JP2007162403A - Invert subgrade construction method - Google Patents

Invert subgrade construction method Download PDF

Info

Publication number
JP2007162403A
JP2007162403A JP2005362686A JP2005362686A JP2007162403A JP 2007162403 A JP2007162403 A JP 2007162403A JP 2005362686 A JP2005362686 A JP 2005362686A JP 2005362686 A JP2005362686 A JP 2005362686A JP 2007162403 A JP2007162403 A JP 2007162403A
Authority
JP
Japan
Prior art keywords
mud
invert
ground
tunnel
construction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005362686A
Other languages
Japanese (ja)
Inventor
Iwahiko Fujita
以和彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO SHIZAI KAIHATSU KK
Hanshin Expressway Co Ltd
Fujiki Co Ltd
Original Assignee
KANKYO SHIZAI KAIHATSU KK
Hanshin Expressway Co Ltd
Fujiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO SHIZAI KAIHATSU KK, Hanshin Expressway Co Ltd, Fujiki Co Ltd filed Critical KANKYO SHIZAI KAIHATSU KK
Priority to JP2005362686A priority Critical patent/JP2007162403A/en
Publication of JP2007162403A publication Critical patent/JP2007162403A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an invert subgrade construction method suitable for the shield jacking excavation of a long-distance large-bore tunnel even in the sediment ground containing gravel in the tunnel excavated ground, taking out working face excavated mud to the ground by a conventional method, backfilling part of the taken-out mud in a batch manner into an invert part to form a strong subgrade with uniform density. <P>SOLUTION: This invert subgrade construction method is characterized in that solidifying agents 5, 6 are added in discharged excavated mud 4 for primary reforming to take out the mud onto the ground, and then secondary reforming is performed to backfill the mud into the invert part 8 to form the subgrade 9 in tunnel excavation work wherein the working face 2 of the tunnel 1 is jacked by a mud pressurizing shield machine 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は泥土圧シールドマシーンによる切羽推進工法におけるインバート路床施工に関するものである。   The present invention relates to invert roadbed construction in a face propulsion method using a mud pressure shield machine.

従来、トンネルの泥水式シールド工法における掘削土砂の再利用方法が開発された(例えば特許文献1)。   Conventionally, a method for reusing excavated sediment in a muddy water shield method for tunnels has been developed (for example, Patent Document 1).

この方法では排泥水から砂質分を分離処理する一次処理と、その余剰排泥水から粘土分及びシルト分を分離処理する二次処理と、二次処理により分離された余剰水を調整処理する三次処理プラントを有し、
二次処理プラントから給送される処理土と三次処理プラントから給送される処理水を適宜配合し、添加材を添加してインバートモルタル等の埋戻材とし、これを使用箇所に搬送するための搬送配管を用いたため埋戻材には該配管を流動させるための流動性を必要とし、インバート部を埋戻して転圧して路盤材を構成することは困難であった。
In this method, the primary treatment that separates the sand from wastewater, the secondary treatment that separates clay and silt from the excess wastewater, and the tertiary that adjusts the excess water separated by the secondary treatment. Have a processing plant,
To properly mix the treated soil fed from the secondary treatment plant and the treated water fed from the tertiary treatment plant, add the additive to make backfill material such as invert mortar, and transport this to the point of use Therefore, the backfilling material requires fluidity to flow the piping, and it is difficult to backfill the invert part and roll it to form the roadbed material.

そこで、トンネルの切羽外周部を泥水圧により安定させながらカッターで掘削し、同時に切羽の中心部を泥土圧によって安定させながら先行してカッターで掘削する機構を併設し、
切羽の中心部から排出される掘削泥土に固化剤を混合してインバート部に埋戻す方法が開発されている(例えば特許文献2)。
Therefore, a tunnel is excavated with a cutter while stabilizing the outer peripheral part of the tunnel with mud pressure, and a mechanism for excavating with a cutter in advance while stabilizing the center of the face with mud pressure,
A method has been developed in which a solidifying agent is mixed with excavation mud discharged from the center of a face and backfilled in an invert portion (for example, Patent Document 2).

ところが切羽外周部の泥水圧式掘削機構では掘削排泥を排泥管(パイプ)及びポンプにより地上に一気に排出し得る点で優れているが掘削地盤に礫を含む場合はパイプが礫で詰るおそれがあり、設備が複雑化して利用し難い。   However, the mud hydraulic excavation mechanism on the outer periphery of the face is superior in that the drilling mud can be discharged to the ground at once by a mud pipe (pipe) and pump, but if the excavation ground contains gravel, the pipe may be clogged with gravel. Yes, equipment is complicated and difficult to use.

又切羽中心部の泥土圧式シールド推進掘削では推進中に発生する掘削泥土(原泥)の量と添加セメント量との混合率を連続的に一定にすることは困難であり、インバート埋戻泥土は濃度にむらを生じ易く、インバート部に連続的に一定濃度(又は含水量)の土砂を埋戻し一定強度の路床を形成することは困難であった。   In the mud pressure type shield propulsion drilling in the center of the face, it is difficult to keep the mixing ratio between the amount of drilling mud (raw mud) generated during propulsion and the amount of added cement continuously. Unevenness in concentration is likely to occur, and it has been difficult to backfill earth and sand with a constant concentration (or water content) continuously in the invert part to form a road bed with a constant strength.

特開平8−105290号JP-A-8-105290 特開2005−139840号JP-A-2005-139840

本発明はトンネル掘削地盤に礫を含有する土砂地盤であっても長距離、大口径のトンネルのシールド推進掘削に適し、切羽掘削泥土を常法で地上に搬出し、搬出泥土の一部を二次改質インバート部にバッチ式に埋戻し、簡便に路床となすことを目的とする。   The present invention is suitable for shield-promoted excavation of long-distance, large-diameter tunnels, even for earth-and-sand grounds containing gravel in the tunnel excavation ground. The purpose is to backfill the next reforming invert part batch-wise and easily form a roadbed.

上記の目的を達成するため本発明は
第1にトンネルの切羽を泥土加圧シールドマシーンで推進するトンネル掘削工であって、排出掘削泥土に固化剤を添加して一次改質して地上に搬出し併せて二次改質してインバート部に埋戻し、路床を形成することを特徴とするインバート路床施工法、
第2に上記排出掘削泥土の全量を固化材で改質し、その一部を二次改質して改良土とする上記第1発明記載のインバート路床施工法、
第3に排出掘削泥土の上記インバート部埋戻材以外は常法により地上に搬出する上記第1又は第2発明記載のインバート路床施工法、
によって構成される。
In order to achieve the above object, the present invention is a tunnel excavator that first pushes the face of a tunnel with a mud pressure shield machine, and adds a solidifying agent to the discharged excavation mud to perform primary reforming and carry it to the ground. Invert roadbed construction method characterized by secondary reforming and backfilling in the invert part to form the roadbed,
Second, the invert roadbed construction method according to the first aspect of the present invention, wherein the entire amount of the excavated mud is modified with a solidifying material, and a part thereof is secondarily modified to be improved soil.
Thirdly, the invert road bed construction method according to the first or second invention, wherein the inverted excavation mud other than the invert part backfill material is carried out to the ground by a conventional method,
Consists of.

従ってトンネルの切羽を掘削する泥土加圧シールドマシーンをトンネルの内周に一次覆工したセグメントの先端面を受面とするシリンダーによって一定距離推進し、切羽全面を泥土で加圧支持しながら該切羽全面を推進した後、シリンダーを外し又は収縮させてシールド筒の内周に沿ってさらにセグメントを継足し、一次覆工を施す。   Therefore, the mud pressure shield machine that excavates the face of the tunnel is propelled for a certain distance by a cylinder having the receiving surface at the tip of the segment that has been primary lining on the inner periphery of the tunnel, and the face is supported while being pressed with mud. After propelling the entire surface, the cylinder is removed or contracted, and further segments are added along the inner circumference of the shield tube, and primary lining is performed.

上記シールドマシーンの推進に伴い掘削土及び圧入泥土の混合泥土がスクリューコンベヤでトンネル内のベルトコンベヤ上に排出され、常法により地上に搬出され、トラックにより廃棄物として搬送される。   Along with the promotion of the shield machine, the mixed mud of excavated soil and press-in mud is discharged onto the belt conveyor in the tunnel by a screw conveyor, transported to the ground by a conventional method, and transported as waste by a truck.

地上に搬出されるに際し、混合泥土はトンネル内でミキサーに収容され固化材をバッチ式に混合し、混合泥土は一次改質された後、常法により地上に搬出される。   When being transported to the ground, the mixed mud is accommodated in a mixer in the tunnel and the solidified material is mixed in a batch manner. The mixed mud is primarily reformed and then transported to the ground by a conventional method.

一次改質された混合泥土の一部は地上に搬出されることなくコンベヤによってさらにミキサーに計量投入され、該ミキサーには更に固化材が計量投入されてバッチ式に撹拌混合され、二次改質される。   Part of the mixed mud that has undergone primary reforming is further metered into the mixer by a conveyor without being transported to the ground, and further solidified material is metered into the mixer and stirred and mixed in a batch manner for secondary reforming. Is done.

このようにバッチ式に改質改良された上記泥土は切羽直近のセグメント上のインバート部にベルトコンベヤで埋戻され、路床が形成される。   The mud thus modified and improved in a batch manner is backfilled by the belt conveyor in the invert portion on the segment closest to the face to form a road bed.

本発明は上述のように構成したので土砂地盤に長距離大口径トンネルをシールド推進掘削し得るばかりでなく、バッチ式にインバート部に掘削泥土の一部を改質して路床を簡便に形成し得る効果がある。   Since the present invention is configured as described above, not only can long-distance large-diameter tunnels be shield-promoted excavated in the earth and sand ground, but a part of the excavated mud is reformed in the invert part in a batch manner to easily form the roadbed. There is a possible effect.

大口径トンネル1(10〜15mφ)の切羽2の全面を泥土加圧シールドマシーン3で推進する。推進は該マシーン3の掘削室12の隔壁13の外周を複数のシリンダー14で切羽2に向って押圧して行われる。   The entire face of the face 2 of the large-diameter tunnel 1 (10 to 15 mφ) is propelled by a mud pressure shield machine 3. The propulsion is performed by pressing the outer periphery of the partition wall 13 of the excavation chamber 12 of the machine 3 toward the face 2 with a plurality of cylinders 14.

上記シリンダー14は掘削地山15を被覆したセグメント16の先端面16’と上記隔壁13との間に配置され、上記シールドマシーン3を単位セグメント16の長さ推進し、シールド鋼17の内周に沿って円弧形セグメント16を装着して一次覆工を行い、地山15とセグメント16の外周との間には充填材18が注入される。   The cylinder 14 is disposed between the distal end surface 16 ′ of the segment 16 covering the excavated ground 15 and the partition wall 13, and the shield machine 3 is propelled for the length of the unit segment 16 to be attached to the inner periphery of the shield steel 17. The arcuate segment 16 is mounted along the primary lining, and a filler 18 is injected between the ground 15 and the outer periphery of the segment 16.

上記隔壁13の中心部には回動軸19を設け、その先端に切羽カッター20を設け、該カッター20には後向きの撹拌翼21が設けられ、泥土22が回動軸19を経て上記カッター20の前面に開口し、切羽2と上記隔壁13との間に作泥土室(掘削室12)が形成され、
上記カッター20による切羽掘削土砂と注入泥土22とが撹拌翼21で混合され掘削泥土4が形成され、隔壁13の下部に開口したスクリューコンベヤ24を経て掘削泥土4が隔壁13の後部に配置したベルトコンベヤ25上に上記シールドマシーン3の推進によって排出され、この動作を上記シリンダー14の動作毎に繰返して切羽2は推進する(図1)。
A rotating shaft 19 is provided at the center of the partition wall 13, and a face cutter 20 is provided at the tip thereof. The cutter 20 is provided with a rearward stirring blade 21, and mud 22 passes through the rotating shaft 19 and the cutter 20 A mud chamber (excavation chamber 12) is formed between the face 2 and the partition wall 13,
A belt in which the excavated mud 4 is formed by mixing the cut excavated sand and the injected mud 22 with the stirring blade 21 by the cutter 20 to form the excavated mud 4 and the screw conveyor 24 opened at the lower part of the bulkhead 13. It is discharged on the conveyor 25 by the propulsion of the shield machine 3, and this operation is repeated for each operation of the cylinder 14 to propel the face 2 (FIG. 1).

上記コンベヤ25による掘削泥土4は図2に示すミキサー26にバッチ式に投入され、同時に後述の固化材槽6’から石膏系固化材6がバッチ式に投入され混合撹拌されて一次改質され、常法によってバケットエレベーター27又はその他の手段により全量の約4分の3量を地上10のホッパ29に搬出し、トラック30によって処理場に廃棄される。   The excavated mud 4 by the conveyor 25 is charged batchwise into the mixer 26 shown in FIG. 2, and at the same time, the gypsum-based solidified material 6 is charged batchwise from the solidified material tank 6 ′ described later, mixed and stirred, and subjected to primary reforming, By a conventional method, about three-quarters of the total amount is carried out to the hopper 29 on the ground 10 by the bucket elevator 27 or other means, and is discarded to the treatment site by the truck 30.

上記ミキサー26から全量の約4分の1量を逆送ベルトコンベヤ31によって図2(イ)(ロ)図、図3及び図6に示すように計量ミキサー32にバッチ式に移送する。   About one-fourth of the total amount is transferred from the mixer 26 to the measuring mixer 32 in a batch manner as shown in FIGS. 2 (A), (B), FIG. 3 and FIG.

上記計量ミキサー32は図6に示すように機枠33にロードセル34を介して支持され、該ミキサー32内に上記逆送ベルトコンベヤ31及びそのスクリューコンベヤ31’、セメント系固化材用計量スクリューコンベヤ36によってバッチ式に上記一次改質泥土23、セメント又はセメント系固化材35を送給し、
上記ロードセル34の計量値と上記セメント系固化材35の設定値との比較演算部からの信号により、該セメント系固化材を上記ミキサー32に計量供給し、該ミキサー32で撹拌混合し量的安定改質土(改良土)7とすることができる。
As shown in FIG. 6, the metering mixer 32 is supported by a machine frame 33 via a load cell 34, and the reverse belt conveyor 31 and its screw conveyor 31 ′, a cement-based solidifying material metering screw conveyor 36 are contained in the mixer 32. The above-mentioned primary modified mud 23, cement or cement-based solidified material 35 is fed batchwise by
The cement-based solidified material is weighed and supplied to the mixer 32 according to a signal from a comparison calculation unit between the measured value of the load cell 34 and the set value of the cement-based solidified material 35, and is stirred and mixed by the mixer 32 for quantitative stability. Modified soil (improved soil) 7 can be used.

勿論逆送コンベヤ31によって上記計量ミキサー32に投入される上記一次改質泥土23の粘性及び密度は予め測定され、単位重量及び粘性(粘度)はほぼ一定である。   Of course, the viscosity and density of the primary modified mud 23 put into the measuring mixer 32 by the reverse conveyor 31 are measured in advance, and the unit weight and viscosity (viscosity) are substantially constant.

上記泥土23の投入量は機函32’の容量の約半量であり、上記ロードセル34による投入泥土量が検出される。   The input amount of the mud 23 is about half of the capacity of the machine box 32 ′, and the amount of input mud by the load cell 34 is detected.

このようにして上記改質泥土(原泥)23の重量検出値はロードセル34からの信号によって制御部の設定器における設定値と比較され、かつ記憶され、フィードバックして上記逆送コンベヤ31を停止するが水平回転軸37,37による撹拌動作は継続する(図6、図7)。   In this way, the weight detection value of the modified mud (raw mud) 23 is compared with the set value in the setting unit of the control unit by the signal from the load cell 34, stored, and fed back to stop the reverse conveyor 31. However, the stirring operation by the horizontal rotation shafts 37 and 37 continues (FIGS. 6 and 7).

上記改質泥土投入量はロードセル34で計測された検出値が上記改質泥土23の重量設定値に達した時点においてセメント系固化材の重量比を比較演算器で比較演算し、その信号により上記セメント系固化材用計量コンベヤ36(スクリューコンベヤ)を始動し、投入量が計量器28で計量され、機函32’内に投入されて自動停止する。   When the detected value measured by the load cell 34 reaches the weight setting value of the modified mud 23, the weight ratio of the cement-based solidified material is compared and calculated by a comparison calculator, and the signal is input by the signal. The cement-type solidifying material weighing conveyor 36 (screw conveyor) is started, and the input amount is weighed by the measuring device 28, and is charged into the machine box 32 'to automatically stop.

上記投入は同時又は時期をずらして投入することができ、投入中も上記撹拌動作は継続し、上記泥土23はセメント系固化材と撹拌混合され、一方セメント系固化材は水分と反応して凝結硬化する。
さらに混合に伴う水の固定化及び硬化により凝集した土粒子が団粒化され、土粒子を含んで硬化された大きな粒子が形成される。
The above charging can be performed simultaneously or at different times, and the stirring operation is continued even during the charging, and the mud 23 is stirred and mixed with the cement-based solidified material, while the cement-based solidified material reacts with moisture and sets. Harden.
Further, the soil particles aggregated by the fixation and curing of water accompanying mixing are aggregated to form large cured particles including the soil particles.

予め混合試験により設定された時間の経過に伴って上記シールドマシーン3のシリンダー14が動作し図7に示す凸弧状底面38の凸弧状開閉板38’を回動して排出口を開き、機函32’内のリサイクル土(二次改質泥土)7として下方に排出し、逆送コンベヤ37によって切羽2側に逆送される。   The cylinder 14 of the shield machine 3 operates with the elapse of time set in advance by the mixing test, and the convex arc opening / closing plate 38 ′ of the convex arc bottom surface 38 shown in FIG. It is discharged downward as recycled soil (secondary modified mud) 7 in 32 ′ and is fed back to the face 2 side by the reverse conveyor 37.

ミキサー32に投入される上記改質泥土23の重量に対して設定比率のセメント系固化材を的確に投入撹拌し品質の量的安定と均一性に富む改良土7をバッチ式に逆送コンベヤ37でインバート部8に送給する。   The cement solidified material in a set ratio with respect to the weight of the modified mud 23 charged in the mixer 32 is accurately charged and stirred, and the improved soil 7 rich in quantitative stability and uniformity in quality is fed back in a batch manner. To the invert section 8.

又ミキサー32内の上記混合物に必要により給水し、又は乾燥風(ガス)を送給し得て品質の調整及び反応速度を上げることができる。   Further, water can be supplied to the mixture in the mixer 32 as necessary, or dry air (gas) can be supplied to adjust the quality and increase the reaction rate.

上記切羽2に向って逆送された上記改質泥土(改良土7)は上記シールドマシーン3直後のセグメント16部上のインバート部8に埋戻されて盛土され、締固め機(図示していない)で締固められ路床9が形成される。上記締固め機は、振動ローラー、タイヤローラー、フィニッシャー等の機能を持ち、自動でも処理していける構造を有する。そのため図9(イ)図に示される長大なH形鋼38(10〜15m)や(ロ)図に示すコンクリート製路盤39を必要とせず、路床9に直接枕木40(図5)を敷きレールを往復敷設して機材、その他の資材を上記シールドマシーン3に供給することができる。   The modified mud soil (improved soil 7) fed back toward the face 2 is backfilled in the invert portion 8 on the segment 16 immediately after the shield machine 3 and is filled with a compacting machine (not shown). ) And the road bed 9 is formed. The compacting machine has functions such as a vibration roller, a tire roller, and a finisher, and has a structure that can be processed automatically. Therefore, the sleeper 40 (FIG. 5) is laid directly on the road floor 9 without requiring the long H-shaped steel 38 (10 to 15 m) shown in FIG. 9 (A) and the concrete roadbed 39 shown in (B). Rails can be laid back and forth to supply equipment and other materials to the shield machine 3.

尚図6中40で示すものはリサイクル土排出ホッパー、41は泥土(原泥)投入ホッパー、42はセメント系固化材投入ホッパー、図1中43はインバート部8の堰板、44はそのステイである。   In FIG. 6, the reference numeral 40 indicates a recycled soil discharge hopper, 41 is a mud (raw mud) input hopper, 42 is a cement-based solidification material input hopper, 43 in FIG. 1 is a weir plate of the invert section 8, and 44 is its stay. is there.

本発明のインバート部施工状態の側面図である。It is a side view of the invert part construction state of this invention. (イ)図は掘削一次改質泥土の地上搬出状態の側面図、(ロ)図は(イ)図のA−A背面図である。(A) The figure is a side view of the excavated primary reforming mud being carried out on the ground, and (b) is a rear view taken along the line AA in FIG. 二次改質泥土形成ミキサーの側面図である。It is a side view of a secondary reforming mud formation mixer. (イ)(ロ)(ハ)(ニ)図は切羽間歇推進状態側面図である。(A) (b) (c) (d) The figure is a side view of the facet propulsion state. インバート部路床形成状態の正面図である。It is a front view of an invert part roadbed formation state. 二次改良泥土形成ミキサーの側面図である。It is a side view of a secondary improvement mud formation mixer. 図6B−B線による縦断面図である。It is a longitudinal cross-sectional view by FIG. 6B-B line. 従来の外周泥水、中心部泥掘削シールドマシーンによるインバート路床施工法を示す側面図である。It is a side view which shows the invert subgrade construction method by the conventional outer periphery muddy water and center part mud excavation shield machine. (イ)(ロ)図は従前のインバート部路盤形成状態の正面図である。(A) (b) is a front view of a conventional invert portion roadbed formation state.

符号の説明Explanation of symbols

1 トンネル
2 切羽
3 泥土加圧シールドマシーン
4 排出掘削泥土
5,6 添加材(固化材)
7 改良土
8 インバート部
9 路床
10 地上
DESCRIPTION OF SYMBOLS 1 Tunnel 2 Face 3 Mud pressure shield machine 4 Discharged excavation mud 5, 6 Additive (solidification material)
7 improved soil 8 invert section 9 roadbed 10 ground

Claims (3)

トンネルの切羽を泥土加圧シールドマシーンで推進するトンネル掘削工であって、排出掘削泥土に固化剤を添加して一次改質して地上に搬出し併せて二次改質してインバート部に埋戻し、路床を形成することを特徴とするインバート路床施工法。   A tunnel excavator that pushes the tunnel face with a mud pressure shield machine, adds a solidifying agent to the discharged excavated mud, performs primary reforming, transports it to the ground, and then secondary reforms to bury it in the invert part. Invert road bed construction method characterized by returning and forming the road bed. 上記排出掘削泥土の全量を固化材で改質し、その一部を二次改質して改良土とする請求項1記載のインバート路床施工法。   The invert subgrade construction method according to claim 1, wherein the entire amount of the excavated mud is reformed with a solidifying material, and a part thereof is secondarily reformed to obtain improved soil. 排出掘削泥土の上記インバート部埋戻材以外は常法により地上に搬出する請求項1又は2記載のインバート路床施工法。   The invert roadbed construction method according to claim 1 or 2, wherein the excavated mud other than the invert part backfill material is carried out to the ground by a conventional method.
JP2005362686A 2005-12-16 2005-12-16 Invert subgrade construction method Withdrawn JP2007162403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005362686A JP2007162403A (en) 2005-12-16 2005-12-16 Invert subgrade construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005362686A JP2007162403A (en) 2005-12-16 2005-12-16 Invert subgrade construction method

Publications (1)

Publication Number Publication Date
JP2007162403A true JP2007162403A (en) 2007-06-28

Family

ID=38245629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005362686A Withdrawn JP2007162403A (en) 2005-12-16 2005-12-16 Invert subgrade construction method

Country Status (1)

Country Link
JP (1) JP2007162403A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191859A (en) * 2006-01-17 2007-08-02 Hanshin Expressway Co Ltd Invert subgrade construction method
JP2009108584A (en) * 2007-10-30 2009-05-21 Shimizu Corp Processing device for tunnel excavated soil
JP2009108583A (en) * 2007-10-30 2009-05-21 Shimizu Corp Method for utilizing tunnel excavated soil
JP2009133091A (en) * 2007-11-29 2009-06-18 Ohbayashi Corp Treatment equipment, excavated sediment treatment method, excavator, tunnel construction method, and tunnel constructed by the construction method
JP2019157502A (en) * 2018-03-13 2019-09-19 ▲濱▼新 正博 Roadbed construction method
CN111255471A (en) * 2020-01-15 2020-06-09 中南大学 Multi-working-condition soil pressure balance shield muck workability test simulation test system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191859A (en) * 2006-01-17 2007-08-02 Hanshin Expressway Co Ltd Invert subgrade construction method
JP4699218B2 (en) * 2006-01-17 2011-06-08 阪神高速道路株式会社 Invert roadbed construction method
JP2009108584A (en) * 2007-10-30 2009-05-21 Shimizu Corp Processing device for tunnel excavated soil
JP2009108583A (en) * 2007-10-30 2009-05-21 Shimizu Corp Method for utilizing tunnel excavated soil
JP2009133091A (en) * 2007-11-29 2009-06-18 Ohbayashi Corp Treatment equipment, excavated sediment treatment method, excavator, tunnel construction method, and tunnel constructed by the construction method
JP2019157502A (en) * 2018-03-13 2019-09-19 ▲濱▼新 正博 Roadbed construction method
CN111255471A (en) * 2020-01-15 2020-06-09 中南大学 Multi-working-condition soil pressure balance shield muck workability test simulation test system

Similar Documents

Publication Publication Date Title
JP4699218B2 (en) Invert roadbed construction method
JP2007162403A (en) Invert subgrade construction method
KR101381566B1 (en) super slurry type shield tunneling machine and super slurry type propulsion method using it
CN116971248A (en) Integrated road solidified soil forming device
JP3253931B2 (en) Tunnel construction method
JP2001115485A (en) Treatment method and treatment device for construction soil
JP2004225453A (en) Construction method of civil engineering structure
JP2691167B2 (en) Continuous solidification system for high water content mud
KR20010051116A (en) Material feeder
JP5158628B2 (en) Tunnel excavation soil treatment equipment
JPH1072846A (en) Treatment method of soil
JP3660070B2 (en) Construction surplus soil effective utilization method
JPH01315593A (en) Waste soil processing for shield construction and processing device
JP2005120636A (en) Dam reconstruction method
JP2003239686A (en) Pipe-jacking shield method and pipe-jacking shield machine
JP2008150810A (en) Backfill grouting material and backfill grouting method
JP2000257109A (en) Construction method for fluidized back-filling
JPH01239293A (en) Shield construction and slurry material therefor
JP2012001899A (en) Construction method of tunnel ballast part and tunnel ballast part
JP5158627B2 (en) How to use tunnel excavated soil
JP4268837B2 (en) Recycling method of excavated sediment in shield method
JP7418818B2 (en) Method of pumping washed sand
JPH07138941A (en) Equipment and method of constructing seamless groove wall, sill and hard stand
JP2022110480A (en) Tunnel backfilling method
JPH1071328A (en) Mixer drum for aggregate treatment

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080331