JP2007161861A - High performance heat insulation material - Google Patents

High performance heat insulation material Download PDF

Info

Publication number
JP2007161861A
JP2007161861A JP2005359375A JP2005359375A JP2007161861A JP 2007161861 A JP2007161861 A JP 2007161861A JP 2005359375 A JP2005359375 A JP 2005359375A JP 2005359375 A JP2005359375 A JP 2005359375A JP 2007161861 A JP2007161861 A JP 2007161861A
Authority
JP
Japan
Prior art keywords
heat insulating
foam
insulating material
heat insulation
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005359375A
Other languages
Japanese (ja)
Other versions
JP4895597B2 (en
Inventor
Shoji Kamiya
祥二 神谷
Kiyoshi Aizawa
清志 合澤
Yoshiaki Kono
吉昭 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2005359375A priority Critical patent/JP4895597B2/en
Publication of JP2007161861A publication Critical patent/JP2007161861A/en
Application granted granted Critical
Publication of JP4895597B2 publication Critical patent/JP4895597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To supply a high performance heat insulation material with a low density, a low thermal conductivity, and a high strength, and to provide a high performance heat insulation structure applicable to a liquified natural gas storage tank etc. <P>SOLUTION: The high performance heat insulation material is prepared by adding an infrared blocking substance to a foam material and by foaming the foam material so that its density becomes lower than a density causing the thermal conductivity in the foam of the foam material itself to be lowest; and thus prepared high performance heat insulation material is used as a high temperature heat insulation member 25. A heat insulation material comprising fine bubbles with sizes of about the average free path of gas molecules is used as a low temperature heat insulation member 23. An air-tight sheet 24 is inserted into between the high temperature heat insulation member 25 and the low temperature heat insulation member 23, and the side of the low temperature heat insulation member is evacuated with a cryopump 22, thus giving the high performance heat insulation structure 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多孔質断熱材の断熱性能を向上した高性能断熱材に関し、特に液化天然ガスや液化石油ガスの低温貯蔵容器に最適に使用することができる高性能断熱材に関する。   The present invention relates to a high-performance heat insulating material that improves the heat insulating performance of a porous heat insulating material, and more particularly to a high-performance heat insulating material that can be optimally used in a low-temperature storage container for liquefied natural gas or liquefied petroleum gas.

発泡性ウレタン樹脂などの多孔質断熱材は、樹脂固体中に気泡が大量に存在する状態になっていて、全体の伝熱量Qは樹脂固体中を伝導する熱Qsと発泡セル中のガス対流を介して伝導する熱Qgと断熱材を透過する輻射伝熱Qrの和で表わすことができる。そこで、断熱材の断熱性能を向上させる一般的な方法は、気孔径を1mm以下に抑えてガス対流熱伝達作用を抑制し、伝導率が比較的大きな樹脂固体伝導熱Qsを低減することであった。   A porous heat insulating material such as a foaming urethane resin is in a state where a large amount of bubbles are present in the resin solid, and the total heat transfer amount Q is the heat Qs conducted in the resin solid and the gas convection in the foam cell. It can be expressed by the sum of the heat Qg conducted through and the radiant heat transfer Qr passing through the heat insulating material. Therefore, a general method for improving the heat insulating performance of the heat insulating material is to suppress the gas convection heat transfer action by suppressing the pore diameter to 1 mm or less, and to reduce the resin solid conduction heat Qs having a relatively high conductivity. It was.

多孔質断熱材の密度を下げると樹脂固体の部分が少なくなり、気泡の部分が増加する。このため、伝導率の大きな樹脂固体における伝導熱Qsが低下し熱伝導率の小さなガス伝導熱Qgの寄与が増大する。したがって、密度が低下するにしたがって見かけの熱伝導率が低下し、断熱材が薄くても断熱性能を維持することができる。
特に、極低温の液化天然ガスや液化石油ガスの貯蔵タンクに施す断熱材において、断熱材を薄く軽量に形成することができれば断熱材原料の節約ばかりでなく、運搬船にタンクを搭載する場合に運行経費の節減に結びつくので効果が大きい。
When the density of the porous heat insulating material is lowered, the resin solid portion decreases and the bubble portion increases. For this reason, the conduction heat Qs in the resin solid having a high conductivity is lowered, and the contribution of the gas conduction heat Qg having a low thermal conductivity is increased. Therefore, the apparent thermal conductivity decreases as the density decreases, and the heat insulating performance can be maintained even if the heat insulating material is thin.
In particular, in the heat insulation material applied to storage tanks for cryogenic liquefied natural gas and liquefied petroleum gas, if the heat insulation material can be made thin and lightweight, it will not only save the raw material of the heat insulation material but also operate when the tank is installed in a carrier ship. The effect is great because it leads to cost savings.

しかし、たとえば図7に見られるように、ある密度以下になると、逆に熱伝導率が急激に増加し断熱性能が劣化する。ある密度以下では、気泡を形成する樹脂膜が薄くなり断熱材を透過する赤外線量が大きくなって輻射伝熱Qrが無視できなくなるためである。なお、図7は硬質ウレタンフォームについて測定例を示すグラフであり、密度に対する熱伝導率の関係は、樹脂材質、発泡ガス、気泡径などによって大きく変化することは言うまでもない。   However, as seen in FIG. 7, for example, when the density is less than a certain density, the thermal conductivity increases conversely and the heat insulation performance deteriorates. This is because at a certain density or less, the resin film forming the bubbles becomes thin and the amount of infrared rays transmitted through the heat insulating material increases, so that the radiant heat transfer Qr cannot be ignored. In addition, FIG. 7 is a graph which shows the example of a measurement about a rigid urethane foam, and it cannot be overemphasized that the relationship of the heat conductivity with respect to a density changes with resin materials, foaming gas, a bubble diameter, etc. largely.

このように低密度領域で赤外線透過量が増加するため、低密度化による熱伝導率低下を利用した断熱材の薄型軽量化には限界があった。
なお、断熱材の赤外線透過を減少させる方法として、発泡体内に赤外線減衰剤材を混入することが効果があることが知られている。赤外線減衰剤は赤外線反射物質もしくは赤外線吸収物質で、たとえばアルミニウムなどの金属の粒状フレーク、カーボンブラック、グラファイト、二酸化チタンなどが使用される。
As described above, since the amount of infrared transmission increases in the low density region, there is a limit to reducing the thickness and weight of the heat insulating material using the decrease in thermal conductivity due to the reduction in density.
As a method for reducing the infrared transmission of the heat insulating material, it is known that mixing an infrared attenuating agent material in the foam is effective. The infrared attenuating agent is an infrared reflecting material or an infrared absorbing material, and for example, granular flakes of metal such as aluminum, carbon black, graphite, titanium dioxide and the like are used.

特許文献1には、粒径が150nmより大きいサーマルグレードと呼ばれる品質のカーボンブラックを混入した断熱フォーム構造物が開示されている。サーマルグレードカーボンブラックは、通常の赤外線に対してレイリー散乱をするので、赤外線散乱を増してフォーム構造物の熱伝導率を小さくする。また、サーマルグレードカーボンブラックはフォームの気泡壁に堆積しやすい特性を有することから固体伝熱熱伝導率と放射熱伝導率が低下し、フォーム構造物の実効的熱伝導率が低下する。
なお、特許文献2には、発泡体に赤外線減衰剤を混入した上で、気泡径を70μm以下にすることにより、顕著に熱伝導率が低下することが開示されている。特に、平均気泡径が1.0μm以下であるとき、および気泡が絶対圧力0.1Torr(約13Pa)以下に排気されているときに最も大きな熱伝導率低下が見られる。
Patent Document 1 discloses a heat insulating foam structure in which carbon black having a quality called a thermal grade having a particle size larger than 150 nm is mixed. Thermal grade carbon black performs Rayleigh scattering with respect to normal infrared rays, so that infrared scattering is increased and the thermal conductivity of the foam structure is reduced. Moreover, since thermal grade carbon black has the characteristic of being easily deposited on the foam wall of the foam, the solid heat transfer thermal conductivity and the radiant heat conductivity are lowered, and the effective thermal conductivity of the foam structure is lowered.
Patent Document 2 discloses that the thermal conductivity is remarkably lowered by mixing an infrared attenuating agent in the foam and setting the bubble diameter to 70 μm or less. In particular, when the average bubble diameter is 1.0 μm or less and when the bubbles are exhausted to an absolute pressure of 0.1 Torr (about 13 Pa) or less, the greatest decrease in thermal conductivity is observed.

しかし、カーボンブラックは自身の赤外線吸収率が高く熱伝導率が大きいので、これを混合した低密度断熱材は固体部分の熱伝導熱が増加し、断熱材の熱伝導率が十分低下しない。また、赤外線減衰剤混入発泡体で気泡率が大きいごく低密度のフォーム構造物を形成すると、粒状の減衰剤が融着しにくい状態で含まれた固体部分の脆性が高くなり、特に薄い気泡膜部分が脆くなって、フォーム構造物が破損しやすい。
特表平8−504856号公報 特表平8−504859号公報
However, since carbon black has a high infrared absorption rate and a high thermal conductivity, the low density heat insulating material mixed with carbon black increases the heat conduction heat of the solid portion, and the heat conductivity of the heat insulating material does not sufficiently decrease. In addition, when a foam structure with a large cell ratio and a very low density is formed with a foam containing an infrared attenuating agent, the brittleness of the solid portion containing the granular attenuating agent in a state in which it is difficult to be fused increases, and a particularly thin cell membrane The part becomes brittle and the foam structure is easily damaged.
Japanese National Patent Publication No. 8-504856 Japanese National Patent Publication No. 8-504859

そこで、本発明が解決しようとする課題は、低密度で低い熱伝導率を持ち強度の大きい高性能断熱材を供給することであり、また、液化天然ガス貯蔵槽などに適用できる高性能断熱構造を提供することである。   Therefore, the problem to be solved by the present invention is to supply a high-performance heat insulating material with low density, low thermal conductivity and high strength, and a high-performance heat insulating structure applicable to a liquefied natural gas storage tank or the like. Is to provide.

上記課題を解決するため、本発明の高性能断熱材は、発泡体材料に針状単結晶を加えて、発泡体材料自体の発泡体における熱伝導率が最低になる密度より低い密度になるように発泡させたことを特徴とする。
発泡体材料は、熱可塑性ポリマー、熱硬化性ポリマー、エーロゲル、セラミックス、ガラスなど、各種の有機及び無機の材料を含む。なお、これら発泡体材料には、必要に応じて公知の発泡剤が添加される。
In order to solve the above-mentioned problems, the high-performance heat insulating material of the present invention adds a needle-like single crystal to the foam material so that the density of the foam material itself is lower than the density at which the thermal conductivity in the foam is minimized. It is characterized by being foamed.
Foam materials include various organic and inorganic materials such as thermoplastic polymers, thermosetting polymers, aerogels, ceramics, and glass. In addition, a well-known foaming agent is added to these foam materials as needed.

針状単結晶は、ウィスカーとも呼ばれ、たとえばカーボンウィスカー、酸化亜鉛ウィスカー、炭化珪素ウィスカーなどが比較的容易に入手できる。ウィスカーは、極めて剛性が強い針のような細長い形状を持っている。たとえばカーボンウィスカーで径0.3μmから0.6μm、長さ5μmから15μmと細長い。発泡体にウィスカーを添加して気泡壁を強化することにより、断熱材の強度は格段に増大する。なお、ウィスカーは気泡壁内に完全に埋め込まれて気泡内にはみ出ないことが好ましい。   The acicular single crystal is also called a whisker, and for example, carbon whisker, zinc oxide whisker, silicon carbide whisker and the like can be obtained relatively easily. The whisker has an elongated shape like a very rigid needle. For example, carbon whiskers are elongated with a diameter of 0.3 μm to 0.6 μm and a length of 5 μm to 15 μm. By adding whiskers to the foam to strengthen the cell walls, the strength of the heat insulating material is significantly increased. In addition, it is preferable that the whisker is completely embedded in the bubble wall and does not protrude into the bubble.

断熱材への輻射線は、断熱材表面で一部反射した残りが断熱材に吸収、散乱あるいは透過する。断熱材を透過する輻射が大きくなると見かけの熱伝導率が大きくなる。輻射線のうち、特に熱線と呼ばれる0.8μmから2.4μmの赤外線が伝熱に大きな影響を持つ。そこで、本発明の高性能断熱材は、発泡体材料に剛性の強い繊維であるウィスカーを1重量%から5重量%添加することにより強化すると共に、赤外線透過量を小さくして熱伝導率を低下させる。   As for the radiation ray to the heat insulating material, the remainder partially reflected on the surface of the heat insulating material is absorbed, scattered or transmitted by the heat insulating material. When the radiation that passes through the heat insulating material increases, the apparent thermal conductivity increases. Among the radiation rays, infrared rays of 0.8 μm to 2.4 μm, particularly called heat rays, have a great influence on heat transfer. Therefore, the high-performance heat insulating material of the present invention is strengthened by adding 1 to 5% by weight of whisker, which is a rigid fiber, to the foam material, and at the same time, the infrared transmission amount is reduced to reduce the thermal conductivity. Let

針状単結晶などの添加は、発泡体の赤外線透過割合が大きくなる低密度領域で、熱伝導率が上昇する領域において特に効果的である。
たとえば硬質ウレタンフォームでは、フォームとしての密度が約35kg/m3程度で熱伝導率が最低になり、密度がそれ以下に減少すると熱伝導率が急激に増加する。
したがって、たとえば密度を10〜30kg/m3、特に20kg/m3程度にして使用する場合に針状単結晶を添加すると効果が高い。10kg/m3以下では固体比率が低くなりすぎて破損しやすくなり、30kg/m3以上では赤外線透過率が大きくないので本発明固有の効果が余り期待できない。
Addition of a needle-like single crystal is particularly effective in a low density region where the infrared transmission rate of the foam is large and in a region where the thermal conductivity is increased.
For example, in the case of rigid urethane foam, the thermal conductivity becomes the lowest when the density as the foam is about 35 kg / m 3 , and the thermal conductivity increases rapidly when the density is reduced below that.
Therefore, for example, when using with a density of 10 to 30 kg / m 3 , particularly about 20 kg / m 3 , it is highly effective to add a needle-like single crystal. If it is 10 kg / m 3 or less, the solid ratio becomes too low and breaks easily, and if it is 30 kg / m 3 or more, the infrared transmittance is not large, so that the effect unique to the present invention cannot be expected.

赤外線伝導阻止のための添加剤は、添加量の発泡体材料に対する割合や添加剤の大きさにより、熱伝導率に対する低減効果が異なる。一般に添加剤の径が光の波長より小さくなるとレイリー散乱効果により分散性が良くなるが、光の反射が小さくなるので適当な領域がある。実験結果から重量割合で1%から5%程度、レイリー散乱効果から粒径1μm前後が特に効果が大きいことが分かっている。
本発明において使用するウィスカーは径が1μmに近いので、この条件に適合する。
The additive for blocking infrared conduction has a different effect on the thermal conductivity depending on the ratio of the added amount to the foam material and the size of the additive. In general, when the diameter of the additive is smaller than the wavelength of light, the dispersibility is improved by the Rayleigh scattering effect, but there is an appropriate region because the reflection of light is reduced. From the experimental results, it is known that the effect is particularly great when the weight ratio is about 1% to 5%, and from the Rayleigh scattering effect, the particle diameter is around 1 μm.
Since the diameter of the whisker used in the present invention is close to 1 μm, it meets this condition.

本発明の高性能断熱材について、見かけの熱伝導率を測定した結果、未添加の発泡体と比較して、カーボンウィスカー添加の場合16%、酸化亜鉛ウィスカー添加の場合19%の低下が観察された。カーボンブラックでは、9.4%の低下率であったことと比較すると、本発明の熱伝導率改善は極めて顕著であると言える。   As a result of measuring the apparent thermal conductivity of the high-performance heat insulating material of the present invention, a decrease of 16% in the case of adding carbon whisker and 19% in the case of adding zinc oxide whisker was observed as compared with the unadded foam. It was. Compared to the reduction rate of 9.4% for carbon black, it can be said that the improvement in thermal conductivity of the present invention is extremely remarkable.

カーボンブラックは、高い赤外線吸収率を持ち赤外線をほぼ遮断するまで透過率を低下させるが、カーボンブラック自体の高い熱伝導率のため断熱材全体の熱伝導率は十分に低下させることができない。
これに対して、ウィスカーは、適度な反射率と吸収率を持って赤外線の透過率を低下させ、また熱伝導率も高くないため、断熱材の熱伝導率を実質的に低下させることができる。
Carbon black has a high infrared absorptivity and lowers the transmittance until the infrared rays are almost blocked. However, due to the high thermal conductivity of carbon black itself, the thermal conductivity of the entire heat insulating material cannot be sufficiently reduced.
On the other hand, whiskers have a moderate reflectivity and absorptivity, and reduce infrared transmittance, and since heat conductivity is not high, the heat conductivity of the heat insulating material can be substantially reduced. .

本発明の高性能断熱構造は、保冷する容器の壁表面にクライオポンプシステムのクライオ面を配置し、クライオ面の上から微細な連続気泡で形成された発泡体断熱材からなる低温断熱部材を被覆し、さらにその上に気密シートを被覆し、さらに高性能断熱材で構成される高温断熱部材を配置し、それらの表面に防水・防湿シートを被覆したことを特徴とする。   The high-performance heat insulating structure of the present invention has a cryopump system cryosurface arranged on the wall surface of a container to be kept cold, and covers a low temperature heat insulating member made of a foam heat insulating material formed of fine open cells from above the cryosurface. Further, it is characterized in that an air-tight sheet is further coated thereon, a high-temperature heat insulating member composed of a high-performance heat insulating material is further disposed, and a waterproof / moisture-proof sheet is coated on the surface thereof.

本発明の高性能断熱構造は、極低温の液化天然ガス容器に適用することができる。この場合、断熱構造の外表面温度は外気温度(例えば300K)、内表面温度は液化天然ガス沸点はメタン沸点(111K)に近くなるが、両者のほぼ中間位置、たとえば200Kになるあたりにグラファイトシート等の気密シートが介装されて低温断熱部材と高温断熱部材に分割される。   The high-performance heat insulation structure of the present invention can be applied to a cryogenic liquefied natural gas container. In this case, the outer surface temperature of the heat insulating structure is the outside air temperature (for example, 300K), and the inner surface temperature is the liquefied natural gas boiling point is close to the methane boiling point (111K). An airtight sheet such as a heat insulating sheet is interposed and divided into a low temperature heat insulating member and a high temperature heat insulating member.

クライオポンプシステムは、真空容器内に極低温のクライオ面を設置し、これに容器内の気体分子を凝縮または吸着させて捕捉し、排気する周知のポンプシステムであって、低温断熱部材を真空に維持する機能を有するものである。
低温断熱部材は、発泡体を発泡させて作った気泡で全体を形成した断熱材からなる。気泡はごく微細で、大部分が互いに連通した連続気泡になっていることが好ましい。雰囲気を真空にする場合は、連続気泡は雰囲気と連通して内部も真空になるので、ガスの対流による伝熱が排除され熱伝導率は十分に低い。対流のない自由分子熱伝導の領域では伝導伝熱量は圧力に比例し、完全真空ではゼロになる。
The cryopump system is a well-known pump system in which a cryogenic cryosurface is installed in a vacuum vessel, and gas molecules in the vessel are condensed or adsorbed to trap and exhaust, and the low-temperature insulation member is evacuated. It has a function to maintain.
The low-temperature heat insulating member is made of a heat insulating material that is entirely formed of bubbles formed by foaming a foam. It is preferable that the air bubbles are very fine and are mostly open air bubbles communicating with each other. When the atmosphere is evacuated, the open bubbles communicate with the atmosphere and the inside is also evacuated, so heat transfer due to gas convection is eliminated and the thermal conductivity is sufficiently low. In the region of free molecular heat conduction without convection, the amount of heat transfer is proportional to the pressure and is zero in a complete vacuum.

さらに、気泡の平均径を1μm以下のガスの平均自由行程水準にすると、見かけの熱伝導率がガス静止熱伝導率と比較しても約1/3まで低減するので効果的である。なお、ガス分子の平均自由行程は、大気圧下では0.1μm程度であるが、極めて低圧になると非常に大きくなって、10Paでは1mm程度になる。
クライオポンプに負荷をかけず簡単に到達する水準として1000Paで運転するとすれば、平均自由行程はほぼ7μmになり、100Paで運転すれば70μm程度になる。
Furthermore, when the average bubble diameter is set to the average free path level of gas of 1 μm or less, the apparent thermal conductivity is reduced to about 3 even when compared with the gas static thermal conductivity, which is effective. The mean free path of gas molecules is about 0.1 μm at atmospheric pressure, but becomes very large at an extremely low pressure, and is about 1 mm at 10 Pa.
If it is operated at 1000 Pa as a level that can be easily reached without applying a load to the cryopump, the mean free path is about 7 μm, and if it is operated at 100 Pa, it is about 70 μm.

高温断熱部材に使用する高性能断熱材は、発泡体材料に赤外線遮断物質を加えて、発泡体材料自体の発泡体における熱伝導率が最低になる密度より低い密度になるように発泡させたものである。
赤外線遮断物質として好ましいものには、カーボンウィスカーや酸化亜鉛ウィスカーなどの針状単結晶がある。なお、針状単結晶に代えて、炭素繊維などの細長い硬質繊維物体でも良い。また、防水・防湿シートなどによる保護が十分であるときなど高温断熱部材に高い強度が要求されないときは、針状単結晶を酸化鉄粉末に置き換えてもよい。
このような高性能断熱材は、単位体積当たりの重量が小さいのに断熱効率がよいので、使用量を抑えることができ、また高温断熱部材の重量も軽減する。
The high-performance heat insulating material used for the high-temperature heat insulating member is made by adding an infrared shielding material to the foam material so that the foam material itself has a lower density than the density at which the thermal conductivity of the foam is lowest. It is.
Preferred examples of the infrared blocking material include needle-shaped single crystals such as carbon whiskers and zinc oxide whiskers. In place of the needle-like single crystal, an elongated hard fiber object such as carbon fiber may be used. In addition, when the high temperature heat insulating member is not required to have high strength, such as when protection by a waterproof / moisture proof sheet is sufficient, the needle-like single crystal may be replaced with iron oxide powder.
Since such a high-performance heat insulating material has a good heat insulating efficiency even though its weight per unit volume is small, the amount of use can be suppressed, and the weight of the high temperature heat insulating member can be reduced.

高性能断熱構造の外表面に入射する日射は、アルミニウムシートなどの防水・防湿シートで大部分が反射され一部がに吸収される。防水・防湿シートは加熱されて、その温度に対応した熱線を内側に輻射する。高温断熱部材は防水・防湿シートからの輻射線を効果的に遮断して、中間のグラファイトシートを保冷する。グラファイトシートは約200Kに維持されるので、その温度に対応する長波長の赤外線を内側に輻射する。低温断熱部材はグラファイトシートから輻射される赤外線を遮断して容器壁を保冷する。   Solar radiation incident on the outer surface of the high-performance heat insulation structure is mostly reflected and partially absorbed by a waterproof / moisture-proof sheet such as an aluminum sheet. The waterproof / moisture-proof sheet is heated and radiates heat rays corresponding to the temperature inside. The high-temperature heat insulating member effectively blocks radiation from the waterproof / moisture-proof sheet and keeps the intermediate graphite sheet cool. Since the graphite sheet is maintained at about 200K, long wavelength infrared rays corresponding to the temperature are radiated inward. The low temperature heat insulating member blocks infrared rays radiated from the graphite sheet to keep the container wall cool.

以下、本発明について実施例に基づき図面を参照して詳細に説明する。
図1は本発明の高性能断熱材の1実施例を表わす概念的な構成図、図2は本実施例に使用する赤外線遮断物質の比較表、図3は高性能断熱材の赤外線透過率の測定例を示すグラフ、図4は高性能断熱材の赤外線反射率の測定例を示すグラフ、図5は高性能断熱材の性能を説明する表、図6は本発明の第2実施例に係る高性能断熱構造を概念的に説明する断面図である。図7は硬質ウレタンフォームの密度と熱伝導率の関係を示す図である。
Hereinafter, the present invention will be described in detail based on examples with reference to the drawings.
FIG. 1 is a conceptual configuration diagram showing an embodiment of the high-performance heat insulating material of the present invention, FIG. 2 is a comparative table of infrared shielding materials used in this embodiment, and FIG. 3 is a graph showing the infrared transmittance of the high-performance heat insulating material. FIG. 4 is a graph showing a measurement example of infrared reflectance of a high performance heat insulating material, FIG. 5 is a table explaining the performance of the high performance heat insulating material, and FIG. 6 is a second embodiment of the present invention. It is sectional drawing which illustrates a high performance heat insulation structure notionally. FIG. 7 is a diagram showing the relationship between the density of the rigid urethane foam and the thermal conductivity.

本実施例の高性能断熱材10は、針状単結晶を加えた発泡体材料を発泡させて形成したもので、針状単結晶13が散在した発泡体マトリックス11内に多数の気泡12が形成されている。
発泡体材料は、熱可塑性ポリマー、熱硬化性ポリマー、エーロゲル、セラミックス、ガラスなど、各種の有機及び無機の材料などで、これら発泡体材料にはそれぞれ適合する発泡剤が添加される。発泡剤には、二酸化炭素、窒素、アルゴン、水、空気、ヘリウムなどの無機発泡剤、メタン、プロパン、ブタンなどの脂肪族炭化水素やハロゲンか炭化水素などの有機発泡剤、アゾジカルボンアミド等化学作用による発泡剤がある。
The high-performance heat insulating material 10 of the present embodiment is formed by foaming a foam material to which acicular single crystals are added, and a large number of bubbles 12 are formed in the foam matrix 11 in which the acicular single crystals 13 are scattered. Has been.
Foam materials are various organic and inorganic materials such as thermoplastic polymers, thermosetting polymers, aerogels, ceramics, and glass, and suitable foaming agents are added to these foam materials. Foaming agents include carbon dioxide, nitrogen, argon, water, air, inorganic foaming agents such as helium, aliphatic hydrocarbons such as methane, propane, and butane, organic foaming agents such as halogen or hydrocarbon, azodicarbonamide, etc. There is a foaming agent by action.

気泡12は、針状単結晶13を含む発泡体材料11で形成された薄い膜で囲まれた空間である。発泡剤や発泡条件あるいは重炭酸アトリウムなどからなる成核剤等を調整することにより気泡の大きさを制御することができる。
気泡の大きさを内部ガスの平均自由行程程度の径を持つように調整すると、ガス伝導熱Qgは、たとえばガス静止伝導熱の1/3以下になり断熱材10の熱伝導率を効果的に低下させる。
また、気泡はそれぞれ独立した空間として形成される場合と、互いに連続して気通するように形成される場合がある。連続気泡は雰囲気を排気することにより容易に真空状態にすることができる。気泡中の気体分子密度が低いほど熱伝導率が低下するので、連続気泡にして雰囲気を真空にすることが好ましい。
The bubble 12 is a space surrounded by a thin film formed of the foam material 11 including the needle-like single crystal 13. The size of the bubbles can be controlled by adjusting a foaming agent, foaming conditions, a nucleating agent composed of atrium bicarbonate or the like.
When the bubble size is adjusted to have a diameter that is about the mean free path of the internal gas, the gas conduction heat Qg becomes, for example, 1/3 or less of the gas static conduction heat, and the thermal conductivity of the heat insulating material 10 is effectively reduced. Reduce.
In addition, the bubbles may be formed as independent spaces, or may be formed so as to be continuous with each other. Open cells can be easily evacuated by evacuating the atmosphere. The lower the gas molecule density in the bubbles, the lower the thermal conductivity. Therefore, it is preferable to make the atmosphere vacuum by using open cells.

針状単結晶13は、極めて高い剛性を持った細長い形状の単結晶で、ウィスカーとも呼ばれる。比較的利用しやすいウィスカーとして、たとえばカーボンウィスカー、酸化亜鉛ウィスカー、炭化珪素ウィスカーなどがある。
断熱材10の伝熱量Qは、樹脂などで形成されるマトリックス内を伝導する固体伝導熱Qs、気泡中のガスにより伝導するガス伝導熱Qg、および断熱材を透過する赤外線による輻射伝熱Qrの和になる。すなわち、
Q=Qs+Qg+Qr
と表わすことができる。
The acicular single crystal 13 is an elongated single crystal having extremely high rigidity, and is also called a whisker. Examples of whiskers that are relatively easy to use include carbon whiskers, zinc oxide whiskers, and silicon carbide whiskers.
The heat transfer amount Q of the heat insulating material 10 is a solid conductive heat Qs conducted through a matrix formed of resin or the like, a gas conductive heat Qg conducted by a gas in a bubble, and a radiant heat transfer Qr by infrared rays transmitted through the heat insulating material. Become sum. That is,
Q = Qs + Qg + Qr
Can be expressed as

普通最も寄与率の高い固体伝導熱Qsは、発泡体材料と発泡体材料の断熱材に対する存在比によって決まり、断熱材10の見かけの密度が減少するに連れて、固体伝導熱Qsが減少するため見かけの熱伝導率も減少する。しかし、見かけ密度が非常に小さいところでは、気泡の存在比が大きくなりまた気泡の壁が極めて薄くなるため、赤外線が透過しやすくなって輻射伝熱Qrの寄与が大きくなり、見かけの熱伝導率が大きくなる。
そこで、低密度の断熱材10で見かけの熱伝導率を低減させるためには、輻射伝熱Qr、あるいはガス伝導熱Qgを低減させることが必要になる。
Normally, the solid conduction heat Qs having the highest contribution ratio is determined by the abundance ratio of the foam material and the foam material to the heat insulating material, and the solid conduction heat Qs decreases as the apparent density of the heat insulating material 10 decreases. Apparent thermal conductivity is also reduced. However, where the apparent density is very small, the abundance ratio of bubbles is increased and the wall of the bubbles is extremely thin, so that infrared rays are easily transmitted and the contribution of the radiant heat transfer Qr is increased, and the apparent thermal conductivity is increased. Becomes larger.
Therefore, in order to reduce the apparent thermal conductivity with the low-density heat insulating material 10, it is necessary to reduce the radiant heat transfer Qr or the gas conduction heat Qg.

本実施例の高性能断熱材は、見かけの密度が極めて小さく発泡体材料自体の熱伝導率が大きくなる断熱材に対して、輻射伝熱Qrを低減するため、発泡体材料11に針状単結晶13を添加して、マトリックス中に分散させたものである。
従来から、赤外線吸収能が大きくほぼ完全に赤外線を遮断するカーボンブラックなどを添加して輻射伝熱Qrを低減し熱伝導率を低下させた断熱材があるが、本実施例の高性能断熱材では、むしろ適度な散乱と吸収を行わせることによって、断熱材の熱伝導率をさらに効果的に低減することに成功したものである。
The high-performance heat insulating material of this example has a needle-like single-piece material for the foam material 11 in order to reduce the radiant heat transfer Qr with respect to the heat insulating material whose apparent density is extremely small and the thermal conductivity of the foam material itself is large. A crystal 13 is added and dispersed in a matrix.
Conventionally, there has been a heat insulating material which has a large infrared absorption capacity and carbon black or the like which blocks the infrared light almost completely to reduce the radiant heat transfer Qr and reduce the thermal conductivity. Then, rather, it has succeeded in further effectively reducing the thermal conductivity of the heat insulating material by causing appropriate scattering and absorption.

また、発泡体材料からなる気泡壁の薄膜に粒子が混入されると脆くなり断熱材が破損しやすくなるので、本実施例では、単なる粒状体ではなく、プラスチック強化材として有効なウィスカーを使用することによりむしろ強化するようにした。   Further, if particles are mixed into the bubble wall thin film made of the foam material, it becomes brittle and the heat insulating material is easily damaged. Therefore, in this embodiment, whisker effective as a plastic reinforcing material is used instead of a simple granular material. It was rather strengthened.

発泡質断熱材に種々の赤外線遮断物質を添加剤として添加したサンプルについて赤外線透過特性、反射特性、見かけの熱伝導率を測定して、赤外線遮断効果を確認した。
断熱材としてウレタンフォームを使い、サンプル材は、P液(ポリオール)とI液(イソシアネート液)の2液混合法により作製した。上記添加剤は、2液の混合時に添加し、発泡ガスとしてフロンHFC14bを使って発泡させた。サンプル材のかさ密度は約20kg/m3、気泡率は約98%であった。なお、気泡率は、
気泡率(%)=(1−(見かけ密度)/真密度)×100(%)
により求めた。
Infrared transmission properties, reflection properties, and apparent thermal conductivity were measured for samples in which various infrared blocking substances were added as additives to the foam insulation, and the infrared blocking effect was confirmed.
Urethane foam was used as the heat insulating material, and the sample material was prepared by a two-liquid mixing method of P liquid (polyol) and I liquid (isocyanate liquid). The additive was added during mixing of the two liquids and foamed using Freon HFC14b as the foaming gas. The bulk density of the sample material was about 20 kg / m 3 , and the bubble rate was about 98%. The bubble rate is
Bubble ratio (%) = (1− (apparent density) / true density) × 100 (%)
Determined by

図2は、測定対象の赤外線遮断物質のリストである。カーボンブラックは比較のため同じ測定をしたものである。なお、酸化鉄は粒状体であるが、熱伝導率を減少させる効果が大きいことを確認するために挙げたものである。構造的な強度を要求されない部位には粒状体でも使用できる。
比較対象のカーボンブラックは、径が0.04μmの粒子で赤外線吸収機能が強い。
酸化鉄粒体はカーボンブラックより粒度が大きいこともあり、赤外線の散乱効果が大きい。
カーボンウィスカーは、径が0.3〜0.6μm、長さが5〜15μmの針状の粒体で、補強材としての機能も有する。酸化亜鉛ウィスカーは、径が0.2〜0.3μm、長さが2〜50μmの針状の粒体で、補強機能を有する。
FIG. 2 is a list of infrared shielding substances to be measured. Carbon black is the same measurement for comparison. In addition, although iron oxide is a granular material, it is listed in order to confirm that the effect of reducing the thermal conductivity is large. A granular material can also be used in a site where structural strength is not required.
The carbon black to be compared is a particle having a diameter of 0.04 μm and has a strong infrared absorption function.
The iron oxide particles may have a particle size larger than that of carbon black and have a large infrared scattering effect.
The carbon whisker is a needle-like particle having a diameter of 0.3 to 0.6 μm and a length of 5 to 15 μm, and also has a function as a reinforcing material. The zinc oxide whisker is a needle-like granule having a diameter of 0.2 to 0.3 μm and a length of 2 to 50 μm, and has a reinforcing function.

各添加剤を添加した断熱材サンプルの赤外線透過率と赤外線反射率を図3と図4にそれぞれ示す。透過率と反射率は分光光度計で測定した。測定波長範囲は、300nmから2500nmの可視光から近赤外光の範囲とした。図は、横軸に波長、縦軸に透過率あるいは反射率をとって波長特性を表わしている。なお、比較のため、赤外線遮断物質を添加しない無添加サンプル材についても測定した結果を一緒に示しておいた。
サンプルは30mm×30mm×5mmのサイズで、各添加剤は発泡体材料に対していずれも5重量%添加して比較が容易にできるようにした。
The infrared transmittance and infrared reflectance of the heat insulating material sample to which each additive is added are shown in FIGS. 3 and 4, respectively. Transmittance and reflectance were measured with a spectrophotometer. The measurement wavelength range was from 300 nm to 2500 nm of visible light to near infrared light. In the figure, wavelength characteristics are shown with the horizontal axis representing wavelength and the vertical axis representing transmittance or reflectance. For comparison, the measurement results were also shown for an additive-free sample material to which no infrared blocking substance was added.
The sample had a size of 30 mm × 30 mm × 5 mm, and each additive was added in an amount of 5% by weight with respect to the foam material to facilitate comparison.

0.8μmから2.5μmの範囲の近赤外線領域における透過率をみると、無添加サンプル材(ブランク)が最も大きく、酸化亜鉛ウィスカーがそれにつぎ、かなり落ちて酸化鉄粉末とカーボンウィスカーがほぼ同じ程度で、カーボンブラックを添加したサンプルでは透過率がゼロになる。なお、長波長側で透過率が減少し添加剤による差も小さくなる傾向が観察される。
一方、同じ範囲における赤外線反射率を見ると、ブランクサンプルに対して酸化亜鉛ウィスカー添加のサンプルが高い反射率を示し、酸化鉄粉末とカーボンウィスカーがブランクサンプルに対してほぼ半分程度に低下し、カーボンブラックを添加したサンプルが最も小さい反射率を示す。
これらの測定結果から下の式を用いて吸収率を求めることができる。
吸収率=1−透過率−反射率
Looking at the transmittance in the near-infrared region in the range of 0.8 μm to 2.5 μm, the additive-free sample material (blank) is the largest, followed by zinc oxide whiskers, which drop considerably and the iron oxide powder and carbon whiskers are almost the same. On the other hand, the transmittance is zero in the sample added with carbon black. It is observed that the transmittance decreases on the long wavelength side and the difference due to the additive also decreases.
On the other hand, looking at the infrared reflectance in the same range, the sample with zinc oxide whisker added to the blank sample showed a high reflectance, and the iron oxide powder and the carbon whisker decreased to about half of the blank sample, and the carbon The sample added with black shows the smallest reflectance.
From these measurement results, the absorptance can be obtained using the following equation.
Absorptivity = 1-Transmittance-Reflectance

さらに、同じ製法による30mm×50mm×10mmのサンプルについて非定常熱線法を用いて見かけの熱伝導率を測定した。なお、測定は、ほぼ室温の測定環境下で行った。
これら光線の透過率、反射率、吸収率の測定結果を用いて、0.8〜2.5μmの近赤外線領域において平均値を算出し、図5に、これらの平均値と、測定した見かけの熱伝導率と、熱伝導率の低減率を示した。
Furthermore, the apparent thermal conductivity was measured for the 30 mm × 50 mm × 10 mm sample by the same manufacturing method using the unsteady hot wire method. Note that the measurement was performed in a measurement environment at about room temperature.
Using the measurement results of transmittance, reflectance, and absorptance of these light rays, an average value was calculated in the near infrared region of 0.8 to 2.5 μm, and FIG. 5 shows these average values and the measured apparent values. The thermal conductivity and the reduction rate of the thermal conductivity are shown.

図から分かるように、酸化鉄を添加した断熱材とカーボンウィスカーを添加した断熱材では赤外線の透過率、反射率、吸収率について類似し、いずれも吸収率が大きい。しかし、熱伝導率の低減に対する寄与は、酸化鉄の方が大きく、添加剤を含まない断熱材に対して22%も低減するのに対して、カーボンウィスカーは16%の低減に止まっている。
また、酸化亜鉛ウィスカー添加断熱材は赤外線の透過率も反射率も大きいところが無添加断熱材(ブランク)と似ているが、透過率が大きく低減し、熱伝導率は無添加断熱材に対して19%減少している。
なお、カーボンブラックを添加した断熱材は、赤外線はほぼ遮断するが、熱伝導率は9.4%減少するだけで、他の添加剤と比較すると寄与が小さいことが分かる。カーボンブラック自体が高い固体熱伝導率を有するためと考えられる。
As can be seen from the figure, the heat insulating material to which iron oxide is added and the heat insulating material to which carbon whiskers are added are similar in infrared transmittance, reflectance, and absorptance, and all have high absorptance. However, the contribution to the reduction in thermal conductivity is greater for iron oxide, which is 22% lower than for heat-insulating materials that do not contain additives, whereas carbon whiskers are only reduced by 16%.
In addition, the zinc oxide whisker-added heat insulating material is similar to the additive-free heat insulating material (blank) in that the infrared transmittance and reflectance are large, but the transmittance is greatly reduced, and the thermal conductivity is lower than that of the additive-free heat insulating material. It has decreased by 19%.
In addition, it can be seen that the heat insulating material to which carbon black is added substantially blocks infrared rays, but the thermal conductivity is only reduced by 9.4%, and the contribution is small compared to other additives. This is probably because carbon black itself has a high solid thermal conductivity.

これらの結果から、酸化鉄添加の断熱材は比較サンプルのうちで最も熱伝導率低減率が大きく、酸化亜鉛ウィスカー添加断熱材とカーボンウィスカー添加断熱材がこれに次いで大きい。カーボンブラック添加の断熱材は、無添加の断熱材より熱伝導率が10%近く減少するが、ウィスカー添加断熱材には及ばないことが分かる。
カーボンブラック添加断熱材では、低密度になると薄膜隔壁に粒状体が混入するため脆くなる畏れがあるが、ウィスカー添加の断熱材は、ウィスカーの補強効果が見込めるので、断熱材の見かけの密度を大幅に低下させても強度が維持できる。
一方、酸化鉄添加断熱材では熱伝導率低減効果は大きいが、添加物が粒状体なので、脆性が大きくなって断熱材が破損しやすい。したがって、酸化鉄添加断熱材は、強度を問題にしない部分に利用することにより大きな効果が期待できる。
From these results, the thermal conductivity reduction rate of the heat insulating material added with iron oxide is the largest among the comparative samples, followed by the heat insulating material added with zinc oxide whisker and the heat insulating material added with carbon whisker. It can be seen that the carbon black-added heat insulating material has a thermal conductivity nearly 10% lower than that of the non-added heat insulating material, but does not reach the whisker-added heat insulating material.
In the case of carbon black-added heat insulating material, when the density is low, granular materials may be mixed into the thin film partition walls, which may lead to brittleness, but the whisker-added heat insulating material can be expected to reinforce the whisker, greatly increasing the apparent density of the heat insulating material. The strength can be maintained even if it is lowered to a low level.
On the other hand, the iron oxide-added heat insulating material has a large effect of reducing the thermal conductivity, but since the additive is granular, the brittleness increases and the heat insulating material is easily damaged. Therefore, the iron oxide-added heat insulating material can be expected to have a great effect when used in a portion where the strength is not a problem.

次ぎに、ガス伝導熱の抑制方法について説明する。
気泡内の圧力が小さいほどガス伝熱は小さいので、気泡内圧力をできるだけ低くする。気泡内を低圧力にするためには、発泡を真空下で行う方法がある。また、連続気泡を形成して外部と連通させ、外部の雰囲気を真空にして気泡内を真空にする方法がある。
また、高性能断熱材の見かけ密度が同じであれば気泡が細かいほど熱伝導率が低下する。気泡中のガス対流を抑制し伝熱を抑えるからである。そこで、気泡の径はできるだけ小さくすることが好ましい。なお、同じ見かけ密度で気泡径を小さくすると気泡の仕切壁が薄く弱くなるが、ウィスカーを添加することにより補強することができる。
Next, a method for suppressing gas conduction heat will be described.
The smaller the pressure inside the bubble, the smaller the gas heat transfer, so the pressure inside the bubble is made as low as possible. In order to reduce the pressure inside the bubbles, there is a method in which foaming is performed under vacuum. In addition, there is a method in which continuous bubbles are formed and communicated with the outside, and the inside of the bubbles is evacuated by evacuating the outside atmosphere.
Moreover, if the apparent density of the high-performance heat insulating material is the same, the smaller the bubbles, the lower the thermal conductivity. This is because gas convection in the bubbles is suppressed and heat transfer is suppressed. Therefore, it is preferable to make the bubble diameter as small as possible. Note that when the bubble diameter is reduced with the same apparent density, the partition wall of the bubble becomes thin and weak, but it can be reinforced by adding whiskers.

本実施例の高性能断熱材は、発泡体材料を発泡させて赤外線が透過して熱伝導率が上昇する程度に低密度に形成された断熱材であるが、ウィスカーを添加することにより赤外線の透過を減少させ熱伝導率を減少させると共に構造的な強度を強化したものである。さらに、気泡の平均径を小さくすることにより熱伝導率の減少を図ることが好ましい。
本実施例の高性能断熱材は、住宅用、家電用など各種の用途に利用できるが、特に低温貯蔵容器の断熱材としてあるいはその構成部品として最適に利用することができる。
The high-performance heat insulating material of this example is a heat insulating material formed to a low density so that the foam material is foamed and infrared rays are transmitted and the thermal conductivity is increased. It reduces permeation, reduces thermal conductivity and enhances structural strength. Furthermore, it is preferable to reduce the thermal conductivity by reducing the average diameter of the bubbles.
The high-performance heat insulating material of the present embodiment can be used for various applications such as for homes and home appliances, but can be optimally used as a heat insulating material for a low temperature storage container or as a component thereof.

図6は本発明の高性能断熱構造を概念的に説明する断面図である。
本実施例の高性能断熱構造は、液化天然ガス貯蔵槽や液化石油ガス貯蔵槽など、極低温構造物の表面を被覆して保冷する断熱構造である。液化天然ガス貯蔵槽の表面温度は111Kと考えればよい。
本実施例の高性能断熱構造20は、保冷しようとする貯槽の容器壁21の表面にクライオポンプシステムのクライオ面22を配置し、その上から微細な連続気泡で形成された発泡体断熱材からなる低温断熱部材23を被覆し、さらにその上に気密シート24を被覆して密封し、さらに高性能断熱材で構成される高温断熱部材25を配置し、それらの表面に防水・防湿シート26を被覆して構成される。
FIG. 6 is a sectional view conceptually illustrating the high performance heat insulating structure of the present invention.
The high-performance heat insulation structure of this embodiment is a heat insulation structure that covers and cools the surface of a cryogenic structure such as a liquefied natural gas storage tank or a liquefied petroleum gas storage tank. The surface temperature of the liquefied natural gas storage tank may be considered as 111K.
The high-performance heat insulating structure 20 of the present embodiment includes a cryopump 22 of a cryopump system disposed on the surface of a container wall 21 of a storage tank to be kept cold, and a foam heat insulating material formed from fine open cells from above. A low-temperature heat insulating member 23, and an air-tight sheet 24 is further sealed on the low-temperature heat insulating member 23, and a high-temperature heat insulating member 25 composed of a high-performance heat insulating material is further disposed. Covered and configured.

アルミシート類を利用した防水・防湿シート26は、太陽光をよく反射し熱線が高温断熱部材25に直接入射することを防ぐ効果があるが、暖まった防水・防湿シート26から発生する赤外線は高温断熱部材25に照射する。
高温断熱部材25に使用する高性能断熱材は、発泡体材料に赤外線遮断物質を加えて、発泡体材料自体の発泡体における熱伝導率が最低になる密度より低い密度になるように発泡させたものである。実施例1に係る高性能断熱材を用いることができることは言うまでもない。
なお、本実施例の断熱構造は、十分対策を講ずることにより、断熱材の強度が多少低下しても利用できるので、赤外線遮断物質として、カーボンウィスカーや酸化亜鉛ウィスカー等の針状単結晶、炭素繊維等の細長い硬質繊維物体などの他に、熱伝導率低減に大きな効果がある酸化鉄粉末などを使用することができる。
The waterproof / moisture-proof sheet 26 using aluminum sheets has the effect of reflecting sunlight well and preventing the heat rays from directly entering the high-temperature heat insulating member 25, but the infrared rays generated from the warm waterproof / moisture-proof sheet 26 are hot. The heat insulating member 25 is irradiated.
The high-performance heat insulating material used for the high-temperature heat insulating member 25 is foamed so as to have a density lower than the density at which the thermal conductivity in the foam of the foam material itself is lowest by adding an infrared shielding substance to the foam material. Is. Needless to say, the high-performance heat insulating material according to the first embodiment can be used.
In addition, since the heat insulating structure of the present embodiment can be used even if the strength of the heat insulating material is somewhat reduced by taking sufficient measures, as the infrared shielding material, needle-like single crystals such as carbon whisker and zinc oxide whisker, carbon In addition to elongated hard fiber objects such as fibers, iron oxide powder and the like that have a great effect on reducing thermal conductivity can be used.

クライオポンプシステムは、クライオ面22に凝縮した気体分子を排除して低温断熱部材23を真空に維持する機能を有する。真空を維持するため、気密シート24は十分気密が保てるように精密に施工する。気密シートにはグラファイトシートなどが使用される。クライオポンプシステムは強力なので、比較的容易に低温断熱部材23内の圧力を100〜1000Paに維持することができる。
低温断熱部材23は、発泡体断熱材からなり、容器壁21と気密シート24の間に充填される。内部に形成される気泡はごく微細な連続気泡であって、雰囲気を真空にすれば連続気泡の内部も真空になって、熱伝導率が十分に低くなるようになっている。なお、絶対圧力が低いほどガス伝熱が小さくなり、断熱材の熱伝導率が低下する。
The cryopump system has a function of removing the gas molecules condensed on the cryosurface 22 and maintaining the low-temperature heat insulating member 23 in a vacuum. In order to maintain the vacuum, the airtight sheet 24 is precisely applied so that the airtight sheet 24 can be kept sufficiently airtight. A graphite sheet etc. are used for an airtight sheet. Since the cryopump system is powerful, the pressure in the low-temperature heat insulating member 23 can be maintained at 100 to 1000 Pa relatively easily.
The low-temperature heat insulating member 23 is made of a foam heat insulating material and is filled between the container wall 21 and the airtight sheet 24. The bubbles formed inside are very fine open cells. If the atmosphere is evacuated, the inside of the open cells is also evacuated, and the thermal conductivity is sufficiently low. In addition, the lower the absolute pressure, the smaller the gas heat transfer and the lower the thermal conductivity of the heat insulating material.

さらに、気泡の平均径を気泡ガスの平均自由行程水準にすると、気体同士の衝突が減るため見かけの熱伝導率が急減し、ガス静止熱伝導率と比較しても約1/3まで低減する。したがって、気泡径をガスの平均自由行程長さ以下にすることが好ましい。
なお、ガス分子の平均自由行程L(m)は、温度T(K)、圧力P(Pa)、分子平均直径σ(m)を用いて次式で求めることができる。
L=3.11×10-24T/(Pσ2
Further, when the average diameter of the bubbles is set to the average free path level of the bubble gas, the collision between the gases is reduced, so that the apparent thermal conductivity is drastically reduced and is reduced to about 1/3 compared with the gas static thermal conductivity. . Therefore, it is preferable to set the bubble diameter to be equal to or less than the mean free path length of the gas.
Note that the mean free path L (m) of gas molecules can be determined by the following equation using the temperature T (K), the pressure P (Pa), and the molecular mean diameter σ (m).
L = 3.11 × 10 −24 T / (Pσ 2 )

ガス分子の平均自由行程は、室温大気圧下では0.1μm程度であるが、絶対圧力に反比例するので低圧領域では大きくなって、10Paで1mm程度になる。したがって、実現可能な気泡内圧力と気泡径の組み合わせを選択することができる。
気密シート24は断熱構造の表面温度(300K)と液化天然ガス貯蔵槽の表面温度(111K)の中間に当る200Kになる辺りに設置される。したがって、低温断熱部材23は平均150Kの温度条件下で真空にして使用することになるので、形成される気泡の径と使用時の絶対圧力・絶対温度の組み合わせを適切に選択して、平均径と平均自由行程の関係を整合させることができる。
The mean free path of gas molecules is about 0.1 μm at room temperature and atmospheric pressure, but is inversely proportional to the absolute pressure, so it becomes large in the low pressure region and becomes about 1 mm at 10 Pa. Therefore, it is possible to select a combination of bubble internal pressure and bubble diameter that can be realized.
The airtight sheet 24 is installed in the vicinity of 200K, which is intermediate between the surface temperature of the heat insulating structure (300K) and the surface temperature of the liquefied natural gas storage tank (111K). Therefore, since the low-temperature heat insulating member 23 is used in a vacuum under a temperature condition of 150 K on average, the combination of the diameter of the formed bubbles and the absolute pressure / absolute temperature at the time of use is appropriately selected to determine the average diameter. And the mean free path relationship can be matched.

本実施例では、低温断熱部材23は150K、1000Paのあたりで使用されるので、空気中のガス分子の平均自由行程は、ほぼ7μmと評価される。さらに、100Paで運転する場合は、平均自由行程は70μm程度になる。
なお、低温断熱部材23の発泡体断熱材には外部の赤外線が直接照射することがなく、気密シート24の約200Kにおける再輻射を考えればよいので、赤外線遮断物質を添加する必要性は小さいが、真空下で使用するためマトリックスの補強を目的としてウィスカーや繊維性補強材を添加することは好ましい。
In this embodiment, since the low temperature heat insulating member 23 is used at around 150 K and 1000 Pa, the mean free path of gas molecules in the air is estimated to be approximately 7 μm. Furthermore, when operating at 100 Pa, the mean free path is about 70 μm.
Note that the foam heat insulating material of the low-temperature heat insulating member 23 is not directly irradiated with external infrared rays, and it is only necessary to consider re-radiation of the airtight sheet 24 at about 200K. For use under vacuum, it is preferable to add whiskers or fibrous reinforcing materials for the purpose of reinforcing the matrix.

高温断熱部材25に使用される高性能断熱材は、ごく低密度に形成されるので単位体積当たりの重量が小さいのに、赤外線遮断物質を添加したため断熱効率がよいので従来より薄いものを使用することができる。熱伝導率の改善率は約20%であるから、使用量も20%節約できる。
また、低温断熱部材23に使用される断熱材も従来機構と比較して熱伝導率が1/3程度になるので、材料として2/3が節約できることになる。
The high-performance heat insulating material used for the high-temperature heat insulating member 25 is formed at a very low density, so that the weight per unit volume is small, but since an infrared shielding material is added, the heat insulating efficiency is good, so that a thinner material is used than before. be able to. Since the improvement rate of thermal conductivity is about 20%, the amount of use can also be saved by 20%.
Moreover, since the heat conductivity of the heat insulating material used for the low temperature heat insulating member 23 is about 1/3 as compared with the conventional mechanism, 2/3 can be saved as a material.

本発明の高性能断熱材の1実施例を表わす概念的な構成図である。It is a notional block diagram showing one Example of the high performance heat insulating material of this invention. 本実施例に使用する赤外線遮断物質の比較表である。It is a comparison table | surface of the infrared shielding material used for a present Example. 本実施例の高性能断熱材に関する赤外線透過率の測定例を示すグラフである。It is a graph which shows the example of a measurement of the infrared rays transmittance | permeability regarding the high performance heat insulating material of a present Example. 本実施例の高性能断熱材に関する赤外線反射率の測定例を示すグラフである。It is a graph which shows the example of a measurement of the infrared reflectance regarding the high performance heat insulating material of a present Example. 本実施例の高性能断熱材の性能を説明する表である。It is a table | surface explaining the performance of the high performance heat insulating material of a present Example. 本発明に係る高性能断熱構造の1実施例を概念的に説明する断面図である。It is sectional drawing which illustrates one Example of the high performance heat insulation structure which concerns on this invention notionally. 硬質ウレタンフォームの密度と熱伝導率の関係を示す図である。It is a figure which shows the relationship between the density of rigid urethane foam, and thermal conductivity.

符号の説明Explanation of symbols

10 高性能断熱材
11 発泡体マトリックス
12 気泡
13 針状単結晶
20 高性能断熱構造
21 容器壁
22 クライオポンプシステム
23 低温断熱部材
24 気密シート
25 高温断熱部材
26 防水・防湿シート
DESCRIPTION OF SYMBOLS 10 High-performance heat insulating material 11 Foam matrix 12 Bubble 13 Needle-like single crystal 20 High-performance heat insulating structure 21 Container wall 22 Cryopump system 23 Low temperature heat insulating member 24 Airtight sheet 25 High temperature heat insulating member 26 Waterproof / moisture-proof sheet

Claims (8)

発泡体材料に針状単結晶を加えて発泡させ、発泡体材料自体の発泡体における熱伝導率が最低になる密度より低い密度になるようにしたことを特徴とする高性能断熱材。 A high-performance heat insulating material characterized by adding a needle-like single crystal to a foam material and foaming the foam material so that the density of the foam material itself is lower than the density at which the thermal conductivity in the foam is minimized. 前記針状単結晶は、径0.3〜0.6μm、長さ5〜15μmのカーボンウィスカーまたは径0.2〜0.3μm、長さ2〜50μmの酸化亜鉛ウィスカーであることを特徴とする請求項1記載の高性能断熱材。 The needle-like single crystal is a carbon whisker having a diameter of 0.3 to 0.6 μm and a length of 5 to 15 μm, or a zinc oxide whisker having a diameter of 0.2 to 0.3 μm and a length of 2 to 50 μm. The high performance heat insulating material according to claim 1. 前記針状単結晶は、発泡体材料に対して重量割合で1〜5%添加することを特徴とする請求項1または2記載の高性能断熱材。 The high-performance heat insulating material according to claim 1 or 2, wherein the acicular single crystal is added in an amount of 1 to 5% by weight with respect to the foam material. 前記発泡体材料は硬質ウレタン発泡体であって、発泡により見かけ密度が10〜30kg/m3になるようにしたことを特徴とする請求項1から3のいずれかに記載の高性能断熱材。 The foam material is a rigid polyurethane foam, high-performance thermal insulation material according to any one of claims 1 to 3, characterized in that the apparent density by bubbling was set to 10 to 30 kg / m 3. 保冷する容器の壁表面にクライオポンプシステムのクライオ面を配置し、該壁表面の上から微細な連続気泡を形成した発泡体断熱材からなる低温断熱部材を被覆し、該低温断熱部材の上に気密シートを被覆し、該気密シートの上から発泡体材料に赤外線遮断物質を加えて発泡させ発泡体材料自体の発泡体における熱伝導率が最低になる密度より低い密度になるようにした高性能断熱材で構成される高温断熱部材を被覆し、該高温断熱部材の表面に防水・防湿シートを被覆したことを特徴とする高性能断熱構造。 The cryosurface of the cryopump system is placed on the wall surface of the container to be kept cold, and a low temperature heat insulating member made of a foam heat insulating material in which fine open cells are formed is coated on the wall surface, and the low temperature heat insulating member is covered on the low temperature heat insulating member. High performance that covers an air-tight sheet and foams the foam material by adding an infrared shielding material from above the air-tight sheet so that the density of the foam material itself is lower than the density at which the thermal conductivity of the foam is lowest. A high-performance heat insulating structure characterized in that a high-temperature heat insulating member made of a heat insulating material is coated, and a waterproof / moisture-proof sheet is coated on the surface of the high-temperature heat insulating member. 前記赤外線遮断物質は、酸化鉄粒体、径0.3〜0.6μm長さ5〜15μmのカーボンウィスカー、または径0.2〜0.3μm長さ2〜50μmの酸化亜鉛ウィスカーであることを特徴とする請求項1記載の高性能断熱構造。 The infrared blocking material is an iron oxide granule, a carbon whisker having a diameter of 0.3 to 0.6 μm and a length of 5 to 15 μm, or a zinc oxide whisker having a diameter of 0.2 to 0.3 μm and a length of 2 to 50 μm. The high-performance heat insulating structure according to claim 1. 前記高温断熱部材の発泡体材料は硬質ウレタン発泡体であって、発泡により見かけ密度が10〜30kg/m3になるようにしたことを特徴とする請求項5または6記載の高性能断熱材。 The high-performance heat insulating material according to claim 5 or 6, wherein the foam material of the high-temperature heat insulating member is a hard urethane foam, and an apparent density is 10 to 30 kg / m 3 by foaming. 前記低温断熱部材の連続気泡は平均径が1〜70μmであることを特徴とする請求項5から7のいずれかに記載の高性能断熱構造。
The high-performance heat insulating structure according to any one of claims 5 to 7, wherein the open-cells of the low-temperature heat insulating member have an average diameter of 1 to 70 µm.
JP2005359375A 2005-12-13 2005-12-13 High performance insulation structure Expired - Fee Related JP4895597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359375A JP4895597B2 (en) 2005-12-13 2005-12-13 High performance insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359375A JP4895597B2 (en) 2005-12-13 2005-12-13 High performance insulation structure

Publications (2)

Publication Number Publication Date
JP2007161861A true JP2007161861A (en) 2007-06-28
JP4895597B2 JP4895597B2 (en) 2012-03-14

Family

ID=38245134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359375A Expired - Fee Related JP4895597B2 (en) 2005-12-13 2005-12-13 High performance insulation structure

Country Status (1)

Country Link
JP (1) JP4895597B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508353A (en) * 2008-11-12 2012-04-05 アールダブルイー パワー アクチエンゲゼルシャフト Insulation cartridge
JP2013226713A (en) * 2012-04-26 2013-11-07 Nitto Denko Corp Film for suppressing radiation heat transfer and adhesive sheet for suppressing radiation heat transfer
CN103836306A (en) * 2014-03-21 2014-06-04 茌平县恒康保温材料有限公司 Glass fiber ultra-low temperature thermal insulation material production technology
JP2016211637A (en) * 2015-05-07 2016-12-15 日立アプライアンス株式会社 Vacuum heat insulating material and manufacturing method for vacuum heat insulating material
JP2021501113A (en) * 2017-11-21 2021-01-14 エルジー・ケム・リミテッド Manufacturing method of high heat insulation and high strength silica airgel blanket

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286443A (en) * 1987-05-19 1988-11-24 Asahi Chem Ind Co Ltd Foam containing carbon whisker
JPH10141596A (en) * 1996-11-05 1998-05-29 Ishikawajima Harima Heavy Ind Co Ltd Low temperature liquefied gas storage tank

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286443A (en) * 1987-05-19 1988-11-24 Asahi Chem Ind Co Ltd Foam containing carbon whisker
JPH10141596A (en) * 1996-11-05 1998-05-29 Ishikawajima Harima Heavy Ind Co Ltd Low temperature liquefied gas storage tank

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508353A (en) * 2008-11-12 2012-04-05 アールダブルイー パワー アクチエンゲゼルシャフト Insulation cartridge
JP2013226713A (en) * 2012-04-26 2013-11-07 Nitto Denko Corp Film for suppressing radiation heat transfer and adhesive sheet for suppressing radiation heat transfer
CN103836306A (en) * 2014-03-21 2014-06-04 茌平县恒康保温材料有限公司 Glass fiber ultra-low temperature thermal insulation material production technology
JP2016211637A (en) * 2015-05-07 2016-12-15 日立アプライアンス株式会社 Vacuum heat insulating material and manufacturing method for vacuum heat insulating material
JP2021501113A (en) * 2017-11-21 2021-01-14 エルジー・ケム・リミテッド Manufacturing method of high heat insulation and high strength silica airgel blanket
JP7105881B2 (en) 2017-11-21 2022-07-25 エルジー・ケム・リミテッド Manufacturing method of high thermal insulation and high strength silica airgel blanket
US11485892B2 (en) 2017-11-21 2022-11-01 Lg Chem, Ltd. Method for producing silica aerogel blanket having high thermal insulation and high strength

Also Published As

Publication number Publication date
JP4895597B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
US7781492B2 (en) Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage
US5386706A (en) Low heat-leak, coherent-aerogel, cryogenic system
JP4895597B2 (en) High performance insulation structure
US6221456B1 (en) Thermal insulation
RU2293906C2 (en) Method of producing aerogel-containing insulating article
US4594279A (en) Heat insulator
Caps et al. Thermal conductivity of opacified powder filler materials for vacuum insulations
EP3052851B1 (en) Micro-domain carbon material for thermal insulation
US10603865B2 (en) Insulating member and its attaching method
Li et al. Silica aerogels: from materials research to industrial applications
JP6602488B2 (en) Radiant cooling device
US20070289974A1 (en) Cryogenic insulation systems with nanoporous components
WO2002044032A2 (en) Insulated barriers and methods for producing same
Verma et al. Vacuum insulation in cold chain equipment: A review
CN106170378A (en) The pressure DIFFUSION TREATMENT method of the thermal insulation barriers that foaming synthetic foam is made
Samarov et al. Structural modification of synthetic opals during thermal treatment
Tao et al. Development of vacuum insulation panel systems
JP2018203565A (en) Adiabatic material and vacuum heat insulation material
Ramakrishnan et al. Modern aerogels
Pang et al. Effective Thermal Conductivity Model of Micron Hollow Sphere or Phase Change Material/Opacifier-SiO2 Aerogel Composites
Konuk et al. Inorganic Aerogels and Their Composites for Thermal Insulation in White Goods
Caps¹ et al. Development of vacuum super insulations with glass cover and powder filling
Kim et al. Exploring the ultralow effective thermal conductivity of hollow glass microsphere at various pressures and temperatures
JPH0685278U (en) Insulation box incorporating window material
EP1707867A1 (en) Reduced boiloff cryogen storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees