JP2007162839A - ジョイント構造、その製造方法およびマイクロ流体装置 - Google Patents

ジョイント構造、その製造方法およびマイクロ流体装置 Download PDF

Info

Publication number
JP2007162839A
JP2007162839A JP2005360373A JP2005360373A JP2007162839A JP 2007162839 A JP2007162839 A JP 2007162839A JP 2005360373 A JP2005360373 A JP 2005360373A JP 2005360373 A JP2005360373 A JP 2005360373A JP 2007162839 A JP2007162839 A JP 2007162839A
Authority
JP
Japan
Prior art keywords
elastic body
microfluidic device
joint
joint structure
strength material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005360373A
Other languages
English (en)
Inventor
Yutaka Takahashi
裕 高橋
Toshihiko Ota
俊彦 太田
Mikihiro Uchijo
幹弘 内條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Mie University NUC
Original Assignee
NOF Corp
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, Mie University NUC filed Critical NOF Corp
Priority to JP2005360373A priority Critical patent/JP2007162839A/ja
Publication of JP2007162839A publication Critical patent/JP2007162839A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 着脱が容易であるとともに、高圧耐腐食性に優れたジョイント構造、その製造方法およびそれを用いたマイクロ流体装置を提供すること。
【解決手段】 マイクロ流体デバイスの開孔口と外部チューブとを接続するジョイント構造であって、前記開孔口に当接して長手方向に形成された流路で前記外部チューブまでの開口路を確保する弾性体と、前記弾性体の周囲に配設されるとともに前記マイクロ流体デバイスに固着される強度材と、前記弾性体が前記強度材により圧縮の余圧をかけた状態で一体化され、かつ強度材がマイクロ流体デバイスに固着されるときに弾性体が上方から狭圧される状態にあることを特徴とするジョイント構造で構成されるので、迅速かつ繰り返し着脱が容易であるとともに、高圧耐腐食性に優れたジョイント構造を提供することができる。
【選択図】 図1

Description

本発明は、マイクロ流体デバイスの開孔口と外部チューブとをつなぐ高圧耐腐食性に優れ、マイクロ流体デバイスと外部チューブとの脱着が容易で繰り返し可能なジョイント構造、ジョイント構造の製造方法及びそのジョイント構造を用いたマイクロ流体装置に関するものである。
従来から種々のマイクロ流体装置のデバイス、その製造方法が提案されている。これらの中で、シリコン、ガラスまたはセラミックスなどの硬脆材料からなる平板上に2次元の微細溝加工を施し、その2枚又は蓋材を接合することで流体の流路を形成する方式が大半を占めている。
マイクロ流体装置は、デバイスの基板に形成したマイクロ、ナノスケールの複数のチャンネルを用いて化学反応や混合・分離等を行う装置であり、デバイスのサイズを微小化することにより表面積/体積比率を増大することで熱移動や物質移動の高速化が起こり、その結果として系中の温度分布や濃度分布が均一になるまでの所要時間が極めて短くなると云う特徴を有している。
これらは通常のサイズの装置と比較して反応や混合等の単位操作における高速度化や高効率化が期待される。また同様に化学分析や機器分析に必要な分離・抽出等の単位操作も高速度かつ高効率に行うことが期待されている。
マイクロ流体装置での生産活動は、従来の化学製造業における通常サイズのバッチ式や連続式での生産体制よりも高速度で、かつ高効率で行えることが期待され、各種基礎検討が進められており、一部には実際の生産への検討が試みられている(例えば、非特許文献1参照)。
また、デバイスのサイズを微小化することで投入される試料が強い毒性や鋭敏な反応性を有するなど危険性の高い試料に関して高感度かつ高効率で分離や抽出が可能であるならば使用する試料の量の削減が可能であるため、実験者や実験装置などへの負荷を低減できると同時に少ない量で実験回数の増加が可能であり再現性等が向上すると期待される。
特に、人由来の試料を分析対象とする場合には、人間への負担という観点から分析試料の量を低減できることは極めて重要である。人由来の試料の場合にはこれと同時に高速度化高感度化は強い要求であり、治療医学よりも予防医学に重心を移す社会体制の変化から近年ますますその重要度は増加している。
環境分析や飲食物の化学分析においてもこの傾向は同様であり、試料量の問題は別にしても高速度化高感度化の要求は年々厳しくなってきている。
これらの要求に対応できる技術の一つにマイクロ流体装置による分析があり、この分野でもマイクロ流体装置への期待は大きい。マイクロ流体装置を用いた分析の場合にはデバイスのサイズを微小化することで全体のサイズが小さくなるため何種類ものマイクロ流体デバイスを平板上に同時に製造することが可能であり、これにより少ない試料でも多種類や多重分析を同時に高速度高感度で行うことが提案されている。
この様に優れた特徴を持ち将来を期待されているマイクロ流体装置において、反応や抽出などの物質移動の単位操作等は流体シミュレーションなど用いて論理的な裏付けやMEMS(micro electro mechanical system)と呼ばれる半導体製造プロセス技術を用いた1つの基板上に電気電子技術と機械機構を融合させた微小デバイスを製造する技術の応用または転用が進められているが、現状では周辺技術等は十分に検討されるに到っていない。
例えば、このようなマイクロ流体装置における流体の出入口は、装置側面ではなく平板面に開孔口として設けられることが多い。この開孔口と外部チューブとの接続には、平板上に取っ掛かりがないことから工夫を要する。
従来からの一般的なマイクロ流体装置では、市販の継手を用いて接着剤で貼り付ける方法が主に採られている。ところが、この方法では、接着強度の長時間・繰り返し使用に対する信頼性に問題があった。また、継手中を流れる流体が継手自体や接着剤を溶解もしくは腐食する場合があった。さらに、接着することによって外部チューブを繰り返し脱着できないという問題もあった。
そのために接着剤を用いないジョイント構造がいくつか提案されている。
例えば、開孔口に樹脂等の弾性体で中空の突起物を形成し、その上にメッキ膜を付け、次いで前記の弾性体を除去することで、外部チューブを接続するための金属製の取っ掛かりとする構造である(例えば、特許文献1参照)。
特開2002−144300号公報 有機合成化学協会誌 第57巻第9号(1999年)第95頁
従来の上記したマイクロ流体装置のジョイント構造では、製造工程が複雑であり、弾性体の硬化にUV硬化装置を用いる等、製造コストがかかるという問題があった。また機能面では、流体とメッキ金属が接することで腐食による劣化や金属の溶出による流体の汚染に留意する必要があった。また、構造的には平板にパイプが立っている片持ち支持であるために、パイプに曲げ力が作用した場合に根元で折れ易いという問題もあった。
この発明は上記に鑑み提案されたもので、マイクロ流体デバイスと外部チューブの脱着を迅速かつ容易に行えるとともに、高圧耐腐食性に優れたマイクロ流体デバイスのジョイント構造、その作製が容易な製造方法およびマイクロ流体装置を提供することを目的とするものである。
前記目的を達成するために、本発明はマイクロ流体デバイスの開孔口と外部チューブとを接続するジョイント構造であって、前記開孔口に当接して長手方向に形成された流路で前記外部チューブまでの開口路を確保する弾性体と、前記弾性体の周囲に配設されるとともに前記マイクロ流体デバイスに固着される強度材とからなり、前記弾性体が前記強度材により圧縮の余圧をかけた状態で一体化され、かつ強度材がマイクロ流体デバイスに固着されるときに上方から狭圧される状態にあることを特徴とするジョイント構造である。
また、本発明において、前記弾性体は、形成された流路中を流れる流体に対して耐腐食性を有することを特徴としている。
また、本発明において、前記弾性体が周囲に配設された強度材により圧縮の余圧をかけた状態で一体化された構造が嵌合によるものであることを特徴とする。
また、本発明において、前記弾性体が上方から狭圧される構造が、螺合によるものであることを特徴とする。
また、本発明において、前記弾性体と強度材とのヤング率の比が0.75以下であることを特徴とする。
また、本発明のジョイント構造の製造方法において、弾性体と強度材とを嵌合する嵌合工程と、嵌合された弾性体の中心軸を穿孔する穿孔工程と、穿孔された弾性体の一方の端面をマイクロ流体デバイスに密着させるための加工工程および弾性体の他方の端面から内に外部チューブと接続するための加工工程とを含むことを特徴とする。
また、本発明において、前記嵌合工程が締まり嵌めであることを特徴とする。
また、本発明のマイクロ流体装置において、マイクロ流体デバイスと、該マイクロ流体デバイスの開孔口に接続された請求項1〜5に記載のジョイント構造と、該ジョイント構造に接続された外部チューブとを備えたことを特徴とする。
この発明は前記した構成からなるので、以下に説明するような効果を奏することができる。
1)本発明では、マイクロ流体デバイスの開孔口と外部チューブとを接続す
るジョイント構造であって、前記開孔口に当接して長手方向に形成された流路で前記外部チューブまでの開口路を確保する弾性体と、前記弾性体の周囲に配設されるとともに前記マイクロ流体デバイスに固着される強度材とからなり、前記弾性体が前記強度材により圧縮の余圧をかけた状態で一体化され、かつ強度材がマイクロ流体デバイスに固着されるときに上方から狭圧される状態にあることから構成され、弾性体が強度材により、その変形を拘束して補強されているので、流体を流す際に高圧力にしても流体の漏れがなく、また弾性体の破裂を防止することができる。また弾性体の周囲(外側)が強度材で構成されていることから曲げ力が作用しても根元で折れることがなく強度的にも優れている。さらに強度材が上方から狭圧されることから、それと一体化している弾性体がマイクロ流体デバイスに密着して固着されるので、その接続部分で流体の漏れを防ぐことができる。
2)また、本発明において、前記弾性体は、形成された流路中を流れる流体に対して耐腐食性を有するので、前記の効果に加えてジョイントが使用する流体によって腐食される虞れもない。
3)また、本発明において、弾性体が周囲に配設された強度材により圧縮の余圧をかけた状態で一体化された構造が嵌合によるものであることから、前記の効果に加えて、流体を流す際に高圧力にしても弾性体の破裂をさらに防止することができ、曲げ力が作用しても根元で折れることもさらに防止することができる。
4)また、本発明において、前記弾性体が上方から狭圧される構造が、強度材とデバイスとの螺合によるものであることから前記の効果に加えて、弾性体をデバイスの開口孔に強く密着することができ、弾性変形による両者の密着により、流体の圧力を高くした場合、外部に流体が漏れ出す圧力(以下漏れ圧力と称する)をさらに高くすることができる。
5)また、本発明において、前記弾性体と強度材とのヤング率の比が0.75以下であるので、前記の効果に加えて、後記の製造方法により弾性体に充分な余圧を付与することができる。
6)また、本発明のジョイント構造の製造方法において、弾性体と強度材とを嵌合する嵌合工程と、嵌合された弾性体の中心軸を穿孔する穿孔工程と、穿孔された弾性体の一方の端面をマイクロ流体デバイスに密着させるための加工工程および弾性体の他方の端面から内に外部チューブと接続するための加工工程とを含む製造方法であるので、容易にジョイントを製造することができる。また得られたジョイントは前記の効果を有している。
7)前記製造方法において、前記の効果に加えて、前記ヤング率の比の要件とともに、嵌合工程を締まり嵌めとすることによって弾性体に充分な余圧を付与することができる。
8)また、本発明のマイクロ流体装置において、マイクロ流体デバイスと、該マイクロ流体デバイスの開孔口に接続された前記1)〜5)に記載のジョイント構造と、該ジョイント構造に接続された外部チューブとを備えたので、マイクロ流体デバイスと外部チューブとの脱着を迅速かつ容易に行うことができる。また、マイクロ流体装置の製造も容易に行うことができる。更に、高圧反応にも使用することができる。
以下に本発明を具現化した実施形態について詳細に説明する。
図1は、本発明に係るマイクロ流体装置のジョイントの一例を示す一部を切欠いた説明図、図2は本発明のマイクロ流体装置の組立断面図である。ここでジョイント10は、マイクロ流体デバイス11の開孔口12と外部チューブ13とを接続するものであって、開孔口12に当接して長手方向に形成された流路14で前記外部チューブ13までの開口路を確保する弾性体15と、前記弾性体15の周囲に配設されるとともに前記マイクロ流体デバイス11に固着される強度材16とから構成され、図2ではさらに前記弾性体15の上端に形成された凹部15aに配置されるとともに前記外部チューブ13の周囲を覆うフェルール17と、前記外部チューブ13を挿通するとともに前記強度材16に固着されてフェルール17および弾性体15を押圧し、外部チューブ13の先端を弾性体15の流路14に連通して固定するフェルール固定部材18も示している。
強度材16は、円筒形をしており、下端外周に形成された雄ネジ19で、マイクロ流体デバイス11の周囲に取り付けられホルダ20の雌ネジ20aに螺合される。また、強度材16の上端内側には、フェルール固定部材18を螺合するための雌ネジ21が形成されている。強度材16の内筒には、開孔口12に連通する流路14が長手方向に形成された弾性体15が嵌挿されている。弾性体15は、流路14内を流す流体に対して耐腐食性を持つ材質で構成されるとともに、下端に強度材16の内径より大きなフランジ15bが突き出ている。したがって、ホルダ20に螺合した場合に、弾性体15が直接マイクロ流体デバイス11に当接する。
本実施例においてフェルール固定部材18には、外部チューブ13を固定するためにチューブ固定ネジ22が設けられている。フェルール17への締め込みが不十分な状態で外部チューブ13に高圧力が加えられた際に、このチューブがジョイント10から抜けて飛び出るトラブルをこのチューブ固定ネジ22により防止することができる。
また、弾性体15の流路14は、弾性体15および強度材16の中心軸C上に位置し、その上部にはフェルール17が密着しながら固定できるような円錐状の凹部15a(図1中では頂角をαとする)が形成されている。本実施例において、凹部15aは約30度の角度でテーパー穴加工されている。
本発明に使用される弾性体15としては、流体と直接接することになるために、流体に対して耐腐食性を持つ材質を用いるが、その他に流す流体の温度や圧力にも配慮して選択する。例えば、シリコーン樹脂、フッ素樹脂、ポリイミド樹脂等の有機系素材が汎用的であるが、強度材16をステンレス鋼などの強い素材で製作することで、金、銀、銅などの貴金属、アルミニウム、錫、鉛等の軟質金属及びグラファイトや六方晶窒化ホウ素等の軟らかい無機素材も弾性体15として使用することができ、特定の用途では温度、圧力、酸・アルカリ度等の個々における耐性を飛躍的に高めることに特化できる。
ただし、耐腐食性や熱的安定性や流体に対する汚染防止等の一般的な要求においてシリコーン樹脂やフッ素樹脂はかなり優れた特性を同時に兼ね備えた素材であるため実際上は多くの用途に適用が可能である。本実施例ではフッ素樹脂の一つであるポリテトラフルオロエチレン(テフロン(登録商標))を用いている。
強度材16と弾性体15の組み合わせとしては弾性的変形挙動を勘案して決定することが望ましい。具体的な強度材16としては、加工性や価格の面から優位性を有する材料として金属系材料があり、ヤング率が100GPaから200GPa付近の材料を使用することができる。強度材16の選定は、前述の加工性や強度に関する要件を満たせばよく、弾性体15は強度材16より弾性的であることが必要である。その結果、弾性体15のヤング率が強度材16のヤング率より小さいことが必要である。
この要件を満たしていれば弾性体15と強度材16の組み合わせは、金属強度材と金属弾性体でも非金属強度材と非金属弾性体等に特に拘らず、金属と非金属の組み合わせを自由に選択することができる。
例えば、軟鋼はヤング率200GPa付近であるが、これを強度材16とした場合に使用可能な弾性体15としては銅・銀・金等の貴金属やアルミニウム・スズ・鉛などに代表される軟質金属でいずれもヤング率が小さい物であるならば十分に弾性体としての機能を発揮することが出来る。また、グラファイトや六方晶窒化硼素に代表される無機材料やフッ素樹脂・ポリエチレン樹脂に代表される有機材料の様なものでも十分に機能を発揮することが出来る。
弾性体材料と強度材の組み合わせにおいてヤング率の比は、0.75以下であることが望ましく(弾性体/強度材=銅/軟鉄=135GPa /200GPa =0.675)である。また、弾性体15の押圧によるマイクロ流体デバイス11側への密着性の観点も考慮すると更に好ましくは0.50以下である。
フッ素樹脂やポリエチレン樹脂に限らず有機材料としては他にポリウレタン樹脂、ポリエステル樹脂、シリコーン樹脂、ポリイミド樹脂等が挙げられるが、耐腐食性や熱的安定性や加工性等の観点からシリコーン樹脂やフッ素樹脂が好ましい。
また、ニトリルゴム(バイトン;登録商標)の様な安価でかつ弾性的性質に富み加工性に優れた特性を有しているものの、流す流体に対する耐腐食性から使用できない素材であっても上記の様に表面をフッ素樹脂などで被覆するなどして積層化を行い、その表面をフッ素樹脂層とすることで同等の耐腐食性を発揮させながら、その下地である素材の優れた弾性的性質からマイクロ流体デバイス11側への密着性は十分に発揮される。
また、温度が高い環境で使用する場合には、炭素材料やセラミックスの無機材料や金属材料の使用が好ましい。また、金属同士の強度材16と弾性体15の組み合わせはその熱伝導性の高さから、高温下での反応や発熱を伴う反応直後の冷却に好適である。
また、ジョイント10のマイクロ流体デバイス11への接続方式としては、各種の実施態様を示すことができる。
例えば、図2に示す接続方式は、マイクロ流体デバイス11を保持するホルダ20を利用し、それに設けた雌ネジ20aと、強度材16の下方外周に設けた雄ネジ19を螺合する方式(内ネジ方式)である。なお、本実施例ではマイクロ流体デバイス11を保持するホルダ20は、ホルダの下側20bとホルダの上側20cとで挟み込み、ホルダ開閉ネジ23により固定される。マイクロ流体デバイス11のデバイス内流路24の開孔口12と雌ネジ20aが対応するようにホルダの上側20cを製作する。
以上のように構成されたジョイント10は、強度材16の上から外部チューブ13の挿通固定されたフェルール固定部材18が螺合される。フェルール固定部材18の螺合に伴って、外部チューブ13の先端に取り付けられたフェルール17を押圧しながら前進し、弾性体15の流路14と外部チューブ13が連通する。
更に、図2に示すようにホルダ20の雌ネジ20aに強度材16の雄ネジ19を螺合することにより、マイクロ流体デバイス11の上面25に形成された開口孔12に弾性体15の下端が密着して押し付けられ、弾性体15の中央に形成された流路14と連通する。このジョイント10をホルダ20に螺合することで、弾性体15は上方から狭圧された状態でマイクロ流体デバイス11の上面25にある開口孔12に接続され、マイクロ流体デバイスのデバイス内流路24に流体を供給する。
図3は、本発明のマイクロ流体装置の第2の実施形態を示す縦断面図である。なお、第1の実施形態と同じ構成であるジョイント10については、同一符号を使用してその説明を省略する。本実施形態における、ジョイント10のマイクロ流体デバイス11への接続方式としては、ホルダ20を使用することなく、弾性体15の流路14と連通させるマイクロ流体デバイス11の上面25にある開口孔12と中心を合せて、ジョイント固定ネジ26を接着剤で貼り付けて接着層36を形成してマイクロ流体デバイス11と固定する。このジョイント固定ネジ26とジョイント10を螺合させることにより弾性体15がマイクロ流体デバイス11の上面25に狭圧された状態で固定される。
本実施形態による固定では、流路14を流れる流体に高圧力を加えると接着層36の上下方向に引張り力が作用し、接着不良の場合は剥離が生じることがあるため、図2に示したホルダ20に設けられた雌ネジ20aにジョイント10を螺合するものと比べて信頼性には劣るが、ホルダ20を省略できるためにシステム全体の厚みを薄くすることができ、流体に加える圧力がそれほど高くない場合に有効である。
図3に示す例では、フェルール固定部材18と強度材16の上方内周にある雌ネジ21の螺合により固定した例である。すなわち弾性体15に掘られたテーパー状の凹部15aにフェルール17をはめ込み、前記の螺合により上部から狭圧すると両者は密着しながら固定され、弾性体15と外部チューブ13との接続部で流体が漏れるのを防ぐ役目をする。また、市販のフェルール固定部材18を使用する際にも、チューブ固定ネジ22を取り付けられるようにこの機械加工を追加して施すと良い。
図4は、本発明のマイクロ流体装置の外部チューブの固定方法を示す第3の実施形態の縦断面図である。フェルール17の固定方法、つまり図2〜図3で採用したフェルール固定部材18を使用する方法は内ネジ方式であり、市販されているフェルール固定部材18の転用を可能とする方式である。しかし、この固定方法以外に外ネジ方式の固定方法でもよい。
本実施形態は、この外ネジ方式の固定構造の一例を示すものである。なお、図4において、前述の内ネジ方式と同じ部分については、同一符号を付して説明を省略する。本実施形態において、雄ネジ部16aを強度材16の上方外周に設ける。つまり、フェルール固定部材27の外周に凸部28が設けられており、強度材16の上方外周に設けた雄ネジ部16aとフェルール押さえリング29の雌ネジを螺合することにより、フェルール固定部材27が下方に押され、フェルール17が狭圧されフェルール17と弾性体15は密着しながら固定される。
以上のように構成した場合、フェルール固定部材27に外部チューブ13およびフェルール17を取り付けた状態で、フェルール固定部材27を回転させることなく、フェルール押さえリング29のみを回転するだけで押圧固定することができる。したがって、取り付け作業が容易である。
次に、本発明に用いられる強度材16について説明する。
通常は機械加工が容易であるため金属材、例えば黄銅に代表される銅合金、ジュラルミンに代表されるアルミニウム合金およびステンレス鋼に代表される鉄系材料等が用いられ、必要とする強度に応じて選択される。これらの金属材は切削加工やネジ切り加工が可能であるため、図1及び後述する図8に示す構造のジョイントを製作することは容易である。
ところが、マイクロ流体デバイスの特定の用途においては、伝熱が問題となることがある。流す流体の保温が大事である場合に強度材を伝熱性が良い金属材とすることは、熱が逃げやすくなるため不都合であり、代替としてガラスやセラミックスなどの伝熱性の悪い材質を強度材として使用するのが好ましい。図1及び図8の構造は2箇所のネジ構造を持つため製作上の手間からコスト的に不利である。
また、強度材の加工においてその形状はマイクロ流体デバイスの大きさや使用目的に合せて適宜決めることができるが、特別な理由がない限り円筒状であることが好ましく、製作上の加工の容易さや出来上がった加工品の精度及び信頼性に軸対称構造は優れた特性を有する。
次に、本発明のジョイントの製造法について説明する。
本発明のジョイントの製造法は、弾性体と強度材とを嵌合する嵌合工程と、嵌合された弾性体の中心軸を穿孔する穿孔工程と、穿孔された弾性体の一方の端面をマイクロ流体デバイスに密着させるための加工工程および弾性体の他方の端面から内に外部チューブと接続するための加工工程とを含むものである。
図5、図6は、前記図1の構造を持つジョイント10の製造方法の一例を示す部品図である。図5は、本発明のジョイント10の外側を構成することになる黄銅製の強度材16の一例を示す図であり、図6はジョイント10の内側を構成することになる弾性体15としてのテフロン(登録商標)のプラグを示す図である。図7は、これらの部品を互いに嵌合して後加工を施すための部品組立図であり、これに前述の嵌合工程、穿孔工程、加工工程を行うと図1に示すジョイント10が製作できる。
図5に示される強度材16の下方外周にネジ切りを行って雄ネジ19を形成する。雄ネジ19は、例えば図3の接続構造においてマイクロ流体デバイス11の上面25にある開口孔12に中心を合せて接着剤で貼り付けられたジョイント固定ネジ26と螺合させるためのものである。一方、内側には弾性体15を嵌合するための直径a1の貫通孔30を開ける。また上方内周には外部チューブ13の先端に取り付けられるフェルール17を狭圧しながら固定するために雌ネジ21をネジ切り加工する。
次に、弾性体15のプラグは、図6に示されるように下端に強度材16の内径より大きな直径b3のフランジ15bを有する形状に加工する。弾性体15の先端部をテーパー状にわずかに細めるのは、室温においてもプラグの先端の一部が強度材16に容易にはまり込むようにするためである。
棒状体の外形は、前記の強度材16の内径よりも大きな径である。弾性体15の外径を強度材16の外径より大きな径とすることで、嵌合したときに圧縮の与圧を弾性体15にかけることができる。前記弾性体15の外径と強度材16の内径との関係は用いる弾性体15及び強度材16の材質や両者の大きさ等の形状や熱膨張の差等を考慮して適時決定することができる。
例えば、本実施形態で強度材16として黄銅を用いた場合には、図5に示されるa1は4.4mm、a2は10mmで、また弾性体15としてテフロン(登録商標)を用いた場合には、図6に示されるb1は約4.2mm、b2は4.7mm、b3は約6.0mmとした例である。次に、図5に示される強度材16に図6に示す弾性体15を嵌合して図7に示す状態に機械加工する。
前述の嵌合工程では、内側の弾性体15が外側の強度材16により圧縮の余圧がかけられた状態で固定するために、締まり嵌めの手段を用いる。この締まり嵌めの手段としては、弾性体15のプラグと外側の強度材16を冷媒等により冷却し、熱膨張の程度の差を利用して両者の間に隙間を作りはめ込む、いわゆる冷やし嵌めの他に、前述ように弾性体15のプラグ先端の一部が強度材16に挿入できる寸法にテーパー加工されているため、残りの部分は機械的に圧入する手段もある。これらは通常の機械加工における締まり嵌めの常套手段であるが、冷やし嵌めと圧入の双方を併用した手段や焼き嵌めなども手段として採用することができる。
本実施形態では、強度材16である黄銅の貫通孔30に弾性体15であるテフロン(登録商標)の先端の一部を室温で挿入し、それを液体窒素に浸けて冷却することで、内側のテフロン(登録商標)が外側の黄銅より大きく縮むためさらに挿入することができ、それでも残った約半分の部分は機械的に打ち込み、図6に示すプラグにおいて下方の段付きのフランジ15bの箇所まで強度材16に圧入する。
次に、嵌合された弾性体15を上方向からテーパ状に穿孔する。図7に示す加工1ではジョイント10の中心軸C上に貫通孔(流路14)を開けている。この貫通孔(流路)は外部チューブ13の流路とマイクロ流体デバイス内流路24を連通させるものである。
次いで弾性体15の下端面に端面削りを施し(図7の加工2)、切削面15cが長手方向と厳密に垂直となるようにする。このとき下方のフランジ15b(突出部)の厚さは、用いる弾性体15の種類や目的とする狭圧力等により適宜決ることができる。この加工によりマイクロ流体デバイス11の上面と密着が取れる構造とすることができる。さらに削った切削面15cに対して研磨加工を施し、滑らかな面とすることで一層密着の程度が良くなり、同じ狭圧力であってもより高い漏れ圧力が実現できる。
もう一方の端面は、頂角αのドリルにより加工しテーパー穴(凹部)15aを設ける(図7の加工3)。通常、用いる市販のチューブ及びフェルールに適合するような頂角のドリルを用いる。例えば、本実施形態では市販の1/16”のチューブ13及びフェルール17を用いたためαは、30度としている。
次に前記のジョイント10を用いたマイクロ流体装置について説明する。本発明におけるマイクロ流体デバイス11は、従来のマイクロ流体デバイスと同様にして使用することができる。すなわちマイクロ流体デバイス11の開孔口12に直接接続され、またはホルダを介して接続された前記のジョイント10と、このジョイント10に接続された外部チューブ13とを備えたものである。ここで、マイクロ流体デバイス11への接続方式は前記図2及び図3で説明したように、ジョイント10がマイクロ流体デバイス11を保持するホルダに接続する構造でも、また図3のように、ジョイント10をマイクロ流体デバイス11にジョイント固定ネジ26を介して接続する方式でもよい。
ここで、使用するマイクロ流体デバイス11としては、従来から公知のデバイスをすべて対象とすることができる。
以上説明したように、本発明のジョイント10は、弾性体15と強度材16とから構成され、弾性体15が外側から圧縮の与圧がかけられた状態で固定され、かつ上方から狭圧された状態でマイクロ流体デバイス11に接続されるために、流体の漏れがなく、強度的にも優れている。
また、弾性体として流体に対して耐腐食性の(不活性な)材質を用いることにより耐腐食性にも優れる。
また、その製造方法は、弾性体15と強度材16とを嵌合する嵌合工程と、弾性体15を穿孔する穿孔工程と、弾性体15の両端を加工する加工工程とからなるために製作が容易であるという特徴を有している。さらに本発明のマイクロ流体装置は、前記のジョイント10を備えたものであるためにマイクロ流体装置として最適なものである。
図8は、本発明のマイクロ流体装置のジョイントの別の実施形態を示す説明図、図9は、図8に示すジョイントを用いたマイクロ流体装置の組立図である。
本実施形態において、前述の実施形態と同一部分については、同一符号を付して説明を省略する。ここで、マイクロ流体デバイス11の周囲を覆うホルダ20の上側20cに環状の立設部31を形成し、その外周にホルダ雄ネジ部32を形成する。立設部31の中心孔31aは、開孔口12の中心と一致しており、ジョイント40の中心軸Cとも一致する。また、ジョイント40の外周には、環状の凸部33が形成されている。更に、ホルダ雄ネジ部32と螺合する雌ネジ34aを備えたジョイント押さえリング34を有している。また、ジョイント押さえリング34は、中央にジョイント40が挿通可能な挿通孔35を有している。
以上のように構成されたジョイント40は、ホルダ20に形成された立設部31に挿入する。すると、弾性体15の流路14が開孔口12に当接する。また、上からジョイント押さえリング34をホルダ雄ネジ部32に螺合すると、凸部33が挿通孔35を通過できないので、弾性体15の下端部がマイクロ流体デバイス11の上面に押圧されて開孔口12と流路14および外部チューブ13が連通し、水密性が保持される。本実施形態は、ジョイント押さえリング34の雌ネジ34aと立設部31のホルダ雄ネジ部32の螺合によりジョイント40をマイクロ流体デバイス11に狭圧して接続することができる。本実施形態では、ジョイント40の外周に凸部33が設けられているので、この凸部33がジョイント押さえリング34の螺合により下方に押され、その結果ジョイント40がマイクロ流体デバイス11に狭圧された状態で固定される。
前述した図2のホルダ20の内ネジ方式では、図9の外ネジ方式に比べてジョイント押さえリング34が不要なため部品点数が少なくなるので接続部の小型化に有利な構造である。しかし、図9の外ネジ方式では、ジョイント押さえリング34を手回しするだけでジョイント40をマイクロ流体デバイス11から脱着できるため作業性が良いだけでなく、ジョイント40の外周の円筒面とホルダの上側20cに垂直に開けられた中心孔31aの内面とのはめあいによりジョイント40とマイクロ流体デバイス11の相対関係が拘束されるため、両者は厳密に垂直となりながら狭圧されて図2の内ネジ方式と比べて同じ狭圧力であっても高い漏れ圧力が達成される。
図4に示す実施形態においても、図9の外ネジ方式と同様に、フェルール押さえリング29を手回しするだけで外部チューブ13をジョイント10から脱着できるため作業性が良いだけでなく、フェルール固定部材27の外周の円筒面と強度材16に開けられた貫通孔30の内面とのはめあいにより両者の相対関係が拘束されるため、フェルール固定部材27はフェルール17に片当りしないようにまっすぐに押さえられ、図2〜図3で採用したフェルール固定部材18を使用する場合と比べて同じ狭圧力であっても高い漏れ圧力が達成される。
<実施例1>
以下、本発明を実施例によりさらに具体的に説明する。
前記図1に示す構造のジョイントの製造方法を図5〜図7を用いて詳細に説明する。図5に示される強度材16において、直径a2=10mmの黄銅製の丸棒を機械加工し、長さ20mmで切断した後に、長手方向に直径a1=4.4mmの貫通孔30をドリルにより開け、タップを用いて貫通孔30上部より5mmの深さまでM5のネジを立て、雌ネジ21を作製した。またネジ切り丸ダイスを用いて外周の下方10mmにはM10のネジ切り加工を行い、雄ネジ19を形成した。
図6の弾性体15としてはテフロン(登録商標)を用い、直径10mmの市販の丸棒をプラグの形状に旋削した。直径がb3=6.0mmとなるように上端面から16mmまでの部位を外径削りをした後、上端面から13.5mmまではb2=4.7mmの径にさらに削りこんだ。また、上端面から3mm迄を勾配0.08でテーパー削りした後、上端面から16mmの箇所で切断した。
次に、強度材16と弾性体15を嵌合する嵌合工程を説明する。弾性体15の先端部はテーパー状にわずかに細めて形成してあるので、室温においても先端の一部を強度材16の貫通孔30に嵌め込むことができる。その状態で液体窒素(−196℃)に30分間浸けて冷却すると、内側のテフロン(登録商標)が外側の黄銅より大きく縮むため、冷やし嵌めによりさらに押し込むことができた。それでも残った部分は、プラスチィックハンマー等で叩くことで圧入して、図6に示す弾性体15において下方の段付きのフランジ15bの箇所まで嵌合した。
最後に、図7に示す加工1、加工2及び加工3を行うとジョイント内部の長手方向に流路14が形成される。加工1ではジョイント40の中心軸C上にドリルで直径1.0mmもしくは1.6mmの貫通孔(流路)を開け、この貫通孔(流路)は外部チューブ13の流路とマイクロ流体デバイス11の流路24を連通させるものである。次いで弾性体15の下端面に端面削りを施し(図7の加工2)、切削面15cがジョイント長手方向と厳密に垂直となるようにすることでマイクロ流体デバイス11の上面25と密着が取れる構造となる。端面の削り量により下方の突出部の厚さは調整できるが、本実施例での厚さは1.2〜1.6mmとした。もう一方の端面を頂角αのドリルによりテーパー穴加工するのは(図7の加工3)用いる市販のチューブ及びフェルールに適合させるためで、本実施例ではValco社の1/16”のチューブ及びフェルールを用いたためαは30度とした。
なお、加工2で端面削りした面には研磨加工も施した。研磨されるテフロン(登録商標)は非常に柔らかい材質であるため、研磨剤として市販の練り歯磨き粉を用いた。マイクロ流体デバイス11の上面25と密着する面が研磨により滑らかとなることで密着の程度が良くなる。
<比較例1−1>
汎用のY字型ガラス製のマイクロ流体デバイス11の出入口に市販のエポキシ系接着剤を用いてValco社の1/16”のチューブを接着した。
<比較例1−2>
特許文献1に示す方法を用いて汎用のY字型金属製マイクロ流体デバイスの出入口に外部チューブを接続するための金属製の取っかかりを取り付け、ネジを切りValco社の1/16”のチューブを嵌合した。
<実施例2−1−1、2−1−2>
実施例1のジョイントを汎用のY字型金属製マイクロ流体デバイスの三カ所に取り付け、二カ所にメクラ蓋をして、一カ所を窒素ボンベに接続して耐圧試験を実施した(実施例2−1−1)。
同様に、汎用のY字型ガラス製流体デバイスに実施例1のジョイントを取り付け、窒素ボンベに接続して耐圧試験を実施した(実施例2−1−2)。
<比較例2−1、2−2>
比較例1−1で作成された継ぎ手とガラス製流体デバイスに関して、実施例2−1−1と同様に耐圧試験を実施した(比較例2−1)。
また比較例1−2で作成された継ぎ手と金属製流体デバイスに関して、実施例2−1−1と同様に耐圧試験を実施した(比較例2−2)。
「表1」に得られた耐圧試験の結果を示すように、実施例2−1−1では、接続デバイスを金属、耐圧を35Mpaとした場合、漏れ発生箇所はデバイス側接続部であり、残圧は35Mpaであった。また、実施例2−1−2では、接続デバイスをガラス、耐圧を3.8Mpaとした場合、漏れ発生箇所はデバイス内部であり、残圧は1.4Mpaであった。また、比較例2−1では、接続デバイスをガラス、耐圧を1.2Mpaとした場合、漏れ発生箇所はチューブ接続部であり、残圧は0Mpaであった。また、比較例2−2では、接続デバイスを金属、耐圧を8.0Mpaとした場合、漏れ発生箇所はデバイス側接続部であり、残圧は5.1Mpaであった。
なお、何れの場合も耐圧が最大値のところで圧力を保持して、12時間経過後の圧力を測定した。
Figure 2007162839
<実施例3−1−1、3−1−2>
実施例1のジョイントを汎用のY字型金属製マイクロ流体デバイスの一カ所に取り付け、横方向から力を加え、変形破壊される際の挙動を観察した(実施例3−1−1)。
同様に汎用のY字型ガラス製流体デバイスに実施例1のジョイントを一カ所に取り付け、横方向から力を加え、変形破壊される際の挙動を観察した(実施例3−1−2)。
<比較例3−1、3−2>
比較例1−1で作成された継ぎ手とガラス製流体デバイスに関して、横方向から力を加え、変形破壊される際の挙動を観察した(比較例3−1)。
また比較例1−2で作成された継ぎ手と金属製流体デバイスに関して、横方向から力を加え、変形破壊される際の挙動を観察した(比較例3−2)。
「表2」に得られた耐圧試験の結果を示すように、実施例3−1−1では、接続デバイスを金属とした場合、変形破壊場所はなく、ジョイントの再使用は可能であった。また、実施例3−1−2では、接続デバイスをガラスとした場合、変形破壊場所はデバイス本体が破断し、ジョイントの再使用は可能であった。また、比較例3−1では、接続デバイスをガラスとした場合、変形破壊場所はチューブ接続部が破断し、継ぎ手の再使用は不可能であった。また、比較例3−2では、接続デバイスを金属とした場合、変形破壊場所はデバイス側接続部のチューブが変形し、継ぎ手の再使用は不可能であった。
Figure 2007162839
なお、フェルール17と弾性体15を密着させながら固定する構成としては螺合に限定されるものではなく、例えば傘においてバネの仕組みで開くワンタッチ機構やホース同士を連結するためのカプラー機構や水道等に使用されているワンタッチの開閉機構やBNCコネクターのような機構を応用した各種の機構でフェルール17を狭圧してもよい。
図1は、本発明に係るマイクロ流体装置のジョイントの一例を示す一部を切欠いた説明図である。 図2は、同マイクロ流体装置の組立断面図である。 図3は、同マイクロ流体装置の第2の実施例を示す縦断面図である。 図4は、同マイクロ流体装置の外部チューブの固定方法を示す第3の実施形態の縦断面図である。 図5は、同マイクロ流体装置のジョイントの製造方法を示す説明図である。 図6は、同マイクロ流体装置のジョイントの製造方法を示す説明図である。 図7は、同マイクロ流体装置のジョイントの製造方法を示す説明図である。 図8は、同マイクロ流体装置のジョイントの第4の実施形態を示す説明図である。 図9は、図8に示すジョイントを用いたマイクロ流体装置の組立図である。
符号の説明
10 ジョイント
11 マイクロ流体デバイス
12 開孔口
13 外部チューブ
14 流路
15 弾性体
15a 凹部
15b フランジ
16 強度材
16a 雄ネジ部
17 フェルール
18 フェルール固定部材
19 雄ネジ
20 ホルダ
20a 雌ネジ
20b ホルダの下側
20c ホルダの上側
21 雌ネジ
22 チューブ固定ネジ
23 ホルダ開閉ネジ
24 デバイス内流路
25 上面
26 ジョイント固定ネジ
27 フェルール固定部材
28 凸部
29 フェルール押さえリング
30 貫通孔
31 立設部
32 ホルダ雄ネジ部
33 凸部
34 ジョイント押さえリング
34a 雌ネジ
35 挿通孔
36 接着層
40 ジョイント

Claims (8)

  1. マイクロ流体デバイスの開孔口と外部チューブとを接続するジョイント構造であって、
    前記開孔口に当接して長手方向に形成された流路で前記外部チューブまでの開口路を確保する弾性体と、
    前記弾性体の周囲に配設されるとともに前記マイクロ流体デバイスに固着される強度材とからなり、
    前記弾性体が前記強度材により圧縮の余圧をかけた状態で一体化され、かつ強度材がマイクロ流体デバイスに固着されるときに弾性体が上方から狭圧される状態にあることを特徴とするジョイント構造。
  2. 前記弾性体は、形成された流路中を流れる流体に対して耐腐食性を有することを特徴とする請求項1に記載のジョイント構造。
  3. 前記弾性体が周囲に配設された強度材により圧縮の余圧をかけた状態で一体化された構造が、嵌合によるものである請求項1または2記載のジョイント構造。
  4. 前記弾性体が上方から狭圧される構造が、螺合によるものである請求項1〜3の何れか一項に記載のジョイント構造。
  5. 前記弾性体と強度材とのヤング率の比が0.75以下であることを特徴とする請求項1〜4の何れか一項に記載のジョイント構造。
  6. 強度材と弾性体とを嵌合する嵌合工程と、
    嵌合された弾性体の中心軸を穿孔する穿孔工程と、
    穿孔された弾性体の一方の端面をマイクロ流体デバイスに密着させるための加工工程および弾性体の他方の端面から内に外部チューブと接続するための加工工程とを含むことを特徴とするジョイント構造の製造方法。
  7. 前記嵌合工程が締まり嵌めであることを特徴とする請求項6に記載のジョイント構造の製造方法。
  8. マイクロ流体デバイスと、該マイクロ流体デバイスの開孔口に接続された請求項1〜5に記載のジョイント構造と、該ジョイント構造に接続された外部チューブとを備えたことを特徴とするマイクロ流体装置。
JP2005360373A 2005-12-14 2005-12-14 ジョイント構造、その製造方法およびマイクロ流体装置 Pending JP2007162839A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360373A JP2007162839A (ja) 2005-12-14 2005-12-14 ジョイント構造、その製造方法およびマイクロ流体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360373A JP2007162839A (ja) 2005-12-14 2005-12-14 ジョイント構造、その製造方法およびマイクロ流体装置

Publications (1)

Publication Number Publication Date
JP2007162839A true JP2007162839A (ja) 2007-06-28

Family

ID=38245972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360373A Pending JP2007162839A (ja) 2005-12-14 2005-12-14 ジョイント構造、その製造方法およびマイクロ流体装置

Country Status (1)

Country Link
JP (1) JP2007162839A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469890A (en) * 1987-09-11 1989-03-15 Kyoshin Kogyo Kk Pipe connector for physical and chemical appliance
JP2005257282A (ja) * 2004-03-09 2005-09-22 Pentax Corp マイクロチップ用着脱式チューブ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469890A (en) * 1987-09-11 1989-03-15 Kyoshin Kogyo Kk Pipe connector for physical and chemical appliance
JP2005257282A (ja) * 2004-03-09 2005-09-22 Pentax Corp マイクロチップ用着脱式チューブ

Similar Documents

Publication Publication Date Title
US7909367B2 (en) Capillary interconnection fitting and method of holding capillary tubing
US6926313B1 (en) High pressure capillary connector
US7622016B2 (en) Retainer ring of chemical mechanical polishing device
KR20130105297A (ko) 고압 튜브 피팅, 시일 및 단부면 마련 도구
CN101652589B (zh) 机械密封装置
KR102066605B1 (ko) 배관연결장치
JP2015512053A (ja) トルク制限接続具
CN106112616A (zh) 一种微流控芯片进液夹具及进液方法
US10569390B2 (en) High torque polymer fittings
JP2015199028A (ja) マイクロチャネルへの液体注入方法
JP2007162839A (ja) ジョイント構造、その製造方法およびマイクロ流体装置
WO2006112726A1 (en) Tube connector for flow lines
KR100903660B1 (ko) 다이어프램 및 그 제조 방법 그리고 그것을 갖는다이어프램 밸브
JP2009500584A (ja) 管の接合部材及び管状部分をブロックに接合する方法
JP2007526975A (ja) 流体を受け取りかつ排出するシールコーティングを有する装置
US6003545A (en) Gas flow control device for high purity, highly corrosive gas service
JP6551609B2 (ja) フローセル
US20020109354A1 (en) Tube fitting
JP2003322127A (ja) 流体継手
WO2017204818A1 (en) Modular push-to-connect assembly
US5484172A (en) Pipe connection
JP2009275846A (ja) 管継手の構造
JP2008106889A (ja) マイクロバルブ及びこれを用いたマイクロポンプ
JP2005270729A (ja) マイクロ化学システム用チップホルダ
US6831739B2 (en) Compression-bonded probe window

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329