JP2007162655A - Sealing device of fluid machine - Google Patents

Sealing device of fluid machine Download PDF

Info

Publication number
JP2007162655A
JP2007162655A JP2005363622A JP2005363622A JP2007162655A JP 2007162655 A JP2007162655 A JP 2007162655A JP 2005363622 A JP2005363622 A JP 2005363622A JP 2005363622 A JP2005363622 A JP 2005363622A JP 2007162655 A JP2007162655 A JP 2007162655A
Authority
JP
Japan
Prior art keywords
ring
hole
gap
main
pressure region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005363622A
Other languages
Japanese (ja)
Other versions
JP4456062B2 (en
Inventor
Yuji Kanemori
祐治 兼森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2005363622A priority Critical patent/JP4456062B2/en
Priority to US11/812,023 priority patent/US20070280823A1/en
Publication of JP2007162655A publication Critical patent/JP2007162655A/en
Application granted granted Critical
Publication of JP4456062B2 publication Critical patent/JP4456062B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize a leakage in a sealing device preventing a fluid from leaking through the clearance between the rotary body and the casing of a fluid machine from the high-pressure side to the low-pressure side. <P>SOLUTION: This sealing device 25B comprises a wear ring 31 and a floating ring 32. The clearance between the peripheral wall of a through hole 32a formed in the floating ring 32 and the outer peripheral surface of the mouth ring part 19 of an impeller 19 is narrower than the clearance 35 between the inner peripheral wall of a through hole 31a in the wear ring 31 and the outer peripheral surface of the mouth ring part 19. The machining to increase the surface roughness such as knurling is applied to the through hole 31a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ポンプ、水車、コンプレッサ、ガスタービン等の流体機械において、ケーシングと回転体との間の隙間を通ってケーシング内の高圧領域から低圧領域へ流体が漏洩するのを防止するシール装置に関する。   The present invention relates to a sealing device that prevents fluid from leaking from a high pressure region to a low pressure region in a casing through a gap between the casing and a rotating body in a fluid machine such as a pump, a water wheel, a compressor, and a gas turbine. .

流体機械の主軸や羽根車等の回転体とケーシングとの間のシール装置として、例えば特許文献1に記載されているようなウエアリングを用いたものが知られている。ケーシング側に固定されたウエアリングの内周面と回転体との外周面との間に隙間が形成され、この隙間を可能な限り微小に設定することにより、流体が隙間を介して高圧側から低圧側へ漏洩するのを防止している。   As a seal device between a rotating body such as a main shaft or an impeller of a fluid machine and a casing, for example, a device using a wear ring as described in Patent Document 1 is known. A gap is formed between the inner peripheral surface of the wear ring fixed to the casing side and the outer peripheral surface of the rotating body. By setting this gap as small as possible, fluid can flow from the high pressure side through the gap. Prevents leakage to the low pressure side.

しかし、従来のこの種のシール装置には以下の問題がある。   However, this type of conventional sealing device has the following problems.

まず、流体の漏れを低減するためにウエアリングの内周面と回転体の隙間を過度に狭く設定すると、ウエアリングと回転体を高精度で加工したとしても不可避的に生じる寸法誤差や組立精度誤差により、ウエアリングと回転体の組立が不可能となる場合がある。従って、隙間の寸法は組立を考慮したある程度の大きさに設定する必要があり、流体の漏れ量低減には限界がある。   First, if the gap between the inner peripheral surface of the wear ring and the rotating body is set too narrow in order to reduce fluid leakage, dimensional errors and assembly accuracy that are unavoidable even if the wear ring and the rotating body are processed with high accuracy. Due to the error, the wear ring and the rotating body may not be assembled. Therefore, it is necessary to set the size of the gap to a certain degree in consideration of assembly, and there is a limit in reducing the amount of fluid leakage.

また、流体機械の運転中に回転体とウエアリングが接触することで振動が生じ、回転体とウエアリングのかじりないしは焼き付けが起こるおそれもある。前述の特許文献1に記載のシール装置では、焼き付け防止のためにウエアリングに有機材料からなるライニングを設けている。しかし、回転体とウエアリングの接触によりライニングが摩耗するので、流体機械を長期間にわたって運転するとライニングに覆われていた金属材料が露出し、その結果焼き付けが起こる可能性がある。   Further, when the rotating body and the wear ring come into contact with each other during the operation of the fluid machine, vibration is generated, and the rotating body and the wear ring may be galled or burned. In the sealing device described in Patent Document 1 described above, a lining made of an organic material is provided on the wear ring to prevent seizure. However, since the lining wears due to the contact between the rotating body and the wear ring, when the fluid machine is operated for a long period of time, the metal material covered with the lining is exposed, and as a result, baking may occur.

さらに、高圧側からウエアリングと回転体の隙間を通って低圧側に流れる流体の速度は、高圧側と低圧側の圧力差に相当する高い流速を有する。このように高流速の流体が隙間を通過することにより、ウエアリングの摩耗が生じする。また、低圧側の隙間の出口付近では特に高流速となるので急激な圧力低下が起こり、振動や摩耗の原因となるキャビテーションが発生するおそれもある。   Furthermore, the velocity of the fluid flowing from the high pressure side through the gap between the wear ring and the rotating body to the low pressure side has a high flow rate corresponding to the pressure difference between the high pressure side and the low pressure side. Wear of the wear ring is caused by the fluid having a high flow rate passing through the gap. Further, since the flow velocity is particularly high near the outlet of the gap on the low-pressure side, a rapid pressure drop occurs, and cavitation that causes vibration and wear may occur.

実開平6−018649号公報Japanese Utility Model Publication No. 6-018649

本発明は、流体機械のケーシングと回転体との間の隙間を通ってケーシング内の高圧領域から低圧領域へ流体が漏洩するのを防止するシール装置において、比較的簡易な構造による製造やメンテナンスの容易性を実現しつつ、漏れ量の極小化、振動の低減、焼き付け防止、摩耗の抑制、及びキャビテーションの抑制等を図ることを課題とする。   The present invention relates to a seal device that prevents fluid from leaking from a high pressure region to a low pressure region in a casing through a gap between a casing and a rotating body of a fluid machine. It is an object to minimize leakage, reduce vibration, prevent seizure, suppress wear, suppress cavitation, and the like while realizing ease.

本発明は、流体機械のケーシングと回転体との間の隙間を通って前記ケーシング内の高圧領域から低圧領域へ流体が漏洩するのを防止するシール装置において、前記ケーシングに固定され、前記高圧領域側と前記低圧領域側を貫通して前記回転体が差し込まれた主貫通孔が形成され、かつ前記主貫通孔の孔周壁と前記回転体の外周面との間に第1の隙間が形成されている、一体構造の主リングと、前記主リングの前記主貫通孔の前記高圧領域側の部分の前記孔周壁に形成された環状収容溝に収容され、前記高圧領域側と前記低圧領域側を貫通して前記回転体が差し込まれる前記主貫通孔の直径よりも小さい直径を有する補助貫通孔が形成され、かつ前記補助貫通孔の孔周壁と前記回転体の前記外周面との間に前記第1の隙間よりも狭い第2の隙間が形成されている、一体構造の薄厚補助リングとを備える、流体機械のシール装置を提供する。   The present invention provides a sealing device that prevents fluid from leaking from a high-pressure region in the casing to a low-pressure region through a gap between a casing and a rotating body of a fluid machine. A main through hole into which the rotating body is inserted through the side and the low pressure region side, and a first gap is formed between a peripheral wall of the main through hole and an outer peripheral surface of the rotating body. A main ring having an integral structure, and an annular housing groove formed on the peripheral wall of the main through hole of the main ring on the high pressure region side, and the high pressure region side and the low pressure region side are An auxiliary through hole having a diameter smaller than the diameter of the main through hole through which the rotating body is inserted is formed, and the first through hole is formed between a peripheral wall of the auxiliary through hole and the outer peripheral surface of the rotating body. 2nd narrower than 1 gap During it is formed, and a thin auxiliary ring of integral structure, to provide a seal device of the fluid machine.

主リングと別体の薄厚補助リングを備えるので、この薄厚補助リングに形成された補助貫通孔の直径を主リングに形成された主貫通孔の直径よりも大幅に小さくし、第2の隙間を第1の隙間よりも大幅に狭くできる。その結果、第1及び第2の隙間を通って高圧領域から低圧領域へ漏洩する流体の漏れ量を極小化できる。この漏れ量の極小化によって漏れ損失を低減し、流体機械の効率を向上できる。   Since the thin auxiliary ring is provided separately from the main ring, the diameter of the auxiliary through hole formed in the thin auxiliary ring is made significantly smaller than the diameter of the main through hole formed in the main ring, and the second gap is formed. It can be significantly narrower than the first gap. As a result, the amount of fluid leaking from the high pressure region to the low pressure region through the first and second gaps can be minimized. By minimizing the amount of leakage, leakage loss can be reduced and the efficiency of the fluid machine can be improved.

主リングと別体の薄厚補助リングを備え、主リングに形成された主貫通孔の孔周壁と回転体の外周面の間の隙間(第1の隙間)よりも、薄厚補助リングに形成された補助貫通孔の孔周壁と回転体の外周面の間の隙間(第2の隙間)を狭く設定している。その結果、回転体と主リング(主貫通孔の孔周壁)が接触せず、回転体が主リングに衝突することによる振動の発生を防止できると共に、回転体と主リングのかじりないしは焼き付けを防止できる。   A thin auxiliary ring is provided separately from the main ring, and is formed in the thin auxiliary ring rather than a gap (first gap) between the peripheral wall of the main through hole formed in the main ring and the outer peripheral surface of the rotating body. A gap (second gap) between the peripheral wall of the auxiliary through hole and the outer peripheral surface of the rotating body is set narrow. As a result, the rotating body and the main ring (hole peripheral wall of the main through hole) do not come into contact with each other, so that vibrations caused by the rotating body colliding with the main ring can be prevented, and the rotating body and the main ring can be prevented from being galled or seized. it can.

薄厚補助リング側の第2の隙間よりも主リング側の第1の隙間が低圧領域側にあり、第1の隙間は第2の隙間よりも広い。そのため、高圧領域側から低圧領域側に向けて第1の隙間を流れる流体の流速が低減されるので、主リングの摩耗(主貫通孔の孔周壁の摩耗)を防止できる。また、第1の隙間の低圧領域側の出口付近における流体の流速が低減されるので、この部分での急激な圧力低下が生じず、キャビテーションの発生を防止できる。   The first gap on the main ring side is on the low pressure region side than the second gap on the thin auxiliary ring side, and the first gap is wider than the second gap. Therefore, since the flow velocity of the fluid flowing through the first gap from the high pressure region side toward the low pressure region side is reduced, the main ring can be prevented from being worn (the wear of the peripheral wall of the main through hole). In addition, since the flow velocity of the fluid in the vicinity of the outlet on the low pressure region side of the first gap is reduced, a sudden pressure drop does not occur in this portion, and the occurrence of cavitation can be prevented.

主リングと薄厚補助リングはいずれも複数の部品を組み立てた構造ではなく、単一の部品からなる一体構造であり、薄厚補助リングを撓ませて主リングの環状収容溝に嵌め込むことで主リングに薄厚補助リングを組み付けることができる。従って、本発明のシール装置は製造が容易である。また、必要があれば薄厚補助リングを撓ませて主リングの環状収容溝から抜き出すだけで主リングから取り外すことができ、交換用の新しい薄厚補助リングも撓ませて環状収容溝に嵌め込むだけで主リングに取り付けることができる。この点で本発明のシール装置は簡単にメンテナンスを行うことができる。   Both the main ring and the thin auxiliary ring are not a structure in which multiple parts are assembled, but a single structure consisting of a single part. The main ring is bent by fitting the thin auxiliary ring into the annular receiving groove of the main ring. A thin auxiliary ring can be attached to the. Therefore, the sealing device of the present invention is easy to manufacture. If necessary, the thin auxiliary ring can be removed from the main ring simply by bending it out of the main ring annular receiving groove, and the replacement thin auxiliary ring can also be bent into the annular receiving groove. Can be attached to the main ring. In this respect, the sealing device of the present invention can be easily maintained.

前記第2の隙間の寸法と、前記環状収容溝の底壁と前記薄厚補助リングの外周との間に形成された第3の隙間の寸法との和が、前記第1の隙間よりも小さいことが好ましい。   The sum of the dimension of the second gap and the dimension of the third gap formed between the bottom wall of the annular housing groove and the outer periphery of the thin auxiliary ring is smaller than the first gap. Is preferred.

薄厚補助リングは、最大で第3の隙間の寸法に相当する距離だけ環状収容溝内を回転部材の軸線と直交する方向(径方向)に移動できる。回転体が薄厚補助リングに接触ないしは衝突しても、この移動により薄厚補助リングの損傷や摩耗を低減できる。一方、回転体で押された薄型補助リングが回転部材の回転方向に対して直交する方向に移動しても、回転体が主リング(主リング貫通孔の孔周壁)に衝突する前に薄板補助リングの外周が環状収容溝の底壁に当接する。従って、回転体と主リングの衝突による振動の発生や、回転体と主リングの焼き付けは確実に防止できる。   The thin auxiliary ring can move in the annular housing groove in a direction (radial direction) perpendicular to the axis of the rotating member by a distance corresponding to the dimension of the third gap at the maximum. Even if the rotating body contacts or collides with the thin auxiliary ring, this movement can reduce damage and wear of the thin auxiliary ring. On the other hand, even if the thin auxiliary ring pushed by the rotating body moves in the direction perpendicular to the rotating direction of the rotating member, the thin plate assists before the rotating body collides with the main ring (the peripheral wall of the main ring through hole). The outer periphery of the ring contacts the bottom wall of the annular receiving groove. Therefore, generation of vibration due to collision between the rotating body and the main ring and seizure of the rotating body and the main ring can be reliably prevented.

前記環状収容溝の互いに対向する一対の側壁間の距離が前記薄厚補助リングの厚みよりも大きいことが好ましい。   It is preferable that a distance between a pair of opposite side walls of the annular housing groove is larger than a thickness of the thin auxiliary ring.

環状収容溝の側壁間の距離と薄厚補助リングの厚みの差に相当する距離だけ回転体の軸線方向に移動可能な状態で、薄厚補助リングは環状収容溝内に収容されている。そして、薄厚補助リングは高圧領域側の面に作用する圧力と低圧領域側(主貫通孔側)の面に作用する圧力の差圧に相当する力で主リングに押圧されている。従って、回転体が薄厚補助リングに接触ないしは衝突すると、この押圧力に比例する摩擦力が薄厚補助リングと主リングとの間に生じ、この摩擦力は薄厚補助リングの径方向の移動に対する抵抗となる。その結果、補助リングは回転体の振動に対して減衰摩擦力として機能し、回転体の振動を低減する。   The thin auxiliary ring is accommodated in the annular accommodating groove so as to be movable in the axial direction of the rotating body by a distance corresponding to the difference between the distance between the side walls of the annular accommodating groove and the thickness of the thin auxiliary ring. The thin auxiliary ring is pressed against the main ring with a force corresponding to a differential pressure between the pressure acting on the surface on the high pressure region side and the pressure acting on the surface on the low pressure region side (main through hole side). Therefore, when the rotating body contacts or collides with the thin auxiliary ring, a frictional force proportional to the pressing force is generated between the thin auxiliary ring and the main ring, and this frictional force is a resistance against the radial movement of the thin auxiliary ring. Become. As a result, the auxiliary ring functions as a damping frictional force against the vibration of the rotating body, and reduces the vibration of the rotating body.

前記主リング貫通孔の前記薄厚補助リングの前記低圧側に臨む部分に拡径部が形成されていることが好ましい。この拡径部の寸法や形状を変えることで、前述の薄厚補助リングを主リングに押圧する力を調整できる。従って、拡径部の寸法や形状の調節により、回転体の振動に対する減衰摩擦力を調節できる。   It is preferable that an enlarged-diameter portion is formed in a portion of the main ring through hole facing the low pressure side of the thin auxiliary ring. By changing the size and shape of the enlarged diameter portion, the force for pressing the thin auxiliary ring against the main ring can be adjusted. Therefore, the damping frictional force against the vibration of the rotating body can be adjusted by adjusting the size and shape of the enlarged diameter portion.

前記主貫通孔の前記孔周壁に表面粗度を増大させる加工が施されていることが好ましい。主貫通孔の孔周壁と回転体の外周面との間の隙間である第1の隙間における流体摩擦抵抗が増すので、第1及び第2の隙間を通って高圧領域から低圧領域へ漏洩する流体の漏れ量をより一層低減し、漏れ損失をさらに低減して流体機械の効率を一層向上できる。この種の加工としては、例えばローレット加工があるが流体摩擦抵抗を充分に増すことができる加工であれば、特に限定されない。   It is preferable that the hole peripheral wall of the main through hole is processed to increase the surface roughness. Since the fluid frictional resistance in the first gap, which is the gap between the hole peripheral wall of the main through hole and the outer peripheral surface of the rotating body, increases, the fluid leaks from the high pressure region to the low pressure region through the first and second gaps. The amount of leakage of the fluid machine can be further reduced, the leakage loss can be further reduced, and the efficiency of the fluid machine can be further improved. Examples of this type of processing include knurling, but are not particularly limited as long as the processing can sufficiently increase the fluid frictional resistance.

本発明の流体機械のシール装置は、比較的簡易な構造で製造やメンテナンスが容易でありながら、漏れ量の極小化、振動の低減、焼き付け防止、摩耗の抑制、及びキャビテーションの抑制等を図ることができる。   The sealing device for a fluid machine of the present invention has a relatively simple structure and is easy to manufacture and maintain, while minimizing leakage, reducing vibration, preventing seizure, suppressing wear, suppressing cavitation, and the like. Can do.

図1は本発明の実施形態に係るシール装置を備える2段式の遠心ポンプ1を示す。この遠心ポンプ1のケーシング2内にはインターブシュ3で仕切られた2つの渦巻室4A,4Bが形成されている。渦巻室4A,4Bには、それぞれ1段目の羽根車5Aと2段目の羽根車5Bが左右対称の姿勢で配置されている。これらの羽根車5A,5Bは、水平方向に延びる主軸6に固定されている。主軸6はケーシング2を貫通して延びている。ケーシング2には一対の軸受ブラケット7A,7Bが固定され、これらの軸受ブラケット7A,7Bに収容された軸受8A,8Bにより主軸6の両端が回転自在に支持されている。また、主軸6がケーシング2を貫通する部分には封止用のグランドパッキン9A,9Bが配設されている。主軸6の図において右側の端部が原動機(図示せず。)に接続されている。   FIG. 1 shows a two-stage centrifugal pump 1 having a sealing device according to an embodiment of the present invention. In the casing 2 of the centrifugal pump 1, two spiral chambers 4A and 4B partitioned by an inter bush 3 are formed. In the spiral chambers 4A and 4B, the first stage impeller 5A and the second stage impeller 5B are arranged in a symmetrical manner. These impellers 5A and 5B are fixed to a main shaft 6 extending in the horizontal direction. The main shaft 6 extends through the casing 2. A pair of bearing brackets 7A and 7B are fixed to the casing 2, and both ends of the main shaft 6 are rotatably supported by bearings 8A and 8B accommodated in these bearing brackets 7A and 7B. Further, sealing gland packings 9 </ b> A and 9 </ b> B are disposed at portions where the main shaft 6 penetrates the casing 2. The right end of the main shaft 6 is connected to a prime mover (not shown).

原動機により主軸6が回転すると、渦巻室4A,4B内で羽根車5A,5Bが回転する。吸込口11から渦巻室4Aに流入した水は1段目の羽根車5Aで加圧された後、模式的に示す流路12を通って渦巻室4Bに流入する。渦巻室4Bに流入した水は2段目の羽根車5Bでさらに加圧された後、吐出口13から吐出される。   When the main shaft 6 is rotated by the prime mover, the impellers 5A and 5B are rotated in the spiral chambers 4A and 4B. The water flowing into the spiral chamber 4A from the suction port 11 is pressurized by the first stage impeller 5A and then flows into the spiral chamber 4B through the flow path 12 schematically shown. The water flowing into the spiral chamber 4B is further pressurized by the second stage impeller 5B and then discharged from the discharge port 13.

羽根車5A,5Bは、主軸6に固定されたボス部15と、ボス部15から主軸6の径方向に延びる円形の主板16を備える。主板16には、複数の羽根17の基端側が固定されている。また、これらの羽根17の先端側は側板18で連結されている。側板18は外周が円形で、その中央には両端開口の円筒状で主板16から離れる方向に突出するマウスリング部19を備える。マウスリング部19で囲まれた開口が羽根車入口21を構成している。また、主板16と側板18の外周に挟まれた部分が羽根車出口22を構成している。主板16及び側板18は主軸6と同軸に配置されている。従って、主軸6の軸線Lは主板16及び側板18の回転中心でもある。渦巻室4A,4B内の水は羽根車入口21から回転する羽根車5A,5Bに吸い込まれ、羽根17で加圧されて羽根車出口22から吐出される。従って、渦巻室4A,4Bは、羽根車入口21側が低圧領域4aで羽根車出口22側が高圧領域4bとなっている。   The impellers 5 </ b> A and 5 </ b> B include a boss portion 15 fixed to the main shaft 6 and a circular main plate 16 extending from the boss portion 15 in the radial direction of the main shaft 6. To the main plate 16, the base end sides of the plurality of blades 17 are fixed. Further, the tip ends of these blades 17 are connected by a side plate 18. The side plate 18 has a circular outer periphery, and is provided with a mouth ring portion 19 that protrudes in the direction away from the main plate 16 in a cylindrical shape with openings at both ends. An opening surrounded by the mouth ring portion 19 constitutes an impeller inlet 21. Further, the portion sandwiched between the outer periphery of the main plate 16 and the side plate 18 constitutes the impeller outlet 22. The main plate 16 and the side plate 18 are arranged coaxially with the main shaft 6. Therefore, the axis L of the main shaft 6 is also the rotation center of the main plate 16 and the side plate 18. Water in the spiral chambers 4A, 4B is sucked into the impellers 5A, 5B rotating from the impeller inlet 21, pressurized by the vanes 17, and discharged from the impeller outlet 22. Accordingly, in the spiral chambers 4A and 4B, the impeller inlet 21 side is the low pressure region 4a and the impeller outlet 22 side is the high pressure region 4b.

シール装置25A,25Bは、渦巻室4A,4B内の水が高圧領域4bから低圧領域4aへ漏洩するのを防止する。具体的には、シール装置25A,25Bは、ケーシング2と羽根車5のマウスリング部19の外周面との隙間を通って渦巻室4A,4B内の高圧領域4bの水が低圧領域4aへ漏洩するのを防止する。1段目の渦巻室4Aに配設されたシール装置25Aと2段目の渦巻室4Bに配設されたシール装置25Bは、構造も機能も同一であり、図において左右方向の取り付け姿勢のみが異なる。以下、2段目の渦巻室4Bに配設されたシール装置25Bについて詳細に説明する。   The sealing devices 25A and 25B prevent water in the spiral chambers 4A and 4B from leaking from the high pressure region 4b to the low pressure region 4a. Specifically, in the sealing devices 25A and 25B, water in the high pressure region 4b in the spiral chambers 4A and 4B leaks into the low pressure region 4a through the gap between the casing 2 and the outer peripheral surface of the mouth ring portion 19 of the impeller 5. To prevent it. The sealing device 25A disposed in the first-stage spiral chamber 4A and the sealing device 25B disposed in the second-stage spiral chamber 4B have the same structure and function, and in the drawing, only the mounting orientation in the left-right direction is shown. Different. Hereinafter, the sealing device 25B disposed in the second-stage spiral chamber 4B will be described in detail.

図2、図3、及び図5をさらに参照すると、シール装置25Bはその外周がケーシング2にねじ止めで固定されたウエアリング(主リング)31と、このウエアリング31に対して主軸6の軸線Lに対して直交する方向及び軸線Lが延びる方向にある程度移動可能な状態で取り付けられたフローティングリング(薄厚補助リング)32とからなる。ウエアリング31は、例えばステンレス鋼、鋳鉄、青銅鋳物等からなり、多数の部品を組み立てた構造ではなく、単一の部品からなる一体構造である。一方、フローティングリング32は、摺動性能と耐磨耗性に優れ、かつある程度弾性的変形性を有する材料からなる。例えば、4フッ化エチレン(PTFE)等のフッ素樹脂やポリエステルエーテルケトン(PEEK)等のポリアミド樹脂等の各種の合成樹脂、硬質ゴム、軽金属、皮革等をフローティングリング32の材料として使用できる。ウエアリング31と同様に、フローティングリング32は多数の部品を組み立てた構造ではなく、単一の部品からなる一体構造である。   With further reference to FIGS. 2, 3, and 5, the seal device 25 </ b> B has a wear ring (main ring) 31 whose outer periphery is fixed to the casing 2 with screws, and an axis of the main shaft 6 with respect to the wear ring 31. And a floating ring (thin auxiliary ring) 32 that is attached so as to be movable to some extent in the direction orthogonal to L and the direction in which the axis L extends. The wear ring 31 is made of, for example, stainless steel, cast iron, bronze casting, or the like, and is not a structure in which a large number of parts are assembled, but a single structure made of a single part. On the other hand, the floating ring 32 is made of a material that is excellent in sliding performance and wear resistance and has some degree of elastic deformation. For example, various synthetic resins such as fluororesin such as tetrafluoroethylene (PTFE) and polyamide resin such as polyester ether ketone (PEEK), hard rubber, light metal, leather, etc. can be used as the material of the floating ring 32. Like the wear ring 31, the floating ring 32 is not a structure in which a large number of parts are assembled, but a single structure composed of a single part.

ウエアリング31は全体として薄厚の環状であり、低圧領域4a側の端面(図において左側の端面)から高圧領域4b側の端面(図において右側の端面)まで貫通する断面円形の貫通孔(主貫通孔)31aが形成されている。この貫通孔31aには高圧領域4b側から羽根車5Bのマウスリング部19が差し込まれている。また、貫通孔31aの高圧領域4b側の部分の孔周壁、詳細には貫通孔31aの孔周壁のうちウエアリング31の高圧領域4b側の端面近傍の部分には、環状収容溝31bが形成されており、この環状収容溝31bにフローティングリング32が収容されている。貫通孔31aのフローティングリング32の低圧領域4a側の端面に臨む部分、すなわち貫通孔31aの孔周壁と環状収容溝31bの一対の側壁のうち低圧領域4b側の側壁との接続部分には、低圧領域4a側から高圧領域4b側に向けて径が漸増する面取部31cが形成されている。符号δで示すように、環状収容溝31bの底壁からの環状収容溝31bの高圧領域4a側の側壁の突出量は、フローティングリング32の環状収容溝31bからの脱落防止に必要な最小限の量に設定されている。   The wear ring 31 has a thin annular shape as a whole, and has a circular through-hole (main through-hole) penetrating from an end surface on the low pressure region 4a side (left end surface in the drawing) to an end surface on the high pressure region 4b side (right end surface in the drawing). Hole) 31a is formed. The mouth ring portion 19 of the impeller 5B is inserted into the through hole 31a from the high pressure region 4b side. In addition, an annular housing groove 31b is formed in the hole peripheral wall of the through hole 31a on the high pressure region 4b side, specifically, in the hole peripheral wall of the through hole 31a near the end surface on the high pressure region 4b side of the wear ring 31. The floating ring 32 is accommodated in the annular accommodating groove 31b. The portion of the through hole 31a facing the end surface of the floating ring 32 on the low pressure region 4a side, that is, the connection portion between the peripheral wall of the through hole 31a and the side wall on the low pressure region 4b side of the pair of side walls of the annular housing groove 31b A chamfered portion 31c whose diameter gradually increases from the region 4a side toward the high pressure region 4b side is formed. As indicated by the symbol δ, the protruding amount of the side wall on the high pressure region 4a side of the annular housing groove 31b from the bottom wall of the annular housing groove 31b is the minimum necessary to prevent the floating ring 32 from dropping from the annular housing groove 31b. The amount is set.

フローティングリング32はウエアリング31よりも大幅に薄厚の環状であり、低圧領域4a側の端面(図において左側の端面)から高圧領域4b側の端面(図において右側の端面)まで貫通する断面円形の貫通孔(補助貫通孔)32aが形成されている。この貫通孔32aを高圧領域4b側から羽根車5Bのマウスリング部19が貫通している。フローティングリング32は、それ自体を撓ませることでウエアリング31の高圧領域4b側の端面から環状収容溝31bに嵌め込まれている。   The floating ring 32 has an annular shape that is significantly thinner than the wear ring 31, and has a circular cross section that extends from an end surface on the low-pressure region 4a side (left end surface in the drawing) to an end surface on the high-pressure region 4b side (right end surface in the drawing). A through hole (auxiliary through hole) 32a is formed. The mouth ring portion 19 of the impeller 5B passes through the through hole 32a from the high pressure region 4b side. The floating ring 32 is fitted into the annular housing groove 31b from the end surface of the wear ring 31 on the high-pressure region 4b side by bending itself.

次に、ウエアリング31及びフローティングリング32の寸法について詳述する。この寸法の説明では、貫通孔31a、貫通孔32a、及びマウスリング部19が同軸であるものとする。   Next, the dimensions of the wear ring 31 and the floating ring 32 will be described in detail. In the description of the dimensions, it is assumed that the through hole 31a, the through hole 32a, and the mouth ring portion 19 are coaxial.

ウエアリング31の貫通孔31aの直径Dm1は、羽根車5Bのマウスリング部19の直径(外径)Dよりも大きく設定されている。従って、貫通孔31aの孔周壁とマウスリング部19の外周面との間には、直径Dm1と直径Dの差に相当する幅Cを有する環状の隙間(第1の隙間)35が形成されている。また、面取部31cの高圧領域4b側の端部は、貫通孔31aの直径Dm1よりも大きい直径Dを有する。さらに、前述のように環状収容溝31bの高圧領域4b側の側壁の突出量δは最小限に設定されているので、ウエアリング31の高圧領域4b側の端面における貫通孔31aの開口部は、貫通孔31aの他の部分(面取部31cを含む)の直径Dm1,Dよりも大幅に大きい直径Dm3を有する。 The diameter D m1 of the through hole 31a of the wear ring 31 is set larger than the diameter (outer diameter) D r of the mouth ring portion 19 of the impeller 5B. Thus, between the outer peripheral surface of the hole wall and the mouth ring portion 19 of the through-hole 31a is an annular gap (first gap) 35 having a width C 2 corresponding to the difference between the diameter D m1 and the diameter D r Is formed. The end portion of the high pressure area 4b side of the chamfered portion 31c has a larger diameter D c than the diameter D m1 of the through hole 31a. Furthermore, since the protrusion amount δ of the side wall of the annular housing groove 31b on the high pressure region 4b side is set to the minimum as described above, the opening of the through hole 31a on the end surface of the wear ring 31 on the high pressure region 4b side is It has a diameter D m3 that is significantly larger than the diameters D m1 and D c of the other part (including the chamfered part 31 c ) of the through hole 31 a.

フローティングリング32の貫通孔32aの直径Da1は、羽根車5Bのマウスリング部19の直径Dよりも大きく設定されている。従って、貫通孔32aの孔周壁とマウスリング部19の外周面との間には、直径Da1と直径Dの差に相当する幅Cを有する環状の隙間(第2の隙間)36が形成されている。貫通孔32aの直径Da1は貫通孔31aの直径Dm1よりも小さく設定されている。従って、隙間36の幅Cは隙間35の幅Cよりも狭い。 The diameter D a1 of the through hole 32a of the floating ring 32 is set larger than the diameter D r of the mouth ring portion 19 of the impeller 5B. Thus, between the outer peripheral surface of the hole wall and the mouth ring portion 19 of the through hole 32a is an annular gap (second gap) 36 having a width C 1 corresponding to the difference between the diameter D a1 and the diameter D r Is formed. The diameter D a1 of the through hole 32a is set smaller than the diameter D m1 of the through hole 31a. Accordingly, the width C 1 of the gap 36 is narrower than the width C 2 of the gap 35.

フローティングリング32の外径(直径)Da2は、ウエアリング31に形成された環状収容溝31bの底壁の直径Dm2よりも小さく設定されている。従って、環状収容溝31bの底壁とフローティングリング32の外周との間には幅C(隙間36の幅Cよりも充分大きい。)を有する環状の隙間(第3の隙間)37が形成されている。従って、フローティングリング32は、最大で隙間37の幅Cに相当する距離だけ軸線Lに直交する方向(フローティングリング32自体の径方向)に移動できる。隙間35の幅Cは、隙間36の幅Cと隙間37の幅Cの和よりも大きく設定されている。換言すれば、幅C,C,Cには以下の式(1)の関係がある。 The outer diameter (diameter) D a2 of the floating ring 32 is set to be smaller than the diameter D m2 of the bottom wall of the annular housing groove 31b formed in the wear ring 31. Therefore, an annular gap (third gap) 37 having a width C s (which is sufficiently larger than the width C 1 of the gap 36) is formed between the bottom wall of the annular housing groove 31 b and the outer periphery of the floating ring 32. Has been. Therefore, the floating ring 32 can move in the direction perpendicular to the axis L (the radial direction of the floating ring 32 itself) by a distance corresponding to the width C s of the gap 37 at the maximum. The width C 2 of the gap 35 is set larger than the sum of the width C 1 of the gap 36 and the width C s of the gap 37. In other words, the widths C 1 , C 2 , and C s have the relationship of the following formula (1).

Figure 2007162655
Figure 2007162655

環状収容溝31bの互いに対向する一対の側壁間の距離tはフローティングリング32の厚みtよりも大きく設定されている。従って、フローティングリング32は距離tと厚みtの差に相当する距離だけ軸線L方向(フローティングリング32自体の厚み方向)に移動できる。 A distance t 1 between a pair of opposite side walls of the annular housing groove 31 b is set to be larger than a thickness t 2 of the floating ring 32. Therefore, floating ring 32 can move by a distance corresponding to a difference between distances t 1 and the thickness t 2 axis L direction (floating ring 32 itself in the thickness direction).

図3を参照すると、貫通孔31aの孔周壁、具体的には貫通孔31aの孔周壁のうち面取部31cよりも低圧領域4aの部分には、ローレット加工38を施して表面粗度を増大させ、隙間35を通る水に作用する流体摩擦抵抗を増大させている。なお、図3では図示の単純化のために貫通孔31aの孔周壁の周方向の一部にのみローレット加工38を図示しているが、実際には貫通孔31aの孔周壁の周方向の全体にローレット加工38が施されている。このローレット加工38は図4Aに示すように四角形の凹部38aを線状の突起38bが取り囲むものでも、図4Bに示すように三角形の凹部38aを線状の凸部が取り囲むものでもよい。また、隙間35を通る水に作用する流体摩擦抵抗を充分に増大できれば、ローレット加工38以外の加工で貫通孔31aの孔周壁の表面粗度を増大させてもよい。   Referring to FIG. 3, knurling 38 is applied to the peripheral wall of the through hole 31 a, specifically, a portion of the peripheral wall of the through hole 31 a in the low pressure region 4 a rather than the chamfered portion 31 c to increase the surface roughness. The fluid frictional resistance acting on the water passing through the gap 35 is increased. In FIG. 3, for the sake of simplification, the knurl process 38 is illustrated only in a part of the circumferential direction of the peripheral wall of the through hole 31a. Is knurled 38. As shown in FIG. 4A, the knurling process 38 may be such that a rectangular recess 38a is surrounded by a linear protrusion 38b, or a triangular protrusion 38b is surrounded by a linear protrusion as shown in FIG. 4B. If the fluid frictional resistance acting on the water passing through the gap 35 can be sufficiently increased, the surface roughness of the peripheral wall of the through hole 31a may be increased by a process other than the knurling process 38.

次に、遠心ポンプ1の運転中にシール装置25Bがどのようにシール機能を発揮するかを説明する。   Next, how the sealing device 25B performs the sealing function during the operation of the centrifugal pump 1 will be described.

前述のようにフローティングリング32は径方向にある程度移動可能であるので、回転するマウスリング部19に対して流体静力学的な釣り合い位置に自律的に移動してこの位置維持する。この釣り合い位置では、フローティングリング32の貫通孔32aの孔周壁とマウスリング部19の外周面との間には、全周にほぼ等しい幅Cの隙間36が形成される。 Since the floating ring 32 can move to some extent in the radial direction as described above, the floating ring 32 autonomously moves to the hydrostatic balance position with respect to the rotating mouth ring portion 19 and maintains this position. In this balanced position, a gap 36 having a width C 1 that is substantially equal to the entire circumference is formed between the hole peripheral wall of the through hole 32 a of the floating ring 32 and the outer peripheral surface of the mouth ring portion 19.

また、前述のようにフローティングリング32は厚み方向にも移動可能であり、高圧領域4b側の端面と低圧領域4a側の端面に作用する圧力の圧力差により生じる押圧力Faにより、高圧領域4a側から低圧領域側4bへ向けて押圧される。その結果、図6に示すように、フローティングリング32は環状収容溝31bの一方の側壁(図において左側の側壁)に押し付けられる。押圧力Fは以下の式(2)で表される。 Further, as described above, the floating ring 32 is also movable in the thickness direction, and the high pressure region 4a side is caused by the pressing force Fa generated by the pressure difference between the pressure acting on the end surface on the high pressure region 4b side and the end surface on the low pressure region 4a side. To the low pressure region side 4b. As a result, as shown in FIG. 6, the floating ring 32 is pressed against one side wall (left side wall in the figure) of the annular housing groove 31b. The pressing force Fa is expressed by the following formula (2).

Figure 2007162655
Figure 2007162655

この式(2)において、Pは高圧領域4bの圧力で、Pは面取部31cの圧力である。 In the formula (2), the P H at a pressure of the high pressure area 4b, the P C is the pressure of the chamfer portion 31c.

式(2)を参照すれば明らかなように、押圧力Fは面取部31cの圧力Pを変えることで調節できる。また、面取部31cの圧力は面取部31cの図において右端部の直径D(低圧領域4a側から高圧領域4b側へ向けての拡径の割合)を変えることで調節できる。従って、押圧力Faは面取部31cの寸法や形状を変更することで簡単に調節できる。 As is apparent from reference to the equation (2), the pressing force F a can be adjusted by changing the pressure P c of the chamfer portion 31c. The pressure of the chamfer portion 31c can be adjusted by varying the diameter D c of the right end portion in FIG chamfer 31c (ratio of the diameter towards the low pressure area 4a side to the high pressure area 4b side). Therefore, the pressing force Fa can be easily adjusted by changing the size and shape of the chamfered portion 31c.

高圧領域4bの圧力Pと低圧領域4aの圧力Pの差圧により、高圧領域4bから低圧領域4aに向けて水の漏れが生じる。この漏洩する水は、高圧領域4aからまずフローティングリング32の貫通孔32aとマウスリング部19との間の隙間36に流入し、さらに面取部31cからウエアリング31の貫通孔31aとマウスリング部19との間の隙間35を通って低圧領域4aへ流れる。シール装置25Bは、ウエアリング31とは別体のフローティングリング32を備え、このフローティングリング32に形成された第2貫通孔の直径Da1をウエアリング31に形成された貫通孔31aの直径Dm1よりも小さく設定し、隙間36を隙間35よりも狭く設定している(幅C,C)。その結果、高圧領域4bから隙間36と隙間35を経て低圧領域4aへ漏洩する流体の漏れ量を極小化できる。この漏れ量の極小化によって漏れ損失を低減し、遠心ポンプ1の効率を向上できる。また、貫通孔31aの孔周壁にローレット加工38を施すことで隙間35を流れる水に作用する流体摩擦抵抗を増大させているので、高圧領域4bから低圧領域4aへ漏洩する水の漏れ量をより一層低減できる。その結果、漏れ損失がさらに低減され、効率が一層向上する。 The differential pressure of the pressure P L of the pressure P H and the low pressure region 4a of the high pressure area 4b, water leakage occurs towards the low pressure area 4a from the high pressure area 4b. The leaked water first flows from the high pressure region 4a into the gap 36 between the through hole 32a of the floating ring 32 and the mouth ring portion 19, and further from the chamfered portion 31c to the through hole 31a and mouth ring portion of the wear ring 31. It flows to the low-pressure area | region 4a through the clearance gap 35 between. The sealing device 25B includes a floating ring 32 that is separate from the wear ring 31, and the diameter D a1 of the second through hole formed in the floating ring 32 is the diameter D m1 of the through hole 31a formed in the wear ring 31. The gap 36 is set narrower than the gap 35 (widths C 1 and C 2 ). As a result, the amount of fluid leaking from the high pressure region 4b to the low pressure region 4a via the gap 36 and the gap 35 can be minimized. By minimizing the leakage amount, leakage loss can be reduced and the efficiency of the centrifugal pump 1 can be improved. Moreover, since the fluid frictional resistance which acts on the water which flows through the clearance gap 35 is increased by giving the knurling process 38 to the hole surrounding wall of the through-hole 31a, the amount of water leaking from the high pressure region 4b to the low pressure region 4a is further increased. It can be further reduced. As a result, leakage loss is further reduced and efficiency is further improved.

高圧領域4b側に位置するフローティングリング32の隙間36の幅Cよりも、低圧領域4a側に位置するウエアリング31の隙間35の幅Cが広いので、隙間35を流れる水の流速が低減される。この点について説明すると、一般に流体の流速Vは単位時間当たりの体積流量Qを断面積Aで除した商であるので(V=Q/A)、隙間36における流速Vと隙間35における流速Vには以下の式(3)の関係がある。 Than the width C 1 of the gap 36 of the floating ring 32 positioned high pressure area 4b side, the width C 2 of the gap 35 of the wear ring 31 located low pressure area 4a side is wide, reducing the flow velocity of water flowing through the gap 35 Is done. Explaining this point, the flow velocity V of the fluid is generally a quotient obtained by dividing the volumetric flow rate Q per unit time by the cross-sectional area A (V = Q / A), so the flow velocity V 1 in the gap 36 and the flow velocity V in the gap 35. 2 has the following equation (3).

Figure 2007162655
Figure 2007162655

この式(3)において、Aは隙間36の断面積で、Aは隙間35の断面積である。前述のように隙間36の幅Cは隙間35の幅Cよりも小さく、断面積Aは断面積Aよりも小さいので、隙間35における流速Vは隙間36における流速Vよりも遅い。このように隙間35における流速Vを低減することにより、ウエアリング31の貫通孔31aの孔周壁の摩耗を防止できる。一般に摩耗量は流速の5乗に比例するので、流速Vの低減によりウエアリング31の摩耗を効果的に防止できる。また、隙間35の低圧領域側の出口付近における水の流速が低減されるので、この部分で急激な圧力低下が生じず、キャビテーションの発生を防止できる。 In this formula (3), A 1 is the cross-sectional area of the gap 36, and A 2 is the cross-sectional area of the gap 35. As described above, since the width C 1 of the gap 36 is smaller than the width C 2 of the gap 35 and the cross-sectional area A 1 is smaller than the cross-sectional area A 2 , the flow velocity V 2 in the gap 35 is larger than the flow velocity V 1 in the gap 36. slow. By thus reducing the flow velocity V 1 at the gap 35, thereby preventing the wear of the hole wall of the through hole 31a of the wear ring 31. Since general wear amount is proportional to the fifth power of the flow velocity can be effectively prevent wear of the wear ring 31 by reducing the flow velocity V 1. Further, since the flow rate of water near the outlet on the low pressure region side of the gap 35 is reduced, a sudden pressure drop does not occur in this portion, and cavitation can be prevented.

ウエアリング31の隙間35の幅Cよりもフローティングリング32の隙間36の幅Cを狭く設定しているので、マウスリング部19はウエアリング31に接触する前に、まずフローティングリング32に接触する。しかし、フローティングリング32は前述のように最大で隙間37の幅Cに相当する距離だけ径方向に移動できるので、この移動によるフローティングリング32の損傷や摩耗を低減できる。一方、隙間35の幅Cは、隙間36の幅Cと隙間37の幅Cの和よりも大きく設定しているので、マウスリング部19で押されたフローティングリング32が径方向に移動しても、図7に示すように、マウスリング部19がウエアリング31の貫通孔31aの孔周壁に衝突する前に、フローティングリング32の外周が環状収容溝31bの底壁に当接する。従って、マウスリング部19とウエアリング31の衝突よる振動の発生や、マウスリング部19とウエアリング31のかじりないし焼き付けを確実に防止できる。 Since than the width C 2 of the gap 35 of the wear ring 31 is set narrower C 1 of the gap 36 of the floating ring 32, before mouth ring portion 19 which contacts the wear ring 31 is first brought into contact with the floating ring 32 To do. However, the floating ring 32 because it moves up distance in the radial direction corresponding to the width C s of the gap 37 in as described above, can reduce damage and wear of the floating ring 32 due to this movement. On the other hand, the width C 2 of the gap 35 is moved so is set larger than the sum of the width C s of width C 1 and the gap 37 of the gap 36, the floating ring 32 is radially pressed by the mouth ring portion 19 Even before, as shown in FIG. 7, before the mouth ring portion 19 collides with the peripheral wall of the through hole 31a of the wear ring 31, the outer periphery of the floating ring 32 comes into contact with the bottom wall of the annular housing groove 31b. Therefore, it is possible to reliably prevent the occurrence of vibration due to the collision between the mouth ring portion 19 and the wear ring 31 and the scoring or burning of the mouth ring portion 19 and the wear ring 31.

フローティングリング32は高圧領域4bと低圧領域4aの差圧による押圧力Fで環状収容溝31bの側壁に押し付けられているので、マウスリング部19がフローティングリング32に接触すると、この押圧力Fに比例する摩擦力Fν(Fν=μ×F:μは摩擦係数)がフローティングリング32とウエアリング31との間に生じ、この摩擦力Fνはフローティングリング32の径方向の移動に対する抵抗となる。その結果、フローティングリング32はマウスリング部19の振動に対して減衰摩擦力として機能し、マウスリング部19の振動を低減する。また、フローティングリング32がマウスリング部19の回転により、いわゆる連れ回りするのをこの摩擦力Fνで自動的に防止できる。前述のように押圧力Fは面取部31cの寸法や形状で調節できるので、摩擦力Fνも面取部31cの寸法や形状で簡単に調節できる。 Since floating ring 32 is pressed against the side wall of the annular accommodation groove 31b by a pressing force F a by the differential pressure of the high pressure region 4b and the low pressure area 4a, the mouth ring portion 19 is in contact with the floating ring 32, the pressing force F a frictional force F [nu proportional to (F ν = μ × F a : μ is the friction coefficient) with respect to occur, moving the frictional force F [nu radial floating ring 32 between the floating ring 32 and wear ring 31 It becomes resistance. As a result, the floating ring 32 functions as a damping frictional force with respect to the vibration of the mouth ring portion 19 and reduces the vibration of the mouth ring portion 19. Further, the frictional force Fv can automatically prevent the floating ring 32 from being rotated by the rotation of the mouth ring portion 19. Since the pressing force F a as described above can be adjusted in size and shape of the chamfered portion 31c, the frictional force F [nu easily adjustable in size and shape of the chamfer portion 31c.

ウエアリング31とフローティングリング32はいずれも複数の部品を組み立てた構造ではなく、単一の部品からなる一体構造であり、フローティングリング32を撓ませてウエアリング31の環状収容溝31bに嵌め込むことでウエアリング31にフローティングリング32を組み付けることができる。従って、シール装置25Bは製造が容易である。また、必要があればフローティングリング32を撓ませてウエアリング31の環状収容溝31bから抜き出すだけでウエアリング31から取り外すことができ、交換用の新しいフローティングリング32も撓ませて環状収容溝31bに嵌め込むだけでウエアリング31に取り付けることができる。この点でシール装置25Bは簡単にメンテナンスを行うことができる。   Each of the wear ring 31 and the floating ring 32 is not a structure in which a plurality of parts are assembled, but is an integrated structure composed of a single part, and the floating ring 32 is bent and fitted into the annular receiving groove 31b of the wear ring 31. Thus, the floating ring 32 can be assembled to the wear ring 31. Therefore, the sealing device 25B is easy to manufacture. Further, if necessary, the floating ring 32 can be bent and removed from the wear ring 31 by simply pulling it out of the ring receiving groove 31b of the wear ring 31, and the new replacement floating ring 32 can also be bent into the ring receiving groove 31b. It can be attached to the wear ring 31 simply by fitting. In this respect, the sealing device 25B can be easily maintained.

本発明は実施形態のものに限定されず、種々の変形が可能である。例えば、本発明は遠心ポンプ以外の他の方式ポンプや、コンプレッサ、ガスタービン等のポンプ以外の他の流体機械にも適用できる。また、本発明は、ブッシュの内部のシール、回転軸がケーシングを貫通する部分等にも適用できる。さらに、フローティングリング32を複数個設けてもよい。さらにまた、図8に示すように実施形態の面取部31cに代えて、貫通孔31aの環状収容溝31bと接続する部分に段差部31dを設けてもよい。   The present invention is not limited to the embodiment, and various modifications are possible. For example, the present invention can be applied to other type pumps other than centrifugal pumps, and other fluid machines other than pumps such as compressors and gas turbines. The present invention can also be applied to a seal inside the bush, a portion where the rotating shaft passes through the casing, and the like. Further, a plurality of floating rings 32 may be provided. Furthermore, as shown in FIG. 8, instead of the chamfered portion 31c of the embodiment, a step portion 31d may be provided in a portion connected to the annular accommodating groove 31b of the through hole 31a.

本発明の実施形態にかかるシール装置を備える遠心ポンプを示す断面図。Sectional drawing which shows a centrifugal pump provided with the sealing device concerning embodiment of this invention. 図1の部分IIの部分拡大図。The elements on larger scale of the part II of FIG. ウエアリング及びフローティングリングを示す分解斜視図。The disassembled perspective view which shows a wear ring and a floating ring. ウエアリングのローレット加工の一例を示す部分拡大図。The elements on larger scale which show an example of the knurling process of a wear ring. ウエアリングのローレット加工の他の例を示す部分拡大図。The elements on larger scale which show the other example of the knurling of a wear ring. 図3の矢印Vから見たウエアリングの部分拡大図。FIG. 4 is a partially enlarged view of a wear ring viewed from an arrow V in FIG. 3. シール装置の部分拡大図(フローティングリングがウエアリングに押圧された状態)。The elements on larger scale of a sealing device (the state where the floating ring was pressed by the wear ring). シール装置の部分拡大図(フローティングリングの外周がウエアリングに当接した状態)。Partial enlarged view of the sealing device (the state where the outer periphery of the floating ring is in contact with the wear ring). シール装置の代案を示す部分拡大断面図。The partial expanded sectional view which shows the alternative of a sealing device.

符号の説明Explanation of symbols

1 遠心ポンプ
2 ケーシング
3 インターブシュ
4A,4B 渦巻室
4a 低圧領域
4b 高圧領域
5A,5B 羽根車
6 主軸
7A,7B 軸受ブラケット
8A,8B 軸受
9A,9B グランドパッキン
11 吸込口
12 流路
13 吐出口
15 ボス部
16 主板
17 羽根
18 側板
19 マウスリング部
21 羽根車入口
22 羽根車出口
25A,25B シール装置
31 ウエアリング(主リング)
31a 貫通孔(主貫通孔)
31b 環状収容溝
31c 面取部
32 フローティングリング(薄厚補助リング)
32a 貫通孔(補助貫通孔)
35 隙間(第1の隙間)
36 隙間(第2の隙間)
37 隙間(第3の隙間)
38 ローレット加工
38a 凹部
38b 凸部
DESCRIPTION OF SYMBOLS 1 Centrifugal pump 2 Casing 3 Inter bush 4A, 4B Swirl chamber 4a Low pressure region 4b High pressure region 5A, 5B Impeller 6 Main shaft 7A, 7B Bearing bracket 8A, 8B Bearing 9A, 9B Gland packing 11 Suction port 12 Flow path 13 Discharge port 15 Boss portion 16 Main plate 17 Blade 18 Side plate 19 Mouth ring portion 21 Impeller inlet 22 Impeller outlet 25A, 25B Sealing device 31 Wear ring (main ring)
31a Through hole (main through hole)
31b Annular groove 31c Chamfer 32 Floating ring (thin auxiliary ring)
32a Through hole (auxiliary through hole)
35 gap (first gap)
36 gap (second gap)
37 gap (third gap)
38 Knurling 38a Concave part 38b Convex part

Claims (5)

流体機械のケーシングと回転体との間の隙間を通って前記ケーシング内の高圧領域から低圧領域へ流体が漏洩するのを防止するシール装置において、
前記ケーシングに固定され、前記高圧領域側と前記低圧領域側を貫通して前記回転体が差し込まれた主貫通孔が形成され、かつ前記主貫通孔の孔周壁と前記回転体の外周面との間に第1の隙間が形成されている、一体構造の主リングと、
前記主リングの前記主貫通孔の前記高圧領域側の部分の前記孔周壁に形成された環状収容溝に収容され、前記高圧領域側と前記低圧領域側を貫通して前記回転体が差し込まれる前記主貫通孔の直径よりも小さい直径を有する補助貫通孔が形成され、かつ前記補助貫通孔の孔周壁と前記回転体の前記外周面との間に前記第1の隙間よりも狭い第2の隙間が形成されている、一体構造の薄厚補助リングと
を備える、流体機械のシール装置。
In a sealing device for preventing fluid from leaking from a high pressure region to a low pressure region in the casing through a gap between a casing and a rotating body of a fluid machine,
A main through hole fixed to the casing and penetrating the high pressure region side and the low pressure region side and into which the rotating body is inserted is formed, and a hole peripheral wall of the main through hole and an outer peripheral surface of the rotating body An integral main ring with a first gap formed therebetween;
The main ring is housed in an annular housing groove formed in the peripheral wall of the hole on the high pressure region side of the main through hole, and the rotating body is inserted through the high pressure region side and the low pressure region side. An auxiliary through hole having a diameter smaller than the diameter of the main through hole is formed, and a second gap that is narrower than the first gap is formed between the hole peripheral wall of the auxiliary through hole and the outer peripheral surface of the rotating body. And a thin auxiliary ring having a monolithic structure.
前記第2の隙間の寸法と、前記環状収容溝の底壁と前記薄厚補助リングの外周との間に形成された第3の隙間の寸法との和が、前記第1の隙間よりも小さい、請求項1に記載の流体機械のシール装置。   The sum of the dimension of the second gap and the dimension of the third gap formed between the bottom wall of the annular housing groove and the outer periphery of the thin auxiliary ring is smaller than the first gap. The sealing device for a fluid machine according to claim 1. 前記環状収容溝の互いに対向する一対の側壁間の距離が前記薄厚補助リングの厚みよりも大きい、請求項1又は請求項2に記載の流体機械のシール装置。   3. The sealing device for a fluid machine according to claim 1, wherein a distance between a pair of opposing side walls of the annular housing groove is larger than a thickness of the thin auxiliary ring. 前記主リング貫通孔の前記薄厚補助リングの前記低圧側に臨む部分に拡径部が形成されている、請求項1から請求項3のいずれか1項に記載の流体機械のシール装置。   The sealing device for a fluid machine according to any one of claims 1 to 3, wherein a diameter-expanded portion is formed in a portion of the main ring through hole facing the low-pressure side of the thin auxiliary ring. 前記主貫通孔の前記孔周壁に表面粗度を増大させる加工が施されている、請求項1から請求項4のいずれか1項に記載の流体機械のシール装置。   The sealing device for a fluid machine according to any one of claims 1 to 4, wherein the hole peripheral wall of the main through hole is processed to increase surface roughness.
JP2005363622A 2005-12-16 2005-12-16 Fluid machinery sealing device Expired - Fee Related JP4456062B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005363622A JP4456062B2 (en) 2005-12-16 2005-12-16 Fluid machinery sealing device
US11/812,023 US20070280823A1 (en) 2005-12-16 2007-06-14 Seal device for a fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363622A JP4456062B2 (en) 2005-12-16 2005-12-16 Fluid machinery sealing device

Publications (2)

Publication Number Publication Date
JP2007162655A true JP2007162655A (en) 2007-06-28
JP4456062B2 JP4456062B2 (en) 2010-04-28

Family

ID=38245830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363622A Expired - Fee Related JP4456062B2 (en) 2005-12-16 2005-12-16 Fluid machinery sealing device

Country Status (2)

Country Link
US (1) US20070280823A1 (en)
JP (1) JP4456062B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895346B1 (en) 2007-01-10 2009-04-29 다이헤이요 기코 가부시키가이샤 Casing for sludge pump
JP2009299724A (en) * 2008-06-11 2009-12-24 Torishima Pump Mfg Co Ltd Sealing device of fluid machine
WO2013115361A1 (en) * 2012-02-03 2013-08-08 三菱重工業株式会社 Seal structure and rotary machine provided with same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103321950B (en) * 2013-07-02 2015-09-16 台州豪贝泵业有限公司 A kind of pump adaptivity regulates choma device
US10968918B2 (en) 2013-09-10 2021-04-06 Schlumberger Technology Corporation Wear rings for electric submersible pump stages
US9803650B2 (en) 2014-11-04 2017-10-31 Hanwha Techwin Co., Ltd. Sealing device
DE102014224283A1 (en) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Compressor with a sealing channel
DE102014224285A1 (en) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Compressor with a sealing channel
DE102014224757A1 (en) * 2014-12-03 2016-06-09 Robert Bosch Gmbh Compressor with a sealing channel
WO2017100291A1 (en) 2015-12-07 2017-06-15 Fluid Handling Llc Opposed impeller wear ring undercut to offset generated axial thrust in multi-stage pump
US10851790B2 (en) * 2016-09-27 2020-12-01 W.S. Darley & Co. Double volute end suction pump
EP3460253A1 (en) 2017-09-26 2019-03-27 Xylem IP Management S.à.r.l. Pump with a wear ring
EP3756199A4 (en) * 2018-02-21 2021-12-08 Candu Energy Inc. Nuclear coolant pump seal and methods of sealing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545586A (en) * 1983-04-28 1985-10-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Damping seal for turbomachinery
US4486024A (en) * 1983-05-17 1984-12-04 Westinghouse Electric Corp. Dual-ring gland seal for dynamoelectric machine rotor
US4725196A (en) * 1986-09-19 1988-02-16 Hitachi, Ltd. Single-shaft multi-stage centrifugal compressor
US4909707A (en) * 1989-02-14 1990-03-20 Itt Corporation Centrifugal pump and floating casing ring therefor
US5295786A (en) * 1990-12-27 1994-03-22 Ebara Corporation Liner ring for a pump
DE4211809A1 (en) * 1992-04-08 1993-10-14 Klein Schanzlin & Becker Ag Floating ring seal
US6070881A (en) * 1995-12-08 2000-06-06 Siemens Aktiengesellschaft Configuration for sealing a leadthrough gap between a wall and a shaft
US5941536A (en) * 1998-02-12 1999-08-24 Envirotech Pumpsystems, Inc. Elastomer seal for adjustable side liners of pumps
GB2359863B (en) * 2000-03-04 2003-03-26 Alstom Turbocharger
AT411092B (en) * 2000-09-15 2003-09-25 Gittler Philipp Dipl Ing Dr Te SEALING THE WHEEL OF HYDRAULIC TURBO MACHINES
JP2002266880A (en) * 2001-03-05 2002-09-18 Minebea Co Ltd Seal structure of ball bearing
AT413049B (en) * 2002-07-31 2005-10-15 Philipp Dipl Ing Dr Te Gittler SEAL BETWEEN TWO RELATIVELY MOVABLE PARTS OF A HYDRAULIC MACHINE
US7290984B2 (en) * 2005-05-26 2007-11-06 Franklin Electric Co., Ltd. Multistage pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895346B1 (en) 2007-01-10 2009-04-29 다이헤이요 기코 가부시키가이샤 Casing for sludge pump
JP2009299724A (en) * 2008-06-11 2009-12-24 Torishima Pump Mfg Co Ltd Sealing device of fluid machine
JP4685903B2 (en) * 2008-06-11 2011-05-18 株式会社酉島製作所 Fluid machinery sealing device
WO2013115361A1 (en) * 2012-02-03 2013-08-08 三菱重工業株式会社 Seal structure and rotary machine provided with same

Also Published As

Publication number Publication date
US20070280823A1 (en) 2007-12-06
JP4456062B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4456062B2 (en) Fluid machinery sealing device
KR102033410B1 (en) Sliding parts
CN106968984B (en) Turbine engine
JP6872623B2 (en) Bearing devices for the drive shafts of turbo machines, and turbo machines with such bearing devices
JP2016148308A (en) Centrifugal compressor and geared centrifugal compressor
JP7074442B2 (en) Compressor
EP1719917A2 (en) A sealing arrangement for the attachment of a side plate of a centrifugal pump and an attachment screw used therewith
CN107850221B (en) Non-contact annular seal and rotary machine provided with same
JP5456099B2 (en) Rotary compressor
CN106574622A (en) Rotary machine
JP2016061252A (en) Rotary electric machine
JP4685903B2 (en) Fluid machinery sealing device
JP7161341B2 (en) single suction pump
JP5462593B2 (en) Centrifugal compressor
JP2006183475A (en) Centrifugal compressor
KR102104416B1 (en) Centrifugal compressor
CN108626162B (en) Oil seal structure and compression apparatus including the same
JP2018179080A (en) Shaft seal device, rotary machine, and maintenance method of shaft seal device
EP2003344B1 (en) Seal device for a fluid machine
JP7526058B2 (en) Fluid Machinery
JP7211947B2 (en) pump sealing
KR100917250B1 (en) Turbo-machine Equiped Bellows System For Automatic Axial Thrust Control System
JP5351818B2 (en) Horizontal shaft pump
JP2019100271A (en) Sewage pump
JP5204801B2 (en) Double suction horizontal shaft pump

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees