JP2007152306A - Process and apparatus for suppressing convection - Google Patents

Process and apparatus for suppressing convection Download PDF

Info

Publication number
JP2007152306A
JP2007152306A JP2005354324A JP2005354324A JP2007152306A JP 2007152306 A JP2007152306 A JP 2007152306A JP 2005354324 A JP2005354324 A JP 2005354324A JP 2005354324 A JP2005354324 A JP 2005354324A JP 2007152306 A JP2007152306 A JP 2007152306A
Authority
JP
Japan
Prior art keywords
crystal
convection
solution
magnetic field
gradient magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005354324A
Other languages
Japanese (ja)
Inventor
Nobuko Wakayama
信子 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005354324A priority Critical patent/JP2007152306A/en
Publication of JP2007152306A publication Critical patent/JP2007152306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process and an apparatus for suppressing convection produced when crystals deposit from a solution. <P>SOLUTION: The process and the apparatus for suppressing the convection is characterized in that when the crystal deposits from the solution, a gradient magnetic field with the magnetic flux density reduced or increased perpendicularly upward to the solution and the crystal, thereby the convection produced around the crystal is suppressed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶液から結晶を析出させる際に発生する対流の抑制方法とこの対流の抑制方法を利用した結晶の析出、育成方法およびその装置に関する。詳しくは、勾配磁場を結晶および溶液に印加することによって対流を制御する、対流の抑制方法とこの対流の抑制方法を利用した結晶の析出育成方法およびその装置に関する。さらに詳しくは、勾配磁場が垂直上向き方向に沿って磁束密度を減少または増加させることによって制御される、対流の抑制方法とこの対流抑制方法を利用した結晶析出育成方法およびその装置に関する。   The present invention relates to a method for suppressing convection generated when a crystal is precipitated from a solution, a method for crystal precipitation and growth using the method for suppressing convection, and an apparatus therefor. Specifically, the present invention relates to a convection suppression method for controlling convection by applying a gradient magnetic field to a crystal and a solution, a crystal precipitation growth method using this convection suppression method, and an apparatus therefor. More specifically, the present invention relates to a convection suppression method, a crystal precipitation growth method using the convection suppression method, and an apparatus thereof, in which a gradient magnetic field is controlled by decreasing or increasing a magnetic flux density along a vertically upward direction.

微小重力の宇宙環境で結晶を作製すると結晶成長に伴って発生する対流が抑制されるため高品質の結晶が得られることが多い。しかし実際の宇宙環境利用はコストがかかり、実験の機会も限られる。これに対して、地上で対流を抑制する手段として、電気伝導度が非常に高い金属や半導体の溶融液では磁場をかけて発生するローレンツ力を利用する方法がひろく使用されている(非特許文献1参照)。   When a crystal is produced in a microgravity space environment, a high quality crystal is often obtained because convection generated with crystal growth is suppressed. However, using the actual space environment is expensive and the opportunities for experimentation are limited. On the other hand, as a means for suppressing convection on the ground, a method using a Lorentz force generated by applying a magnetic field is widely used in melts of metals and semiconductors with extremely high electrical conductivity (Non-patent Documents). 1).

しかし、この方法は、金属や半導体溶融液にくらべ電気伝導度が10の5桁から6桁低い水や有機溶媒などの溶液には適用できない。例えば水溶液から結晶が析出する場合の対流を図1に基づいて説明する。図1は、水溶液から結晶11が析出する様子を示している。結晶周辺12では溶質が結晶に取り込まれるので、結晶から遠くにある溶液13に比べ溶液の濃度が低くなり、その結果、溶液の密度が低くなるので、対流14が発生する。この溶質の濃度差によって発生する対流は溶質対流とよばれる。   However, this method cannot be applied to a solution such as water or an organic solvent whose electrical conductivity is 10 to 5 digits lower than that of a metal or semiconductor melt. For example, convection when crystals are precipitated from an aqueous solution will be described with reference to FIG. FIG. 1 shows how crystals 11 are precipitated from an aqueous solution. Since the solute is taken into the crystal at the periphery 12 of the crystal, the concentration of the solution is lower than that of the solution 13 far from the crystal. Convection generated by this solute concentration difference is called solute convection.

この溶質対流は、例えばX線構造解析に使用するタンパク質結晶が1cmの深さの水溶液から析出する場合、溶質対流の強さを示すパラメータであるレイリー数Raが、Ra=1.4×109と非常に大きく、対流は非常に強い。
ちなみに1cmの深さの水で上下の温度差が1℃で発生する熱対流のレイリー数は1.7×104である。
In this solute convection, for example, when a protein crystal used for X-ray structure analysis is precipitated from an aqueous solution having a depth of 1 cm, the Rayleigh number Ra, which is a parameter indicating the strength of the solute convection, is Ra = 1.4 × 10 9. It is very large and convection is very strong.
By the way, the Rayleigh number of thermal convection that occurs when the temperature difference between the top and bottom is 1 ° C. in water of 1 cm depth is 1.7 × 10 4 .

最近まで、地上で、溶液から結晶が析出する場合に発生する強い対流を抑制する手段はほとんどなかった。しかしながら、1996年、磁気力を利用して重力を制御する装置が発明された(特許文献1参照)。鉄が磁石にひきつけられるように、すべての物質は磁石に引き付けられたり、反発したりする。単位体積の物質に作用する磁気力は一次元の勾配磁場下では以下の(数1)で表される。
Until recently, there was little means to suppress the strong convection that occurs when crystals precipitate from solution on the ground. However, in 1996, an apparatus for controlling gravity using magnetic force was invented (see Patent Document 1). All material is attracted to or repels the magnet, just as iron is attracted to the magnet. The magnetic force acting on a unit volume of material is expressed by the following (Equation 1) under a one-dimensional gradient magnetic field.

式中、M0は真空の透磁率(=4π×10-7Hm-1)、Kは単位体積あたりの磁化率で
ある体積磁化率、yは位置座標、Bは磁束密度、Dは密度、Kgは単位質量あたりの磁化
率である質量磁化率である。K=D×Kgである。
In the equation, M 0 is the magnetic permeability of vacuum (= 4π × 10 −7 Hm −1 ), K is the volume magnetic susceptibility which is the magnetic susceptibility per unit volume, y is the position coordinate, B is the magnetic flux density, D is the density, K g is a mass magnetic susceptibility that is a magnetic susceptibility per unit mass. K = D × K g .

表1に各種物質の室温における質量磁化率、Kgを示す。この表からも明らかなように
水や有機化合物など大部分の物質は磁石に反発する反磁性でKgは負の値を示している。
Table 1 shows the mass magnetic susceptibility and K g of various substances at room temperature. As is apparent from this table, most substances such as water and organic compounds have diamagnetism repelling the magnet and K g has a negative value.

無重力環境は、地球の周囲を周回飛行している国際宇宙ステーションの内部において典型的に実現されているが、この宇宙ステーション内部が無重力となるのは、地球の万有引力と周回飛行によって生じる遠心力とがちょうどつり合うためである。重力も遠心力も密度に比例する。式(1)から明らかなように磁気力も密度に比例するので、図2に示すように、液体21に重力22に等しい上向き磁気力23をかければ、地上でも、液体21を浮遊させたり、液体21に作用するみかけ上の重力が0になる無重力環境を発生させることが可能である(図2参照)。   The zero-gravity environment is typically realized inside the International Space Station, which orbits the earth, but the inside of this space station is zero-gravity and the centrifugal force generated by orbiting the Earth. Is just to balance. Both gravity and centrifugal force are proportional to density. As apparent from the equation (1), the magnetic force is also proportional to the density. Therefore, as shown in FIG. 2, if the upward magnetic force 23 equal to the gravity 22 is applied to the liquid 21, the liquid 21 is suspended on the ground or the liquid It is possible to generate a zero-gravity environment in which the apparent gravity acting on 21 is zero (see FIG. 2).

結晶が析出する溶液は溶質と溶媒との混合物であり、溶媒と溶質の質量磁化率がほぼ同じ値をとる場合には磁気力によって重力を制御することは可能であり、このような溶液から結晶を析出させる際に、重力制御法を適用することによって無重力環境を実現することは可能である。上記した表1に示しているようにほとんどの物質は反磁性で、その多くは同じような質量磁化率である。   The solution in which crystals are precipitated is a mixture of a solute and a solvent. If the mass magnetic susceptibility of the solvent and the solute has almost the same value, it is possible to control the gravity by the magnetic force. It is possible to realize a zero-gravity environment by applying a gravity control method when depositing. As shown in Table 1 above, most materials are diamagnetic and many have similar mass susceptibility.

しかし、例えば反磁性のKCl結晶が水溶液から析出する場合、常磁性の硫酸コバルト結晶が水溶液から析出する場合のように、溶質と溶媒の質量磁化率が大きく異なる場合には、溶液に作用する上向きの磁気力が重力とつりあい、液体に作用するみかけ上の重力が0となる場合でも、結晶成長にともなって発生する濃度勾配に基づく溶質対流は抑制することができないという問題があった。   However, for example, when diamagnetic KCl crystals are precipitated from an aqueous solution, when the mass magnetic susceptibility of the solute and the solvent is greatly different, such as when paramagnetic cobalt sulfate crystals are precipitated from an aqueous solution, However, even if the apparent magnetic force acting on the liquid becomes zero, the solute convection based on the concentration gradient generated with crystal growth cannot be suppressed.

R.W.Series and D.T.Hurle、J. Cryst.Growth 113、305(1991).R. W. Series and D.C. T. T. et al. Hurle, J.M. Cryst. Growth 113, 305 (1991). 若山信子 「重力制御装置」、特許第3278685号Nobuko Wakayama “Gravity Control Device”, Japanese Patent No. 3278865

本発明は溶液から結晶が析出する際に発生する溶質対流を抑制する方法とその装置を提供することを目的とする。   An object of this invention is to provide the method and apparatus which suppress the solute convection which generate | occur | produces when a crystal precipitates from a solution.

本発明者は上記課題に鑑み鋭意研究した結果、対流は浮力で発生するため、重力による浮力を磁気力による浮力で相殺するようにすれば、結晶成長に伴い発生する対流を格段に抑制できるという知見に基づき、本発明をなすに至った。
すなわち本発明は、
(1)溶液から結晶を析出させる際に結晶の周辺で発生する対流を抑制する方法において、勾配磁場を溶液および結晶にかけることによって、重力で発生する浮力を磁気力による浮力で相殺して対流を抑制することを特徴とした、溶液から結晶を析出させる際に結晶周辺で発生する対流の抑制方法。
(2)前記(1)に記載する勾配磁場が、垂直上向き方向に沿って磁束密度を減少または増加させ、磁束密度とその垂直位置座標による微分値の積が重力対流を抑制する特定の値をとるように制御されることを特徴とする、(1)に記載する対流の抑制方法。
(3)溶液から結晶を析出、育成させる結晶の析出、育成方法において、勾配磁場を結晶および溶液に印加することによって、重力で発生する浮力を磁気力による浮力で相殺して、結晶周辺の対流を抑制して結晶を析出、育成せしめるようにすることを特徴とした、溶液からの結晶析出、育成方法。
(4)前記(3)に記載する勾配磁場が、垂直上向き方向に沿って磁束密度を減少または増加させ、磁束密度とその垂直位置座標による微分値の積が重力対流を抑制する特定の値をとるように制御されることを特徴とする、(3)に記載する溶液からの結晶析出、育成方法。
(5)溶液から結晶を析出、育成させる結晶育成装置において、結晶および溶液に勾配磁場を印加しうるようにした勾配磁場発生手段を設け、勾配磁場を制御することによって結晶周辺の対流を制御しうるようにしたことを特徴とする、溶液からの結晶の析出、育成装置。
(6)前記勾配磁場が、垂直上向き方向に沿って磁束密度を減少または増加させることによって、磁束密度とその垂直位置座標による微分値の積が重力対流を抑制する特定の値をとるように制御されることを特徴とした、(5)に記載する溶液からの結晶の析出、育成装置。
As a result of intensive research in view of the above problems, the present inventor has found that convection is generated by buoyancy, so if the buoyancy due to gravity is canceled out by buoyancy due to magnetic force, the convection caused by crystal growth can be significantly suppressed. Based on knowledge, it came to make this invention.
That is, the present invention
(1) In a method for suppressing convection generated around a crystal when the crystal is precipitated from a solution, by applying a gradient magnetic field to the solution and the crystal, the buoyancy generated by gravity is canceled by the buoyancy caused by the magnetic force, and the convection A method for suppressing convection generated around a crystal when the crystal is precipitated from a solution.
(2) The gradient magnetic field described in the above (1) decreases or increases the magnetic flux density along the vertical upward direction, and the product of the magnetic flux density and the differential value by the vertical position coordinate has a specific value that suppresses gravity convection. The method for suppressing convection according to (1), wherein the convection is controlled so as to be taken.
(3) Precipitation and growth of crystals from solution In the crystal precipitation and growth method, by applying a gradient magnetic field to the crystal and the solution, the buoyancy generated by gravity is offset by the buoyancy due to the magnetic force, and the convection around the crystal A method for depositing and growing crystals from a solution, characterized in that crystals are precipitated and grown while suppressing the above.
(4) The gradient magnetic field described in the above (3) decreases or increases the magnetic flux density along the vertical upward direction, and the product of the magnetic flux density and the differential value by the vertical position coordinate has a specific value that suppresses gravity convection. The method for crystal precipitation and growth from a solution according to (3), wherein the method is controlled so as to take.
(5) In a crystal growth apparatus for precipitating and growing crystals from a solution, a gradient magnetic field generating means capable of applying a gradient magnetic field to the crystal and the solution is provided, and the convection around the crystal is controlled by controlling the gradient magnetic field. An apparatus for depositing and growing crystals from a solution, wherein
(6) The gradient magnetic field is controlled so that the product of the magnetic flux density and the differential value based on the vertical position coordinate takes a specific value that suppresses gravity convection by decreasing or increasing the magnetic flux density along the vertical upward direction. An apparatus for depositing and growing crystals from a solution according to (5), characterized in that:

本発明は、溶液から結晶を析出、育成させる結晶の析出、育成方法において、結晶および溶液に勾配磁場を印加することによって結晶周辺の対流を抑制するものである。これによって、重力で発生する浮力が磁気力による浮力で相殺され、結晶周辺の濃度差に基づく対流が抑制され、高品質の結晶を得ることが出来るものである。すなわち、本発明によって、コストのかかる宇宙空間での実験に依存していた実験を、地上でも宇宙空間と同様の無対流の空間を創出することが可能となり、溶液からの結晶の析出、育成に際して、濃度差による重力対流を抑制することが可能となり、高品質の結晶、とりわけ、高品質のタンパク結晶や有機半導体結晶を作成することが可能となるものと期待される。   The present invention suppresses convection around a crystal by applying a gradient magnetic field to the crystal and the solution in a crystal precipitation and growth method for depositing and growing a crystal from a solution. As a result, the buoyancy generated by gravity is offset by the buoyancy due to the magnetic force, and convection based on the concentration difference around the crystal is suppressed, so that a high-quality crystal can be obtained. That is, according to the present invention, it becomes possible to create a non-convection space on the ground, which is dependent on costly experiments in outer space, and to precipitate and grow crystals from solution. It is expected that gravitational convection due to concentration difference can be suppressed, and high quality crystals, especially high quality protein crystals and organic semiconductor crystals can be produced.

本発明は、勾配磁場をかけることで、溶液から結晶が成長する際、発生する溶質対流を抑制する方法および装置に関する。以下、本発明について詳細に説明する。   The present invention relates to a method and apparatus for suppressing solute convection generated when a crystal grows from a solution by applying a gradient magnetic field. Hereinafter, the present invention will be described in detail.

まず、本発明の対流抑制方法および装置を図面に基づき詳細に説明する。
図3左に示すように結晶が容器の底で成長する場合、結晶周辺では溶質が結晶に取り込まれるので、溶質濃度が結晶から遠くにある溶液の濃度と比べて低くなり、その結果、結
晶周辺の溶液の密度が低くなるので、溶質対流30が発生する。
本発明では、図3右に示すような勾配磁場をかけて、重力による浮力を磁気力による浮力で相殺して、溶質対流を抑制することを特徴とする。勾配磁場は、垂直上向き方向に磁束密度Bが減少(実線31)あるいは増加(破線32)させて磁束密度とそのy座標による微分値の積が重力対流を抑制する特定の値をとるようにする。勾配磁場を結晶33および溶液34の入った容器35にかける。その際に使用される勾配磁場発生手段は、特に限定されず、超伝導磁石、電磁石、あるいは永久磁石などが使用され得る。必要な大きさの勾配磁場を溶液および結晶の入った容器に供給できるものであればよい。容器35は非磁性の材料でできたものであればよく、その形状については限定されない。結晶化の方法も限定されるものではなく、例えばタンパク質結晶作成の場合、図3左のようなバッチ法だけでなく蒸気拡散法のハンギングドロップ法、シッティングドロップ法など、溶液から結晶が析出する場合はすべて含まれる。
First, the method and apparatus for suppressing convection of the present invention will be described in detail with reference to the drawings.
When the crystal grows at the bottom of the container as shown in the left of FIG. 3, since the solute is taken into the crystal around the crystal, the concentration of the solute is lower than the concentration of the solution far from the crystal, and as a result, the periphery of the crystal Since the density of the solution becomes low, solute convection 30 is generated.
The present invention is characterized in that a solute convection is suppressed by applying a gradient magnetic field as shown in the right of FIG. 3 to cancel buoyancy due to gravity with buoyancy due to magnetic force. The gradient magnetic field causes the magnetic flux density B to decrease (solid line 31) or increase (broken line 32) in the vertical upward direction so that the product of the magnetic flux density and its differential value by the y coordinate takes a specific value that suppresses gravity convection. . A gradient magnetic field is applied to the container 35 containing the crystals 33 and the solution 34. The gradient magnetic field generating means used at that time is not particularly limited, and a superconducting magnet, an electromagnet, a permanent magnet, or the like can be used. What is necessary is just to be able to supply a gradient magnetic field of a necessary magnitude to a container containing a solution and crystals. The container 35 may be made of a nonmagnetic material, and the shape thereof is not limited. The method of crystallization is not limited. For example, in the case of protein crystal production, not only the batch method as shown in the left of FIG. 3, but also the vapor diffusion method such as the hanging drop method and the sitting drop method, when crystals are precipitated from the solution. Are all included.

図4は、濃度cI、密度DIの溶液I(41)が、濃度cII、密度DIIの溶液II(42)
で囲まれている場合(cI<cII、DI<DII)である。溶液I、IIの単位体積あたりの磁
化率をKI、KIIとする。
磁気力を示す式(1)を用いると、溶液Iに作用する重力と磁気力の和は、単位体積あ
たりDIg+(1/M0)KIB(dB/dy)で表される。また、溶液IIに作用する重力と
磁気力の和は、単位体積あたりDIIg+(1/M0)KIIB(dB/dy)で表される。
FIG. 4 shows that a solution I (41) having a concentration c I and a density D I is a solution II (42) having a concentration c II and a density D II.
(C I <c II , D I <D II ). The magnetic susceptibility per unit volume of the solutions I and II is defined as K I and K II .
When the equation (1) indicating the magnetic force is used, the sum of gravity and magnetic force acting on the solution I is expressed as D I g + (1 / M 0 ) K I B (dB / dy) per unit volume. Further, the sum of gravity and magnetic force acting on the solution II is expressed as D II g + (1 / M 0 ) K II B (dB / dy) per unit volume.

溶液I、IIに作用する重力と磁気力の和が等しくなり、下記に示す(数2)が成立する
場合には対流は発生しない。この場合、上向きに作用する力を正とする(g=−9.8m/s2)。y座標も上に向かう方向を正とする。
When the sum of gravity and magnetic force acting on the solutions I and II becomes equal and the following (Equation 2) holds, no convection occurs. In this case, the force acting upward is positive (g = −9.8 m / s 2 ). The direction toward the y coordinate is also positive.

ここに、溶質の濃度cが連続的に変化し、cIが限りなくcIIに近くなり、DI→DII、KI→KIIの場合、(数2)を書き直すと(数3)を導くことが出来る。
Here, when the solute concentration c changes continuously, c I becomes as close as possible to c II , and when D I → D II and K I → K II , rewriting (Equation 2) (Equation 3) Can be guided.

すなわち、(数3)は、重力による浮力が磁気力による浮力で相殺されることを表す式である。   That is, (Equation 3) is an expression representing that the buoyancy due to gravity is canceled by the buoyancy due to magnetic force.

この式から、溶質対流を抑制するのに必要な磁場勾配は、次式(数4)によって表される。
From this equation, the magnetic field gradient necessary to suppress solute convection is expressed by the following equation (Equation 4).

ちなみに図3に示すように容器中の溶液に作用する重力が上向きの磁気力と等しくなり、その結果、図2に示すように溶液が浮遊する状態となる場合(図2参照)、以下の式(
数5)が成立する。
Incidentally, when the gravity acting on the solution in the container becomes equal to the upward magnetic force as shown in FIG. 3, and as a result, the solution floats as shown in FIG. 2 (see FIG. 2), the following formula (
Equation 5) holds.

この式から、溶液を浮遊させるのに必要な磁場勾配は次式(数6)で表される。
From this equation, the magnetic field gradient necessary to suspend the solution is expressed by the following equation (Equation 6).

次に、本発明を実施例に基づいてさらに詳細に説明する。
リゾチームというタンパク質結晶が水溶液から析出する場合を考える。
Next, the present invention will be described in more detail based on examples.
Consider the case where a protein crystal called lysozyme is precipitated from an aqueous solution.

リゾチームの質量磁化率KgLysozymeはKgLysozyme=−8.95×10-93Kg-1
また、水の質量磁化率KgH2OはKgH2O=−9.00×10-93Kg-1(非特許文献2参
照)、とほぼ等しい。タンパク質結晶を析出する水溶液は通常、結晶化剤を含むが、結晶析出に際して、その濃度はほとんど変化しない。結晶化剤のNaClの濃度が0.15M/リットルの場合、リゾチーム水溶液の密度Dは(数7)で表される(非特許文献3参照)。
The mass magnetic susceptibility K gLysozyme of lysozyme is K gLysozyme = −8.95 × 10 −9 m 3 Kg −1 ,
The mass magnetic susceptibility K gH2O of water is substantially equal to K gH2O = −9.00 × 10 −9 m 3 Kg −1 (see Non-Patent Document 2). The aqueous solution for precipitating protein crystals usually contains a crystallizing agent, but the concentration hardly changes during crystal precipitation. When the NaCl concentration of the crystallization agent is 0.15 M / liter, the density D of the lysozyme aqueous solution is expressed by (Expression 7) (see Non-Patent Document 3).

リゾチーム水溶液の体積磁化率は(数8)で表される。
The volume magnetic susceptibility of the lysozyme aqueous solution is expressed by (Equation 8).

これら(数7)、(数8)を(数4)に導入すると、リゾチームの濃度勾配によって発生する溶質対流を抑制するのに必要な磁場勾配の式(数9)が与えられる。
When these (Equation 7) and (Equation 8) are introduced into (Equation 4), the equation (Equation 9) of the magnetic field gradient necessary for suppressing the solute convection generated by the concentration gradient of lysozyme is given.

この式に、KgLysozyme=−8.95×10-93Kg-1、KgH2O=−9.00×10-93Kg-1をいれると、B(dB/dy)はリゾチームの濃度に関係なく−1394T2/mである。この勾配磁場は垂直上方になるにつれ磁束密度、Bが減少する勾配磁場(説明図3右における31に相当)で、B(dB/dy)が一定の値をとるものである。 When K gLysozyme = −8.95 × 10 −9 m 3 Kg −1 and K gH2O = −9.00 × 10 −9 m 3 Kg −1 are added to this formula, B (dB / dy) is lysozyme. Regardless of the concentration, it is −1394T 2 / m. This gradient magnetic field is a gradient magnetic field (corresponding to 31 on the right of FIG. 3) in which the magnetic flux density B decreases as it goes vertically upward, and B (dB / dy) takes a constant value.

図5に対流が抑制される勾配磁場(印)とタンパク質濃度の関係を示す。リゾチーム濃度に関係なく、対流抑制には−1394T2/mの勾配磁場が必要である。 FIG. 5 shows the relationship between the gradient magnetic field (marked with ) and the protein concentration at which convection is suppressed. Regardless of the lysozyme concentration, a gradient magnetic field of −1394T 2 / m is required for convection suppression.

(数6)を用いて、溶液を浮遊させるのに必要なB(dB/dy)を計算した 。説明図5に溶液を浮遊させるのに必要な勾配磁場(印)とリゾチーム濃度 の関係を示すが、浮遊には、リゾチーム濃度に関係なく、−1372T2/m の勾配磁場が必要である。
例えば結晶が7%の溶液から析出する場合、対流抑 制には−1394T2/m、溶液を
浮遊させるには−1372T2/mの勾配 磁場が必要で、両者はほぼ等しい。(なお、
この発明の前提とする発表論文( 非特許文献4)中、TableIIにおいてはリゾチーム溶液を磁気力で浮遊さ せるのに必要な勾配磁場B(dB/dy)の絶対値はリゾチーム濃度が増加す ると漸減するとされていたが、計算ミスであり、ここに上記の通りである旨訂正する。)
(Equation 6) was used to calculate B (dB / dy) required to float the solution. Explanation Figure 5 shows the relationship between the gradient magnetic field (marked with ) required for suspending the solution and the lysozyme concentration. For the suspension, a gradient magnetic field of -1372 T 2 / m 2 is required regardless of the lysozyme concentration.
For example, when crystals are precipitated from a 7% solution, a gradient magnetic field of −1394T 2 / m is required for convection suppression and −372T 2 / m for suspending the solution. (Note that
In the published paper (Non-Patent Document 4) that presupposes the present invention, in Table II, the absolute value of the gradient magnetic field B (dB / dy) necessary to suspend the lysozyme solution by magnetic force increases the lysozyme concentration. Although it was supposed to be gradually reduced, it is a calculation error, and it is corrected here as described above. )

超伝導磁石(ジャパンスーパーコンダクタ社製、LH15T40)で発生する磁気力でえられる無重力環境を利用して、X線構造解析用のタンパク質結晶(リゾチーム斜方晶)を作成した。タンパク質結晶を同時に通常重力場と超伝導磁石でえられる無重力環境で作成し、各々の結晶の品質を比較した。体積の異なる結晶の品質を比較するため、品質を示すパラメータとして結晶の体積に依存しない値であるB因子(通常温度因子とよばれ、結晶のX線散乱強度の測定データからえられる)を用いた。表2に示すように、3回すべての実験で無重力で作成した結晶のB因子は、磁石の外、通常重力場で作成したのに比べて小さい値を示し、結晶成長に伴い発生する対流が抑制される無重力環境では、品質のよい結晶がえられることが証明された。
A protein crystal (lysozyme orthorhombic crystal) for X-ray structural analysis was prepared using a zero gravity environment obtained by a magnetic force generated by a superconducting magnet (manufactured by Japan Superconductor, LH15T40). At the same time, protein crystals were prepared in a gravity-free environment with a normal gravitational field and a superconducting magnet, and the quality of each crystal was compared. In order to compare the quality of crystals with different volumes, factor B, which is a value that does not depend on the volume of the crystal, is used as a parameter indicating the quality (usually called temperature factor, obtained from measurement data of X-ray scattering intensity of the crystal). It was. As shown in Table 2, the B-factor of the crystal created by zero gravity in all three experiments shows a smaller value than that of the normal gravity field outside the magnet, and the convection generated by crystal growth is small. It has been proved that high-quality crystals can be obtained in a restrained weightless environment.

本発明をさらに以下、実施例3に基づいて詳細に説明する。
実施例1とは異なり、析出する結晶の質量磁化率と溶媒の磁化率が大きく異なる場合、
反磁性の塩化カリウムが反磁性の水溶液から析出するケースである。
KClの質量磁化率はKgKCl=−6.28×10-93Kg-1(非特許文献2)で、溶
媒の水の質量磁化率の約70%に相当する。一般に25℃における水溶液の密度Dは(数10)で与えられる。
The present invention is further described in detail below based on Example 3.
Unlike Example 1, when the mass magnetic susceptibility of the precipitated crystals and the magnetic susceptibility of the solvent differ greatly,
This is a case where diamagnetic potassium chloride is precipitated from a diamagnetic aqueous solution.
The mass magnetic susceptibility of KCl is K gKCl = −6.28 × 10 −9 m 3 Kg −1 (Non-patent Document 2), which corresponds to about 70% of the mass magnetic susceptibility of the solvent water. In general, the density D of the aqueous solution at 25 ° C. is given by (Equation 10).

KCl水溶液では a0=997.123、a1=629.819、a2=131.029、a3=300.027(非特許文献5)、cは質量分率である。KCl水溶液の体積磁
化率は以下の式(数11)であらわされる。
In a KCl aqueous solution, a 0 = 997.123, a 1 = 629.819, a 2 = 131.029, a 3 = 300.027 (Non-patent Document 5), and c is a mass fraction. The volume magnetic susceptibility of the KCl aqueous solution is expressed by the following equation (Equation 11).

(数10)、(数11)を(数4)に導入すると、KClの濃度勾配によって発生する溶質対流を抑制するのに必要な磁場勾配が(数12)で与えられる。
When (Equation 10) and (Equation 11) are introduced into (Equation 4), the magnetic field gradient necessary for suppressing the solute convection generated by the KCl concentration gradient is given by (Equation 12).

図6に溶質対流を抑制するのに必要な勾配磁場(印)とKClの濃度の関係を示す。例えばKCl結晶が質量分率c=0.26の水溶液から析出する場合、対流を抑制するのに必要な勾配磁場は−3000T2/mである。ちなみに図2に示すように、KCl水溶
液に作用する重力を相殺し、溶液を浮遊させる上向き磁気力を発生させるのに必要な磁場勾配は(数6)、(数10)、(数11)から求められ、(数13)で与えられる。
FIG. 6 shows the relationship between the gradient magnetic field (marked with ) and the concentration of KCl necessary for suppressing solute convection. For example, when KCl crystals are precipitated from an aqueous solution having a mass fraction c = 0.26, the gradient magnetic field necessary to suppress convection is −3000 T 2 / m. Incidentally, as shown in FIG. 2, the magnetic field gradient necessary for canceling the gravity acting on the KCl aqueous solution and generating the upward magnetic force to float the solution is from (Equation 6), (Equation 10), and (Equation 11). And is given by (Equation 13).

図6に、溶液を浮遊させるのに要する勾配磁場(印)とKClの濃度の関係を示す。例えばKCl結晶がc=0.26の水溶液から析出する場合、溶液を浮遊させるのに必要な勾配磁場は−1485T2/mで、対流を抑制する勾配磁場の約半分になる。このよう
に溶質の質量磁化率の絶対値が溶媒に比べて小さい場合、溶液を浮遊させる勾配磁場の絶対値にくらべ、溶質対流を抑制するためには大きな勾配磁場を必要とする。
FIG. 6 shows the relationship between the gradient magnetic field ( mark) required for suspending the solution and the concentration of KCl. For example, when KCl crystals are precipitated from an aqueous solution with c = 0.26, the gradient magnetic field required to suspend the solution is −1485 T 2 / m, which is about half of the gradient magnetic field that suppresses convection. Thus, when the absolute value of the mass susceptibility of the solute is smaller than that of the solvent, a larger gradient magnetic field is required to suppress solute convection compared to the absolute value of the gradient magnetic field that suspends the solution.

実施例1、2、3では溶質、溶媒ともに反磁性で、その質量磁化率は負の値であった。溶質が常磁性で質量磁化率が正の値、溶媒が負の値である場合、例として硫酸コバルト結晶が水溶液から析出する場合を考える。
CoSO4水溶液では a0=997.099、a1=1007.57、a2=356.4
96(非特許文献5)である。KgCoSO4=860.8×10-93Kg-1(非特許文献2)
をKgKClの値のかわりに式(12)に代入すると、対流を抑制するのに必要なB(dB/dy)と溶質の濃度cの関係が求められる(図7)。その結果は、実施例1−3とは異なり、B(dB/dy)の値は正であり、図3の32の破線で表される、垂直上向き方向に沿って磁束密度Bが増加する勾配磁場である。濃度が増加するとともにB(dB/dy)は漸減し、結晶が析出するCoSO4の濃度が質量分率で0.09の場合、対流抑制に必
要な勾配磁場は12.9T2/mと非常に小さい。
In Examples 1, 2, and 3, both the solute and the solvent were diamagnetic, and their mass magnetic susceptibility was negative. When the solute is paramagnetic, the mass magnetic susceptibility has a positive value, and the solvent has a negative value, consider the case where cobalt sulfate crystals are precipitated from an aqueous solution as an example.
In a CoSO 4 aqueous solution, a 0 = 997.099, a 1 = 1007.57, a 2 = 356.4
96 (Non-Patent Document 5). K gCoSO4 = 860.8 × 10 -9 m 3 Kg -1 (Non-patent Document 2)
Is substituted into the equation (12) instead of the K gKCl value, the relationship between B (dB / dy) necessary to suppress convection and the solute concentration c is obtained (FIG. 7). As a result, unlike Example 1-3, the value of B (dB / dy) is positive, and the gradient of increasing the magnetic flux density B along the vertically upward direction is represented by the broken line 32 in FIG. It is a magnetic field. As the concentration increases, B (dB / dy) gradually decreases. When the concentration of CoSO 4 at which crystals are precipitated is 0.09 in mass fraction, the gradient magnetic field necessary for convection suppression is as high as 12.9 T 2 / m. Small.

(数13)で、KgKClの値のかわりにKgCoSO4を用いて溶液を浮遊させるに必要な勾配磁場を計算した結果が図8である。対流抑制に必要な勾配磁場にくらべて大きいB(dB/dy)であり、濃度が増加するとともにB(dB/dy)は減少する。結晶が析出するCoSO4の濃度が質量分率で0.09の場合、178T2/mである。実施例4では実施例1−3に比べて絶対値が非常に小さい勾配磁場によって溶質対流が抑制されることがわかる。本発明の基礎とする発表論文(非特許文献4)の掲載後、2005年11月21日に雑誌に掲載された論文(非特許文献6)では、常磁性の硫酸ニッケルの結晶が水溶液から析出する場合の溶質対流の様子がシュリーレン法で観測され、小さい勾配磁場(B(dB/dy)=37.5±0.5T2/m)で対流が完全に抑制されることが観察されている
ことが報告されている。
FIG. 8 shows the result of calculating the gradient magnetic field necessary for suspending the solution using K gCoSO4 instead of the value of K gKCl in ( Equation 13). B (dB / dy) is larger than the gradient magnetic field necessary for convection suppression, and B (dB / dy) decreases as the concentration increases. When the concentration of CoSO 4 at which crystals are precipitated is 0.09 in terms of mass fraction, it is 178 T 2 / m. In Example 4, it turns out that solute convection is suppressed by the gradient magnetic field whose absolute value is very small compared with Example 1-3. In the paper (Non-Patent Document 6) published in a magazine on November 21, 2005 after the publication of the published paper (Non-Patent Document 4) on which the present invention is based, paramagnetic nickel sulfate crystals were precipitated from an aqueous solution. The state of solute convection is observed by the Schlieren method, and it is observed that the convection is completely suppressed by a small gradient magnetic field (B (dB / dy) = 37.5 ± 0.5 T 2 / m). It has been reported.

以上、本発明を溶質が溶解した溶液からいくつかの具体的な溶質を結晶として析出させるプロセスに基づいて、対流を磁場によって制御しうることを理論的に説明し、実証したが、これらの例は、あくまでも本発明を容易に理解し易くするために説明、開示したものであり、本発明は、これ等の例によって限定されないことに留意する必要がある。   As described above, the present invention has theoretically explained and demonstrated that convection can be controlled by a magnetic field based on a process in which some specific solutes are precipitated as crystals from a solution in which solutes are dissolved. However, it should be noted that the present invention has been described and disclosed for easy understanding of the present invention, and the present invention is not limited to these examples.

日本化学会編 化学便覧基編II、pp.507−510、 丸善、改定4版。Chemical Chemistry Handbook II, pp. 507-510, Maruzen, 4th revised edition. W.L.Frederick,M.C.Hammonds, S.B.Howard and F.Rosenberger,J.Cryst. Growth 141,183 (1994).W. L. Frederick, M.M. C. Hammonds, S.H. B. Howard and F.M. Rosenberger, J. et al. Cryst. Growth 141, 183 (1994). NobukoI.Wakayama,“Damping of solute convection during crystal growth by applying magnetic field gradients”, Japanese Journal of Applied Physics, Vol.44, pp.L833−L835 (2005).Nobuko I. Wakayama, “Damping of solid convection drastic crystal growth by applying magnetic field gradients”, Japan Journal of Applied Vs. 44, pp. L833-L835 (2005). 日本化学会編 化学便覧基編II、pp.3−16、丸善、改定4版。Chemical Chemistry Handbook II, pp. 3-16, Maruzen, 4th revised edition. P.W.G.Poodt、M.C.R.Heijna、K.Tsukamoto、W.J.de Grip、P.C.M.Christianen、J.C.Maan、W.J.P.van Enckevort、E.Vlieg、“Suppression of convection using gradient magnetic fields during crystal growth of NiSO4 6H2O”、Applied Physics Letters Vol.87、214105 (2005).P. W. G. Pood, M.M. C. R. Heijna, K.H. Tsukamoto, W.H. J. et al. de Grip, P.M. C. M.M. Christianen, J.M. C. Maan, W.M. J. et al. P. van Enckevault, E.V. Vlieg, “Suppression of convection using gradient magnetic fields durning crystal growth of NiSO4 6H2O”, Applied Physics Letters Vol. 87, 214105 (2005).

微小重力の宇宙環境で結晶を作製すると結晶成長に伴って発生する対流が抑制されるため高品質の結晶が得られることが多い。生命現象の解明、新薬の開発、病気の新規治療法の研究などを行なうためには、タンパク質の詳細な分子構造が必要である。多くのタンパク質は、その構造がX線構造解析によって決定され、詳細な分子構造を決定するためには高品質の結晶の作成が不可欠とされている。微小重力の宇宙環境で結晶を作製すると高品質の結晶が得られると盛んに検討され、かつ研究されている。しかしながら、実際に直接的に宇宙空間で実験を行うことはコストが極めて高くつき、また、実験の機会も限られることが多い等困難な事情がある。そのため、地上で対流を抑制することが出来れば、産業の発展に大きく貢献することが期待され、地上で対流を抑制する方法とこの方法を実施する装置の開発が切望されていた。本発明は、このような期待に十分に応え得るものである。今後、本発明によって、地上でも重力による対流、溶質対流を制御することが出来、これによって高品質の各種結晶、とりわけ高品質のタンパク結晶や有機半導体結晶の作成に結びつき、今後、優れた薬品や電子デバイス等の開発に大いに利用され、産業の発展に寄与するものと期待される。   When a crystal is produced in a microgravity space environment, a high quality crystal is often obtained because convection generated with crystal growth is suppressed. In order to elucidate biological phenomena, develop new drugs, and research new treatments for diseases, detailed molecular structures of proteins are necessary. The structure of many proteins is determined by X-ray structural analysis, and the production of high-quality crystals is indispensable for determining the detailed molecular structure. When a crystal is produced in a microgravity space environment, a high quality crystal is actively studied and studied. However, actually conducting experiments directly in outer space is very expensive, and there are difficult circumstances such as limited opportunities for experiments. Therefore, if the convection can be suppressed on the ground, it is expected to greatly contribute to the development of the industry, and the development of a method for suppressing the convection on the ground and a device for implementing this method has been desired. The present invention can sufficiently meet such expectations. In the future, according to the present invention, it is possible to control convection by gravity and solute convection even on the ground, which leads to the creation of various high-quality crystals, especially high-quality protein crystals and organic semiconductor crystals. It is expected to contribute greatly to the development of industries by being used greatly in the development of electronic devices.

結晶が溶液から析出する場合に発生する溶質対流を説明する図。The figure explaining the solute convection which arises when a crystal precipitates from a solution. 地上で、上向きの磁気力を用いて無重力環境をえる方法を原理的に説明する図。The figure explaining in principle the method of obtaining a zero gravity environment using upward magnetic force on the ground. 結晶成長に伴ない発生する対流を勾配磁場で抑制する方法を原理的に説明する図。The figure explaining in principle the method of suppressing the convection which arises with crystal growth with a gradient magnetic field. 濃度の異なる溶液I、IIが存在する場合を示す図。The figure which shows the case where solutions I and II from which a density | concentration differs exist. リゾチーム濃度(Kg/m3)と対流抑制(印)、溶液浮遊(印)に必要な勾配磁場値(T2/m)の関係を示す図。Lysozyme Concentration (Kg / m 3) and convective inhibition (■ marks), shows the relationship between solution stray gradient field value required (◇ mark) (T 2 / m). KCl濃度cと対流抑制(印)、溶液浮遊(◇印)に必要な勾配磁場値(T2/m)の関係を示す図。KCl concentration c and convective inhibition (■ marks), it shows the relationship between solution stray gradient field value required (◇ mark) (T 2 / m). CoSO4の濃度cと溶質対流を抑制するのに必要なB(dB/dy)の関係を示す図。Diagram showing the relationship between the required B (dB / dy) to inhibit the concentration c and the solute convection CoSO 4. CoSO4の濃度cと溶液を浮遊させるのに必要なB(dB/dy)の関係を示す図。Diagram showing the relationship between the required B (dB / dy) for suspending an concentration c and a solution of CoSO 4.

Claims (6)

溶液から結晶を析出させる際に結晶の周辺で発生する対流を抑制する方法において、勾配磁場を溶液および結晶にかけることによって、重力で発生する浮力を磁気力で発生する浮力で相殺して対流を抑制することを特徴とした、結晶周辺で発生する対流の抑制方法。   In a method for suppressing convection generated around a crystal when the crystal is precipitated from a solution, by applying a gradient magnetic field to the solution and the crystal, the buoyancy generated by gravity is offset by the buoyancy generated by the magnetic force, thereby reducing convection. A method for suppressing convection generated around a crystal, characterized by suppressing the convection. 前記請求項1に記載する勾配磁場が、垂直上向き方向に沿って磁束密度を減少または増加させ、磁束密度とその垂直位置座標による微分値の積が重力対流を抑制する特定の値をとるよう制御されることを特徴とする、請求項1に記載する対流の抑制方法。   The gradient magnetic field according to claim 1 controls the magnetic flux density to decrease or increase in the vertical upward direction, and the product of the magnetic flux density and the differential value based on the vertical position coordinate takes a specific value that suppresses gravity convection. 2. The method for suppressing convection according to claim 1, wherein: 溶液から結晶を析出、育成させる結晶の析出、育成方法において、勾配磁場を結晶および溶液に印加することによって、重力で発生する浮力を磁気力で発生する浮力で相殺して結晶周辺の対流を抑制して結晶を析出、育成せしめるようにすることを特徴とした、溶液からの結晶の析出育成方法。   In crystal deposition and growth methods, crystals are deposited and grown from solution. By applying a gradient magnetic field to the crystal and the solution, buoyancy generated by gravity is offset by buoyancy generated by magnetic force, and convection around the crystal is suppressed. Then, the method for depositing and growing crystals from a solution is characterized in that crystals are precipitated and grown. 前記請求項3に記載する勾配磁場が、垂直上向き方向に沿って磁束密度を減少または増加させ、磁束密度とその垂直位置座標による微分値の積が重力対流を抑制する特定の値をとるよう制御されることを特徴とした、請求項3項に記載する溶液からの結晶析出育成方法。   The gradient magnetic field according to claim 3 is controlled so that the magnetic flux density decreases or increases along the vertical upward direction, and the product of the magnetic flux density and the differential value by the vertical position coordinate takes a specific value for suppressing gravity convection. The method for growing a crystal from a solution according to claim 3, wherein: 溶液から結晶を析出、育成させる結晶析出育成装置において、結晶および溶液に勾配磁場を印加しうるようにした勾配磁場発生手段を設け、勾配磁場を制御することによって結晶周辺の対流を制御しうるようにしたことを特徴とする、溶液からの結晶の析出育成装置。   In a crystal precipitation growth apparatus for depositing and growing crystals from a solution, a gradient magnetic field generating means that can apply a gradient magnetic field to the crystal and the solution is provided, and the convection around the crystal can be controlled by controlling the gradient magnetic field. An apparatus for depositing and growing crystals from a solution. 前記勾配磁場が、垂直上向き方向に沿って磁束密度を減少または増加させることによって、磁束密度とその垂直位置座標による微分値の積が重力対流を抑制する特定の値をとるよう制御されることを特徴とした、請求項5に記載する溶液からの結晶の析出育成装置。
The gradient magnetic field is controlled to decrease or increase the magnetic flux density along the vertical upward direction so that the product of the magnetic flux density and the differential value according to the vertical position coordinate takes a specific value that suppresses gravity convection. An apparatus for crystal growth from a solution according to claim 5, which is characterized.
JP2005354324A 2005-12-08 2005-12-08 Process and apparatus for suppressing convection Pending JP2007152306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354324A JP2007152306A (en) 2005-12-08 2005-12-08 Process and apparatus for suppressing convection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354324A JP2007152306A (en) 2005-12-08 2005-12-08 Process and apparatus for suppressing convection

Publications (1)

Publication Number Publication Date
JP2007152306A true JP2007152306A (en) 2007-06-21

Family

ID=38237327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354324A Pending JP2007152306A (en) 2005-12-08 2005-12-08 Process and apparatus for suppressing convection

Country Status (1)

Country Link
JP (1) JP2007152306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104584A (en) * 2009-10-19 2011-06-02 Niigata Univ Treatment method for electroless nickel plating waste liquid
CN115430472A (en) * 2022-10-10 2022-12-06 中国科学院力学研究所 Micro-fluidic chip for simulating microgravity platform and method for producing macromolecular drug crystals by using micro-fluidic chip through batch method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104584A (en) * 2009-10-19 2011-06-02 Niigata Univ Treatment method for electroless nickel plating waste liquid
CN115430472A (en) * 2022-10-10 2022-12-06 中国科学院力学研究所 Micro-fluidic chip for simulating microgravity platform and method for producing macromolecular drug crystals by using micro-fluidic chip through batch method

Similar Documents

Publication Publication Date Title
Pamplin Crystal Growth: International Series on the Science of the Solid State
Rutter et al. A prismatic substructure formed during solidification of metals
Bennema et al. Crystal growth from solution: development in computer simulation
Horner et al. Isotopic fractionation of cadmium into calcite
Fukuyama et al. Impact of high-temperature annealing of AlN layer on sapphire and its thermodynamic principle
Bhat Introduction to crystal growth: principles and practice
Hashimoto et al. Growth of gallium nitride via fluid transport in supercritical ammonia
Mori et al. Metastable crystal growth of acetaminophen using solution-mediated phase transformation
Chew et al. Crystallization of paracetamol under oscillatory flow mixing conditions
Xiao et al. Conversion behavior of threading screw dislocations on C face with different surface morphology during 4H-SiC solution growth
Boyko et al. Promising approaches to crystallization of macromolecules suppressing the convective mass transport to the growing crystal
Ariyawong et al. Analysis of macrostep formation during top seeded solution growth of 4H-SiC
Reynolds et al. Crystal Growth Mechanism in Cadmium Sulfide Crystals
JP2007152306A (en) Process and apparatus for suppressing convection
Feigelson Crystal growth History: Theory and melt growth processes
Nakamura et al. Transformation of hollow-core screw dislocations: transitional configuration of superscrew dislocations
Hu et al. In situ observation of multiple parallel (1 1 1) twin boundary formation from step-like grain boundary during Si solidification
Kissling et al. Electrodeposition of crystalline HgTe from a non-aqueous plating bath
Kousaka et al. Chirality-controlled enantiopure crystal growth of a transition metal monosilicide by a floating zone method
Zhang et al. Quantitative determination of tip undercooling of faceted sea ice with in situ experiments
Schwarcz et al. The effect of disordered substrate on crystallization in 2D
DeLucas Protein crystallization–is it rocket science?
JP2007203178A (en) Method and apparatus for suppressing convection generated accompanying with crystal growth
Inasawa et al. Cross-sectional analysis of the core of silicon microparticles formed via zinc reduction of SiCl 4
Broby et al. Scaling of Calcium Carbonate on Heated Surfaces-Crystallization or Particulate Fouling?