JP2007154099A - Silicone rubber adhesive composition and semiconductor device using the same - Google Patents

Silicone rubber adhesive composition and semiconductor device using the same Download PDF

Info

Publication number
JP2007154099A
JP2007154099A JP2005353799A JP2005353799A JP2007154099A JP 2007154099 A JP2007154099 A JP 2007154099A JP 2005353799 A JP2005353799 A JP 2005353799A JP 2005353799 A JP2005353799 A JP 2005353799A JP 2007154099 A JP2007154099 A JP 2007154099A
Authority
JP
Japan
Prior art keywords
silicone rubber
rubber adhesive
group
weight
adhesive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005353799A
Other languages
Japanese (ja)
Inventor
Nobuo Hirai
信男 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Momentive Performance Materials Inc
Original Assignee
Momentive Performance Materials Japan LLC
Momentive Performance Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Japan LLC, Momentive Performance Materials Inc filed Critical Momentive Performance Materials Japan LLC
Priority to JP2005353799A priority Critical patent/JP2007154099A/en
Publication of JP2007154099A publication Critical patent/JP2007154099A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicone rubber adhesive composition, wherein wire-bondability after jointing a semiconductor pellet to a member for mounting a semiconductor pellet is not deteriorated, and to provide a semiconductor device using the same. <P>SOLUTION: The silicone rubber adhesive composition comprises (A) a polyorgano siloxane containing 2 or more alkenyl groups bound to two or more silicone atoms in a molecule, the content of the alkenyl group being 30-600 mmol/100 g, (B) a polyorgano hydrogen siloxane containing 3 or more SiH groups per molecule, (C) a platinum type catalyst and (D) an adhesive agent, the cured product of the composition having a complex modulus of 0.9 MPa or more at 23&deg;C and 10 Hz shearing frequency and die-shear hardness of 0.05 MPa or more. The semiconductor device comprises a semiconductor pellet and a member for mounting a semiconductor pellet, which are jointed by a cured product of the above silicone rubber adhesive agent. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、シリコーンゴム接着剤組成物及びそれを用いた半導体装置に係り、特に半導体ペレットと半導体ペレット取付部材とを接合するシリコーンゴム接着剤組成物、及び前記組成物の硬化物により半導体ペレットと半導体ペレット取付部材とが接合されてなる半導体装置に関する。   The present invention relates to a silicone rubber adhesive composition and a semiconductor device using the same, and in particular, a silicone rubber adhesive composition for joining a semiconductor pellet and a semiconductor pellet mounting member, and a semiconductor pellet by a cured product of the composition. The present invention relates to a semiconductor device formed by bonding a semiconductor pellet mounting member.

半導体装置は、例えばSiからなる半導体ペレットがその支持体である半導体ペレット取付部材(タブ)にエポキシ樹脂、ポリイミド樹脂等の接着剤により接合され、さらに前記半導体ペレット上のボンディングパッドとリードフレームとが超音波圧着法、熱圧着法、超音波熱圧着法等によってワイヤボンディングされ、これらの一体化物が封止樹脂で封止されている。しかし、従来のエポキシ樹脂やポリイミド樹脂等の接着剤では、半導体ペレットとタブとの熱膨張率の差に起因する応力によって、半導体ペレットに反りやクラックが発生し易い。   In a semiconductor device, for example, a semiconductor pellet made of Si is bonded to a semiconductor pellet mounting member (tab) as a support by an adhesive such as an epoxy resin or a polyimide resin, and a bonding pad and a lead frame on the semiconductor pellet are bonded to each other. Wire bonding is performed by an ultrasonic pressure bonding method, a thermocompression bonding method, an ultrasonic heat pressure bonding method, or the like, and these integrated products are sealed with a sealing resin. However, with conventional adhesives such as epoxy resin and polyimide resin, warpage and cracks are likely to occur in the semiconductor pellet due to the stress caused by the difference in thermal expansion coefficient between the semiconductor pellet and the tab.

そこで、シリコーンゴム組成物により半導体ペレットとタブとを接合した半導体装置が提案されている(例えば特許文献1参照)。これは、半導体ペレットとタブとの熱膨張差による内部歪をシリコーンゴム弾性体により緩和しようとしたものである。   Therefore, a semiconductor device in which a semiconductor pellet and a tab are joined with a silicone rubber composition has been proposed (see, for example, Patent Document 1). This is intended to relieve internal strain due to the difference in thermal expansion between the semiconductor pellet and the tab with the silicone rubber elastic body.

しかしながら、従来のシリコーンゴム組成物を用いて半導体ペレットと半導体ペレット取付部材とを接合した後、例えばリードフレームから前記半導体ペレット上のボンディングパッドに超音波圧着法等でワイヤボンディングすると、半導体ペレットが振動し易い。その結果、半導体ペレット上のボンディングパッドとボンディングワイヤとの接合性(ワイヤボンダビリティー)が低下し易く、得られる半導体装置の信頼性が低下する傾向にあった。
特開昭61−5530号公報
However, after bonding the semiconductor pellet and the semiconductor pellet mounting member using the conventional silicone rubber composition, for example, by wire bonding from the lead frame to the bonding pad on the semiconductor pellet by an ultrasonic pressure bonding method, the semiconductor pellet vibrates. Easy to do. As a result, the bondability (wire bondability) between the bonding pad on the semiconductor pellet and the bonding wire tends to be lowered, and the reliability of the obtained semiconductor device tends to be lowered.
JP 61-5530 A

本発明の目的は、このような課題に対処するためになされたもので、半導体ペレットを半導体ペレット取付部材に接合した後、ワイヤボンダビリティーを損なわないシリコーンゴム接着剤組成物及びそれを用いた半導体装置を提供することにある。   An object of the present invention is to cope with such problems. A silicone rubber adhesive composition that does not impair wire bondability after bonding a semiconductor pellet to a semiconductor pellet mounting member and a semiconductor using the same To provide an apparatus.

本発明者らは、上記目的を達成するために鋭意検討した結果、(A)ベースポリマー、(B)架橋剤及び(C)白金系触媒を含有する付加反応硬化型のシリコーンゴム組成物において、(A)ベースポリマーとして特定量のアルケニル基を含有するシロキサンを用いて硬化物の複素弾性率及びダイシェア強度を特定の範囲にすることによって、半導体ペレットとタブとを接合した後、半導体ペレット上のボンディングパッドとリードフレームとをワイヤボンディングする際のワイヤボンダビリティーが損なわれないことを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that in an addition reaction curable silicone rubber composition containing (A) a base polymer, (B) a crosslinking agent, and (C) a platinum-based catalyst, (A) After joining the semiconductor pellet and the tab by making the complex elastic modulus and die shear strength of the cured product into a specific range using siloxane containing a specific amount of alkenyl group as a base polymer, The present inventors have found that the wire bondability at the time of wire bonding between the bonding pad and the lead frame is not impaired, and have made the present invention.

すなわち、本発明のシリコーンゴム接着剤組成物は、
(A)1分子中に2個以上のケイ素原子に結合したアルケニル基を有し、前記アルケニル基含有量が30〜600mmol/100gであるアルケニル基含有ポリオルガノシロキサン 100重量部、
(B)1分子中に3個以上のSiH基を含有するポリオルガノハイドロジェンシロキサン
(A)成分のケイ素原子結合アルケニル基1個に対して、SiH基が1.0〜5.0個となる量、
(C)白金族系触媒 触媒量、
及び
(D)接着性付与剤 0.3〜20重量部
を含有し、硬化後のせん断周波数10Hzにおける23℃での複素弾性率が0.9MPa以上、かつ、ダイシェア強度が0.05MPa以上であることを特徴とする。
That is, the silicone rubber adhesive composition of the present invention is
(A) 100 parts by weight of an alkenyl group-containing polyorganosiloxane having an alkenyl group bonded to two or more silicon atoms in one molecule and having an alkenyl group content of 30 to 600 mmol / 100 g,
(B) Polyorganohydrogensiloxane containing 3 or more SiH groups in one molecule
(A) The quantity which becomes 1.0-5.0 SiH group with respect to one silicon atom bond alkenyl group of a component,
(C) platinum group catalyst catalyst amount,
And (D) an adhesiveness imparting agent containing 0.3 to 20 parts by weight, a complex elastic modulus at 23 ° C. at a shear frequency of 10 Hz after curing is 0.9 MPa or more, and a die shear strength is 0.05 MPa or more. It is characterized by that.

また、本発明の半導体装置は、シリコーンゴム接着剤組成物を硬化してなるシリコーンゴム接着剤により、半導体ペレットと半導体ペレット取付部材とが接合されてなることを特徴とする。   Further, the semiconductor device of the present invention is characterized in that the semiconductor pellet and the semiconductor pellet mounting member are joined by a silicone rubber adhesive obtained by curing a silicone rubber adhesive composition.

上記構成により、半導体ペレットを半導体ペレット取付部材に接合した後、ワイヤボンダビリティーを損なわないシリコーンゴム接着剤組成物及びそれを用いた半導体装置を提供することが可能となる。   With the above configuration, it is possible to provide a silicone rubber adhesive composition that does not impair wire bondability after the semiconductor pellet is bonded to the semiconductor pellet mounting member, and a semiconductor device using the same.

以下、本発明のシリコーンゴム接着剤組成物について説明する。   Hereinafter, the silicone rubber adhesive composition of the present invention will be described.

[(A)成分]
(A)成分はベースポリマーであり、1分子中に2個以上のケイ素原子に結合したアルケニル基を有する。ケイ素原子結合アルケニル基が2個未満であると、得られた組成物が十分に硬化し難くなる。
[(A) component]
The component (A) is a base polymer, and has an alkenyl group bonded to two or more silicon atoms in one molecule. When the number of silicon atom-bonded alkenyl groups is less than 2, the resulting composition is not sufficiently cured.

ケイ素原子結合アルケニル基としては、例えばビニル基、アリル基、ブテニル基、ペテニル基、ヘキセニル基等が挙げられ、特にビニル基が好ましい。ケイ素原子結合アルケニル基(SiVi基)の含有量は、(A)成分100g中のモル数が30〜600mmol、特に40〜300mmolであることが好ましい。30mmol未満であると、所望の複素弾性率が得られない。一方、600mmolを越えると、所望のダイシェア強度が得られない。なお、SiVi基含有量は、(SiVi基の平均個数)/(理論平均分子構造の分子量)×1000で算出することによって求めることができる。ケイ素原子結合アルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよいが、得られる組成物の硬化速度、硬化物の物性、特に機械的強度の点から、少なくとも分子鎖末端のケイ素原子、特に分子鎖両末端のケイ素原子に結合していることが好ましい。   Examples of the silicon atom-bonded alkenyl group include a vinyl group, an allyl group, a butenyl group, a petenyl group, and a hexenyl group, and a vinyl group is particularly preferable. The content of the silicon-bonded alkenyl group (SiVi group) is preferably 30 to 600 mmol, particularly preferably 40 to 300 mmol, in 100 g of component (A). If it is less than 30 mmol, the desired complex elastic modulus cannot be obtained. On the other hand, if it exceeds 600 mmol, the desired die shear strength cannot be obtained. In addition, SiVi group content can be calculated | required by calculating by (average number of SiVi groups) / (molecular weight of a theoretical average molecular structure) x1000. The silicon-bonded alkenyl group may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both, but the curing rate of the resulting composition From the viewpoint of physical properties of the cured product, particularly mechanical strength, it is preferably bonded to at least silicon atoms at the molecular chain terminals, particularly silicon atoms at both molecular chain terminals.

アルケニル基以外のケイ素原子に結合した有機基としては、例えばメチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、キシリル基等のアリール基あるいはこれらの水素原子が部分的に塩素原子、フッ素原子などで置換されたハロゲン化炭化水素基等の炭素原子数1〜12個、好ましくは炭素原子数1〜8個程度のものが挙げられる。合成の容易さから、特にアルキル基、アリール基が好ましく、メチル基、フェニル基がより好ましい。   Examples of organic groups bonded to silicon atoms other than alkenyl groups include alkyl groups such as methyl, ethyl and propyl groups, cycloalkyl groups such as cyclopentyl and cyclohexyl groups, and aryl groups such as phenyl, tolyl and xylyl groups. And those having 1 to 12 carbon atoms, preferably about 1 to 8 carbon atoms, such as a halogenated hydrocarbon group in which a group or a hydrogen atom thereof is partially substituted with a chlorine atom, a fluorine atom or the like. . In view of ease of synthesis, an alkyl group and an aryl group are particularly preferable, and a methyl group and a phenyl group are more preferable.

(A)成分の23℃における粘度は、0.1〜500Pa・s、特に0.2〜300Pa・sであることが好ましい。0.1Pa・s未満であると、硬化物の良好な物性が得られず、脆くなり易い。一方、500Pa・sを超えると、得られた組成物の流動性が低下して作業性が悪化し易くなる。   The viscosity of component (A) at 23 ° C. is preferably 0.1 to 500 Pa · s, particularly preferably 0.2 to 300 Pa · s. If it is less than 0.1 Pa · s, good physical properties of the cured product cannot be obtained, and it tends to be brittle. On the other hand, when it exceeds 500 Pa · s, the fluidity of the obtained composition is lowered and the workability is liable to deteriorate.

(A)成分の分子構造は、例えば直鎖状、分岐状、三次元網目状等が挙げられ、1種単独又は2種以上を混合して用いることができる。例えば固体の場合には、直鎖状のアルケニル基含有ポリオルガノシロキサンで希釈し、23℃における粘度を上記範囲(0.1〜500Pa・s)に調整して用いてもよい。   Examples of the molecular structure of the component (A) include linear, branched, and three-dimensional network, and these can be used singly or in combination of two or more. For example, in the case of a solid, it may be diluted with a linear alkenyl group-containing polyorganosiloxane and the viscosity at 23 ° C. may be adjusted to the above range (0.1 to 500 Pa · s).

[(B)成分]
(B)成分のポリオルガノハイドロジェンシロキサンは架橋剤である。1分子中に3個以上のケイ素原子に結合した水素原子(SiH基)を有している。SiH基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよい。その分子構造は、直鎖状、分岐鎖状、環状あるいは三次元網目状構造のいずれでもよい。
[Component (B)]
The (B) component polyorganohydrogensiloxane is a crosslinking agent. It has a hydrogen atom (SiH group) bonded to three or more silicon atoms in one molecule. The SiH group may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both. The molecular structure may be any of linear, branched, cyclic or three-dimensional network structure.

(B)成分としては、平均組成式:
SiO[4−(a+b)]/2
で示されるものが用いられる。
上記式中、Rは、脂肪族不飽和炭化水素基を除く、置換または非置換の1価炭化水素基である。Rとしては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基、オクチル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;およびこれらの基の水素原子の一部または全部がフッ素、塩素、臭素等のハロゲン原子やシアノ基で置換されているもの、例えばクロロメチル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。これらのうちで、炭素数が1〜4のものが好適であり、合成のし易さ、コストの面からアルキル基が好ましい。メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基がより好ましく、特にメチル基が好ましい。
As the component (B), an average composition formula:
R 1 a H b SiO [4- (a + b)] / 2
What is shown by is used.
In the above formula, R 1 is a substituted or unsubstituted monovalent hydrocarbon group excluding an aliphatic unsaturated hydrocarbon group. Examples of R 1 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, hexyl, cyclohexyl, and octyl; aryl such as phenyl and tolyl An aralkyl group such as a benzyl group or a phenylethyl group; and a group in which some or all of the hydrogen atoms are substituted with a halogen atom such as fluorine, chlorine or bromine or a cyano group, such as a chloromethyl group, Examples include a bromoethyl group, a trifluoropropyl group, a cyanoethyl group, and the like. Of these, those having 1 to 4 carbon atoms are suitable, and an alkyl group is preferred from the viewpoint of ease of synthesis and cost. A methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a tert-butyl group are more preferable, and a methyl group is particularly preferable.

また、a、bはそれぞれ正数であり、かつ、0.5≦a≦2、0<b≦2、0.5<a+b≦3を満足する数であり、特に0.6≦a≦1.9、0.01≦b≦1.0、0.6≦a+b≦2.8を満足する数であることが好ましい。   A and b are positive numbers, and 0.5 ≦ a ≦ 2, 0 <b ≦ 2, and 0.5 <a + b ≦ 3, particularly 0.6 ≦ a ≦ 1. 0.9, 0.01 ≦ b ≦ 1.0, and 0.6 ≦ a + b ≦ 2.8.

(B)成分の23℃における粘度は、0.01〜0.5Pa・sであることが好ましい。   The viscosity of component (B) at 23 ° C. is preferably 0.01 to 0.5 Pa · s.

(B)成分の配合量は、前記(A)成分のケイ素原子結合アルケニル基1個に対して、SiH基の合計個数が1.0〜5.0個、特に1.5〜4.0となる量が好ましい。1.0個未満であると、得られた組成物が十分に硬化し難くなり、硬化後、所望の複素弾性率及びダイシェア強度が得られ難くなる。一方、5.0個を越えると、硬化後の物性が経時で変化し易くなる。   The blending amount of the component (B) is such that the total number of SiH groups is 1.0 to 5.0, particularly 1.5 to 4.0 with respect to one silicon atom-bonded alkenyl group of the component (A). Is preferred. When it is less than 1.0, the obtained composition is not sufficiently cured, and it is difficult to obtain desired complex elastic modulus and die shear strength after curing. On the other hand, if it exceeds 5.0, the physical properties after curing tend to change with time.

[(C)成分]
(C)成分は、本組成物の硬化を促進させる成分である。
[Component (C)]
(C) component is a component which accelerates | stimulates hardening of this composition.

(C)成分としては、ヒドロシリル化反応に用いられる触媒として周知の触媒を用いることができる。例えば白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。   As the component (C), a known catalyst can be used as a catalyst used in the hydrosilylation reaction. For example, platinum black, secondary platinum chloride, chloroplatinic acid, reaction product of chloroplatinic acid and monohydric alcohol, complex of chloroplatinic acid and olefins and vinyl siloxane, platinum-based catalyst such as platinum bisacetoacetate, palladium-based Examples thereof include platinum group metal catalysts such as catalysts and rhodium catalysts.

(C)成分の配合量は、硬化に必要な量であればよく、所望の硬化速度などに応じて適宜調整することができる。通常、(A)成分100重量部に対し白金元素に換算して0.1〜1000ppm、特に1〜200ppmの範囲であることが好ましい。   The blending amount of the component (C) may be an amount necessary for curing, and can be appropriately adjusted according to a desired curing rate. Usually, it is preferably 0.1 to 1000 ppm, particularly preferably 1 to 200 ppm in terms of platinum element with respect to 100 parts by weight of component (A).

[(D)成分]
(D)成分は、本組成物に半導体ペレット、タブ等への接着性を付与する成分であり、公知のものが使用でき、本組成物の付加加硫を阻害しないものであればよい。
(D)成分は、オルガノシラン、またはケイ素原子数2〜50個、特に4〜20個のオルガノシロキサンオリゴマー等の有機ケイ素化合物が好適に用いられる。このような有機ケイ素化合物は、ケイ素原子に結合したアルコキシ基及び/又はアルケニルオキシ基を有し、かつ、Si−H基、アルケニル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、エステル基、無水カルボキシ基、アミノ基及びアミド基から選ばれる少なくとも1個の反応性官能基を有することが好ましい。
[(D) component]
The component (D) is a component that imparts adhesion to semiconductor pellets, tabs, and the like to the composition, and any known component can be used as long as it does not inhibit the addition vulcanization of the composition.
As the component (D), organosilane or an organosilicon compound such as an organosiloxane oligomer having 2 to 50, particularly 4 to 20, silicon atoms is preferably used. Such an organosilicon compound has an alkoxy group and / or an alkenyloxy group bonded to a silicon atom, and has a Si-H group, an alkenyl group, an acrylic group, a methacryl group, an epoxy group, a mercapto group, an ester group, It preferably has at least one reactive functional group selected from an anhydrous carboxy group, an amino group, and an amide group.

(D)成分としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性基含有アルコキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン等のアルケニル基含有アルコキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン等のアクリル基又はメタクリル基含有アルコキシシラン、メルカプトプロピルトリメトキシシラン等のメルカプト基含有アルコキシシランなどのアルコキシシランが挙げられる。また、オルガノシロキサンオリゴマーとしては、下記のような化合物が挙げられる。

Figure 2007154099
Examples of the component (D) include alkoxy-functional group-containing alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrimethoxysilane, and vinyltrimethoxysilane. Alkenyl group-containing alkoxysilanes such as ethoxysilane and vinyltri (methoxyethoxy) silane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N -Β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, amino group-containing alkoxysilanes such as N-phenyl-γ-aminopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxy Shi Examples include alkoxy silanes such as acrylic or methacrylic group-containing alkoxysilanes such as orchid and mercapto group-containing alkoxysilanes such as mercaptopropyltrimethoxysilane. In addition, examples of the organosiloxane oligomer include the following compounds.
Figure 2007154099

(D)成分の配合量は、(A)成分100重量部に対して0.3〜20重量部、特に2.0〜15重量部であることが好ましい。0.3重量部未満では、十分な接着性が得られない。一方、20重量部を越えると、硬化物の所望の複素弾性率、ダイシェア強度が得られ難くなる。   (D) The compounding quantity of a component is 0.3-20 weight part with respect to 100 weight part of (A) component, It is preferable that it is 2.0-15 weight part especially. If it is less than 0.3 part by weight, sufficient adhesion cannot be obtained. On the other hand, if it exceeds 20 parts by weight, it is difficult to obtain the desired complex elastic modulus and die shear strength of the cured product.

上記(A)〜(D)成分を基本成分とし、これらに必要に応じて、以下の(E)成分、その他の任意成分を含有してもよい。   The above components (A) to (D) are used as basic components, and these may contain the following components (E) and other optional components as necessary.

[(E)成分]
(E)成分は充填剤であり、本組成物に良好な作業性と接着耐久性を付与する成分である。
(E)成分としては、比表面積が50m/g以上の無定形シリカ、平均粒径が10μm以下の石英粉及び石英粉を溶融してなる石英ガラス粉が挙げられ、1種単独又は2種以上を併用して用いることができる。経時による充填剤の沈降を防止し、さらには塗膜の均一性及び接着耐久性を向上させる上で、無定形シリカを含む2種以上を併用して用いることが好ましい。
[(E) component]
The component (E) is a filler, and is a component that imparts good workability and adhesion durability to the composition.
Examples of the component (E) include amorphous silica having a specific surface area of 50 m 2 / g or more, quartz powder having an average particle size of 10 μm or less, and quartz glass powder obtained by melting quartz powder, one kind alone or two kinds The above can be used in combination. In order to prevent sedimentation of the filler over time and further improve the uniformity and adhesion durability of the coating film, it is preferable to use two or more kinds including amorphous silica in combination.

上記無定形シリカを用いる場合のそのBET比表面積は、50m/g以上、特に50〜400m/gであることが好ましい。また、上記石英粉及び/又は石英ガラス粉を用いる場合のその平均粒径は、10μm以下、特に0.1〜5μmであることが好ましい。10μmを超えると、十分な接着耐久性を付与し難くなる。なお、平均粒径は、例えばレーザー光回折法による粒度分布測定により得ることができ、重量平均値(又はメジアン径)等として求めることができる。 Its BET specific surface area of the case of using the amorphous silica, 50 m 2 / g or more, particularly preferably 50 to 400 m 2 / g. Moreover, when using the said quartz powder and / or quartz glass powder, it is preferable that the average particle diameter is 10 micrometers or less, especially 0.1-5 micrometers. When it exceeds 10 μm, it becomes difficult to provide sufficient adhesion durability. The average particle diameter can be obtained by, for example, particle size distribution measurement by a laser light diffraction method, and can be obtained as a weight average value (or median diameter) or the like.

(E)成分の配合量は、(A)成分100重量部に対して、0〜400重量部、特に0〜300重量部が好ましい。400重量部を越えると、得られた組成物の流動性が低下して作業性及び成形性が悪化し易くなる。   (E) The compounding quantity of component is 0-400 weight part with respect to 100 weight part of (A) component, Especially 0-300 weight part is preferable. When it exceeds 400 parts by weight, the fluidity of the obtained composition is lowered, and the workability and moldability are liable to deteriorate.

さらに必要に応じて、その他任意成分として硬化速度を調整するための反応抑制剤、着色剤、難燃性付与剤、耐熱性向上剤、可塑剤等を本発明の目的を損なわない範囲で添加してもよい。   Furthermore, if necessary, a reaction inhibitor, a colorant, a flame retardant, a heat resistance improver, a plasticizer, etc. for adjusting the curing rate as other optional components are added within a range not impairing the object of the present invention. May be.

本発明のシリコーンゴム接着剤組成物の製造方法としては、例えば(A)〜(E)成分及びその他任意成分をプラネタリーミキサー、ニーダー、品川ミキサー等の混合機で混合する方法等が挙げられる。なお、各成分の添加順序は特に限定されるものではない。   As a manufacturing method of the silicone rubber adhesive composition of this invention, the method etc. which mix (A)-(E) component and other arbitrary components with mixers, such as a planetary mixer, a kneader, and a Shinagawa mixer, etc. are mentioned, for example. In addition, the addition order of each component is not specifically limited.

得られた組成物を硬化させる方法は限定されず、例えば本組成物を半導体ペレットとタブとの間に介在させた後、室温で放置する方法、又は100〜150℃で30〜60分程度加熱する方法等が挙げられる。   A method for curing the obtained composition is not limited, for example, a method in which the present composition is interposed between a semiconductor pellet and a tub and then left at room temperature, or heated at 100 to 150 ° C. for about 30 to 60 minutes. And the like.

硬化後の複素弾性率は、23℃、せん断周波数10Hzにおいて、0.9MPa以上、特に0.9〜100MPaが好ましい。0.9MPa未満であると、半導体ペレットとリードフレームをワイヤボンディングする際に、半導体ペレットが振動し易く、ワイヤボンダビリティーが損なわれる恐れがある。なお、23℃、せん断周波数10Hzにおける複素弾性率は、例えばシリコーンゴム接着剤(硬化物)を厚さ1mm、直径25mmの円板プレート状に調整した後、これを動的粘弾性測定装置により測定することによって求められる。   The complex elastic modulus after curing is preferably 0.9 MPa or more, particularly 0.9 to 100 MPa at 23 ° C. and a shear frequency of 10 Hz. When the pressure is less than 0.9 MPa, the semiconductor pellet is likely to vibrate when wire bonding the semiconductor pellet and the lead frame, and the wire bondability may be impaired. The complex elastic modulus at 23 ° C. and a shear frequency of 10 Hz is measured with a dynamic viscoelasticity measuring device after adjusting, for example, a silicone rubber adhesive (cured product) into a disk plate shape having a thickness of 1 mm and a diameter of 25 mm. It is required by doing.

また、硬化後のダイシェア強度は、0.05MPa以上、特に0.05〜100MPaが好ましい。0.05MPa未満であると、半導体ペレットとリードフレームをワイヤボンディングする際に、半導体ペレットが振動する恐れがある。なお、ダイシェア強度は、例えば図2に示すように、シリコーンゴム接着剤組成物を半導体チップ22とアルミナ板23等との間に介在させて加熱硬化し、シリコーンゴム接着剤21を形成した後、接触工具24により半導体チップ22に対して横方向に力を加え、アルミナ板23から半導体チップ22が剥がれる時の強度を測定することによって求められる。   Further, the die shear strength after curing is preferably 0.05 MPa or more, particularly preferably 0.05 to 100 MPa. If the pressure is less than 0.05 MPa, the semiconductor pellet may vibrate when wire bonding the semiconductor pellet and the lead frame. For example, as shown in FIG. 2, the die shear strength is obtained by interposing a silicone rubber adhesive composition between the semiconductor chip 22 and the alumina plate 23 and heat curing to form the silicone rubber adhesive 21. This is obtained by applying a force in the lateral direction to the semiconductor chip 22 by the contact tool 24 and measuring the strength when the semiconductor chip 22 is peeled off from the alumina plate 23.

したがって、本発明のシリコーンゴム接着剤組成物は、硬化後の複素弾性率(23℃、せん断周波数10Hz)が0.9MPa以上であるとともに、ダイシェア強度が0.05MPa以上であるため、ダイボンディング後のワイヤボンダビリティーが阻害されない。したがって、特に1mm×1mm以下の半導体ペレットと、タブとを接合するシリコーン接着剤として好適である。   Therefore, the silicone rubber adhesive composition of the present invention has a complex elastic modulus (23 ° C., shear frequency 10 Hz) after curing of 0.9 MPa or more and a die shear strength of 0.05 MPa or more. Wire bondability is not hindered. Therefore, it is particularly suitable as a silicone adhesive for joining a semiconductor pellet of 1 mm × 1 mm or less and a tab.

次に、図1を用いて、本組成物の硬化物を適用した半導体装置の一例について説明する。
半導体装置1は、タブ2と半導体ペレット3との間に、本組成物の硬化物であるシリコーンゴム接着剤層4が介在されている。また、半導体ペレット3に設けられたボンディングパッド5とリードフレーム6とがボンディングワイヤ7により接続されており、これらの一体化物が封止樹脂8で封止されている。シリコーンゴム接着剤層4の厚さは、10〜100μmであることが好ましい。
Next, an example of a semiconductor device to which a cured product of the present composition is applied will be described with reference to FIG.
In the semiconductor device 1, a silicone rubber adhesive layer 4 that is a cured product of the present composition is interposed between the tab 2 and the semiconductor pellet 3. Further, the bonding pad 5 provided on the semiconductor pellet 3 and the lead frame 6 are connected by a bonding wire 7, and these integrated products are sealed with a sealing resin 8. The thickness of the silicone rubber adhesive layer 4 is preferably 10 to 100 μm.

本発明を実施例により詳細に説明するが、本発明は実施例に限定されるものではない。実施例及び比較例中、粘度は23℃において測定した値である。また、実施例及び比較例で得られたシリコーンゴム接着剤組成物は、以下のようにして評価し、結果を表1に示した。表1に示した特性は、23℃において測定した値である。   The present invention will be described in detail with reference to examples, but the present invention is not limited to the examples. In the examples and comparative examples, the viscosity is a value measured at 23 ° C. Moreover, the silicone rubber adhesive compositions obtained in Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 1. The characteristics shown in Table 1 are values measured at 23 ° C.

[複素弾性率]
得られたシリコーンゴム接着剤組成物を150℃で1時間加熱硬化させて、厚さ1mm、直径25mmの円板プレート状のシリコーンゴム接着剤を作製した。このシリコーンゴム接着剤のせん断周波数10Hzにおける複素弾性率を動的粘弾性測定装置(ティー・エイ・インスツルメント社製)により測定した。
[Complex modulus]
The obtained silicone rubber adhesive composition was heat-cured at 150 ° C. for 1 hour to produce a disc-shaped silicone rubber adhesive having a thickness of 1 mm and a diameter of 25 mm. The complex elastic modulus of this silicone rubber adhesive at a shear frequency of 10 Hz was measured with a dynamic viscoelasticity measuring device (manufactured by TA Instruments).

[ダイシェア強度]
得られたシリコーンゴム接着剤組成物を4mm×4mmの半導体チップとアルミナ板との間に厚さ10μmで介在させ、150℃で1時間加熱硬化させた。次に、ダイシェア強度測定装置(デイジ社製)により、接触工具によって半導体チップに横方向に力を加え、アルミナ板から半導体チップが剥がれる時の強度を測定した。
[Die shear strength]
The obtained silicone rubber adhesive composition was interposed between a 4 mm × 4 mm semiconductor chip and an alumina plate at a thickness of 10 μm and cured by heating at 150 ° C. for 1 hour. Next, a die shear strength measuring device (manufactured by Daisy) applied a force in the lateral direction to the semiconductor chip with a contact tool, and measured the strength when the semiconductor chip peeled from the alumina plate.

[ワイヤボンダビリティー性]
得られたシリコーンゴム接着剤組成物を半導体ペレットとタブとの間に介在させ、150℃で1時間加熱硬化した。次に、リードフレームから半導体ペレットの上端部に設けられたAlパッドに、超音波熱圧着法によりAu線でワイヤボンディングした。このとき、半導体ペレットが振動することなく結線可能であった場合を○とし、半導体ペレットが振動して結線不可能であった場合を×とした。
[Wire bondability]
The obtained silicone rubber adhesive composition was interposed between the semiconductor pellet and the tub and cured by heating at 150 ° C. for 1 hour. Next, wire bonding was performed with an Au wire by an ultrasonic thermocompression bonding method from the lead frame to an Al pad provided on the upper end portion of the semiconductor pellet. At this time, the case where the semiconductor pellet could be connected without vibration was marked with ◯, and the case where the semiconductor pellet was vibrated and could not be connected was marked with x.

[実施例1]
(A−1)粘度が3Pa・sであり、両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量0.08mmol/g)10重量部、(A−2)23℃で固体である三次元網目状ビニル基含有ポリジメチルシロキサン(SiVi基含有量0.6mmol/g)90重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)11重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.2重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.4重量部、(E−3)BET比表面積が130m/gの無定形シリカ粉末8重量部を万能混錬器に添加し、均一に混合して、シリコーンゴム接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。
[Example 1]
(A-1) 10 parts by weight of polydimethylsiloxane having a viscosity of 3 Pa · s and both ends blocked with dimethylvinylsiloxy groups (SiVi group content 0.08 mmol / g), (A-2) at 23 ° C. 90 parts by weight of solid three-dimensional network vinyl group-containing polydimethylsiloxane (SiVi group content 0.6 mmol / g), (B) polyorganohydrogensiloxane (SiH group content) having a viscosity of 0.02 Pa · s 10 mmol / g) 11 parts by weight, (C) 0.05 part by weight of a vinylsiloxane complex compound of chloroplatinic acid, (D-1) 0.2 part by weight of γ-glycidoxypropyltrimethoxysilane, (D-2) beta-(3,4-epoxycyclohexyl) ethyltrimethoxysilane 0.4 parts by weight, (E-3) amorphous silica powder 8 fold BET specific surface area of 130m 2 / g Part was added to a universal kneader vessel, they were uniformly mixed to obtain a silicone rubber adhesive composition.
The properties of this composition were measured and the results are shown in Table 1.

[実施例2]
(A−1)粘度が3Pa・sであり、両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量0.08mmol/g)10重量部、(A−2)23℃で固体である三次元網目状ビニル基含有ポリジメチルシロキサン(SiVi基含有量0.6mmol/g)90重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)11重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.4重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.8重量部、(E−1)平均粒経が5μmの石英粉100重量部、(E−3)BET比表面積が130m/gの無定形シリカ粉末1重量部を万能混錬器に添加し、均一に混合して、シリコーンゴム接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。
[Example 2]
(A-1) 10 parts by weight of polydimethylsiloxane having a viscosity of 3 Pa · s and both ends blocked with dimethylvinylsiloxy groups (SiVi group content 0.08 mmol / g), (A-2) at 23 ° C. 90 parts by weight of solid three-dimensional network vinyl group-containing polydimethylsiloxane (SiVi group content 0.6 mmol / g), (B) polyorganohydrogensiloxane (SiH group content) having a viscosity of 0.02 Pa · s 10 mmol / g) 11 parts by weight, (C) 0.05 part by weight of a vinyl siloxane complex compound of chloroplatinic acid, (D-1) 0.4 part by weight of γ-glycidoxypropyltrimethoxysilane, (D-2) β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 0.8 parts by weight, (E-1) 100 parts by weight of quartz powder having an average particle size of 5 μm, (E-3) BET Surface area was added to amorphous silica powder 1 part by weight of 130m 2 / g to universal kneading device, and uniformly mixed to obtain a silicone rubber adhesive composition.
The properties of this composition were measured and the results are shown in Table 1.

[実施例3]
(A−1)粘度が3Pa・sであり、分子鎖両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量0.08mmol/g)80重量部、(A−4)粘度が0.3Pa・sであるビニル基含有ポリジメチルシロキサン(SiVi基含有量2.4mmol/g)20重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)11重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.3重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.6重量部、(E−2)平均粒経が2μmの石英ガラス粉50重量部、(E−3)BET比表面積が130m/gの無定形シリカ粉末1重量部を万能混錬器に添加し、均一に混合して、シリコーンゴム接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。
[Example 3]
(A-1) 80 parts by weight of polydimethylsiloxane (SiVi group content 0.08 mmol / g) having a viscosity of 3 Pa · s and having both molecular chain ends blocked with dimethylvinylsiloxy groups, (A-4) viscosity 20 parts by weight of a vinyl group-containing polydimethylsiloxane (SiVi group content 2.4 mmol / g) having a viscosity of 0.3 Pa · s, (B) a polyorganohydrogensiloxane (SiH group containing) having a viscosity of 0.02 Pa · s (10 mmol / g) 11 parts by weight, (C) 0.05 part by weight of vinyl siloxane complex compound of chloroplatinic acid, (D-1) 0.3 part by weight of γ-glycidoxypropyltrimethoxysilane, (D-2) ) Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 0.6 parts by weight, (E-2) 50 parts by weight of quartz glass powder having an average particle size of 2 μm, (E-3) ET specific surface area was added to amorphous silica powder 1 part by weight of 130m 2 / g to universal kneading device, and uniformly mixed to obtain a silicone rubber adhesive composition.
The properties of this composition were measured and the results are shown in Table 1.

[実施例4]
(A−3)粘度が200Pa・sである三次元網目状ビニル基含有ポリジメチルシロキサン(SiVi基含有量1.5mmol/g)100重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)30重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.2重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.4重量部を万能混錬器に添加し、均一に混合して、シリコーンゴム接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。
[Example 4]
(A-3) Three-dimensional network vinyl group-containing polydimethylsiloxane having a viscosity of 200 Pa · s (SiVi group content 1.5 mmol / g) 100 parts by weight, (B) Poly having a viscosity of 0.02 Pa · s 30 parts by weight of organohydrogensiloxane (SiH group content 10 mmol / g), 0.05 part by weight of (C) vinyl siloxane complex compound of chloroplatinic acid, (D-1) γ-glycidoxypropyltrimethoxysilane 2 parts by weight, 0.4 parts by weight of (D-2) β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane are added to a universal kneader and mixed uniformly to obtain a silicone rubber adhesive composition. Obtained.
The properties of this composition were measured and the results are shown in Table 1.

[比較例1]
(A−1)粘度が3Pa・sであり、分子鎖両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量0.08mmol/g)80重量部、(A−2)23℃で固体である三次元網目状ビニル基含有ポリジメチルシロキサン(SiVi基含有量0.6mmol/g)20重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)3.7重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.2重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.4重量部、(E−3)BET比表面積が130m/gの無定形シリカ粉末7重量部を万能混錬器に添加し、均一に混合して、シリコーンゴム接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。

Figure 2007154099
[Comparative Example 1]
(A-1) 80 parts by weight of polydimethylsiloxane having a viscosity of 3 Pa · s and having both ends of the molecular chain blocked with dimethylvinylsiloxy groups (SiVi group content: 0.08 mmol / g), (A-2) 23 20 parts by weight of a three-dimensional network-like vinyl group-containing polydimethylsiloxane (SiVi group content 0.6 mmol / g) that is solid at 0 ° C., (B) a polyorganohydrogensiloxane (SiH group) having a viscosity of 0.02 Pa · s (Content 10 mmol / g) 3.7 parts by weight, (C) vinyl siloxane complex compound of chloroplatinic acid 0.05 parts by weight, (D-1) γ-glycidoxypropyltrimethoxysilane 0.2 parts by weight, D-2) β- (3,4- epoxycyclohexyl) ethyltrimethoxysilane 0.4 parts by weight, (E-3) BET specific surface area of 130m 2 / g amorphous silica It was added end 7 parts by weight universal kneading device, and uniformly mixed to obtain a silicone rubber adhesive composition.
The properties of this composition were measured and the results are shown in Table 1.
Figure 2007154099

表1から明らかなように、(A)ベースポリマーとしてアルケニル基含有量が30〜600mmol/100gであるシロキサンを用いた各実施例は、硬化後のせん断周波数10Hzにおける23℃での複素弾性率が0.9MPa以上であり、かつ、ダイシェア強度が0.05MPa以上である。これによって、ワイヤボンダビリティー性を損なわず、半導体装置の信頼性向上を図ることができる。   As is clear from Table 1, each example using (A) a siloxane having an alkenyl group content of 30 to 600 mmol / 100 g as the base polymer has a complex elastic modulus at 23 ° C. at a shear frequency of 10 Hz after curing. 0.9 MPa or more and die shear strength is 0.05 MPa or more. As a result, the reliability of the semiconductor device can be improved without impairing the wire bondability.

本組成物の硬化物を適用した半導体装置の一例を示す断面図。Sectional drawing which shows an example of the semiconductor device to which the hardened | cured material of this composition was applied. ダイシェア強度の試験条件を示す略図。Schematic showing test conditions for die shear strength.

符号の説明Explanation of symbols

1…半導体装置、2…タブ、3…半導体ペレット、4…シリコーンゴム接着剤層、5…ボンディングパッド、6…リードフレーム、7…ボンディングワイヤ、8…封止樹脂。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 2 ... Tab, 3 ... Semiconductor pellet, 4 ... Silicone rubber adhesive layer, 5 ... Bonding pad, 6 ... Lead frame, 7 ... Bonding wire, 8 ... Sealing resin.

Claims (4)

(A)1分子中に2個以上のケイ素原子に結合したアルケニル基を有し、前記アルケニル基含有量が30〜600mmol/100gであるアルケニル基含有ポリオルガノシロキサン 100重量部、
(B)1分子中に3個以上のSiH基を含有するポリオルガノハイドロジェンシロキサン
(A)成分のケイ素原子結合アルケニル基1個に対して、SiH基が1.0〜5.0個となる量、
(C)白金族系触媒 触媒量、
及び
(D)接着性付与剤 0.3〜20重量部
を含有し、硬化後のせん断周波数10Hzにおける23℃での複素弾性率が0.9MPa以上、かつ、ダイシェア強度が0.05MPa以上であることを特徴とするシリコーンゴム接着剤組成物。
(A) 100 parts by weight of an alkenyl group-containing polyorganosiloxane having an alkenyl group bonded to two or more silicon atoms in one molecule and having an alkenyl group content of 30 to 600 mmol / 100 g,
(B) Polyorganohydrogensiloxane containing 3 or more SiH groups in one molecule
(A) The quantity which becomes 1.0-5.0 SiH group with respect to one silicon atom bond alkenyl group of a component,
(C) platinum group catalyst catalyst amount,
And (D) 0.3 to 20 parts by weight of an adhesion-imparting agent, a complex elastic modulus at 23 ° C. at a shear frequency of 10 Hz after curing is 0.9 MPa or more, and a die shear strength is 0.05 MPa or more. A silicone rubber adhesive composition characterized by that.
さらに、(E)比表面積が50m/g以上の無定形シリカ、平均粒径が10μm以下の石英粉及び石英粉を溶融してなる石英ガラス粉から選ばれる少なくとも1種からなる充填剤を(A)成分100重量部に対して0〜400重量部含有することを特徴とする請求項1に記載のシリコーンゴム接着剤組成物。 Further, (E) a filler composed of at least one selected from amorphous silica having a specific surface area of 50 m 2 / g or more, quartz powder having an average particle size of 10 μm or less, and quartz glass powder obtained by melting quartz powder ( The silicone rubber adhesive composition according to claim 1, wherein the silicone rubber adhesive composition is contained in an amount of 0 to 400 parts by weight per 100 parts by weight of component A). 前記(A)成分の23℃における粘度が、0.1〜500Pa・sであることを特徴とする請求項1に記載のシリコーンゴム接着剤組成物。   The silicone rubber adhesive composition according to claim 1, wherein the component (A) has a viscosity at 23 ° C. of 0.1 to 500 Pa · s. 請求項1乃至3のいずれか1項に記載のシリコーンゴム接着剤組成物を硬化してなるシリコーンゴム接着剤により、半導体ペレットと半導体ペレット取付部材とが接合されてなることを特徴とする半導体装置。   4. A semiconductor device comprising a semiconductor pellet and a semiconductor pellet mounting member joined together by a silicone rubber adhesive obtained by curing the silicone rubber adhesive composition according to claim 1. .
JP2005353799A 2005-12-07 2005-12-07 Silicone rubber adhesive composition and semiconductor device using the same Withdrawn JP2007154099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353799A JP2007154099A (en) 2005-12-07 2005-12-07 Silicone rubber adhesive composition and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353799A JP2007154099A (en) 2005-12-07 2005-12-07 Silicone rubber adhesive composition and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2007154099A true JP2007154099A (en) 2007-06-21

Family

ID=38238867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353799A Withdrawn JP2007154099A (en) 2005-12-07 2005-12-07 Silicone rubber adhesive composition and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2007154099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064835A (en) * 2007-09-04 2009-03-26 Denso Corp Bare chip mounting structure
JP2009227758A (en) * 2008-03-21 2009-10-08 Shin Etsu Chem Co Ltd Low-specific gravity silicone rubber adhesive composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064835A (en) * 2007-09-04 2009-03-26 Denso Corp Bare chip mounting structure
JP2009227758A (en) * 2008-03-21 2009-10-08 Shin Etsu Chem Co Ltd Low-specific gravity silicone rubber adhesive composition

Similar Documents

Publication Publication Date Title
JP7091522B2 (en) Holding device
JP5638714B2 (en) Silicone composition for sealing light emitting device and light emitting device
JP5014774B2 (en) Addition reaction curable silicone composition and semiconductor device
JP5149022B2 (en) Silicone composition for optical semiconductor sealing and optical semiconductor device using the same
TWI383025B (en) Hardened silicone compositions and electronic parts
JP4849814B2 (en) Hot-melt silicone adhesive
JP5578616B2 (en) Silicone resin composition and cured product thereof
JP5154010B2 (en) Thermally conductive silicone rubber composition
JP4799848B2 (en) Curable silicone composition and cured product thereof
EP1231242A1 (en) Curable organosiloxane compositions and semiconductor devices
JP4586981B2 (en) Self-adhesive organopolysiloxane composition
KR102282547B1 (en) Curable silicone composition for die bonding
JP2006306953A (en) Curable silicone composition and its cured product
JP2009114365A (en) Silicone adhesive composition for optical semiconductor and optical semiconductor device using it
JP5559688B2 (en) Resin composition
JP2008150439A (en) Thermally-conductive silicone composition and coater using the same
JP2007119589A (en) Thermoconductive silicone rubber composition
JP5117033B2 (en) Silicone adhesive composition for optical semiconductor and optical semiconductor device using the same
JP7169958B2 (en) Silicone adhesive composition, method for producing silicone adhesive composition, and composite member
JP2007154099A (en) Silicone rubber adhesive composition and semiconductor device using the same
JP2019014800A (en) Curable polyorganosiloxane composition
JP2010003848A (en) Light emitting device
JP2008156460A (en) Silicone composition for sealing semiconductor and semiconductor device using it
JP2005060549A (en) Definite-form adhesive
JP2007191514A (en) Silicone rubber composition for sealing electric/electronic part

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303