JP2007160077A - Radiographic equipment - Google Patents

Radiographic equipment Download PDF

Info

Publication number
JP2007160077A
JP2007160077A JP2006215983A JP2006215983A JP2007160077A JP 2007160077 A JP2007160077 A JP 2007160077A JP 2006215983 A JP2006215983 A JP 2006215983A JP 2006215983 A JP2006215983 A JP 2006215983A JP 2007160077 A JP2007160077 A JP 2007160077A
Authority
JP
Japan
Prior art keywords
radiation
energy
image
ray
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006215983A
Other languages
Japanese (ja)
Other versions
JP4756366B2 (en
Inventor
Koichi Shibata
幸一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006215983A priority Critical patent/JP4756366B2/en
Publication of JP2007160077A publication Critical patent/JP2007160077A/en
Application granted granted Critical
Publication of JP4756366B2 publication Critical patent/JP4756366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quickly acquire a long subtraction image in dual-energy type radiographic equipment using slot-shaped X-ray beam. <P>SOLUTION: This radiographic equipment is so formed that an X-ray beam irradiation section 1 for irradiating the slot-shaped X-ray beam and an FPD (Flat Panel type X-ray Detector) 2 for detecting a transmission X-ray image of a subject M are continuously moved along the longitudinal direction MX of the subject M by a continuous movement section 3, so that the X-ray beam irradiation section 1 and the FPD 2 can be quickly moved compared with a case where the X-ray beam irradiation section 1 and the FPD 2 are intermittently moved, so as to quickly irradiate the X-rays to the subject and detect the X-rays transmitting through the subject. Moreover, the X-ray detection signals necessary for acquiring a long high-energy X-ray image and a long low-energy X-ray image are all outputted from the FPD 2 in real time so as to quickly acquire the long high-energy X-ray image and the long low-energy X-ray image. Consequently, this equipment can quickly acquire the long subtraction image. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、撮影対象の被検体へ照射する放射線ビームとしてスロット状(短冊状)放射線ビームを用いるのに加え、スロット状放射線ビームの放射線エネルギーが高い時の高エネルギー放射線画像とスロット状放射線ビームの放射線エネルギーが低い時の低エネルギー放射線画像を取得してから、高エネルギー放射線画像と低エネルギー放射線画像を画像サブトラクション処理してサブトラクション画像を取得するスロット状放射線ビームを用いたデュアルエネルギー方式の放射線撮像装置に係り、特に長尺状のサブトラクション画像を取得するための技術に関する。   In addition to using a slot-shaped (strip-shaped) radiation beam as a radiation beam to be irradiated onto a subject to be imaged, the present invention provides a high-energy radiation image when the radiation energy of the slot-shaped radiation beam is high and the slot-shaped radiation beam A dual-energy radiation imaging device using a slot-shaped radiation beam that acquires a low-energy radiation image when the radiation energy is low, and then acquires a subtraction image by processing the high-energy radiation image and the low-energy radiation image. In particular, the present invention relates to a technique for acquiring a long subtraction image.

近年、病院などで診断に用いられているデュアルエネルギー方式のX線撮像装置は、撮影対象の被検体(患者)にX線ビームを照射するX線管と、被検体の透過X線像を検出する2次元X線検出器を備え、X線ビームの照射に伴って2次元X線検出器から出力されるX線検出信号にしたがって高エネルギーX線画像が取得されるのに加え、X線管からX線エネルギーの高いX線ビームとX線エネルギーの低いX線ビームとを切り替え照射する構成を備えているのに加え、X線エネルギーの高いX線ビームを照射した時には高エネルギーX線画像が取得され、X線エネルギーの低いX線ビームを照射した時には低エネルギーX線画像が取得される構成を備えている。   2. Description of the Related Art In recent years, dual energy X-ray imaging apparatuses used for diagnosis in hospitals and the like detect an X-ray tube that irradiates a subject (patient) to be imaged with an X-ray beam and a transmitted X-ray image of the subject. In addition to acquiring a high-energy X-ray image according to an X-ray detection signal output from the two-dimensional X-ray detector upon irradiation with an X-ray beam, an X-ray tube In addition to having a configuration for switching between X-ray beams with high X-ray energy and X-ray beams with low X-ray energy, a high-energy X-ray image is displayed when an X-ray beam with high X-ray energy is irradiated. It has a configuration in which a low-energy X-ray image is acquired when an X-ray beam with low X-ray energy is acquired.

高エネルギーX線画像の場合、例えば肺臓組織などの軟部組織は余り写らないで肋骨などの骨部組織が目立つ画像となる。エネルギーの高いX線は軟部組織で余り吸収されずに透過しがちなので、軟部組織ははっきり写らず目立たない。
低エネルギーX線画像の場合、例えば軟部組織と骨部組織の両方が写っている骨部組織と軟部組織の混在画像となる。エネルギーの低いX線は骨部組織は勿論、軟部組織でも吸収されるので、骨部組織と軟部組織の両方が写る。
In the case of a high-energy X-ray image, for example, soft tissue such as lung tissue is not shown so much and bone tissue such as ribs is conspicuous. X-rays with high energy tend to pass through the soft tissue without being absorbed so much, so the soft tissue is not clearly visible and is not noticeable.
In the case of a low-energy X-ray image, for example, a mixed image of bone tissue and soft tissue in which both soft tissue and bone tissue are shown. Since low energy X-rays are absorbed not only by bone tissue but also by soft tissue, both bone tissue and soft tissue are reflected.

加えて、従来のデュアルエネルギー方式のX線撮像装置の場合、高エネルギーX線画像と低エネルギーX線画像を画像サブトラクション処理してサブトラクション画像を取得する構成とされている装置がある。高エネルギーX線画像と低エネルギーX線画像を画像サブトラクション処理することで、実質的に骨部組織のみが写っている画像をサブトラクション画像として取得したり、実質的に軟部組織のみが写っている画像をサブトラクション画像として取得したりできる。   In addition, in the case of a conventional dual energy X-ray imaging apparatus, there is an apparatus configured to acquire a subtraction image by performing image subtraction processing on a high energy X-ray image and a low energy X-ray image. Image subtraction processing of high-energy X-ray images and low-energy X-ray images to acquire an image showing only bone tissue as a subtraction image, or an image showing only soft tissue Can be acquired as a subtraction image.

これに加え、X線ビームとしてスロット状X線ビームを用いると共に2次元X線検出器として蓄積性蛍光体シートを用いるデュアルエネルギー方式のX線撮像装置が提案されている。スロット状X線ビームを用いる場合、透過X線像の歪みや散乱線の入射を抑えられる利点がある(例えば、特許文献1を参照。)   In addition to this, a dual energy type X-ray imaging apparatus is proposed that uses a slot-shaped X-ray beam as an X-ray beam and uses a storage phosphor sheet as a two-dimensional X-ray detector. When a slot-shaped X-ray beam is used, there is an advantage that distortion of a transmitted X-ray image and incidence of scattered rays can be suppressed (see, for example, Patent Document 1).

特開平2−275582号公報(5頁〜6頁,図1〜図3)JP-A-2-275582 (pages 5 to 6, FIGS. 1 to 3)

しかしながら、上記従来のスロット状X線ビームを用いたデュアルエネルギー方式のX線撮像装置には、被検体の長手方向(被検体の体軸方向)の向きに長い範囲にわたって撮影する長尺状のサブトラクション画像を速やかに取得することが困難であるという問題がある。
従来の装置の場合、蓄積性蛍光体シートを別の画像読取装置にかけてX線検出信号を読み取る必要があり、高エネルギーX線画像や低エネルギーX線画像の取得に必要なX線検出信号がリアルタイムで得られないので、サブトラクション画像の元になる高エネルギーX線画像や低エネルギーX線画像の取得に時間がかかる結果、サブトラクション画像を速やかに取得することが難しい。
However, the conventional dual energy X-ray imaging apparatus using the slot-shaped X-ray beam has a long subtraction for imaging over a long range in the longitudinal direction of the subject (the body axis direction of the subject). There is a problem that it is difficult to quickly acquire an image.
In the case of the conventional apparatus, it is necessary to read the X-ray detection signal by putting the stimulable phosphor sheet on another image reading apparatus, and the X-ray detection signal necessary for acquiring the high energy X-ray image and the low energy X-ray image is real time. Therefore, it takes time to acquire a high-energy X-ray image or a low-energy X-ray image that is a source of the subtraction image, and it is difficult to acquire the subtraction image quickly.

加えて、従来の装置は、X線管と2次元放射線検出器を被検体の長手方向に沿って間歇移動させる構成であるので、被検体へのX線の照射と被検体を透過したX線の検出が完了する迄の時間も長くなる結果、サブトラクション画像を取得するのに長時間を要する。重量物であるX線管と2次元放射線検出器である蓄積性蛍光体シートは速度制御が難しくて間歇移動させるには、X線管と2次元放射線検出器をゆっくり移動させる必要があり、これに伴って被検体へのX線の照射と被検体を透過したX線の検出が完了する迄の時間が長くなる。   In addition, since the conventional apparatus is configured to intermittently move the X-ray tube and the two-dimensional radiation detector along the longitudinal direction of the subject, X-ray irradiation to the subject and X-rays transmitted through the subject As a result, it takes a long time to acquire a subtraction image. The X-ray tube, which is a heavy object, and the stimulable phosphor sheet, which is a two-dimensional radiation detector, are difficult to control the speed, and it is necessary to move the X-ray tube and the two-dimensional radiation detector slowly in order to move them intermittently. As a result, the time until the X-ray irradiation to the subject and the detection of the X-ray transmitted through the subject are completed becomes longer.

特に被検体の長手方向の向きに長い範囲にわたって撮影して長尺状のサブトラクション画像を取得する場合には、X線管および2次元放射線検出器である蓄積性蛍光体シートの移動距離がより長くなり、蓄積性蛍光体シートに被検体の透過X線像を記録し終える迄の時間が更に延びることになる。
したがって、従来の装置の場合、長尺状のサブトラクション画像を速やかに取得することは、非常に困難である。
In particular, when a long subtraction image is acquired by photographing a long range in the longitudinal direction of the subject, the moving distance of the storage phosphor sheet that is an X-ray tube and a two-dimensional radiation detector is longer. Accordingly, the time until the transmission X-ray image of the subject is recorded on the stimulable phosphor sheet is further extended.
Therefore, in the case of a conventional apparatus, it is very difficult to quickly acquire a long subtraction image.

この発明は、このような事情に鑑みてなされたものであり、スロット状放射線ビームを用いたデュアルエネルギー方式において、被検体の長手方向の向きに長い範囲にわたって撮影する長尺状のサブトラクション画像を速やかに取得することができる放射線撮像装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and in a dual energy method using a slot-shaped radiation beam, a long subtraction image captured over a long range in the longitudinal direction of a subject is quickly obtained. It is an object of the present invention to provide a radiation imaging apparatus that can be obtained in a simple manner.

請求項1の発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明に係る放射線撮像装置は、(A)撮影対象の被検体へスロット状放射線ビームを照射する放射線ビーム照射手段と、(B)被検体へのスロット状放射線ビームの照射により生じる被検体の透過放射線像を検出して放射線検出信号を出力する2次元放射線検出手段と、(C)放射線ビーム照射手段および2次元放射線検出手段を被検体の長手方向に沿って相対的に移動させる移動手段と、(D)放射線ビーム照射手段により照射されるスロット状放射線ビームを放射線エネルギーの高い高エネルギー放射線ビームと放射線エネルギーの低い低エネルギー放射線ビームに交互に切り替える放射線エネルギー切替制御をおこなう放射線エネルギー切替制御手段と、(E)隣り合う高エネルギー放射線ビームの各照射域が被検体の長手方向に繋ぎ合わさって一つの長尺状の高エネルギー放射線ビーム照射域になると共に隣り合う低エネルギー放射線ビームの各照射域が被検体の長手方向に繋ぎ合わさって一つの長尺状の低エネルギー放射線ビーム照射域になるように、放射線ビーム照射手段にスロット状放射線ビームを照射させる照射タイミング制御をおこなう放射線照射タイミング制御手段、もしくは前記移動手段の移動速度を制御する移動速度制御手段と、(F)高エネルギー放射線ビームの照射に伴って2次元放射線検出手段から出力される放射線検出信号にしたがって長尺状の高エネルギー放射線ビーム照射域についての透過放射線像に相応する長尺状の高エネルギー放射線画像を取得する高エネルギー画像取得手段と、(G)低エネルギー放射線ビームの照射に伴って2次元放射線検出手段から出力される放射線検出信号にしたがって長尺状の低エネルギー放射線ビーム照射域についての透過放射線像に相応する長尺状の低エネルギー放射線画像を取得する低エネルギー画像取得手段と、(H)長尺状の高エネルギー放射線画像と長尺状の低エネルギー放射線画像とを画像サブトラクション処理して長尺状のサブトラクション画像を取得する画像サブトラクション手段とを備えていることを特徴とするものである。
In order to achieve such an object, the invention of claim 1 has the following configuration.
That is, the radiation imaging apparatus according to the first aspect of the invention includes (A) a radiation beam irradiation means for irradiating a subject to be imaged with a slot-shaped radiation beam, and (B) a slot-shaped radiation beam to the subject. A two-dimensional radiation detection means for detecting a transmitted radiation image of a subject generated by irradiation and outputting a radiation detection signal; and (C) a radiation beam irradiation means and a two-dimensional radiation detection means relative to each other along the longitudinal direction of the subject. And (D) radiation energy switching control for switching the slot-shaped radiation beam irradiated by the radiation beam irradiation means alternately to a high energy radiation beam having a high radiation energy and a low energy radiation beam having a low radiation energy. Radiation energy switching control means, and (E) each irradiation of a high energy radiation beam adjacent to each other Are connected in the longitudinal direction of the subject to form one long high-energy radiation beam irradiation region, and each irradiation region of the adjacent low-energy radiation beam is connected in the longitudinal direction of the subject to form one long shape. A radiation irradiation timing control means for performing irradiation timing control for irradiating the radiation beam irradiation means with a slot-like radiation beam, or a moving speed control means for controlling the moving speed of the moving means so as to be in a low energy radiation beam irradiation area , (F) a long height corresponding to the transmitted radiation image of the long high energy radiation beam irradiation area according to the radiation detection signal output from the two-dimensional radiation detection means upon irradiation with the high energy radiation beam. High energy image acquisition means for acquiring energy radiation images, and (G) low energy radiation A long low-energy radiation image corresponding to the transmitted radiation image in the long low-energy radiation beam irradiation area is acquired according to the radiation detection signal output from the two-dimensional radiation detection means with the irradiation of the beam. Low energy image acquisition means, and (H) image subtraction means for acquiring a long subtraction image by performing image subtraction processing on a long high energy radiation image and a long low energy radiation image. It is characterized by being.

[作用・効果]請求項1の発明の放射線撮像装置により長尺状のサブトラクション画像を取得する場合、先ず、撮影対象の被検体へスロット状放射線ビームを照射する放射線ビーム照射手段と、被検体へのスロット状放射線ビームの照射により生じる被検体の透過放射線像を検出して放射線検出信号を出力する2次元放射線検出手段とが、移動手段により被検体の長手方向に沿って相対的に移動させられる。
こうして被検体の長手方向に沿って移動してゆく放射線ビーム照射手段は、放射線ビーム照射手段により照射されるスロット状放射線ビームを放射線エネルギーの高い高エネルギー放射線ビームと放射線エネルギーの低い低エネルギー放射線ビームに交互に切り替える放射線エネルギー切替制御を放射線エネルギー切替制御手段から受けながら、同時に放射線照射タイミング制御手段から受ける照射タイミング制御、もしくは移動速度制御手段から受ける移動手段の移動速度制御にしたがって、隣り合う高エネルギー放射線ビームの各照射域が被検体の長手方向に繋ぎ合わさって一つの長尺状の高エネルギー放射線ビーム照射域になると共に隣り合う低エネルギー放射線ビームの各照射域が被検体の長手方向に繋ぎ合わさって一つの長尺状の低エネルギー放射線ビーム照射域になるようにスロット状放射線ビームを繰り返し被検体に照射させる。
[Operation / Effect] When a long subtraction image is acquired by the radiation imaging apparatus according to the first aspect of the invention, first, a radiation beam irradiating means for irradiating a subject to be imaged with a slot-like radiation beam, and the subject. The two-dimensional radiation detecting means for detecting the transmitted radiation image of the subject generated by the irradiation of the slot-like radiation beam and outputting the radiation detection signal is relatively moved along the longitudinal direction of the subject by the moving means. .
The radiation beam irradiation means moving along the longitudinal direction of the subject in this way converts the slot radiation beam irradiated by the radiation beam irradiation means into a high energy radiation beam having a high radiation energy and a low energy radiation beam having a low radiation energy. Adjacent high energy radiation according to the irradiation timing control received from the radiation irradiation timing control means or the moving speed control of the moving means received from the moving speed control means while receiving the radiation energy switching control alternately switching from the radiation energy switching control means Each irradiation area of the beam is connected to the longitudinal direction of the subject to form one long high energy radiation beam irradiation area, and each irradiation area of the adjacent low energy radiation beam is connected to the longitudinal direction of the subject. One long shape So that the energy radiation beam irradiated region repeatedly slotted radiation beam is irradiated to the subject.

そして、高エネルギー放射線ビームの照射に伴って2次元放射線検出手段から出力される放射線検出信号にしたがって高エネルギー画像取得手段が長尺状の高エネルギー放射線ビーム照射域についての透過放射線像に相応する長尺状の高エネルギー放射線画像を取得すると共に、低エネルギー放射線ビームの照射に伴って2次元放射線検出手段から出力される放射線検出信号にしたがって低エネルギー画像取得手段が長尺状の低エネルギー放射線ビーム照射域についての透過放射線像に相応する長尺状の低エネルギー放射線画像を取得する。
さらに、高エネルギー画像取得手段により得られた長尺状の高エネルギー放射線画像と低エネルギー画像取得手段により得られた長尺状の低エネルギー放射線画像とを画像サブトラクション手段が画像サブトラクション処理して長尺状のサブトラクション画像を取得する。
Then, according to the radiation detection signal output from the two-dimensional radiation detection means along with the irradiation of the high energy radiation beam, the high energy image acquisition means has a length corresponding to the transmission radiation image for the long high energy radiation beam irradiation area. A high-energy radiation image having a long shape is acquired, and the low-energy image acquisition unit emits a long low-energy radiation beam in accordance with a radiation detection signal output from the two-dimensional radiation detection unit when the low-energy radiation beam is irradiated. A long low-energy radiation image corresponding to the transmitted radiation image of the region is acquired.
Further, the image subtraction unit performs image subtraction processing on the long high-energy radiation image obtained by the high-energy image obtaining unit and the long low-energy radiation image obtained by the low-energy image obtaining unit. A subtraction image is acquired.

即ち、請求項1の発明の放射線撮像装置の場合、長尺状のサブトラクション画像の元となる長尺状の高エネルギー放射線画像と長尺状の低エネルギー放射線画像の取得に必要な放射線検出信号は全て2次元放射線検出手段から出力されるので、長尺状の高エネルギー放射線画像と長尺状の低エネルギー放射線画像を迅速に取得できる。
したがって、請求項1の発明の放射線撮像装置によれば、スロット状放射線ビームを用いたデュアルエネルギー方式の装置において、被検体の長手方向の向きに長い範囲にわたって撮影する長尺状のサブトラクション画像を速やかに取得することができる。
That is, in the case of the radiation imaging apparatus according to the first aspect of the present invention, the radiation detection signal necessary for obtaining the long high-energy radiation image and the long low-energy radiation image that are the basis of the long subtraction image is Since all are output from the two-dimensional radiation detection means, a long high-energy radiation image and a long low-energy radiation image can be quickly acquired.
Therefore, according to the radiation imaging apparatus of the first aspect of the present invention, in the dual energy type apparatus using the slot-shaped radiation beam, the long subtraction image to be imaged over a long range in the longitudinal direction of the subject is quickly obtained. Can be obtained.

また、請求項2の発明は、請求項1に記載の放射線撮像装置において、移動手段が放射線ビーム照射手段と2次元放射線検出手段を被検体の長手方向に沿って移動させると共に、被検体は停止したままであるものである。   According to a second aspect of the present invention, in the radiation imaging apparatus according to the first aspect, the moving means moves the radiation beam irradiating means and the two-dimensional radiation detecting means along the longitudinal direction of the subject, and the subject is stopped. It is what has been left.

[作用・効果]請求項2の発明の放射線撮像装置の場合、放射線ビーム照射手段と2次元放射線検出手段の方だけが被検体の長手方向に沿って移動し、被検体の方は停止したままであるので、撮影対象の被検体が撮影中に動いて被検体の位置がズレてしまうのを回避できる。   [Operation / Effect] In the radiation imaging apparatus of the invention of claim 2, only the radiation beam irradiation means and the two-dimensional radiation detection means move along the longitudinal direction of the subject, and the subject remains stopped. Therefore, it can be avoided that the subject to be imaged moves during imaging and the position of the subject is shifted.

また、請求項3の発明は、請求項1または2に記載の放射線撮像装置において、放射線照射タイミング制御手段もしくは移動速度制御手段は、隣り合う二つの高エネルギー放射線ビームの各照射域の隣接側端部が両高エネルギー放射線ビームの端が重なり合う重複照射領域となるように高エネルギー放射線ビームを照射させると共に、隣り合う二つの低エネルギー放射線ビームの各照射域の隣接側端部が両低エネルギー放射線ビームの端が重なり合う重複照射領域となるように低エネルギー放射線ビームを照射させるものである。   According to a third aspect of the present invention, in the radiation imaging apparatus according to the first or second aspect, the radiation irradiation timing control means or the movement speed control means is provided on the adjacent side end of each irradiation region of two adjacent high energy radiation beams. The high-energy radiation beam is irradiated so that the portion becomes an overlapped irradiation region where the ends of both high-energy radiation beams overlap, and the adjacent side ends of the irradiation regions of two adjacent low-energy radiation beams are both low-energy radiation beams Are irradiated with a low energy radiation beam so as to be an overlapped irradiation region where the edges of the two overlap.

[作用・効果]請求項3の発明の放射線撮像装置の場合、隣り合う二つの高エネルギー放射線ビームの各照射域、および、隣り合う二つの低エネルギー放射線ビームの各照射域は、隣接側端部が放射線ビームの端が重なり合う重複照射領域となるので、隣り合う二つの高エネルギー放射線ビームの両照射域の間にも、また隣り合う二つの低エネルギー放射線ビームの両照射域の間にも、放射線未照射の隙間が生じる恐れは全くない。   [Operation / Effect] In the case of the radiation imaging apparatus according to the invention of claim 3, each irradiation region of two adjacent high-energy radiation beams and each irradiation region of two adjacent low-energy radiation beams are adjacent end portions. Is an overlapped irradiation region where the ends of the radiation beam overlap, so that radiation can be applied between both irradiation regions of two adjacent high-energy radiation beams and between both irradiation regions of two adjacent low-energy radiation beams. There is no risk of unirradiated gaps.

また、請求項4の発明は、請求項3に記載の放射線撮像装置において、高エネルギー画像取得手段が、高エネルギー放射線ビームの端が重なり合う重複照射領域の放射線検出信号については、高エネルギー放射線ビームの端に近づくに従って減少する重み係数を一方の放射線検出信号に、同様の重み係数を他方の放射線検出信号に、それぞれ乗じてから加え合わせて長尺状の高エネルギー放射線画像の画素信号とすると共に、低エネルギー画像取得手段が、低エネルギー放射線ビームの端が重なり合う重複照射領域の放射線検出信号については、低エネルギー放射線ビームの端に近づくに従って減少する重み係数を一方の放射線検出信号に、同様の重み係数を他方の放射線検出信号に、それぞれ乗じてから加え合わせて長尺状の低エネルギー放射線画像の画素信号とするものである。   According to a fourth aspect of the present invention, there is provided the radiation imaging apparatus according to the third aspect, wherein the high energy image acquisition means is configured to detect the radiation detection signal of the overlapping irradiation region where the ends of the high energy radiation beam overlap with each other. A weighting factor that decreases as approaching the edge is multiplied by one radiation detection signal, and the same weighting factor is multiplied by the other radiation detection signal, and then added together to obtain a pixel signal of a long high-energy radiation image, For the radiation detection signal of the overlapping irradiation area where the low energy image acquisition means overlaps the end of the low energy radiation beam, the weighting factor that decreases as it approaches the end of the low energy radiation beam is changed to one radiation detection signal. Is added to the other radiation detection signal and then added together to add a long, low energy Ray is set as the pixel signal of the image.

[作用・効果]請求項4の発明の放射線撮像装置の場合、高エネルギー放射線ビームの端が重なり合う重複照射領域の放射線検出信号、および、低エネルギー放射線ビームの端が重なり合う重複照射領域の放射線検出信号については、いずれも、二つの放射線ビームの照射位置が同じ二つの放射線検出信号を、各放射線ビームの端に近づくに従って減少する重み係数をそれぞれ乗じてから加え合わせて長尺状の高エネルギー放射線画像または長尺状の低エネルギー放射線画像の画素信号とするので、高エネルギー放射線ビームまたは低エネルギー放射線ビームの端が重なり合う重複照射領域が、長尺状の高エネルギー放射線画像や長尺状の低エネルギー放射線画像の上で明瞭な継ぎ目として現れることを回避できる。   [Operation / Effect] In the radiation imaging apparatus according to the invention of claim 4, the radiation detection signal of the overlapping irradiation region where the ends of the high energy radiation beam overlap and the radiation detection signal of the overlapping irradiation region where the ends of the low energy radiation beam overlap. In both cases, two radiation detection signals with the same irradiation position of the two radiation beams are multiplied by weighting factors that decrease as they approach the end of each radiation beam, and then added together to add a long high-energy radiation image. Or because it is a pixel signal of a long low-energy radiation image, a high-energy radiation beam or an overlapped irradiation region where the ends of the low-energy radiation beam overlap is a long high-energy radiation image or a long low-energy radiation. Appearing as a clear seam on the image can be avoided.

また、請求項5の発明は、請求項1から4のいずれかに記載の放射線撮像装置において、高エネルギー画像取得手段により取得される長尺状の高エネルギー放射線画像と低エネルギー画像取得手段により取得される長尺状の低エネルギー放射線画像との間に被検体の長手方向に平行な向きの撮影位置のズレがあって、画像サブトラクション手段が、高エネルギー放射線画像と低エネルギー放射線画像との間の撮影位置のズレを解消する画像シフト処理を行なってから画像サブトラクション処理を行なうものである。   According to a fifth aspect of the present invention, in the radiation imaging apparatus according to any one of the first to fourth aspects, the elongated high-energy radiation image acquired by the high-energy image acquisition unit and the low-energy image acquisition unit are acquired. There is a deviation of the imaging position in the direction parallel to the longitudinal direction of the subject between the long low-energy radiographic image and the image subtraction means between the high-energy radiographic image and the low-energy radiographic image. The image subtraction process is performed after the image shift process for eliminating the deviation of the photographing position.

[作用・効果]請求項5の発明の放射線撮像装置の場合、長尺状の高エネルギー放射線画像と長尺状の低エネルギー放射線画像との間に存在する被検体の長手方向に平行な向きの撮影位置のズレは、画像サブトラクション手段による画像シフト処理により、画像サブトラクション処理の前に解消されるので、長尺状の高エネルギー放射線画像と長尺状の低エネルギー放射線画像との間の撮影位置のズレに起因する画像の乱れが、サブトラクション画像の上に出現することを回避できる。   [Operation / Effect] In the case of the radiation imaging apparatus according to the fifth aspect of the invention, the radiation imaging apparatus is oriented in a direction parallel to the longitudinal direction of the subject existing between the long high-energy radiation image and the long low-energy radiation image. The shift of the imaging position is eliminated before the image subtraction process by the image shift process by the image subtraction means, so that the imaging position between the long high-energy radiation image and the long low-energy radiation image is not changed. It is possible to avoid the image disturbance caused by the shift from appearing on the subtraction image.

この発明の放射線撮像装置の場合、長尺状のサブトラクション画像の元となる長尺状の高エネルギー放射線画像と長尺状の低エネルギー放射線画像の取得に必要な放射線検出信号は全て2次元放射線検出手段から出力されるので、長尺状の高エネルギー放射線画像と長尺状の低エネルギー放射線画像を迅速に取得できる。
よって、この発明の放射線撮像装置によれば、スロット状放射線ビームを用いたデュアルエネルギー方式において、被検体の長手方向の向きに長い範囲にわたって撮影する長尺状のサブトラクション画像を速やかに取得することができる。
In the case of the radiation imaging apparatus of the present invention, all the radiation detection signals necessary for obtaining the long high-energy radiation image and the long low-energy radiation image that are the basis of the long subtraction image are two-dimensional radiation detection. Since it is output from the means, a long high-energy radiation image and a long low-energy radiation image can be quickly acquired.
Therefore, according to the radiation imaging apparatus of the present invention, in the dual energy method using the slot-shaped radiation beam, it is possible to quickly acquire a long subtraction image that is imaged over a long range in the longitudinal direction of the subject. it can.

この発明の放射線撮像装置の実施例を説明する。図1は実施例に係るスロット状X線ビームを用いたデュアルエネルギー方式の(医用)X線撮像装置の全体構成を示すブロック図、図2は実施例の装置で用いるスロット状X線ビーム(短冊状X線ビーム)を示す斜視図、図3は実施例の装置の2次元X線検出器(2次元放射線検出手段)であるフラットパネル型X線検出器(以下、適宜「FPD」と略記)におけるX線検出素子の配列状況を示す模式図である。   An embodiment of the radiation imaging apparatus of the present invention will be described. FIG. 1 is a block diagram showing the overall configuration of a dual-energy (medical) X-ray imaging apparatus using a slot-shaped X-ray beam according to the embodiment. FIG. 2 is a slot-shaped X-ray beam (strip) used in the apparatus of the embodiment. FIG. 3 is a flat panel X-ray detector (hereinafter abbreviated as “FPD” where appropriate) as a two-dimensional X-ray detector (two-dimensional radiation detection means) of the apparatus of the embodiment. It is a schematic diagram which shows the arrangement | sequence state of the X-ray detection element in FIG.

実施例のX線撮像装置は、図1および図2に示すように、撮影対象の被検体Mへスロット状X線ビームSAをスロット状X線ビームSAの短手方向SXが被検体Mの長手方向MXと平行となる向きで照射するX線ビーム照射部1と、被検体Mへのスロット状X線ビームSAの照射により生じる被検体Mの透過X線像を検出してX線検出信号をリアルタイムで出力するFPD2と、被検体Mは停止のままでX線ビーム照射部1およびFPD2を被検体Mの長手方向MXに沿って連続移動させる連続移動部3とを備えている。   As shown in FIGS. 1 and 2, the X-ray imaging apparatus of the embodiment is configured such that the slot-like X-ray beam SA is applied to the subject M to be imaged, and the short-side direction SX of the slot-like X-ray beam SA is An X-ray beam irradiating unit 1 that irradiates in a direction parallel to the direction MX, and a transmission X-ray image of the subject M generated by the irradiation of the subject M with the slot-like X-ray beam SA and detecting an X-ray detection signal An FPD 2 that outputs in real time, and a continuous movement unit 3 that continuously moves the X-ray beam irradiation unit 1 and the FPD 2 along the longitudinal direction MX of the subject M while the subject M is stopped.

X線ビーム照射部1は、X線管4とX線ビームをスロット状に整形するコリメータ5とよりなり、スロット状X線ビームSAの短手方向SXは被検体Mの長手方向MXと平行となる向きであるので、スロット状X線ビームSAの長手方向SYは被検体Mの長手方向MXに対し直角となる向きになる。
FPD2は、図3に示すように、検出対象の透過X線像が投影されるX線検出面XaにX線を電気信号に変換して検出する多数のX線検出素子2Aが横・縦の2次元マトリックス状に配列されている。X線検出素子2Aの配列マトリックスとしては、例えば横:数千×縦:数千が挙げられる。X線検出素子2AはX線が直に電気信号に変換される直接変換タイプであるが、X線がいったん光に変換されてから更に電気信号に変換される間接変換タイプであってもよい。
The X-ray beam irradiation unit 1 includes an X-ray tube 4 and a collimator 5 that shapes the X-ray beam into a slot shape. The short-side direction SX of the slot-shaped X-ray beam SA is parallel to the longitudinal direction MX of the subject M. Therefore, the longitudinal direction SY of the slot-shaped X-ray beam SA is perpendicular to the longitudinal direction MX of the subject M.
As shown in FIG. 3, the FPD 2 includes a large number of X-ray detection elements 2 </ b> A that detect X-rays by converting them into electrical signals on an X-ray detection surface Xa on which a transmission X-ray image to be detected is projected. They are arranged in a two-dimensional matrix. As an array matrix of the X-ray detection element 2A, for example, horizontal: several thousand × vertical: several thousand can be mentioned. The X-ray detection element 2A is a direct conversion type in which X-rays are directly converted into electric signals, but may be an indirect conversion type in which X-rays are once converted into light and then converted into electric signals.

X線ビーム照射部1とFPD2からなる撮像系は被検体Mを載置する天板6を挟んで取り付けアーム7の一端側と他端側に取り付けられていると共に連続移動部3により取り付けアーム7がX線ビーム照射部1とFPD2ごと被検体Mの長手方向MXに沿って連続移動させられる構成とされている。
連続移動部3は、ラックおよびピニオン等の機械部品で構成され、取り付けアーム7を被検体Mの長手方向MXに沿って往復移動させる撮像系連続移動機構8と、X線ビーム照射部1とFPD2の始動や停止あるいは移動速度の制御を行なう撮像系連続移動制御部9とからなり、撮像系連続移動制御部9の制御にしたがって撮像系連続移動機構8がX線ビーム照射部1とFPD2を連続移動させる。
An imaging system including the X-ray beam irradiation unit 1 and the FPD 2 is attached to one end side and the other end side of the attachment arm 7 with the top plate 6 on which the subject M is placed, and is attached to the attachment arm 7 by the continuous moving unit 3. Is configured to be continuously moved along the longitudinal direction MX of the subject M together with the X-ray beam irradiation unit 1 and the FPD 2.
The continuous moving unit 3 includes mechanical parts such as a rack and a pinion, and includes an imaging system continuous moving mechanism 8 that reciprocates the mounting arm 7 along the longitudinal direction MX of the subject M, an X-ray beam irradiation unit 1, and an FPD 2. Imaging system continuous movement control unit 9 for starting and stopping or controlling the moving speed, and imaging system continuous movement mechanism 8 continuously connects X-ray beam irradiation unit 1 and FPD 2 in accordance with the control of imaging system continuous movement control unit 9. Move.

一方、X線ビーム照射部1はX線管4にX線用電源10からX線管駆動用電力が供給される毎にスロット状X線ビームSAを照射するのであるが、実施例の装置は、X線ビーム照射部1により照射されるスロット状X線ビームSAをエネルギーの高い高エネルギーX線ビームとX線エネルギーの低い低エネルギーX線ビームに交互に切り替えるX線エネルギー切替制御をおこなうX線エネルギー切替制御部11を備えている。具体的には、X線エネルギー切替制御部11がX線用電源10の高圧発生部10Aの高圧電圧を高エネルギーX線ビーム用の高めの電圧(例えば140kV)と低エネルギーX線ビーム用の低めの電圧(例えば60kV)に交互に切り替えることによりX線エネルギー切替制御をおこなう。   On the other hand, the X-ray beam irradiation unit 1 irradiates the X-ray tube 4 with the slot-shaped X-ray beam SA every time X-ray tube driving power is supplied from the X-ray power supply 10. X-ray energy switching control for alternately switching the slot-shaped X-ray beam SA irradiated by the X-ray beam irradiation unit 1 to a high-energy X-ray beam having high energy and a low-energy X-ray beam having low X-ray energy An energy switching control unit 11 is provided. Specifically, the X-ray energy switching control unit 11 sets the high voltage of the high voltage generator 10A of the X-ray power supply 10 to a higher voltage (for example, 140 kV) for the high energy X-ray beam and a lower voltage for the low energy X-ray beam. X-ray energy switching control is performed by alternately switching to a voltage (for example, 60 kV).

つまり、実施例の装置の場合、連続移動部3の作動によりX線ビーム照射部1とFPD2が被検体Mの長手方向MXに沿って連続移動しながら、X線エネルギー切替制御部11によるX線エネルギー切替制御によりX線ビーム照射部1は高エネルギーX線ビームと低エネルギーX線ビームを交互に繰り返し被検体Mへ照射すると共に、X線ビームが照射される毎にFPD2が透過X線像を検出してX線検出信号をリアルタイムで出力する。換言すれば、被検体Mには長手方向に沿って高エネルギーのスロット状X線ビームSAと低エネルギーのスロット状X線ビームSAがX線ビーム照射部1から交互に繰り返し照射されると共に、スロット状X線ビームSAが照射される毎にスロット状透過X線像がFPD2により逐一に検出されるのである。   In other words, in the case of the apparatus of the embodiment, the X-ray energy switching control unit 11 performs X-rays while the X-ray beam irradiation unit 1 and the FPD 2 are continuously moved along the longitudinal direction MX of the subject M by the operation of the continuous movement unit 3. By the energy switching control, the X-ray beam irradiation unit 1 alternately and repeatedly irradiates the subject M with the high energy X-ray beam and the low energy X-ray beam, and the FPD 2 generates a transmission X-ray image every time the X-ray beam is irradiated. It detects and outputs an X-ray detection signal in real time. In other words, the subject M is repeatedly irradiated with the high-energy slot-shaped X-ray beam SA and the low-energy slot-shaped X-ray beam SA from the X-ray beam irradiation unit 1 along the longitudinal direction. Each time the X-ray beam SA is irradiated, the slot-like transmitted X-ray image is detected by the FPD 2 one by one.

他方、実施例の装置は、被検体Mにおいて隣り合う高エネルギーX線ビームの照射域同士の間に隙間が空かないで高エネルギーX線ビームの各照射域が被検体Mの長手方向に繋ぎ合わさって一つの長尺状の高エネルギーX線ビーム照射域になると共に、被検体Mにおいて隣り合う低エネルギーX線ビームの照射域同士の間も隙間が空かないで低エネルギーX線ビームの各照射域が被検体Mの長手方向に繋ぎ合わさって一つの長尺状の低エネルギーX線ビーム照射域になるタイミングでX線ビーム照射部1にスロット状X線ビームSAを照射させる照射タイミング制御を行なうX線照射タイミング制御部12を備えている。   On the other hand, in the apparatus of the embodiment, each irradiation area of the high energy X-ray beam is connected in the longitudinal direction of the subject M without a gap between adjacent irradiation areas of the high energy X-ray beam in the object M. Each of the low-energy X-ray beams without any gaps between adjacent irradiation regions of the low-energy X-ray beam in the subject M. Are controlled in such a manner that the X-ray beam irradiation unit 1 is irradiated with the slot-like X-ray beam SA at the timing when the X-ray beam irradiation unit 1 is connected to the longitudinal direction of the subject M to become one long low-energy X-ray beam irradiation region. A line irradiation timing control unit 12 is provided.

つまり、スロット状X線ビームSAの照射が全て完了した段階では、X線照射タイミング制御部12による照射タイミング制御により、図4(a)に示すように、高エネルギーX線ビームの各照射域Haが隙間を空けずに被検体Mの長手方向に繋ぎ合わさって一つの長尺状の高エネルギーX線ビーム照射域HAとなり、図4(b)に示すように、低エネルギーX線ビームの各照射域Laが隙間を空けずに被検体Mの長手方向に繋ぎ合わさって一つの長尺状の低エネルギーX線ビーム照射域LAとなる。   That is, at the stage where the irradiation of the slot-shaped X-ray beam SA is completed, as shown in FIG. 4A, the irradiation areas Ha of the high-energy X-ray beam are controlled by the irradiation timing control by the X-ray irradiation timing control unit 12. Are connected in the longitudinal direction of the subject M without leaving a gap to form one long high-energy X-ray beam irradiation area HA. As shown in FIG. 4B, each irradiation with a low-energy X-ray beam is performed. The area La is joined in the longitudinal direction of the subject M without leaving a gap to form one long low energy X-ray beam irradiation area LA.

さらに、実施例の装置は、高エネルギーX線ビームの照射に伴ってFPD2から出力されるX線検出信号にしたがって長尺状の高エネルギーX線ビーム照射域HAについての透過X線像に相応する長尺状の高エネルギーX線画像を取得する高エネルギー画像取得部13と、低エネルギーX線ビームの照射に伴ってFPD2からから出力されるX線検出信号にしたがって長尺状の低エネルギーX線ビーム照射域LAについての透過X線像に相応する長尺状の低エネルギーX線画像を取得する低エネルギー画像取得部14とを備えている。   Furthermore, the apparatus according to the embodiment corresponds to a transmission X-ray image of the long high energy X-ray beam irradiation area HA according to the X-ray detection signal output from the FPD 2 when the high energy X-ray beam is irradiated. A high-energy image acquisition unit 13 that acquires a long high-energy X-ray image, and a long low-energy X-ray according to an X-ray detection signal output from the FPD 2 upon irradiation with a low-energy X-ray beam And a low energy image acquisition unit 14 that acquires a long low energy X-ray image corresponding to the transmitted X-ray image of the beam irradiation area LA.

具体的には、図5に示すように、例えば2mSEC程度の期間T1で高エネルギーX線ビームが照射された時は、続く期間T3でFPD2からリアルタイム出力されるX線検出信号がメモリセレクタ15から第1スロット状画像メモリ16を経由して高エネルギー画像取得部13へ送り込まれる。1回の高エネルギーX線ビームに伴って出力されるX線検出信号が、1枚のスロット状画像に対応する。高エネルギー画像取得部13は次々と送り込まれるスロット状画像を被検体Mの長手方向に沿って順番に繋ぎ合わせて、図6(a)に示すように、1枚の長尺状の高エネルギーX線画像Paを取得する。高エネルギーX線画像Paは、図6(a)に示すように、例えば肺や胃といった臓器組織などの軟部組織は余り写らないで肋骨などの骨部組織が目立つ画像となる。   Specifically, as shown in FIG. 5, for example, when a high energy X-ray beam is irradiated in a period T1 of about 2 mSEC, an X-ray detection signal output in real time from the FPD 2 is output from the memory selector 15 in the subsequent period T3. It is sent to the high energy image acquisition unit 13 via the first slot image memory 16. An X-ray detection signal output with one high-energy X-ray beam corresponds to one slot image. The high-energy image acquisition unit 13 sequentially joins the slot-like images sent one after another along the longitudinal direction of the subject M, and as shown in FIG. A line image Pa is acquired. As shown in FIG. 6A, the high-energy X-ray image Pa is an image in which bone tissue such as ribs is conspicuous without much soft tissue such as organ tissue such as lung and stomach being shown.

次に、図5に示すように、例えば10mSEC程度の期間T2で低エネルギーX線ビームが照射された時は、続く期間T4でFPD2からリアルタイム出力されるX線検出信号がメモリセレクタ15から第2スロット状画像メモリ17を経由して低エネルギー画像取得部14へ送り込まれる。1回の低エネルギーX線ビームに伴って出力されるX線検出信号が、やはり1枚のスロット状画像に対応する。低エネルギー画像取得部14は次々と送り込まれるスロット状画像を被検体Mの長手方向に沿って順番に繋ぎ合わせて、図6(b)に示すように、1枚の長尺状の低エネルギーX線画Pbを取得する。低エネルギーX線画像は、図6(b)に示すように、例えば軟部組織と骨部組織の両方が写っている骨部組織と軟部組織の混在画像となる。   Next, as shown in FIG. 5, for example, when a low energy X-ray beam is irradiated in a period T2 of about 10 mSEC, an X-ray detection signal output in real time from the FPD 2 is output from the memory selector 15 in the second period T4. It is sent to the low energy image acquisition unit 14 via the slot image memory 17. An X-ray detection signal output with one low energy X-ray beam also corresponds to one slot-like image. The low energy image acquisition unit 14 sequentially joins the slot-like images sent one after another along the longitudinal direction of the subject M, and as shown in FIG. The line drawing Pb is acquired. As shown in FIG. 6B, the low-energy X-ray image is, for example, a mixed image of bone tissue and soft tissue in which both soft tissue and bone tissue are shown.

加えて、実施例の装置は、長尺状の高エネルギーX線画像と長尺状の低エネルギーX線画像とを画像サブトラクション処理して長尺状のサブトラクション画像を取得する画像サブトラクション部18を備えている。画像サブトラクション部18は、高エネルギー画像取得部13で取得されて高エネルギー画像メモリ19経由で送り込まれる長尺状の高エネルギーX線画像Paと、低エネルギー画像取得部14で取得されて低エネルギー画像メモリ20経由で送り込まれる長尺状の低エネルギーX線画Pbとに適当な係数を掛けることで重み付けをしてから差し引きする演算を行なって長尺状のサブトラクション画像を取得する。   In addition, the apparatus according to the embodiment includes an image subtraction unit 18 that obtains a long subtraction image by performing image subtraction processing on a long high energy X-ray image and a long low energy X-ray image. ing. The image subtraction unit 18 is a long high-energy X-ray image Pa acquired by the high-energy image acquisition unit 13 and sent via the high-energy image memory 19, and the low-energy image acquired by the low-energy image acquisition unit 14. A long subtraction image is obtained by weighting the long low-energy X-ray image Pb sent via the memory 20 by an appropriate coefficient and then subtracting it.

即ち、画像サブトラクション部18はa×log(長尺状の高エネルギーX線画像Paの画素信号)−b×log(長尺状の低エネルギーX線画像Pbの画素信号)という画像を差し引く演算を画像サブトラクション処理で行なう。
したがって、上記の画像を差し引く演算の係数aと係数bを適当に調整することにより、例えば図7に示すように、実質的に肋骨と背骨等の骨部組織のみが写っている画像をサブトラクション画像PAとして取得することができる。勿論、係数aと係数bの調整で実質的に軟部組織のみが写っている画像をサブトラクション画像として取得することも可能である。
画像サブトラクション部18で取得された長尺状のサブトラクション画像はサブトラクション画像メモリ21に記憶されると共に必要に応じて表示モニタ22の画面に映し出される。
That is, the image subtraction unit 18 performs an operation of subtracting an image of a × log (pixel signal of a long high energy X-ray image Pa) −b × log (pixel signal of a long low energy X-ray image Pb). Performed by image subtraction processing.
Therefore, by appropriately adjusting the coefficient a and the coefficient b of the calculation for subtracting the above image, for example, as shown in FIG. 7, an image in which only bone tissue such as the ribs and the spine is reflected is subtracted. It can be acquired as PA. Of course, it is also possible to acquire an image in which only the soft tissue is substantially reflected by adjusting the coefficients a and b as a subtraction image.
The long subtraction image acquired by the image subtraction unit 18 is stored in the subtraction image memory 21 and displayed on the screen of the display monitor 22 as necessary.

さらに、表示モニタ22の画面にはX線撮影や装置の稼働に必要な操作を行なう為のメニューなども表示される。また、X線撮影や装置の稼働に必要な指令やデータを入力する時は、マウスやキーボード等の入力機器を用いた操作部23から指令やデータを入力する操作を行なう。
なお、主制御部24は、コンピュータ(CPU)と動作プログラムを中心に構成されていて、操作部23などによる各種の指令入力、あるいは、X線撮影の進行状況などに応じて適切な命令やデータを必要な部所へ適時に送出し、装置全体を常に適切に動作させる統括制御機能を果たす。
Further, a menu for performing operations necessary for X-ray imaging and operation of the apparatus is displayed on the screen of the display monitor 22. When inputting commands and data necessary for X-ray imaging and operation of the apparatus, an operation for inputting commands and data is performed from the operation unit 23 using an input device such as a mouse or a keyboard.
The main control unit 24 is mainly composed of a computer (CPU) and an operation program, and appropriate commands and data are input according to various command inputs from the operation unit 23 or the like, or the progress of X-ray imaging. Is sent to the necessary parts in a timely manner, and the overall control function is performed so that the entire device is always properly operated.

また、実施例の装置の場合、スロット状X線ビームSAの幅(短手方向SXの寸法)WやX線ビーム照射部1とFPD2の移動速度などは操作部23等の入力操作で設定できる構成とされている。
スロット状X線ビームSAの幅Wは、通常、数センチ、例えば1cm〜5cm程度の範囲に設定される。X線ビーム照射部1とFPD2の移動速度は、余り速いと画像がぼけるので、例えば数センチ/秒(具体的には1cm/秒〜5cm/秒)程度の移動速度に設定される。
In the case of the apparatus of the embodiment, the width (the dimension in the short direction SX) W of the slot-shaped X-ray beam SA, the moving speed of the X-ray beam irradiation unit 1 and the FPD 2 can be set by an input operation of the operation unit 23 or the like. It is configured.
The width W of the slot-shaped X-ray beam SA is usually set to a range of several centimeters, for example, about 1 cm to 5 cm. The moving speed of the X-ray beam irradiation unit 1 and the FPD 2 is set to a moving speed of, for example, about several centimeters / second (specifically, 1 cm / second to 5 cm / second) because an image is blurred if it is too fast.

したがって、スロット状X線ビームSAの幅Wが4cmであって、X線ビーム照射部1とFPD2の移動速度が4cm/秒であり、取得しようとする長尺状のサブトラクション画像の長さが80cm程の場合、X線ビーム照射部1とFPD2のトータル移動時間は25秒であり、スロット状X線ビームSAは、高エネルギーX線ビームと低エネルギーX線ビームそれぞれ約20回ずつの合計40回の照射回数となり、長尺状のサブトラクション画像の長さが1m程である場合、X線ビーム照射部1とFPD2のトータル移動時間は25秒であり、スロット状X線ビームSAは、高エネルギーX線ビームと低エネルギーX線ビームそれぞれ約25回ずつの合計50回の照射回数となる。   Therefore, the width W of the slot-shaped X-ray beam SA is 4 cm, the moving speed of the X-ray beam irradiation unit 1 and the FPD 2 is 4 cm / second, and the length of the long subtraction image to be acquired is 80 cm. In this case, the total movement time of the X-ray beam irradiation unit 1 and the FPD 2 is 25 seconds, and the slot-shaped X-ray beam SA is about 20 times each of the high-energy X-ray beam and the low-energy X-ray beam about 40 times. When the length of the long subtraction image is about 1 m, the total movement time of the X-ray beam irradiation unit 1 and the FPD 2 is 25 seconds, and the slot-like X-ray beam SA is high energy X The total number of irradiations is 50, that is, approximately 25 times for each of the beam and the low energy X-ray beam.

一方、実施例の装置の場合、X線照射タイミング制御部12は、スロット状X線ビームSAの幅WとX線ビーム照射部1とFPD2の移動速度に応じて、図8に示すように、高エネルギーX線ビームの照射域Haと低エネルギーX線ビームの照射域Laを、被検体Mの長手方向MXについての高エネルギーX線ビームの照射域Haと低エネルギーX線ビームの照射域Laとの寸法差ΔLが各照射域の幅Wの半分(W/2)となるタイミングで照射させる。
加えて、X線照射タイミング制御部12は、図9に示すように、隣り合う二つの高エネルギーX線ビームの各照射域Haの隣接側端部が両高エネルギーX線ビームの端が重なり合う重複照射領域Qaとなるタイミングで高エネルギーX線ビームを照射させると共に、隣り合う二つの低エネルギーX線ビームの各照射域Laの隣接側端部も両低エネルギーX線ビームの端が重なり合う重複照射領域Qbとなるタイミングで低エネルギーX線ビームを照射させる。
On the other hand, in the case of the apparatus according to the embodiment, the X-ray irradiation timing control unit 12 is configured according to the width W of the slot-shaped X-ray beam SA and the moving speed of the X-ray beam irradiation unit 1 and the FPD 2 as shown in FIG. The irradiation area Ha of the high energy X-ray beam and the irradiation area La of the low energy X-ray beam are divided into the irradiation area Ha of the high energy X-ray beam and the irradiation area La of the low energy X-ray beam in the longitudinal direction MX of the subject M. Is irradiated at a timing at which the dimensional difference ΔL becomes half (W / 2) of the width W of each irradiation area.
In addition, as shown in FIG. 9, the X-ray irradiation timing control unit 12 overlaps the adjacent side ends of the irradiation areas Ha of two adjacent high-energy X-ray beams so that the ends of both high-energy X-ray beams overlap. Overlapping irradiation regions where the high energy X-ray beams are irradiated at the timing of the irradiation region Qa, and the adjacent side ends of the irradiation regions La of two adjacent low energy X-ray beams overlap the ends of both low energy X-ray beams A low energy X-ray beam is irradiated at the timing of Qb.

したがって、実施例の装置の場合、隣り合う二つの高エネルギーX線ビームの各照射域Ha、および、隣り合う二つの低エネルギーX線ビームの各照射域Laは、隣接側端部がX線ビームの端が重なり合う重複照射領域Qaあるいは重複照射領域Qbとなるので、隣り合う二つの高エネルギーX線ビームの両照射域Haの間にも、また隣り合う二つの低エネルギーX線ビームの両照射域Laの間にも、X線未照射の隙間が生じる恐れは全くない。   Therefore, in the case of the apparatus according to the embodiment, each irradiation region Ha of two adjacent high-energy X-ray beams and each irradiation region La of two adjacent low-energy X-ray beams have X-ray beams at the adjacent side ends. The overlapping irradiation region Qa or the overlapping irradiation region Qb overlaps with each other, so that both irradiation regions Ha of the two adjacent high energy X-ray beams are also irradiated between the two irradiation regions Ha of the two adjacent low energy X-ray beams. There is no possibility that a gap not irradiated with X-rays is generated between La.

加えて、実施例の装置の場合、高エネルギー画像取得部13が、高エネルギーX線ビームの端が重なり合う重複照射領域QaのX線検出信号については、高エネルギーX線ビームの端に近づくに従って減少する重み係数k1を一方のX線検出信号に、同様の重み係数k2を他方のX線検出信号に、それぞれ乗じてから加え合わせて長尺状の高エネルギーX線画像の画素信号とする。同様に、低エネルギー画像取得部14が、低エネルギーX線ビームの端が重なり合う重複照射領域QbのX線検出信号についても、低エネルギーX線ビームの端に近づくに従って減少する重み係数k1を一方のX線検出信号に、同様の重み係数k2を他方のX線検出信号に、それぞれ乗じてから加え合わせて長尺状の低エネルギーX線画像の画素信号とする。   In addition, in the case of the apparatus of the embodiment, the high energy image acquisition unit 13 decreases the X-ray detection signal of the overlapped irradiation region Qa where the ends of the high energy X-ray beams overlap as it approaches the end of the high energy X-ray beams. The weighting factor k1 to be multiplied by one X-ray detection signal and the same weighting factor k2 are multiplied by the other X-ray detection signal and then added to obtain a pixel signal of a long high-energy X-ray image. Similarly, for the X-ray detection signal of the overlapping irradiation region Qb where the ends of the low-energy X-ray beams overlap, the low-energy image acquisition unit 14 reduces the weighting factor k1 that decreases as one approaches the end of the low-energy X-ray beams. The X-ray detection signal is multiplied by a similar weighting factor k2 to the other X-ray detection signal and then added to obtain a pixel signal of an elongated low-energy X-ray image.

したがって、実施例の装置の場合、高エネルギーX線ビームの端が重なり合う重複照射領域QaのX線検出信号、および、低エネルギーX線ビームの端が重なり合う重複照射領域QbのX線検出信号については、いずれも、二つのX線ビームの照射位置が同じ二つのX線検出信号を、各X線ビームの端に近づくに従って減少する重み係数k1または重み係数k2をそれぞれ乗じてから加え合わせて長尺状の高エネルギーX線画像または長尺状の低エネルギーX線画像の画素信号とするので、高エネルギーX線ビームまたは低エネルギーX線ビームの端が重なり合う重複照射領域Qaまたは重複照射領域Qbが、長尺状の高エネルギーX線画像や長尺状の低エネルギーX線画像の上で明瞭な継ぎ目として現れることを回避できる。   Therefore, in the case of the apparatus of the embodiment, the X-ray detection signal of the overlapped irradiation region Qa where the ends of the high energy X-ray beam overlap and the X-ray detection signal of the overlapped irradiation region Qb where the ends of the low energy X-ray beam overlap. In either case, the two X-ray detection signals having the same irradiation position of the two X-ray beams are multiplied by the weighting factor k1 or the weighting factor k2 that decreases as they approach the end of each X-ray beam, and then added together. Since the pixel signal of the high energy X-ray image or the long low energy X-ray image is the overlapping irradiation region Qa or the overlapping irradiation region Qb where the ends of the high energy X-ray beam or the low energy X-ray beam overlap, Appearance as a clear seam on a long high energy X-ray image or a long low energy X-ray image can be avoided.

X線ビームの端が重なり合う重複照射領域Qaまたは重複照射領域QbのX線検出信号に乗ずる重み係数k1および重み係数k2としては、重複照射領域の端から最も遠い位置では重み係数k1と重み係数k2が共に1となり、重複照射領域の端の位置では重み係数k1と重み係数k2が共に0となるのに加え、重み係数k1+重み係数k2=1が常に成り立つものが挙げられる。
X線ビームの端に近づくに従って減少する重み係数の減少の仕方としては、図10に示すように、直線に沿って減少するもの形態や、図11に示すように、sin2 θおよびcos2 θの曲線に沿って減少する形態が挙げられる。
The weighting factor k1 and the weighting factor k2 to be multiplied by the X-ray detection signal of the overlapping irradiation region Qa or the overlapping irradiation region Qb where the ends of the X-ray beam overlap are as follows. In both cases, the weight coefficient k1 and the weight coefficient k2 are both 0 at the end of the overlapping irradiation region, and the weight coefficient k1 + weight coefficient k2 = 1 always holds.
As a method of decreasing the weighting factor that decreases as it approaches the end of the X-ray beam, as shown in FIG. 10, it decreases along a straight line, or as shown in FIG. 11, sin 2 θ and cos 2 θ. The form which decreases along the curve of (1) is mentioned.

なお、実施例の装置の場合、図8に示すように、高エネルギーX線ビームの照射域Haの始端と低エネルギーX線ビームの照射域Laの始点は被検体Mの長手方向MXに平行な向きに寸法差ΔLだけズレているので、長尺状の高エネルギーX線画像と長尺状の低エネルギーX線画像との間にも被検体Mの長手方向MXに平行な向きに寸法差ΔLの撮影位置のズレが存在するが、画像サブトラクション部18は、寸法差ΔLの撮影位置のズレを解消する画像シフト処理を行なってから画像サブトラクション処理を行なう構成となっている。したがって、実施例の装置では、長尺状の高エネルギーX線画像と長尺状の低エネルギーX線画像との間の撮影位置のズレに起因する画像の乱れがサブトラクション画像の上に出現することを回避できる。   In the case of the apparatus of the embodiment, as shown in FIG. 8, the start point of the irradiation area Ha of the high energy X-ray beam and the start point of the irradiation area La of the low energy X-ray beam are parallel to the longitudinal direction MX of the subject M. Since the direction is shifted by a dimension difference ΔL, the dimension difference ΔL is also between the long high energy X-ray image and the long low energy X-ray image in the direction parallel to the longitudinal direction MX of the subject M. However, the image subtraction unit 18 is configured to perform the image subtraction process after performing the image shift process for eliminating the shift of the shooting position of the dimensional difference ΔL. Therefore, in the apparatus of the embodiment, image disturbance due to a shift in the imaging position between the long high-energy X-ray image and the long low-energy X-ray image appears on the subtraction image. Can be avoided.

以上に述べたように、実施例の装置の場合、スロット状X線ビーム照射用のX線ビーム照射部1と被検体Mの透過X線像検出用のFPD2とが連続移動部3により被検体Mの長手方向MXに沿って連続移動させられるので、X線ビーム照射部1とFPD2とが間歇移動させられる場合に比べ、X線ビーム照射部1とFPD2の移動が速やかに行なえる結果、被検体へのX線の照射と被検体を透過したX線の検出を迅速に完了させられる。
加えて、実施例の装置の場合、長尺状のサブトラクション画像の元となる長尺状の高エネルギーX線画像と長尺状の低エネルギーX線画像の取得に必要なX線検出信号は全てFPD2からリアルタイムで出力されるので、長尺状の高エネルギーX線画像と長尺状の低エネルギーX線画像を迅速に取得できる。
As described above, in the case of the apparatus according to the embodiment, the X-ray beam irradiation unit 1 for irradiating the slot-shaped X-ray beam and the FPD 2 for detecting the transmitted X-ray image of the subject M are connected by the continuous moving unit 3. Since the X-ray beam irradiating unit 1 and the FPD 2 are moved intermittently along the longitudinal direction MX of the M, the X-ray beam irradiating unit 1 and the FPD 2 can be moved quickly compared to the case where the X-ray beam irradiating unit 1 and the FPD 2 are moved intermittently. The X-ray irradiation to the specimen and the detection of the X-ray transmitted through the subject can be completed quickly.
In addition, in the case of the apparatus of the embodiment, all the X-ray detection signals necessary for obtaining the long high-energy X-ray image and the long low-energy X-ray image that are the basis of the long subtraction image are all. Since it is output from the FPD 2 in real time, a long high energy X-ray image and a long low energy X-ray image can be quickly acquired.

したがって、実施例の装置によれば、スロット状X線ビームを用いたデュアルエネルギー方式の装置において、被検体の長手方向の向きに長い範囲にわたって撮影する長尺状のサブトラクション画像を速やかに取得することができる。
また、実施例の発明の装置では、X線ビーム照射部1とFPD2の方だけが被検体Mの長手方向に沿って連続移動し、被検体Mの方は停止したままであるので、撮影対象の被検体Mが撮影中に動いて被検体Mの位置がズレてしまうのを回避できる。
Therefore, according to the apparatus of the embodiment, in a dual energy system apparatus using a slot-shaped X-ray beam, a long subtraction image captured over a long range in the longitudinal direction of the subject can be quickly acquired. Can do.
In the apparatus of the embodiment, only the X-ray beam irradiation unit 1 and the FPD 2 continuously move along the longitudinal direction of the subject M, and the subject M remains stopped. It can be avoided that the subject M moves during imaging and the position of the subject M shifts.

この発明は、上記の実施例に限られるものではなく、以下のように変形実施することも可能である。
(1)実施例の装置の場合、X線ビーム照射部1とFPD2の方だけが被検体Mの長手方向に沿って連続移動し、被検体Mの方は停止したままであったが、X線ビーム照射部1とFPD2は停止したままで被検体Mだけが長手方向に沿って連続移動する構成の装置である他は、実施例と同一の構成の装置を、変形例として挙げることができる。
The present invention is not limited to the above embodiment, and can be modified as follows.
(1) In the case of the apparatus of the example, only the X-ray beam irradiation unit 1 and the FPD 2 continuously move along the longitudinal direction of the subject M, and the subject M remains stopped. An apparatus having the same configuration as that of the embodiment can be cited as a modified example, except that the line beam irradiation unit 1 and the FPD 2 are stopped and only the subject M is continuously moved along the longitudinal direction. .

(2)実施例の装置は、2次元X線検出器がFPDであったが、2次元X線検出器はFPD以外の検出器であってもよい。   (2) In the apparatus of the embodiment, the two-dimensional X-ray detector is an FPD, but the two-dimensional X-ray detector may be a detector other than the FPD.

(3)実施例の装置は、医用のX線撮像装置であったが、この発明は医用以外のX線撮像装置にも適用することができる。   (3) Although the apparatus of the embodiment is a medical X-ray imaging apparatus, the present invention can also be applied to X-ray imaging apparatuses other than medical use.

(4)実施例の装置の場合、放射線としてX線を用いる装置であったが、この発明はX線以外の放射線(例えばγ線)を用いる装置にも適用することができる。   (4) In the case of the apparatus of the embodiment, the apparatus uses X-rays as radiation, but the present invention can also be applied to an apparatus using radiation other than X-rays (for example, γ-rays).

(5)実施例の装置は、X線ビーム照射部1にスロット状X線ビームSAを照射させる照射タイミング制御を行なうX線照射タイミング制御部12を備えたが、図12に示すように、連続移動部3の移動速度を制御する移動速度制御部25を備えた装置にも適用することができる。   (5) Although the apparatus of the embodiment includes the X-ray irradiation timing control unit 12 that performs the irradiation timing control for irradiating the X-ray beam irradiation unit 1 with the slot-shaped X-ray beam SA, as shown in FIG. The present invention can also be applied to an apparatus including a moving speed control unit 25 that controls the moving speed of the moving unit 3.

この場合には、高エネルギーX線ビームの各照射域Haが隙間を空けずに被検体Mの長手方向に繋ぎ合わさって一つの長尺状の高エネルギーX線ビーム照射域HAとなり、低エネルギーX線ビームの各照射域Laが隙間を空けずに被検体Mの長手方向に繋ぎ合わさって一つの長尺状の低エネルギーX線ビーム照射域LAとなるように、移動速度制御部25は連続移動部3の移動速度を制御する。また、移動速度制御部25は、隣り合う二つの高エネルギーX線ビームの各照射域Haの隣接側端部が両高エネルギーX線ビームの端が重なり合う重複照射領域Qaとなる移動速度で高エネルギーX線ビームを照射させると共に、隣り合う二つの低エネルギーX線ビームの各照射域Laの隣接側端部も両低エネルギーX線ビームの端が重なり合う重複照射領域Qbとなる移動速度で低エネルギーX線ビームを照射させる。   In this case, each irradiation area Ha of the high energy X-ray beam is joined in the longitudinal direction of the subject M without leaving a gap to form one long high energy X-ray beam irradiation area HA. The moving speed control unit 25 continuously moves so that each irradiation area La of the beam is joined in the longitudinal direction of the subject M without leaving a gap to form one long low energy X-ray beam irradiation area LA. The moving speed of the unit 3 is controlled. Further, the moving speed control unit 25 has a high energy at a moving speed at which the adjacent side ends of the irradiation areas Ha of two adjacent high energy X-ray beams become the overlapping irradiation areas Qa where the ends of both high energy X-ray beams overlap. While irradiating the X-ray beam, the adjacent side end of each irradiation region La of two adjacent low-energy X-ray beams also has a low energy X at a moving speed that becomes an overlapping irradiation region Qb where the ends of both low-energy X-ray beams overlap. Irradiate a line beam.

なお、X線照射タイミング制御部12は照射タイミング制御を行なうためにX線用電源10を経由してX線ビーム照射部1を操作したが、移動速度制御部25は移動速度制御を行なうために連続移動部3の撮像系連続移動機構8を操作する。   The X-ray irradiation timing control unit 12 operates the X-ray beam irradiation unit 1 via the X-ray power supply 10 in order to control the irradiation timing, but the moving speed control unit 25 performs the moving speed control. The imaging system continuous movement mechanism 8 of the continuous movement unit 3 is operated.

(6)実施例の装置は、被検体Mにおいて隣り合う高エネルギーX線ビームの照射域Ha同士の間に隙間が空かないで高エネルギーX線ビームの各照射域が被検体Mの長手方向に繋ぎ合わさって一つの長尺状の高エネルギーX線ビーム照射域HAになると共に、被検体Mにおいて隣り合う低エネルギーX線ビームの照射域La同士の間に隙間が空かないで低エネルギーX線ビームの各照射域が被検体Mの長手方向に繋ぎ合わさって一つの長尺状の低エネルギーX線ビーム照射域LAになるように制御したが、必ずしも各照射域同士の間に隙間が空かないように制御する必要はない。隙間が空いても、その隙間の領域を各照射域間で補間することで、高エネルギーX線ビーム照射域または低エネルギーX線ビーム照射域を形成するようにしてもよい。   (6) In the apparatus according to the embodiment, each irradiation region of the high energy X-ray beam extends in the longitudinal direction of the subject M without a gap between adjacent irradiation regions Ha of the high energy X-ray beam in the subject M. The two high-energy X-ray beam irradiation areas HA are connected to each other, and a low-energy X-ray beam is not formed between the irradiation areas La of adjacent low-energy X-ray beams in the subject M. Although each of the irradiation areas is controlled to be connected to the longitudinal direction of the subject M so as to become one long low energy X-ray beam irradiation area LA, there is not necessarily a gap between the irradiation areas. There is no need to control. Even if there is a gap, a high energy X-ray beam irradiation area or a low energy X-ray beam irradiation area may be formed by interpolating the gap area between the irradiation areas.

(7)実施例の装置は、スロット状X線ビームSAをスロット状X線ビームSAの短手方向SXが被検体Mの長手方向MXと平行となる向きで照射したが、スロット状X線ビームSAが少なくとも被検体Mの長手方向MXに照射可能な装置であれば、その装置に適用することができる。   (7) The apparatus of the embodiment irradiates the slot-shaped X-ray beam SA in such a direction that the short direction SX of the slot-shaped X-ray beam SA is parallel to the longitudinal direction MX of the subject M. If SA is an apparatus that can irradiate at least the longitudinal direction MX of the subject M, it can be applied to that apparatus.

(8)実施例の装置は、FPD2はX線検出信号をリアルタイムで出力したが、FPD2がX線検出信号を出力した後に、そのX線検出信号を一旦書き込んで記憶してから逐次に読み出して出力する装置にも適用することができる。   (8) In the apparatus of the embodiment, the FPD 2 outputs the X-ray detection signal in real time, but after the FPD 2 outputs the X-ray detection signal, the X-ray detection signal is temporarily written and stored, and then sequentially read out. It can also be applied to an output device.

(9)実施例の装置は、X線ビーム照射部1およびFPD2を被検体Mの長手方向MXに沿って相対的に連続移動させたが、間歇移動させる装置にも適用することができる。   (9) Although the X-ray beam irradiation unit 1 and the FPD 2 are relatively continuously moved along the longitudinal direction MX of the subject M, the apparatus of the embodiment can be applied to an apparatus that moves intermittently.

実施例のX線撮像装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the X-ray imaging device of an Example. 実施例の装置で用いるスロット状X線ビームを示す斜視図である。It is a perspective view which shows the slot-shaped X-ray beam used with the apparatus of an Example. 実施例の装置のFPDにおけるX線検出素子の配列状況を示す模式図である。It is a schematic diagram which shows the arrangement | sequence state of the X-ray detection element in FPD of the apparatus of an Example. 実施例の装置における長尺状の高エネルギーX線ビーム照射域と長尺状の低エネルギーX線ビーム照射域を示す模式的平面図である。It is a typical top view which shows the elongate high energy X-ray beam irradiation area | region and the elongate low energy X-ray beam irradiation area | region in the apparatus of an Example. 実施例の装置における高圧発生部の出力電圧およびX線検出信号の出力状況の経時的変化を示すグラフである。It is a graph which shows the time-dependent change of the output voltage of the high voltage generation | occurrence | production part in the apparatus of an Example, and the output condition of a X-ray detection signal. 実施例の装置で取得される長尺状の高エネルギーX線画像と長尺状の低エネルギーX線画像を示す模式図である。It is a schematic diagram which shows the elongate high energy X-ray image and the elongate low energy X-ray image which are acquired with the apparatus of an Example. 実施例の装置で取得される長尺状のサブトラクション画像を示す模式図である。It is a schematic diagram which shows the elongate subtraction image acquired with the apparatus of an Example. 実施例の装置において高エネルギーX線ビームの照射域と低エネルギーX線ビームの照射域の間に生じる寸法差を示す模式図である。It is a schematic diagram which shows the dimensional difference which arises between the irradiation area | region of a high energy X-ray beam and the irradiation area | region of a low energy X-ray beam in the apparatus of an Example. 実施例の装置において高エネルギーX線ビームまたは低エネルギーX線ビームの照射域の間に生じる重複照射領域を示す模式図である。It is a schematic diagram which shows the overlapping irradiation area | region which arises between the irradiation area | regions of a high energy X-ray beam or a low energy X-ray beam in the apparatus of an Example. 実施例の装置においてX線ビームの端が重なり合う重複照射領域のX線検出信号に乗ずる重み係数の一例を説明する為のグラフである。It is a graph for demonstrating an example of the weighting coefficient which multiplies the X-ray detection signal of the overlapped irradiation area | region where the edge of an X-ray beam overlaps in the apparatus of an Example. 実施例の装置においてX線ビームの端が重なり合う重複照射領域のX線検出信号に乗ずる重み係数の他の例を説明する為のグラフである。It is a graph for demonstrating the other example of the weighting coefficient which multiplies the X-ray detection signal of the overlapped irradiation area | region with which the edge of an X-ray beam overlaps in the apparatus of an Example. 変形例のX線撮像装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the X-ray imaging device of a modification.

符号の説明Explanation of symbols

1 … X線ビーム照射部
2 … FPD
3 … 連続移動部
11 … X線エネルギー切替制御部
12 … X線照射タイミング制御部
13 … 高エネルギー画像取得部
14 … 低エネルギー画像取得部
18 … 画像サブトラクション部
25 … 移動速度制御部
HA … 長尺状の高エネルギーX線ビーム照射域
Ha … 高エネルギー放射線ビームの照射域
LA … 長尺状の低エネルギーX線ビーム照射域
La … 低エネルギー放射線ビームの照射域
k1,k2 … 重み係数
M … 被検体
MX … (被検体の)長手方向
PA … 長尺状のサブトラクション画像
Pa … 長尺状の高エネルギーX線画像
Pb … 長尺状の低エネルギーX線画像
Qa,Qb … 重複照射領域
SA … スロット状X線ビーム
SX … (スロット状X線ビームの)短手方向
1 ... X-ray beam irradiation unit 2 ... FPD
DESCRIPTION OF SYMBOLS 3 ... Continuous movement part 11 ... X-ray energy switching control part 12 ... X-ray irradiation timing control part 13 ... High energy image acquisition part 14 ... Low energy image acquisition part 18 ... Image subtraction part 25 ... Movement speed control part HA ... Long High energy X-ray beam irradiation area Ha ... High energy radiation beam irradiation area LA ... Long low energy X-ray beam irradiation area La ... Low energy radiation beam irradiation area k1, k2 ... Weighting factor M ... Subject MX ... Longitudinal direction of the subject PA ... Long subtraction image Pa ... Long high energy X-ray image Pb ... Long low energy X-ray image Qa, Qb ... Overlapping irradiation area SA ... Slot shape X-ray beam SX ... Short direction (of slot-shaped X-ray beam)

Claims (5)

(A)撮影対象の被検体へスロット状放射線ビームを照射する放射線ビーム照射手段と、(B)被検体へのスロット状放射線ビームの照射により生じる被検体の透過放射線像を検出して放射線検出信号を出力する2次元放射線検出手段と、(C)放射線ビーム照射手段および2次元放射線検出手段を被検体の長手方向に沿って相対的に移動させる移動手段と、(D)放射線ビーム照射手段により照射されるスロット状放射線ビームを放射線エネルギーの高い高エネルギー放射線ビームと放射線エネルギーの低い低エネルギー放射線ビームに交互に切り替える放射線エネルギー切替制御をおこなう放射線エネルギー切替制御手段と、(E)隣り合う高エネルギー放射線ビームの各照射域が被検体の長手方向に繋ぎ合わさって一つの長尺状の高エネルギー放射線ビーム照射域になると共に隣り合う低エネルギー放射線ビームの各照射域が被検体の長手方向に繋ぎ合わさって一つの長尺状の低エネルギー放射線ビーム照射域になるように、放射線ビーム照射手段にスロット状放射線ビームを照射させる照射タイミング制御をおこなう放射線照射タイミング制御手段、もしくは前記移動手段の移動速度を制御する移動速度制御手段と、(F)高エネルギー放射線ビームの照射に伴って2次元放射線検出手段から出力される放射線検出信号にしたがって長尺状の高エネルギー放射線ビーム照射域についての透過放射線像に相応する長尺状の高エネルギー放射線画像を取得する高エネルギー画像取得手段と、(G)低エネルギー放射線ビームの照射に伴って2次元放射線検出手段から出力される放射線検出信号にしたがって長尺状の低エネルギー放射線ビーム照射域についての透過放射線像に相応する長尺状の低エネルギー放射線画像を取得する低エネルギー画像取得手段と、(H)長尺状の高エネルギー放射線画像と長尺状の低エネルギー放射線画像とを画像サブトラクション処理して長尺状のサブトラクション画像を取得する画像サブトラクション手段とを備えていることを特徴とする放射線撮像装置。   (A) a radiation beam irradiating means for irradiating a subject to be imaged with a slot-shaped radiation beam; and (B) a radiation detection signal by detecting a transmitted radiation image of the subject generated by the irradiation of the subject with a slot-shaped radiation beam. Two-dimensional radiation detection means for outputting the radiation, (C) a radiation means for irradiating the radiation beam and the two-dimensional radiation detection means for relatively moving along the longitudinal direction of the subject, and (D) irradiation by the radiation beam irradiation means. A radiation energy switching control means for performing radiation energy switching control for alternately switching a slot-shaped radiation beam to a high energy radiation beam having a high radiation energy and a low energy radiation beam having a low radiation energy, and (E) an adjacent high energy radiation beam Each irradiation area is connected to the longitudinal direction of the subject to form one long high In the radiation beam irradiation means, each irradiation region of adjacent low energy radiation beams is connected in the longitudinal direction of the subject to form one long low energy radiation beam irradiation region. Radiation irradiation timing control means for performing irradiation timing control for irradiating the slot-shaped radiation beam, or movement speed control means for controlling the movement speed of the moving means, and (F) two-dimensional radiation detection accompanying irradiation with a high energy radiation beam High energy image acquisition means for acquiring a long high energy radiation image corresponding to a transmitted radiation image for a long high energy radiation beam irradiation area according to a radiation detection signal output from the means; and (G) low Output from the two-dimensional radiation detection means with the irradiation of the energy radiation beam Low energy image acquisition means for acquiring a long low energy radiation image corresponding to the transmitted radiation image for the long low energy radiation beam irradiation area according to the ray detection signal, and (H) a long high energy A radiation imaging apparatus comprising: an image subtraction unit configured to perform image subtraction processing on a radiation image and a long low-energy radiation image to obtain a long subtraction image. 請求項1に記載の放射線撮像装置において、移動手段が放射線ビーム照射手段と2次元放射線検出手段を被検体の長手方向に沿って移動させると共に、被検体は停止したままである放射線撮像装置。   The radiation imaging apparatus according to claim 1, wherein the moving means moves the radiation beam irradiating means and the two-dimensional radiation detecting means along the longitudinal direction of the subject, and the subject remains stopped. 請求項1または2に記載の放射線撮像装置において、放射線照射タイミング制御手段もしくは移動速度制御手段は、隣り合う二つの高エネルギー放射線ビームの各照射域の隣接側端部が両高エネルギー放射線ビームの端が重なり合う重複照射領域となるように高エネルギー放射線ビームを照射させると共に、隣り合う二つの低エネルギー放射線ビームの各照射域の隣接側端部が両低エネルギー放射線ビームの端が重なり合う重複照射領域となるように低エネルギー放射線ビームを照射させる放射線撮像装置。   3. The radiation imaging apparatus according to claim 1, wherein the radiation irradiation timing control means or the movement speed control means is configured such that the adjacent side ends of the irradiation regions of two adjacent high energy radiation beams are the ends of both high energy radiation beams. Are irradiated with a high energy radiation beam so that they overlap each other, and adjacent end portions of the irradiation regions of two adjacent low energy radiation beams become overlapping irradiation regions where the ends of both low energy radiation beams overlap. A radiation imaging apparatus that irradiates a low energy radiation beam. 請求項3に記載の放射線撮像装置において、高エネルギー画像取得手段が、高エネルギー放射線ビームの端が重なり合う重複照射領域の放射線検出信号については、高エネルギー放射線ビームの端に近づくに従って減少する重み係数を一方の放射線検出信号に、同様の重み係数を他方の放射線検出信号に、それぞれ乗じてから加え合わせて長尺状の高エネルギー放射線画像の画素信号とすると共に、低エネルギー画像取得手段が、低エネルギー放射線ビームの端が重なり合う重複照射領域の放射線検出信号については、低エネルギー放射線ビームの端に近づくに従って減少する重み係数を一方の放射線検出信号に、同様の重み係数を他方の放射線検出信号に、それぞれ乗じてから加え合わせて長尺状の低エネルギー放射線画像の画素信号とする放射線撮像装置。   The radiation imaging apparatus according to claim 3, wherein the high-energy image acquisition unit sets a weighting factor that decreases as the end of the high-energy radiation beam approaches the end of the high-energy radiation beam for the radiation detection signal of the overlapping irradiation region where the ends of the high-energy radiation beam overlap. The same weighting factor is multiplied to one radiation detection signal and then added to the other radiation detection signal, and added to form a pixel signal of an elongated high energy radiation image. For the radiation detection signal of the overlapping irradiation area where the ends of the radiation beam overlap, the weighting factor that decreases as it approaches the end of the low energy radiation beam is set to one radiation detection signal, and the same weighting factor is set to the other radiation detection signal. The pixel signal of the long low-energy radiation image is added together after multiplication. Radiation imaging apparatus. 請求項1から4のいずれかに記載の放射線撮像装置において、高エネルギー画像取得手段により取得される長尺状の高エネルギー放射線画像と低エネルギー画像取得手段により取得される長尺状の低エネルギー放射線画像との間に被検体の長手方向に平行な向きの撮影位置のズレがあって、画像サブトラクション手段が、高エネルギー放射線画像と低エネルギー放射線画像との間の撮影位置のズレを解消する画像シフト処理を行なってから画像サブトラクション処理を行なう放射線撮像装置。   5. The radiation imaging apparatus according to claim 1, wherein a long high-energy radiation image acquired by a high-energy image acquisition unit and a long low-energy radiation acquired by a low-energy image acquisition unit. An image shift in which there is a deviation of the imaging position in the direction parallel to the longitudinal direction of the subject between the images and the image subtraction means eliminates the deviation of the imaging position between the high energy radiation image and the low energy radiation image A radiation imaging apparatus that performs image subtraction processing after performing processing.
JP2006215983A 2005-11-16 2006-08-08 Radiation imaging device Active JP4756366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006215983A JP4756366B2 (en) 2005-11-16 2006-08-08 Radiation imaging device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005331399 2005-11-16
JP2005331399 2005-11-16
JP2006215983A JP4756366B2 (en) 2005-11-16 2006-08-08 Radiation imaging device

Publications (2)

Publication Number Publication Date
JP2007160077A true JP2007160077A (en) 2007-06-28
JP4756366B2 JP4756366B2 (en) 2011-08-24

Family

ID=38243626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215983A Active JP4756366B2 (en) 2005-11-16 2006-08-08 Radiation imaging device

Country Status (1)

Country Link
JP (1) JP4756366B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131564A (en) * 2007-12-03 2009-06-18 Aloka Co Ltd X-ray measuring apparatus
JP2009165705A (en) * 2008-01-17 2009-07-30 Shimadzu Corp Radiographic apparatus
JP2009165629A (en) * 2008-01-16 2009-07-30 Shimadzu Corp Radiographic apparatus
JP2013184017A (en) * 2012-03-12 2013-09-19 Shimadzu Corp X-ray imaging apparatus
JP2016043129A (en) * 2014-08-25 2016-04-04 株式会社東芝 X-ray diagnostic apparatus
KR101864124B1 (en) * 2016-11-21 2018-06-04 (주)레이 Cone Beam Computerized Tomography System of Dual Energy Type

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275582A (en) * 1989-04-18 1990-11-09 Fuji Photo Film Co Ltd Method and device for energy subtraction of radiation images
JP2004236929A (en) * 2003-02-07 2004-08-26 Shimadzu Corp X-ray imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275582A (en) * 1989-04-18 1990-11-09 Fuji Photo Film Co Ltd Method and device for energy subtraction of radiation images
JP2004236929A (en) * 2003-02-07 2004-08-26 Shimadzu Corp X-ray imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131564A (en) * 2007-12-03 2009-06-18 Aloka Co Ltd X-ray measuring apparatus
JP2009165629A (en) * 2008-01-16 2009-07-30 Shimadzu Corp Radiographic apparatus
JP2009165705A (en) * 2008-01-17 2009-07-30 Shimadzu Corp Radiographic apparatus
JP2013184017A (en) * 2012-03-12 2013-09-19 Shimadzu Corp X-ray imaging apparatus
JP2016043129A (en) * 2014-08-25 2016-04-04 株式会社東芝 X-ray diagnostic apparatus
KR101864124B1 (en) * 2016-11-21 2018-06-04 (주)레이 Cone Beam Computerized Tomography System of Dual Energy Type

Also Published As

Publication number Publication date
JP4756366B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4788771B2 (en) Radiation imaging device
US9480437B2 (en) Movement compensation for superimposed fluoroscopy and radiography image
WO2011013328A1 (en) Radiation imaging device
JP4756366B2 (en) Radiation imaging device
JP5702236B2 (en) X-ray imaging apparatus and calibration method thereof
JPWO2016046870A1 (en) X-ray fluoroscopic apparatus, moving body tracking apparatus for radiotherapy, and X-ray detector
JP6225690B2 (en) Tomographic image generation system
JP4858616B2 (en) Radiation imaging device
JP2007195612A (en) X-ray imaging apparatus
JP2007222500A (en) X-ray radiographing device
JP2006322799A (en) X-ray imaging system
JP2007275228A (en) X-ray imaging device
JP2008284081A (en) Radiographic equipment
JP4692326B2 (en) X-ray imaging device
US20100001197A1 (en) Radiation imaging apparatus
JP4174628B2 (en) X-ray equipment
US20120318986A1 (en) Radiographic imaging apparatus and method
JP2009165705A (en) Radiographic apparatus
JP5049836B2 (en) Radiography method
JP2009047440A (en) Nondestructive inspection device and nondestructive inspection method
JPWO2009004677A1 (en) Radiation imaging device
JP4998279B2 (en) Radiation imaging device
JP5306062B2 (en) Radiographic apparatus, radiographic method and program
JP2006271513A (en) X-ray tomographic apparatus
JP5559648B2 (en) Radiation imaging apparatus, method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R151 Written notification of patent or utility model registration

Ref document number: 4756366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3