JP2007154261A - Method for reforming base material having thermal-sprayed film formed thereon - Google Patents
Method for reforming base material having thermal-sprayed film formed thereon Download PDFInfo
- Publication number
- JP2007154261A JP2007154261A JP2005351381A JP2005351381A JP2007154261A JP 2007154261 A JP2007154261 A JP 2007154261A JP 2005351381 A JP2005351381 A JP 2005351381A JP 2005351381 A JP2005351381 A JP 2005351381A JP 2007154261 A JP2007154261 A JP 2007154261A
- Authority
- JP
- Japan
- Prior art keywords
- thermal spray
- thermal
- spray coating
- coating
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
本発明は、溶射皮膜を形成した素材の改質方法に関する。 The present invention relates to a method for modifying a material on which a sprayed coating is formed.
例えば、廃棄物焼却炉においてダイオキシンの生成を低減するためには、廃棄物を極力高温で燃焼処理することが必要である。また、鉄鋼製造プロセスにおける高温腐食環境で使用されるワークロールや各種の部品では、耐熱性や耐食性はもとより、耐摩耗性にも優れていることが要求される。そして、これらを実現するためには、炉の内壁や熱交換パイプ等の素材を耐熱・耐食・耐摩耗性合金で被覆することが求められる。 For example, in order to reduce the production of dioxins in a waste incinerator, it is necessary to combust the waste at as high a temperature as possible. In addition, work rolls and various parts used in a high temperature corrosive environment in a steel manufacturing process are required to have excellent wear resistance as well as heat resistance and corrosion resistance. And in order to implement | achieve these, it is calculated | required to coat | cover raw materials, such as an inner wall of a furnace, and a heat exchange pipe, with a heat resistant / corrosion resistant / abrasion resistant alloy.
この耐熱・耐食・耐摩耗性合金を用いた被覆処理方法として、溶射が広く採用されている。溶射は、JIS H 8200でも定義されているように、燃焼または電気エネルギーを用いて溶射材料を溶融またはそれに近い状態にした粒子を素地に吹き付けて皮膜(溶射皮膜)を形成するものである。溶射材料には、線状、棒状または粉末状のものが用いられる。 Thermal spraying has been widely adopted as a coating method using this heat-resistant, corrosion-resistant, and wear-resistant alloy. As defined in JIS H 8200, thermal spraying is a method in which a coating (spraying coating) is formed by spraying particles, which are obtained by melting or bringing a thermal spray material into a state close to that using combustion or electrical energy. As the thermal spray material, a linear, rod-shaped or powdered material is used.
しかしながら、溶射皮膜は一般的に多孔質で、特に皮膜表面から素材(母材)に達する貫通孔が存在するため、腐食性成分が素材に浸透することにより、素材自体については十分な耐熱・耐食・耐摩耗性が得られない場合がある。 However, sprayed coatings are generally porous, and in particular there are through holes that reach the material (base material) from the surface of the coating, so that the corrosive component penetrates into the material, so that the material itself has sufficient heat and corrosion resistance.・ Abrasion resistance may not be obtained.
上記の不具合を改善することを目的として、溶射皮膜にレーザ光あるいは収束光を照射して、溶射皮膜を溶融させることにより、封孔(フュージング)する技術が提案されている(例えば、特許文献1、2参照。)。
しかしながら、上記従来のレーザ光等を用いた溶射皮膜の改善技術は、封孔処理を十分に行えたとしても、例えば800℃以上の高温処理環境下で使用するときの溶射皮膜を形成した素材の耐熱・耐食・耐摩耗性や硬度が必ずしも十分ではない。 However, the conventional technology for improving a thermal spray coating using a laser beam or the like is a material that forms a thermal spray coating when used in a high temperature processing environment of, for example, 800 ° C. or higher, even if the sealing treatment can be sufficiently performed. Heat resistance, corrosion resistance, wear resistance and hardness are not always sufficient.
本発明は、上記の課題に鑑みてなされたものであり、レーザ光を照射して溶射皮膜を溶融するときの溶射皮膜を形成した素材の耐熱・耐食・耐摩耗性や硬度の一層の向上を図ることができる溶射皮膜の改質方法を提供することを目的とする。 The present invention has been made in view of the above problems, and further improves the heat resistance, corrosion resistance, wear resistance and hardness of the material on which the thermal spray coating is formed when the thermal spray coating is melted by irradiating the laser beam. It aims at providing the modification | reformation method of the thermal spray coating which can be aimed at.
本発明に係る溶射皮膜の改質方法は、溶射皮膜を形成した素材の該溶射皮膜にレーザ光を照射して該溶射皮膜を溶融する溶射皮膜を形成した素材の改質方法において、800〜500℃の降温範囲における冷却速度が40℃/s以上であることを特徴とする。 The method for modifying a thermal spray coating according to the present invention is a method for reforming a material in which a thermal spray coating is formed by irradiating the thermal spray coating on the material on which the thermal spray coating is formed to melt the thermal spray coating. The cooling rate in the temperature drop range of 40 ° C. is 40 ° C./s or more.
また、本発明に係る溶射皮膜を形成した素材の改質方法は、700〜1000℃の昇温範囲における加熱速度が20℃/s以上であることを特徴とする。 Moreover, the method for reforming the material on which the sprayed coating is formed according to the present invention is characterized in that the heating rate in the temperature rising range of 700 to 1000 ° C. is 20 ° C./s or more.
また、本発明に係る溶射皮膜を形成した素材の改質方法は、前記溶射皮膜の材料がNi基自溶合金、Co基自溶合金、Fe基自溶合金またはWC(タングステンカーバイト) 自溶合金であることを特徴とする。 Further, in the method for reforming a material on which a sprayed coating is formed according to the present invention, the material of the sprayed coating is a Ni-based self-fluxing alloy, a Co-based self-fluxing alloy, a Fe-based self-fluxing alloy or WC (tungsten carbide). It is an alloy.
本発明に係る溶射皮膜を形成した素材の改質方法は、溶射皮膜を形成した素材の溶射皮膜にレーザ光を照射して溶射皮膜を溶融するときの、800〜500℃の降温範囲における冷却速度が40℃/s以上であり、さらにまた、より好ましくは、700〜1000℃の昇温範囲における加熱速度が20℃/s以上であるので、溶射皮膜を形成した素材の耐熱・耐食・耐摩耗性や硬度の向上を図ることができる。 The method for reforming a material on which a thermal spray coating is formed according to the present invention is a cooling rate in a temperature drop range of 800 to 500 ° C. when the thermal spray coating of the material on which the thermal spray coating is formed is irradiated with laser light to melt the thermal spray coating. Is 40 ° C./s or more, and more preferably, the heating rate in the temperature rising range of 700 to 1000 ° C. is 20 ° C./s or more. It is possible to improve properties and hardness.
本発明に係る溶射皮膜を形成した素材の改質方法の好適な実施の形態について、以下に説明する。 A preferred embodiment of a method for modifying a material on which a sprayed coating according to the present invention is formed will be described below.
本発明に係る溶射皮膜を形成した素材の改質方法は、溶射皮膜を形成した素材の溶射皮膜にレーザ光を照射して溶射皮膜を溶融する改質方法において、800〜500℃の降温範囲における冷却速度を40℃/s以上とするものであり、さらにまた、好ましくは、700〜1000℃の昇温範囲における加熱速度を20℃/s以上とするものである。ここで、冷却速度および加熱速度は、いずれもそれぞれの温度範囲における平均値であってもよいが、好ましくは、この温度範囲において常にこの値を満足するものである。この点は、後述する温度条件についても同様である。 The method for reforming a material on which a thermal spray coating is formed according to the present invention is a reforming method in which a thermal spray coating of a material on which a thermal spray coating is formed is irradiated with a laser beam to melt the thermal spray coating. The cooling rate is 40 ° C./s or higher, and more preferably, the heating rate in the temperature rising range of 700 to 1000 ° C. is 20 ° C./s or higher. Here, the cooling rate and the heating rate may both be average values in the respective temperature ranges, but preferably satisfy these values at all times in this temperature range. This also applies to the temperature conditions described later.
また、本発明に係る溶射皮膜の改質方法において、より好ましくは、800〜500℃の降温範囲における冷却速度を60℃/s以上とし、700〜1000℃の昇温範囲における加熱速度を40℃/s以上とする。 In the thermal spray coating modification method according to the present invention, more preferably, the cooling rate in the temperature drop range of 800 to 500 ° C. is 60 ° C./s or more, and the heating rate in the temperature rise range of 700 to 1000 ° C. is 40 ° C. / S or more.
ここで、素材の種類は、特に限定するものではなく、例えば、鋼や非鉄金属等を用いることができる。
また、溶射皮膜を形成する際の溶射方法も特に限定するものではなく、プラズマ溶射、高速フレーム溶射、アーク溶射等の適宜の方法を用いることができる。
また、溶射皮膜を形成する際に使用する溶射皮膜の材料も、特に限定するものではなく、亜鉛やアルミニウム等の金属、それらの合金、自溶合金、セラミック、サーメット、プラスチック、アルミナ、チタニア、クロミア、スピネル、ジルコニア、あるいはタングステンやシリコン等のカーバイド等の適宜の材料を用いることができるが、より好ましくは、Ni基、Co基またはFe基の自溶合金を用いる。自溶合金は、JIS H 8303 にニッケル、コバルトおよびタングステンカーバイトが規定されており、表1で一例を示すように、Ni基やCo基にBとSiを1〜4%の他、Crを10〜40%およびCを0.1〜1%添加したものである。自溶合金には、Ni基やCo基以外に、Fe基自溶合金も使用されており、これらの合金を溶射した後、溶融(フュージング)処理をすることによって、高温での耐食・耐摩耗性等に優れ、結晶粒が微細で素材との密着力の高い溶射皮膜を得ることができる。
Here, the kind of raw material is not specifically limited, For example, steel, a nonferrous metal, etc. can be used.
Also, the spraying method for forming the sprayed coating is not particularly limited, and any appropriate method such as plasma spraying, high-speed flame spraying, arc spraying, or the like can be used.
The material of the thermal spray coating used when forming the thermal spray coating is not particularly limited, and metals such as zinc and aluminum, alloys thereof, self-fluxing alloys, ceramics, cermets, plastics, alumina, titania, chromia An appropriate material such as spinel, zirconia, or carbide such as tungsten or silicon can be used, but a Ni-based, Co-based, or Fe-based self-fluxing alloy is more preferably used. As for self-fluxing alloys, nickel, cobalt, and tungsten carbide are specified in JIS H 8303. As shown in Table 1, B and Si are added to Ni and Co bases in addition to 1 to 4%, and Cr is added. 10 to 40% and 0.1 to 1% of C are added. In addition to Ni-based and Co-based alloys, Fe-based self-fluxing alloys are also used for self-fluxing alloys. After these alloys are sprayed, they are melted (fused) to provide corrosion and wear resistance at high temperatures. It is possible to obtain a thermal spray coating that is excellent in properties and the like, has fine crystal grains, and high adhesion to the material.
本発明では、溶射皮膜を溶融するための熱源としてレーザを使用する。例えば、燃焼炉の熱交換パイプ等では一般的には熱源としてガスを使用している。しかしながら、ガスの炎は、加熱領域が広いので冷却速度が小さい。また、高周波コイル中でパイプを移動させる方法もあるが、これも加熱帯域が広いので、同様に冷却速度は小さい。このため、本発明では、レーザを使用して、スポット状の小さい加熱帯域を移動させることにより、急速加熱および急速冷却を行うものである。
レーザの種類は、特に限定するものではなく、固体レーザや気体レーザ等の適宜のものを用いることができるが、より好ましくは、光ファイバーを通して材料の照射したい箇所にレーザ光を自由に導くことができる、固体レーザの一種であるYAGレーザを用いる。
In the present invention, a laser is used as a heat source for melting the thermal spray coating. For example, a gas is generally used as a heat source in a heat exchange pipe of a combustion furnace or the like. However, since the gas flame has a wide heating area, the cooling rate is low. There is also a method of moving the pipe in the high-frequency coil, but this also has a wide heating zone, and similarly the cooling rate is low. For this reason, in the present invention, rapid heating and rapid cooling are performed by moving a small spot-like heating zone using a laser.
The type of the laser is not particularly limited, and an appropriate one such as a solid laser or a gas laser can be used. More preferably, the laser beam can be freely guided to a position where the material is irradiated through the optical fiber. A YAG laser which is a kind of solid-state laser is used.
本発明に係る溶射皮膜の改質方法によれば、他の溶射皮膜の溶融方法の場合と同様に封孔効果を得ることができるとともに、さらに、800〜500℃の降温範囲における冷却速度、さらには700〜1000℃の昇温範囲における加熱速度が前記それぞれの条件を下回る条件で形成した溶射皮膜に比べて、耐熱・耐食・耐摩耗性や硬度が一層優れる溶射皮膜を得ることができる。
この原因は、耐熱・耐食・耐摩耗性については、溶射皮膜を溶融するときに溶射皮膜および素材を急速冷却することにより素材の結晶粒の粗大化が抑制され、さらには溶射皮膜の結晶粒が微細化されることによるものであり、この現象はさらにまた急速加熱を伴うことによって好適に実現されるものと考えられる。また、硬度については、溶射皮膜中にホウ化物が生成することによるものと考えられる。
廃棄物焼却炉では、何が混入しているか分からず、硬いゴミも含まれ、また、腐食性のガスも発生する過酷な処理条件である。また、鉄鋼製造プロセスにおいてもワークロールや各種の部品は高温腐食環境で大きな負荷を受けている。このためこれらの溶射皮膜では、封孔処理だけでは十分といえず、表面硬度と耐食性を上げることが重要な課題であり、本発明を好適に適用することができる。
According to the thermal spray coating modification method of the present invention, a sealing effect can be obtained in the same manner as in the other thermal spray coating melting methods, and the cooling rate in the temperature drop range of 800 to 500 ° C. Compared with a sprayed coating formed under conditions where the heating rate in the temperature rising range of 700 to 1000 ° C. is lower than the above-mentioned conditions, it is possible to obtain a sprayed coating with further excellent heat resistance, corrosion resistance, wear resistance and hardness.
The reason for this is that, in terms of heat resistance, corrosion resistance, and wear resistance, coarsening of the crystal grains of the material is suppressed by rapidly cooling the thermal spray film and the material when the thermal spray film is melted. This phenomenon is due to miniaturization, and this phenomenon is considered to be preferably realized by accompanying rapid heating. The hardness is considered to be due to the formation of borides in the sprayed coating.
In a waste incinerator, it is a harsh processing condition that does not know what is mixed, contains hard dust, and generates corrosive gas. Also in the steel manufacturing process, work rolls and various parts are heavily loaded in a high temperature corrosive environment. For this reason, in these thermal spray coatings, it cannot be said that the sealing treatment alone is sufficient, and increasing the surface hardness and corrosion resistance is an important issue, and the present invention can be suitably applied.
実施例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。 The present invention will be further described with reference to examples. In addition, this invention is not limited to the Example demonstrated below.
試験片の調製を以下の手順で行った。
(溶射皮膜の形成)
素材として、厚さ6mm、長さ50mm、幅50mmの矩形の軟鋼板を用い、この軟鋼板の片表面にNi基、Co基およびFe基の自溶合金を、高速フレーム溶射(HVOF溶射)法により溶射して、厚さが約500μmの溶射皮膜を形成した。なお、このときの溶射材料の成分組成を表1に示す。
The specimen was prepared according to the following procedure.
(Formation of thermal spray coating)
A rectangular mild steel plate having a thickness of 6 mm, a length of 50 mm, and a width of 50 mm is used as a material, and a Ni-based, Co-based, and Fe-based self-fluxing alloy is applied to one surface of the mild steel plate by a high-speed flame spraying (HVOF spraying) method. To form a sprayed coating having a thickness of about 500 μm. The component composition of the thermal spray material at this time is shown in Table 1.
(溶射皮膜へのレーザ照射)
連続波を生成する定格出力2kWのYAGレーザ加工機を使用し、YAGレーザ光を上記の溶射皮膜に照射した。このときの、レーザ照射の主要操作条件は、出力1.5kW、移動速度100〜500mm/min、ディフォーカス距離25〜35mm、シールドガスとしてのアルゴンガスの流速10〜50l(リットル)/minである。
このとき、ディフォーカス距離および照射面の照射出力を変えることにより、素材の昇温速度(加熱速度)を変え、移動速度およびシールドガス流量を変えることにより、素材の降温速度(冷却速度)変えた。
(Laser irradiation to sprayed coating)
A YAG laser beam machine with a rated output of 2 kW that generates a continuous wave was used, and the sprayed coating was irradiated with YAG laser light. The main operating conditions for laser irradiation at this time are an output of 1.5 kW, a moving speed of 100 to 500 mm / min, a defocus distance of 25 to 35 mm, and a flow rate of argon gas as a shielding gas of 10 to 50 l (liter) / min. .
At this time, the temperature increase rate (heating rate) of the material was changed by changing the defocus distance and irradiation output of the irradiation surface, and the temperature decrease rate (cooling rate) of the material was changed by changing the moving speed and shield gas flow rate. .
上記の手順で調製した試験片について、以下の内容の評価を行った。試験片の調製条件および評価結果をまとめて表2に示す。 The test piece prepared by the above procedure was evaluated for the following contents. Table 2 summarizes the preparation conditions and evaluation results of the test pieces.
(溶射皮膜表面の観察)
光学顕微鏡写真やSEM写真により、溶射皮膜表面を観察した。
(溶射皮膜の組織観察)
X線回折法およびEPMA分析法により、溶射皮膜の化合物を調べた。表2中、組織観察による硼化生成物の有無について、○:有、△:一部有、×:無、で示した。
(Observation of sprayed coating surface)
The surface of the sprayed coating was observed with an optical microscope photograph or SEM photograph.
(Structure observation of thermal spray coating)
The compound of the sprayed coating was examined by X-ray diffraction method and EPMA analysis method. In Table 2, the presence or absence of a borated product by structure observation is indicated by ○: Yes, Δ: Partially available, ×: None.
(硬度の評価)
ビッカース硬さ試験法により溶射皮膜および素材の硬度を測定した。表2中、溶射皮膜について、◎:>800、○:780〜800、△:<750、×:<700で示し、素材について、 ○:軟化しない、×:軟化する、で示した。
(Evaluation of hardness)
The thermal spray coating and the hardness of the material were measured by the Vickers hardness test method. In Table 2, the sprayed coating is indicated by ◎:> 800, ◯: 780-800, Δ: <750, x: <700, and the materials are indicated by ◯: not softened, x: softened.
(腐食試験)
ごみ焼却炉の腐食環境条件を模して、評価試験片を550℃の温度に保持したNa2SO4/KCl/NaCl=1:1:1(mol%)複合塩で覆い、3時間および24時間経過後の腐食状態を評価した。評価は、外観目視およびSEM写真観察により行った。このとき、全面腐食による腐食深さおよび局部腐食による腐食深さの合計について所定の観察領域内での平均値を求め、腐食深さと定義した。表1中、腐食深さ(μm)は、◎:<3、○:3〜8、△:30〜40、×:>40、で示した。
(Corrosion test)
The evaluation test piece was covered with a Na 2 SO 4 / KCl / NaCl = 1: 1: 1 (mol%) composite salt maintained at a temperature of 550 ° C. to simulate the corrosive environmental conditions of a waste incinerator for 3 hours and 24 hours. The corrosion state after elapse of time was evaluated. Evaluation was performed by visual appearance and SEM photograph observation. At this time, an average value in a predetermined observation region was obtained and defined as the corrosion depth with respect to the sum of the corrosion depth due to the overall corrosion and the corrosion depth due to the local corrosion. In Table 1, the corrosion depth (μm) is indicated by ◎: <3, ◯: 3-8, Δ: 30-40, x:> 40.
なお、参考例として、レーザ光に代えて酸素アセチレン炎を用いたフュージング処理によって溶射皮膜の表面を約1050℃の温度で溶融させたときの試験片についても、合わせて評価した。 As a reference example, a test piece was also evaluated when the surface of the thermal spray coating was melted at a temperature of about 1050 ° C. by a fusing treatment using an oxyacetylene flame instead of the laser beam.
(溶射皮膜の状態)
レーザ光によりフュージング処理した溶射皮膜の状態は、CrおよびNi、CoまたはFeが 高濃度で均一に分布しているため、高温耐食性の改善に効果が大である。また、レーザ照射面が非常にフラットであるため、腐食原因物質が堆積しない。なお、加熱速度および冷却速度の違いによる表面状態の変化は見られなかった。これに対して酸素アセチレン炎によりフュージング処理した皮膜の状態は、CrおよびNi、CoまたはFeが偏析し、これら成分の濃淡が激しい。また、処理面には凹凸があるため、表面積が大きく、腐食反応が進行しやすい。腐食原因物質も堆積するため、高温耐食性の改善が小さい。
(The state of sprayed coating)
The state of the thermal spray coating treated with laser light is highly effective in improving high-temperature corrosion resistance because Cr and Ni, Co, or Fe are uniformly distributed at a high concentration. Further, since the laser irradiation surface is very flat, no corrosion-causing substance is deposited. In addition, the change of the surface state by the difference in a heating rate and a cooling rate was not seen. On the other hand, Cr, Ni, Co, or Fe segregates in the state of the film subjected to the fusing treatment with the oxygen acetylene flame, and the density of these components is intense. Moreover, since the treatment surface has irregularities, the surface area is large and the corrosion reaction tends to proceed. Since corrosion-causing substances are also deposited, the improvement in high-temperature corrosion resistance is small.
(溶射皮膜の硬さ)
次に、レーザ光で処理した溶射皮膜の硬さは、ホウ化物の形成、組織の微細化により、硬化するのに対して、酸素アセチレン炎による溶射皮膜の硬さは、組織が微細化されず、高硬度が得られない。
(Hardness of spray coating)
Next, the hardness of the thermal sprayed coating treated with laser light is cured by the formation of boride and the refinement of the structure, whereas the hardness of the thermal sprayed coating by the oxygen acetylene flame is not refined by the structure. High hardness cannot be obtained.
(素材の硬さ)
さらに、素材の硬さについてレーザ光による処理では、素材への加熱がほとんど起こらず、焼なましされることがないため、素材は軟化しない。なお、冷却速度を100℃/sとしたものは、冷却速度を50℃/sとしたものに比べて、加熱速度が30℃/sの場合のものを含め、加熱速度に関わらず高い硬度が得られた。しかし、酸素アセチレン炎によるフュージング処理では、素材へ多量の熱が投与されるため、焼なまし効果によって素材が軟化する。
(Material hardness)
Furthermore, with regard to the hardness of the material, the material is not softened because the material is hardly heated and is not annealed. In addition, those with a cooling rate of 100 ° C./s have higher hardness than those with a cooling rate of 50 ° C./s, including those with a heating rate of 30 ° C./s, regardless of the heating rate. Obtained. However, in the fusing treatment with an oxyacetylene flame, a large amount of heat is administered to the material, so the material softens due to the annealing effect.
(腐食試験の結果)
また、腐食試験の結果では、レーザ光によりフュージング処理した溶射皮膜の表面付近で微小な局部腐食が若干見られる。腐食深さは3μm前後である。なお、冷却速度を100℃/sとしたものは、冷却速度を50℃/sとしたものに比べて、加熱速度が30℃/sの場合のものを含め、加熱速度に関わらず腐食深さが小さい。これに対して、酸素アセチレン炎によるフュージング処理の溶射皮膜には、腐食試験で全面腐食あるいは局部腐食が生じていた。これらの腐食は、マトリックスと生成物の界面から進行しており、腐食の深さは30μm程度であった。
(Result of corrosion test)
As a result of the corrosion test, a small amount of local corrosion is observed in the vicinity of the surface of the sprayed coating that has been subjected to the fusing treatment with laser light. The corrosion depth is around 3 μm. In addition, when the cooling rate is 100 ° C./s, the corrosion depth is not limited regardless of the heating rate, including the case where the heating rate is 30 ° C./s, compared to the cooling rate of 50 ° C./s. Is small. On the other hand, the thermal sprayed coating of the fusing treatment with the oxyacetylene flame had a general corrosion or a local corrosion in the corrosion test. These corrosions proceeded from the interface between the matrix and the product, and the depth of the corrosion was about 30 μm.
なお、溶射皮膜の材料は、Co基自溶合金、Fe基自溶合金またはWC(タングステンカーバイト)自溶合金においても同様の効果が認められた。すなわち、ホウ化物の形成および結晶の微細化により溶射皮膜の硬さが向上した。また、レーザフュージングを行っていない溶射皮膜を形成したままの状態の素材に比べてレーザフュージングした素材は腐食減量が約1/8になり、高温耐食性が改善した。
Note that the same effect was observed when the material of the thermal spray coating was a Co-based self-fluxing alloy, a Fe-based self-fluxing alloy or a WC (tungsten carbide) self-fluxing alloy. That is, the hardness of the sprayed coating was improved by the formation of borides and the refinement of crystals. Further, the material subjected to laser fusing has a corrosion weight loss of about 1/8, and the high temperature corrosion resistance is improved as compared with the material in a state where the thermal spray coating not formed by laser fusing is formed.
Claims (3)
800〜500℃の降温範囲における冷却速度が40℃/s以上であることを特徴とする溶射皮膜を形成した素材の改質方法。 In the method for reforming a material in which a thermal spray coating is formed by irradiating the thermal spray coating of the material on which the thermal spray coating is formed with laser light to melt the thermal spray coating,
A method for reforming a material on which a sprayed coating is formed, wherein a cooling rate in a temperature drop range of 800 to 500 ° C is 40 ° C / s or more.
The material of the sprayed coating according to claim 1 or 2, wherein the material of the sprayed coating is a Ni-based self-fluxing alloy, a Co-based self-fluxing alloy, a Fe-based self-fluxing alloy or a WC self-fluxing alloy. Quality method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351381A JP4862125B2 (en) | 2005-12-06 | 2005-12-06 | Method for reforming material with thermal spray coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351381A JP4862125B2 (en) | 2005-12-06 | 2005-12-06 | Method for reforming material with thermal spray coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007154261A true JP2007154261A (en) | 2007-06-21 |
JP4862125B2 JP4862125B2 (en) | 2012-01-25 |
Family
ID=38238998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005351381A Expired - Fee Related JP4862125B2 (en) | 2005-12-06 | 2005-12-06 | Method for reforming material with thermal spray coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4862125B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014025551A (en) * | 2012-07-27 | 2014-02-06 | Nippon Chutetsukan Kk | Pipe line constituent member subjected to outer surface anticorrosion coating and method for manufacturing the same |
JPWO2016052741A1 (en) * | 2014-10-02 | 2017-04-27 | 新日鐵住金株式会社 | Hearth roll and manufacturing method thereof |
JP2019104194A (en) * | 2017-12-14 | 2019-06-27 | 株式会社極東精機 | Method for manufacturing mold for molding |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61113757A (en) * | 1984-11-09 | 1986-05-31 | Yoshikawa Kogyo Kk | Treatment of film of different metals formed on surface of metallic substrate with laser |
JPS61253357A (en) * | 1985-05-07 | 1986-11-11 | Yoshikawa Kogyo Co Ltd | Method for restoring hardness of thermally sprayed film |
JPH04365847A (en) * | 1991-06-11 | 1992-12-17 | Dai Ichi High Frequency Co Ltd | Remelting treatment of thermally sprayed coating film of self-fluxing alloy |
JPH07188892A (en) * | 1993-12-27 | 1995-07-25 | Dai Ichi High Frequency Co Ltd | Method for forming metal sprayed coating |
JPH1046315A (en) * | 1996-07-26 | 1998-02-17 | Dai Ichi High Frequency Co Ltd | Corrosion resistant heat transfer tube |
JPH10121126A (en) * | 1996-10-16 | 1998-05-12 | Dai Ichi High Frequency Co Ltd | Method for hot treating metallic material |
-
2005
- 2005-12-06 JP JP2005351381A patent/JP4862125B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61113757A (en) * | 1984-11-09 | 1986-05-31 | Yoshikawa Kogyo Kk | Treatment of film of different metals formed on surface of metallic substrate with laser |
JPS61253357A (en) * | 1985-05-07 | 1986-11-11 | Yoshikawa Kogyo Co Ltd | Method for restoring hardness of thermally sprayed film |
JPH04365847A (en) * | 1991-06-11 | 1992-12-17 | Dai Ichi High Frequency Co Ltd | Remelting treatment of thermally sprayed coating film of self-fluxing alloy |
JPH07188892A (en) * | 1993-12-27 | 1995-07-25 | Dai Ichi High Frequency Co Ltd | Method for forming metal sprayed coating |
JPH1046315A (en) * | 1996-07-26 | 1998-02-17 | Dai Ichi High Frequency Co Ltd | Corrosion resistant heat transfer tube |
JPH10121126A (en) * | 1996-10-16 | 1998-05-12 | Dai Ichi High Frequency Co Ltd | Method for hot treating metallic material |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014025551A (en) * | 2012-07-27 | 2014-02-06 | Nippon Chutetsukan Kk | Pipe line constituent member subjected to outer surface anticorrosion coating and method for manufacturing the same |
JPWO2016052741A1 (en) * | 2014-10-02 | 2017-04-27 | 新日鐵住金株式会社 | Hearth roll and manufacturing method thereof |
US10088236B2 (en) | 2014-10-02 | 2018-10-02 | Nippon Steel & Sumitomo Metal Corporation | Hearth roll and manufacturing method therefor |
JP2019104194A (en) * | 2017-12-14 | 2019-06-27 | 株式会社極東精機 | Method for manufacturing mold for molding |
Also Published As
Publication number | Publication date |
---|---|
JP4862125B2 (en) | 2012-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jeyaprakash et al. | Laser cladding process of Cobalt and Nickel based hard-micron-layers on 316L-stainless-steel-substrate | |
Buytoz et al. | In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying | |
Muvvala et al. | Monitoring and assessment of tungsten carbide wettability in laser cladded metal matrix composite coating using an IR pyrometer | |
Khanna et al. | Hard coatings based on thermal spray and laser cladding | |
JP4532343B2 (en) | Carbide cermet sprayed coating member excellent in corrosion resistance and method for producing the same | |
JP2010229492A (en) | Method for modifying surface of white yttrium oxide thermal-sprayed film, and member coated with yttrium oxide thermal-sprayed film | |
Kumar et al. | Enhancement of surface properties of austenitic stainless steel by nickel based alloy cladding developed using microwave energy technique | |
Hamatani et al. | Mechanical and thermal properties of HVOF sprayed Ni based alloys with carbide | |
Qin et al. | Optimized microstructure and properties of Cr 3 C 2-NiCr cermet coating by HVOF/laser hybrid processing | |
Zafar et al. | Microstructure and mechanical properties of microwave post-processed Ni coating | |
Luo et al. | Effect of arc power on the wear and high-temperature oxidation resistances of plasma-sprayed fe-based amorphous coatings | |
JP4862125B2 (en) | Method for reforming material with thermal spray coating | |
Zhang et al. | Microstructure and mechanical properties investigation of Ni35A–TiC composite coating deposited on AISI 1045 steel by laser cladding | |
Fagoaga et al. | Multilayer coatings by continuous detonation system spray technique | |
Rymer et al. | Enhanced high-temperature wear behavior of high-speed laser metal deposited Al0. 3CrFeCoNi coatings alloyed with Nb and Mo | |
Hebbale et al. | A comparative study on characteristics of composite (Cr3C2-NiCr) clad developed through diode laser and microwave energy | |
Szajna et al. | The influence of laser remelting on microstructural changes and hardness level of flame-sprayed NiCrBSi coatings with tungsten carbide addition | |
Cui et al. | Friction and wear performance of laser clad Mo modified Stellite 12 matrix coatings at elevated temperature | |
Hong et al. | A novel approach to the deposition of Co-Mo-Cr-Si coating on Haynes 282 by laser fusion and laser remelting | |
FI123631B (en) | COOLING ELEMENT | |
CN110004372B (en) | High-temperature-resistant, oxidation-resistant and wear-resistant metallurgical roller and preparation method thereof | |
Ye et al. | Effect of Y2O3 addition on the microstructure and properties of Ni60 additives by micro-plasma cladding | |
Gupta et al. | Microwave cladding: a new surface engineering technique for developing uniform microstructure | |
Tuominen | Engineering coatings by laser cladding-the study of wear and corrosion properties | |
Rauf et al. | Cladding of Ni–20Cr coatings by optimizing the CO 2 laser parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111008 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4862125 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |