装置1は、イオン源2と、真空チャンバ3内に薄膜トランジスタ(TFT)を形成する、例えばガラス基板の表面にポリシリコン膜(ポリSi膜)を成膜した基板4を内部に収納し、イオン源2からのボロン(B)やリン(P)などの所定のイオンビームを導入してイオン注入処理を行う処理室本体5とを設けて構成されている。イオン源2は、例えばプラズマ部6で生成されたプラズマ中の所定のイオンを電極部7等により引き出し、さらにビーム放射開口8から横断面形状が略細長方形状(リボン状)のイオンビームとして外部へと放射するよう構成されている。   First, in FIG. 1, an ion implantation apparatus 1 which is a manufacturing apparatus of a liquid crystal display device forms a thin film transistor (TFT) in an ion source 2 and a vacuum chamber 3, for example, a polysilicon film (polySi film) on the surface of a glass substrate. And a processing chamber body 5 for carrying out an ion implantation process by introducing a predetermined ion beam such as boron (B) or phosphorus (P) from the ion source 2. Configured. The ion source 2 extracts, for example, predetermined ions in the plasma generated by the plasma unit 6 by the electrode unit 7 or the like, and further externally as an ion beam having a substantially thin rectangular shape (ribbon shape) from the beam radiation opening 8. It is configured to radiate to.

また、処理室本体5は、所定の減圧状態に保持された真空チャンバ3内に、薄膜トランジスタ(TFT)を形成する基板4を、ポリSi膜の成膜面を上面側として載置する基板支持台9と、この基板支持台9を、X方向のガイドレール10を設けて水平位置に保持しながら両矢印で示すX方向に進退させるX方向進退機構11と、このX方向進退機構11をY方向のガイドレール12を設けて両矢印で示すY方向に進退させ、基板支持台9を水平位置に保持しながらY方向に進退させるY方向進退機構13とを備えている。さらに処理室本体5には、X、Y方向に進退可能に設けられた基板支持台9上方の真空チャンバ3の天井部分に、ビーム導入開口14が形成されており、またさらにビーム導入開口14には、イオン源2のビーム放射開口8が連通するように設けられていて、イオン源2からのイオンビームが真空チャンバ3の内部に導入できるようになっている。   Further, the processing chamber body 5 is a substrate support base on which a substrate 4 on which a thin film transistor (TFT) is formed is placed in a vacuum chamber 3 maintained in a predetermined reduced pressure state with a poly Si film deposition surface as an upper surface side. 9, an X-direction advancing / retracting mechanism 11 for advancing and retreating the substrate supporting base 9 in the X-direction indicated by a double-pointed arrow while holding the X-direction guide rail 10 at a horizontal position, And a Y-direction advancing / retracting mechanism 13 for advancing and retracting in the Y-direction while holding the substrate support 9 in a horizontal position. Further, a beam introduction opening 14 is formed in the processing chamber body 5 in the ceiling portion of the vacuum chamber 3 above the substrate support 9 provided to be movable in the X and Y directions. Is provided so that the beam radiation opening 8 of the ion source 2 communicates, and the ion beam from the ion source 2 can be introduced into the vacuum chamber 3.

一方、真空チャンバ3内には、導入されたイオンビームの断面形状を成形する導電性材料で形成したマスク15が、イオンビームの照射時にチャージされる電荷を逃がし、基板支持台9上の基板4との間に所定離間距離を設けてビーム導入開口14の下方に配設されるように、天井部分のビーム導入開口14近傍にチャンバ内方に向け突設された取付部16に取り付けられている。またマスク15には、図2(a)に模式的に示すように、短手方向長さと長手方向長さの比が大きく、略細長方形状である偏平な左右対称形状をなす台形状の開口17が形成されており、その長手方向をX方向に一致させて真空チャンバ3内に取り付けられている。さらにマスク15の開口17の両端部には、それぞれ端部長さ(長手方向の寸法)が等しく、開口量を端部先端に向け漸減するよう直線的に減少させた等しい開口量を持つ開口量減少部分18が設けられている。   On the other hand, in the vacuum chamber 3, a mask 15 made of a conductive material that shapes the cross-sectional shape of the introduced ion beam releases the charges charged when the ion beam is irradiated, and the substrate 4 on the substrate support 9 is released. Is attached to a mounting portion 16 projecting inward of the chamber in the vicinity of the beam introduction opening 14 in the ceiling portion so as to be disposed below the beam introduction opening 14 with a predetermined separation distance therebetween. . Further, as schematically shown in FIG. 2A, the mask 15 has a trapezoidal opening having a large ratio between the length in the short side and the length in the long side and having a flat left-right symmetrical shape that is a substantially thin rectangular shape. 17 is formed and is installed in the vacuum chamber 3 with its longitudinal direction coinciding with the X direction. Further, both ends of the opening 17 of the mask 15 have equal end lengths (dimensions in the longitudinal direction), and an opening amount reduction having an equal opening amount linearly decreased so as to gradually decrease the opening amount toward the tip of the end portion. A portion 18 is provided.

このため、このような開口17を有するマスク15で成形されたイオンビームは、開口量減少部分18で成形された断面積減少部分を両側部分に有する横断面形状が略細長方形状(リボン状)のイオンビームとなる。例えば、長手方向の全長が50cmで、両側部分の各断面積減少部分の長さが1cmであるイオンビームの形成がなされる。また、このように成形されたイオンビームを照射した場合のイオン量は、図2(b)に模式的に示すように、イオン注入範囲のイオン量が均一な範囲Daの両側部分に、イオン量が範囲端に向けて漸減する減少範囲Dbが生じるものとなる。   For this reason, the ion beam formed by the mask 15 having the opening 17 has a substantially rectangular shape (ribbon shape) having a cross-sectional area reduced portion formed on the opening amount reducing portion 18 on both side portions. Ion beam. For example, an ion beam is formed in which the total length in the longitudinal direction is 50 cm and the length of each cross-sectional area reduced portion on both side portions is 1 cm. In addition, when the ion beam thus shaped is irradiated, the ion amount is, as schematically shown in FIG. 2B, the ion amount on both sides of the range Da where the ion amount in the ion implantation range is uniform. Decreases in a range Db that gradually decreases toward the end of the range.

そして、上記のイオン注入装置1による基板4へのイオン注入工程は、以下に示す通りとなる。すなわち、図3に示す第1の工程において、例えば全面をTFT形成領域とした方形状のガラス基板でなる基板4を、所定減圧状態の真空チャンバ3内の基板支持台9上に、各辺をX、Y方向に一致させるように載置する。そして、基板支持台9を図中左側に片寄せて、マスク15の開口17の図中右側となる一方の開口量減少部分18が基板4の右側辺の外方に位置するようにして、基板4の図中右下部分をマスク15の開口17の直下に位置させる。   And the ion implantation process to the board | substrate 4 by said ion implantation apparatus 1 is as showing below. That is, in the first step shown in FIG. 3, for example, a substrate 4 made of a square glass substrate with the entire surface being a TFT formation region is placed on a substrate support 9 in a vacuum chamber 3 in a predetermined reduced pressure state with each side It is placed so as to match the X and Y directions. Then, the substrate support 9 is shifted to the left side in the drawing, and the opening decreasing portion 18 on the right side in the drawing of the opening 17 of the mask 15 is positioned outside the right side of the substrate 4 so that the substrate 4 is positioned immediately below the opening 17 of the mask 15.

その後、イオン源2から真空チャンバ3内に導入したイオンビームを、マスク15の両端部に開口量減少部分18を有する開口17によって、両側部分に断面積減少部分を有する横断面形状が略細長方形状に成形し、さらに成形したイオンビームを基板4上面に連続照射する。また、このイオンビームの照射と同時に、Y方向進退機構13によって、基板支持台9を図中下方向(イオンビームの短手方向)に所定の速度で、基板4の図示しない上側辺まで照射が行われるよう移送する。   Thereafter, the ion beam introduced from the ion source 2 into the vacuum chamber 3 is substantially elongated in cross-sectional shape having cross-sectional area reduced portions on both side portions by the openings 17 having the opening amount reducing portions 18 on both ends of the mask 15. The shaped ion beam is further irradiated onto the upper surface of the substrate 4 continuously. Simultaneously with the irradiation of the ion beam, the Y-direction advance / retreat mechanism 13 irradiates the substrate support 9 at a predetermined speed in the downward direction (short direction of the ion beam) in the figure to the upper side (not shown) of the substrate 4. Transport to be done.

これによって、主に基板4の右側半分の分割領域4rへのイオン注入が行われる。また、このイオン注入の際に、図5(a)の右側に示すようなイオン量が漸減する減少範囲Dbを、分割領域4rの左側部分にして照射しながら走査するため、開口17の他方の開口量減少部分18で成形されたイオンビームの図中左側の断面積減少部分が照射された照射減少領域4pは、それ以外の分割領域4rにおけるイオン注入量以下のイオン注入量となっていて、左側端に向かって漸減するものとなっている。   As a result, ion implantation is mainly performed on the divided region 4r in the right half of the substrate 4. Further, during this ion implantation, the other side of the opening 17 is scanned to irradiate a reduced range Db in which the amount of ions gradually decreases as shown on the right side of FIG. The irradiation reduced region 4p irradiated with the cross-sectional area reduced portion on the left side of the ion beam formed in the aperture reduced portion 18 is an ion implantation amount equal to or smaller than the ion implantation amount in the other divided region 4r. It gradually decreases toward the left end.

例えば、幅が73cmの基板4に対し、長手方向の全長が約50cmで、両側部分の断面積減少部分の長さがそれぞれ1cmであるイオンビームでの照射を行った場合、イオンビームの長さ約13cmの右側部分は、基板4の右側辺の外方に位置し、基板4の主に右半分の分割領域4rで形成される幅37cmの領域にイオン注入がなされる。またイオン注入がなされた幅37cmの領域の左側1cm幅の部分には、イオンビームの片側の断面積減少部分による照射が行われる。   For example, when irradiation is performed with an ion beam whose length in the longitudinal direction is about 50 cm and the length of the cross-sectional area reduction portion on both sides is 1 cm on the substrate 4 having a width of 73 cm, the length of the ion beam The right side portion of about 13 cm is located outside the right side of the substrate 4, and ions are implanted into a region having a width of 37 cm formed mainly by the divided region 4 r of the right half of the substrate 4. Further, the ion beam is irradiated on the left side of the 37 cm wide region where the ion implantation has been performed by the reduced cross-sectional area on one side of the ion beam.

さらに、基板4の分割領域4rへのイオン注入終了後、図4に示す第2の工程において、基板支持台9をY方向進退機構13によって、当初の位置まで戻すと共に、X方向進退機構11によって図中右方向(イオンビームの長手方向)に移送し、図中右側に片寄せる。そして、マスク15の開口17の図中右側となる一方の開口量減少部分18が、先にイオン注入を行った照射減少領域4p上に位置し、他方の開口量減少部分18が基板4の左側辺の外方に位置するようにして、基板4の図中左下部分をマスク15の開口17の直下に位置させる。   Further, after the ion implantation into the divided region 4r of the substrate 4 is completed, in the second step shown in FIG. 4, the substrate support 9 is returned to the initial position by the Y-direction advance / retreat mechanism 13 and at the same time by the X-direction advance / retreat mechanism 11 It is transferred in the right direction (longitudinal direction of the ion beam) in the figure and is shifted to the right side in the figure. Then, one opening amount decreasing portion 18 which is the right side of the opening 17 of the mask 15 in the drawing is located on the irradiation decreasing region 4p where the ion implantation has been performed previously, and the other opening amount decreasing portion 18 is the left side of the substrate 4. The lower left portion of the substrate 4 in the drawing is positioned directly below the opening 17 of the mask 15 so as to be located outside the side.

その後、第1の工程と同様に、イオン源2からのイオンビームを、両端部に開口量減少部分18を有する開口17によって成形し、さらに成形した両側部分に断面積減少部分を有する横断面形状が略細長方形状のイオンビームを、基板4上面に連続照射する。このイオンビームの照射と同時に、Y方向進退機構13によって、基板支持台9を図中下方向に所定の速度で、再び基板4の図示しない上側辺まで照射が行われるよう移送する。   Thereafter, as in the first step, the ion beam from the ion source 2 is shaped by the openings 17 having the opening amount reducing portions 18 at both ends, and the cross-sectional shape having the cross-sectional area reducing portions on both shaped side portions. However, the upper surface of the substrate 4 is continuously irradiated with a substantially thin rectangular ion beam. Simultaneously with the irradiation of the ion beam, the Y-direction advance / retreat mechanism 13 moves the substrate support 9 downward in the figure at a predetermined speed so that the irradiation is again performed to the upper side (not shown) of the substrate 4.

これによって、基板4の残った左側半分の分割領域4lへのイオン注入が行われる。また、このイオン注入の際に、
図5(a)の左側に示すようなイオン量が漸減する減少範囲Dbを、分割領域4lの右側部分にして照射しながら走査するため、開口17の一方の開口量減少部分18で成形されたイオンビームの図中右側の断面積減少部分が照射された照射減少領域4qは、それ以外の分割領域4lにおけるイオン注入量以下のイオン注入量となっていて、右側端に向かって漸減するものとなっている。
As a result, ion implantation into the left half of the divided region 4l of the substrate 4 is performed. During this ion implantation,
In order to scan while irradiating a reduced range Db in which the amount of ions gradually decreases as shown on the left side of FIG. 5A to the right side portion of the divided region 4l, it is formed at one opening amount decreasing portion 18 of the opening 17. The irradiation reduced region 4q irradiated with the reduced cross-sectional area on the right side in the figure of the ion beam has an ion implantation amount equal to or less than the ion implantation amount in the other divided region 41 and gradually decreases toward the right end. It has become.

しかし、この照射減少領域4qは、第1の工程においてイオン注入が行われた照射減少領域4pと重複し、イオンビームの両側部分の断面積減少部分による照射を重ねたときのイオン量、すなわち重複照射した際のイオン量の積分値と、断面積減少部分以外の部分による照射でのイオン量とが略等しいため、照射減少領域4qは、図5(b)に示すように2回の照射によるイオン量が合成された形となり、断面積減少部分以外の部分で照射が行われた分割領域4r,4lのイオン注入量と略等しいイオン注入量となる。   However, this irradiation reduced region 4q overlaps with the irradiation reduced region 4p in which the ion implantation is performed in the first step, and the amount of ions when the irradiation is performed by the cross-sectional area reduced portions on both sides of the ion beam, that is, overlap. Since the integrated value of the amount of ions at the time of irradiation and the amount of ions in the portion other than the portion where the cross-sectional area is reduced are substantially equal, the irradiation reduced region 4q is formed by two irradiations as shown in FIG. The amount of ions is synthesized, and the amount of ion implantation is substantially equal to the amount of ions implanted in the divided regions 4r and 4l irradiated at portions other than the portion where the cross-sectional area decreases.

例えば、第1の工程と同様に、基板4の幅が73cm、イオンビームの全長が約50cm、両側部分の断面積減少部分の長さが1cm場合には、イオンビームの長さ約13cmの左側部分は、基板4の左側辺の外方に位置し、基板4の主に左半分の分割領域4lで形成される幅37cmの領域にイオン注入がなされる。なお、イオン注入がなされた幅37cmの領域の右側1cm幅の部分には、第1の工程と第2の工程において、イオンビームの両断面積減少部分による重複照射が行われる。   For example, as in the first step, when the width of the substrate 4 is 73 cm, the total length of the ion beam is about 50 cm, and the length of the reduced cross-sectional area of both sides is 1 cm, the left side of the ion beam length of about 13 cm The portion is located outside the left side of the substrate 4, and ions are implanted into a region having a width of 37 cm formed mainly by the left half of the divided region 4 l of the substrate 4. In the first step and the second step, overlapping irradiation is performed on the portion having a width of 1 cm on the right side of the 37 cm wide region where the ion implantation has been performed, by the reduced cross-sectional areas of the ion beam.

こうして、全面がTFT形成領域である基板4は、略均等にイオン注入が行われ、以降の工程で注入したイオンの活性化が行われ、絶縁膜の形成や画素電極の形成等が行われる。   Thus, the substrate 4 whose entire surface is the TFT formation region is ion-implanted substantially evenly, the ions implanted in the subsequent steps are activated, and the formation of the insulating film, the formation of the pixel electrode, and the like are performed.

これにより、全面がTFT形成領域である基板4を2分割した分割領域4l,4rを、各分割領域4l,4r毎にイオン注入を行っても、両分割領域4l,4rの境界部分にイオン注入が多量になされることがなく、全面にわたるイオン注入量が略均一なイオン注入を行うことができる。このため、有効なTFT形成領域を大きく取ることができ、破棄部分を最小限にとどめることができる。さらに、これに用いるイオンビームも長寸法のものでないため、イオン源も大きなものを必要とせず、全域においてイオン密度を容易に均一なものとすることができ、また、装置としても大型で高額な設備とならない。   As a result, even if ion implantation is performed on each of the divided regions 4l and 4r in the divided regions 4l and 4r obtained by dividing the substrate 4 whose entire surface is the TFT formation region into two parts, ion implantation is performed at the boundary between the divided regions 4l and 4r. Therefore, the ion implantation amount over the entire surface can be made substantially uniform. For this reason, an effective TFT formation region can be made large, and the discard portion can be minimized. In addition, since the ion beam used for this is not of a long size, a large ion source is not required, the ion density can be easily made uniform in the entire region, and the apparatus is large and expensive. It does not become equipment.

なお、上記の実施形態においては、マスク15の開口17を、偏平な台形状としたが、これに限るものではなく、要は、開口の両端部の断面積減少部分の形状が、これらの部分で成形されたイオンビームの両側部分の断面積減少部分による照射を、位置を適正に設定して1回ずつ重ねて行った際のイオン量の積分値と、断面積減少部分以外の部分で1回照射したときのイオン量とが等しくなるものであればよい。   In the above embodiment, the opening 17 of the mask 15 has a flat trapezoidal shape. However, the present invention is not limited to this, and the shape of the reduced cross-sectional area at both end portions of the opening is the same. The ion beam formed at step 1 is irradiated with the cross-sectional area reduced portions on both side portions, and the integrated value of the ion amount when the position is appropriately set and overlapped one by one, and the portion other than the cross-sectional area reduced portion is 1 What is necessary is just to make the amount of ions equal to the number of times of irradiation.

例えば、図6(a)に示すように、両端部にそれぞれ長さが等しく、開口量を端部に向けて直線的に減少させた開口量の等しい開口量減少部分18aを有する平行四辺形状の開口17aが形成されたマスク15aでもよい。また、図6(b)に示すように、両端部にそれぞれ開口量を端部に向けて曲線的に減少させ、例えば、両開口量減少部分18bの端縁同士を連接した際に、両端縁の曲線が略一致するような開口量減少部分18bを有する開口17bが形成されたマスク15bでもよい。   For example, as shown in FIG. 6A, each of the parallelograms has an opening amount decreasing portion 18a having the same opening amount and an opening amount linearly decreasing toward the end portion. The mask 15a in which the opening 17a is formed may be used. Further, as shown in FIG. 6 (b), the opening amounts are decreased in a curved manner toward the end portions at both ends, for example, when the end edges of both opening amount decreasing portions 18b are connected to each other. The mask 15b in which the opening 17b having the opening amount decreasing portion 18b such that the curves of FIG.

さらに、図6(c)に示すように、両端部に開口量減少部分18cを有する開口17cが、開口量減少部分18cとそれ以外の部分では開口面積を変えた複数の例えばスリット状の小開口19を、例えば偏平な台形状となるように分布させた構成のマスク15cでもよい。また図6(d)に示すように、両端部に開口量減少部分18dを有する開口17dが、例えば同直径の複数の円形小開口20を両端部では先端に行くほど少なくし、偏平な台形状の分布となるようにした小開口分布密度を変えた構成のマスク15dでもよい。   Further, as shown in FIG. 6 (c), an opening 17c having an opening amount reducing portion 18c at both end portions is a plurality of small openings having, for example, a slit shape in which the opening area is changed in the opening amount reducing portion 18c and other portions. For example, a mask 15c having a configuration in which 19 is distributed in a flat trapezoidal shape may be used. Further, as shown in FIG. 6 (d), the openings 17d having the opening decreasing portions 18d at both ends reduce, for example, a plurality of small circular openings 20 having the same diameter toward the tip at both ends, and are flat trapezoidal. The mask 15d having a configuration in which the small aperture distribution density is changed so as to have a distribution of the above.

また、上記の実施形態においては、イオン注入装置1による基板4へのイオン注入工程が、第1の工程と第2の工程とも、基板支持台9を一方向に移送しながらイオンビームを基板4に照射するようにしたが、第2の工程では第1の工程とは反対の方向に移送しながらイオンビームを基板4に照射するようにし、基板支持台9の往復動の行程を使うことでイオン注入工程に要する時間を短縮するようにしてもよい。   Further, in the above-described embodiment, the ion implantation process to the substrate 4 by the ion implantation apparatus 1 is performed by transferring the ion beam to the substrate 4 while transferring the substrate support base 9 in one direction in both the first process and the second process. In the second step, the substrate 4 is irradiated with an ion beam while being transferred in the opposite direction to the first step, and the reciprocating process of the substrate support 9 is used. You may make it shorten the time which an ion implantation process requires.

さらにまた、横断面形状が両側部分に断面積減少部分を有する略細長方形状であるイオンビームによって、TFT形成領域である基板4の全面をイオンビームの長手方向に2分割し、各分割領域4l,4rをそれぞれ短手方向に連続して走査するようにしたが、さらに広いTFT形成領域を有する基板では、図示しないが、イオンビームの長さ寸法に応じて分割領域の数を増やし、各分割領域を、同様にそれぞれ短手方向に連続して走査すれば、長いイオンビームを用いずにより大きなTFT形成領域へのイオン注入を行うことができる。また、同じく図示しないが、イオンビームの照射経路を横断するようにシャッタを設け、各分割領域4l,4rをそれぞれ走査する際、その走査途中でシャッタによりイオンビームの照射を断続するようにしてイオン注入を要する領域のみ選択的に照射するようにしてもよい。   Furthermore, the entire surface of the substrate 4 as a TFT formation region is divided into two in the longitudinal direction of the ion beam by an ion beam having a transverse cross-sectional shape of a substantially thin rectangular shape having cross-sectional area reduction portions on both side portions, and each divided region 4l. , 4r are continuously scanned in the lateral direction, but the substrate having a wider TFT formation region is not shown, but the number of the divided regions is increased in accordance with the length dimension of the ion beam. Similarly, if the region is continuously scanned in the short direction, ions can be implanted into a larger TFT formation region without using a long ion beam. Although not shown, a shutter is provided so as to cross the irradiation path of the ion beam, and when each of the divided regions 4l and 4r is scanned, the ion beam irradiation is intermittently performed by the shutter during the scanning. Only the region that requires implantation may be selectively irradiated.

本発明の一実施形態である液晶表示装置の製造装置の概略構成を示す横断面図である。It is a cross-sectional view which shows schematic structure of the manufacturing apparatus of the liquid crystal display device which is one Embodiment of this invention. 本発明の一実施形態に係るマスクを説明するために示す図で、図2(a)はマスクを模式的に示す平面図、図2(b)は成形されたイオンビームのイオン量を模式的に示す図である。2A and 2B are diagrams for explaining a mask according to an embodiment of the present invention, in which FIG. 2A is a plan view schematically illustrating the mask, and FIG. 2B is a schematic diagram illustrating an ion amount of a formed ion beam. FIG. 本発明の一実施形態におけるイオン注入の第1工程を示す平面図である。It is a top view which shows the 1st process of the ion implantation in one Embodiment of this invention. 本発明の一実施形態におけるイオン注入の第2工程を示す平面図である。It is a top view which shows the 2nd process of the ion implantation in one Embodiment of this invention. 本発明の一実施形態におけるイオン注入の第1、第2工程におけるイオンビームを説明するために示す図で、図5(a)は各工程において照射するイオン量を模式的に示す図、図5(b)は両工程における合成イオン量を模式的に示す図である。FIG. 5A is a diagram for explaining an ion beam in the first and second steps of ion implantation in one embodiment of the present invention, and FIG. 5A schematically shows the amount of ions irradiated in each step. (B) is a figure which shows typically the synthetic ion amount in both processes. 本発明の一実施形態に係るマスクの各変形形態を模式的に示す平面図である。It is a top view showing typically each modification of a mask concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1…イオン注入装置
2…イオン源
4…基板
4l,4r…分割領域
11…X方向進退機構
13…Y方向進退機構
15…マスク
17…開口
18…開口量減少部分
DESCRIPTION OF SYMBOLS 1 ... Ion implantation apparatus 2 ... Ion source 4 ... Substrate 4l, 4r ... Divided area 11 ... X direction advance / retreat mechanism 13 ... Y direction advance / retreat mechanism 15 ... Mask 17 ... Opening 18 ... Opening amount reduction | decrease part

Claims (7)

基板の薄膜トランジスタ形成領域に、横断面形状が略細長方形状のイオンビームを短手方向に順次位置を変えながら照射して所定のイオンを注入するイオン注入工程を有する液晶表示装置の製造方法において、
前記イオン注入工程は、前記薄膜トランジスタ形成領域を前記イオンビームの長手方向に分割した分割領域を、各領域毎に順次位置を変えながら前記イオンビームで照射するものであると共に、前記イオンビームが長手方向両側部分に断面積減少部分を有するものであって、隣合う前記分割領域をそれぞれ照射する際、前記断面積減少部分の一方で照射された照射減少領域を、次の前記断面積減少部分の他方を用いて重ねて照射することを特徴とする液晶表示装置の製造方法。
In a manufacturing method of a liquid crystal display device having an ion implantation process of implanting predetermined ions by sequentially irradiating a thin film transistor forming region of a substrate with an ion beam having a substantially thin rectangular cross-sectional shape while sequentially changing the position in the lateral direction,
The ion implantation step irradiates a divided region obtained by dividing the thin film transistor formation region in the longitudinal direction of the ion beam with the ion beam while sequentially changing the position for each region. The cross-sectional area decreasing portion is provided on both side portions, and when the adjacent divided regions are respectively irradiated, the irradiation reduced region irradiated on one side of the cross-sectional area decreasing portion is set to the other of the next cross-sectional area decreasing portions. A method of manufacturing a liquid crystal display device, characterized by irradiating with a plurality of layers.
前記断面積減少部分を重ねて照射した時の前記照射減少領域におけるイオン量の積分値が、前記イオンビームで照射された該照射減少領域以外の領域におけるイオン量に略等しくなっていることを特徴とする請求項1記載の液晶表示装置の製造方法。   The integral value of the ion amount in the irradiation reduced region when the cross-sectional area reduced portion is irradiated in an overlapping manner is substantially equal to the ion amount in a region other than the irradiation reduced region irradiated with the ion beam. A method for manufacturing a liquid crystal display device according to claim 1. 基板の薄膜トランジスタ形成領域を横断面形状が略細長方形状のイオンビームの長手方向に分割して形成した各分割領域に、該分割領域毎に前記イオンビームを短手方向の位置を順次変えながら照射して所定イオンを注入する液晶表示装置の製造装置であって、
前記イオンビームを放射するイオン源と前記基板表面の間に、該イオンビームの断面形状を成形するマスクを備えると共に、前記マスクが両端部に開口量減少部分を有する細長方形状の開口を備えたものであり、隣合う前記分割領域を前記イオンビームでそれぞれ照射する際に、前記開口量減少部分の一方で照射した照射減少領域を、前記開口量減少部分の他方を用いて少なくとも一部重ねて照射するよう形成されていることを特徴とする液晶表示装置の製造装置。
Irradiate each thin film transistor formation region of the substrate by dividing the ion beam in the longitudinal direction of the ion beam having a substantially thin rectangular shape while sequentially changing the position of the ion beam in each lateral region. A liquid crystal display manufacturing apparatus for injecting predetermined ions,
A mask for shaping the cross-sectional shape of the ion beam is provided between the ion source that emits the ion beam and the surface of the substrate, and the mask has a narrow rectangular opening having a reduced opening portion at both ends. When the adjacent divided regions are each irradiated with the ion beam, the irradiation reduced region irradiated with one of the opening amount reduced portions is overlapped at least partially using the other of the opening amount reduced portions. An apparatus for manufacturing a liquid crystal display device, characterized by being formed so as to irradiate.
前記開口量減少部分は、前記開口の両端部の長さが等しく、各端部先端に向けて開口量が漸減していることを特徴とする請求項3記載の液晶表示装置の製造装置。   4. The apparatus for manufacturing a liquid crystal display device according to claim 3, wherein the opening amount decreasing portion has the same length at both end portions of the opening, and the opening amount gradually decreases toward the tip of each end portion. 前記開口量減少部分は、両端部で開口量が等しくなっていることを特徴とする請求項3記載の液晶表示装置の製造装置。   4. The apparatus for manufacturing a liquid crystal display device according to claim 3, wherein the opening amount decreasing portion has the same opening amount at both ends. 前記開口は、少なくとも一部が複数の小開口によって形成されていることを特徴とする請求項3記載の液晶表示装置の製造装置。   4. The apparatus for manufacturing a liquid crystal display device according to claim 3, wherein at least a part of the opening is formed by a plurality of small openings. 前記基板を基板支持台に載置し、該基板支持台を移動させることによって、前記分割領域毎の順次位置を変えながらの前記イオンビームの照射が行われるものであることを特徴とする請求項3記載の液晶表示装置の製造装置。   The ion beam irradiation is performed while changing the sequential position for each of the divided regions by placing the substrate on a substrate support and moving the substrate support. 3. An apparatus for manufacturing a liquid crystal display device according to item 3.
JP2005357469A 2005-12-12 2005-12-12 Ion beam irradiation method and substrate manufacturing apparatus having thin film transistor Expired - Fee Related JP4901203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357469A JP4901203B2 (en) 2005-12-12 2005-12-12 Ion beam irradiation method and substrate manufacturing apparatus having thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357469A JP4901203B2 (en) 2005-12-12 2005-12-12 Ion beam irradiation method and substrate manufacturing apparatus having thin film transistor

Publications (3)

Publication Number Publication Date
JP2007163640A true JP2007163640A (en) 2007-06-28
JP2007163640A5 JP2007163640A5 (en) 2010-02-25
JP4901203B2 JP4901203B2 (en) 2012-03-21

Family

ID=38246625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357469A Expired - Fee Related JP4901203B2 (en) 2005-12-12 2005-12-12 Ion beam irradiation method and substrate manufacturing apparatus having thin film transistor

Country Status (1)

Country Link
JP (1) JP4901203B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134923A (en) * 2007-11-29 2009-06-18 Nissin Ion Equipment Co Ltd Ion beam irradiation method and ion beam irradiation device
JP2009152002A (en) * 2007-12-19 2009-07-09 Nissin Ion Equipment Co Ltd Ion beam irradiation device
JP2010199073A (en) * 2010-03-16 2010-09-09 Nissin Ion Equipment Co Ltd Ion beam application method and ion beam application device
JP2011249096A (en) * 2010-05-26 2011-12-08 Nissin Ion Equipment Co Ltd Ion implantation apparatus
KR20120006529A (en) * 2009-04-08 2012-01-18 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Techniques for processing a substrate
JP2012523707A (en) * 2009-04-08 2012-10-04 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Substrate processing technology
US8461556B2 (en) 2010-09-08 2013-06-11 Varian Semiconductor Equipment Associates, Inc. Using beam blockers to perform a patterned implant of a workpiece
JP2014082174A (en) * 2012-10-18 2014-05-08 Nissin Ion Equipment Co Ltd Mask and beam ion irradiation device
US9076914B2 (en) 2009-04-08 2015-07-07 Varian Semiconductor Equipment Associates, Inc. Techniques for processing a substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339711A (en) * 1998-05-29 1999-12-10 Ulvac Corp Ion implantation equipment
JP2000100748A (en) * 1998-09-24 2000-04-07 Sony Corp Manufacture of semiconductor device
JP2003249189A (en) * 2002-02-26 2003-09-05 Hitoshi Mikami Ion implantation method
JP2004311618A (en) * 2003-04-04 2004-11-04 Toshiba Corp Laser annealing method, its equipment, and method for manufacturing mask and display device
JP2005294584A (en) * 2004-03-31 2005-10-20 Eudyna Devices Inc Semiconductor device, method for manufacturing the same and mask for impurity introduction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339711A (en) * 1998-05-29 1999-12-10 Ulvac Corp Ion implantation equipment
JP2000100748A (en) * 1998-09-24 2000-04-07 Sony Corp Manufacture of semiconductor device
JP2003249189A (en) * 2002-02-26 2003-09-05 Hitoshi Mikami Ion implantation method
JP2004311618A (en) * 2003-04-04 2004-11-04 Toshiba Corp Laser annealing method, its equipment, and method for manufacturing mask and display device
JP2005294584A (en) * 2004-03-31 2005-10-20 Eudyna Devices Inc Semiconductor device, method for manufacturing the same and mask for impurity introduction

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134923A (en) * 2007-11-29 2009-06-18 Nissin Ion Equipment Co Ltd Ion beam irradiation method and ion beam irradiation device
JP4530032B2 (en) * 2007-11-29 2010-08-25 日新イオン機器株式会社 Ion beam irradiation method and ion beam irradiation apparatus
JP2009152002A (en) * 2007-12-19 2009-07-09 Nissin Ion Equipment Co Ltd Ion beam irradiation device
KR101661235B1 (en) 2009-04-08 2016-09-29 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Techniques for processing a substrate
KR20120006529A (en) * 2009-04-08 2012-01-18 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Techniques for processing a substrate
JP2012523708A (en) * 2009-04-08 2012-10-04 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド Substrate processing technology
JP2012523707A (en) * 2009-04-08 2012-10-04 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Substrate processing technology
US9863032B2 (en) 2009-04-08 2018-01-09 Varian Semiconductor Equipment Associates, Inc. Techniques for processing a substrate
KR101607619B1 (en) * 2009-04-08 2016-03-30 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Techniques for processing a substrate
US8900982B2 (en) 2009-04-08 2014-12-02 Varian Semiconductor Equipment Associates, Inc. Techniques for processing a substrate
US9006688B2 (en) 2009-04-08 2015-04-14 Varian Semiconductor Equipment Associates, Inc. Techniques for processing a substrate using a mask
US9076914B2 (en) 2009-04-08 2015-07-07 Varian Semiconductor Equipment Associates, Inc. Techniques for processing a substrate
JP2010199073A (en) * 2010-03-16 2010-09-09 Nissin Ion Equipment Co Ltd Ion beam application method and ion beam application device
JP2011249096A (en) * 2010-05-26 2011-12-08 Nissin Ion Equipment Co Ltd Ion implantation apparatus
US8461556B2 (en) 2010-09-08 2013-06-11 Varian Semiconductor Equipment Associates, Inc. Using beam blockers to perform a patterned implant of a workpiece
JP2014082174A (en) * 2012-10-18 2014-05-08 Nissin Ion Equipment Co Ltd Mask and beam ion irradiation device

Also Published As

Publication number Publication date
JP4901203B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4901203B2 (en) Ion beam irradiation method and substrate manufacturing apparatus having thin film transistor
US8507368B2 (en) Single-shot semiconductor processing system and method having various irradiation patterns
US20020197759A1 (en) Amorphous silicon crystallization method
KR100732770B1 (en) Apparatus and method of partial ion implantation
KR20110094022A (en) Systems and methods for the crystallization of thin films
DE102008037663A1 (en) Structure of a pulse laser annealing system
US20190157462A1 (en) Laser beam irradiation device, thin-film transistor, and method of manufacturing thin-film transistor
JP4850411B2 (en) Thin film transistor manufacturing method
JPH07249592A (en) Laser treatment method of semiconductor device
TWI521563B (en) Laser processing device
CN110998795A (en) Laser irradiation device, method for manufacturing thin film transistor, and projection mask
CN107430990B (en) Thin film transistor substrate, display panel and laser annealing method
WO2017149767A1 (en) Laser annealing device, mask, thin film transistor, and laser annealing method
JP6313926B2 (en) Laser annealing method, laser annealing equipment
US8367301B2 (en) Mask for crystallizing silicon, apparatus having the mask and method of crystallizing with the mask
US10840095B2 (en) Laser irradiation device, thin-film transistor and thin-film transistor manufacturing method
WO2009142103A1 (en) Method for irradiating laser light and laser light irradiation device
JP6674641B2 (en) Semiconductor manufacturing method
US20200020530A1 (en) Laser irradiation device, method of manufacturing thin film transistor, program, and projection mask
WO2021181700A1 (en) Laser anneal device and laser anneal method
US7968857B2 (en) Apparatus and method for partial ion implantation using atom vibration
JP7226767B2 (en) Laser annealing apparatus and laser annealing method
JP3587083B2 (en) Method for manufacturing semiconductor device
KR100678737B1 (en) Method for fabricating polycrystalline silicon thin film transistor array substrate
JP2007317809A (en) Laser irradiator, and laser processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees