JP2007149875A - Semiconductor light-emitting element, and method of manufacturing same - Google Patents

Semiconductor light-emitting element, and method of manufacturing same Download PDF

Info

Publication number
JP2007149875A
JP2007149875A JP2005340819A JP2005340819A JP2007149875A JP 2007149875 A JP2007149875 A JP 2007149875A JP 2005340819 A JP2005340819 A JP 2005340819A JP 2005340819 A JP2005340819 A JP 2005340819A JP 2007149875 A JP2007149875 A JP 2007149875A
Authority
JP
Japan
Prior art keywords
layer
light
nitride semiconductor
type nitride
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005340819A
Other languages
Japanese (ja)
Other versions
JP4857733B2 (en
Inventor
Mikio Masui
幹生 桝井
Hiroshi Fukushima
博司 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005340819A priority Critical patent/JP4857733B2/en
Publication of JP2007149875A publication Critical patent/JP2007149875A/en
Application granted granted Critical
Publication of JP4857733B2 publication Critical patent/JP4857733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve light extraction efficiency by deeply engraving a reflecting mirror when improving the light extraction efficiency by engraving up to an nGaN layer so as to form the reflecting mirror, in a semiconductor light-emitting element composed by laminating at least the nGaN layer, a light-emitting layer, and a pGaN layer. <P>SOLUTION: A groove 19 as the reflecting mirror is arranged dispersedly in a plane direction of a substrate 12 so as not to make it into a closed loop. Accordingly, it is possible to secure a current pathway from one end side with an n-type electrode 17 formed thereto to the other end side in the nGaN layer while preventing the nGaN layer, light-emitting layer, and pGaN layer from being separated from each other in the plane direction (in a state of not being separated in a columnar shape). The groove 19 can be deeply engraved, namely, the reflecting mirror can be made high while being in a low-resistance state. By this, it is possible to improve the light extraction efficiency while increasing components hitting the reflecting mirror. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体内で電子と正孔とを結合させて光を発生する半導体発光素子およびその製造方法に関する。   The present invention relates to a semiconductor light emitting device that generates light by combining electrons and holes in a semiconductor and a method for manufacturing the same.

近年、III−N化合物(以下、ナイトライドと呼ぶ)を用いて、その中に量子井戸を形成し、外部から電流を流して、この量子井戸で電子と正孔とを結合させて光を発生する半導体固体発光素子の発展が目覚しい。前記III−V化合物として最もよく用いられているのが前記ナイトライドのGaNであるが、このGaNを始めとして、ナイトライドの屈折率は1より大きく、大気中への光の取出しに課題がある。GaNの場合を例にとると、屈折率が約2.5であり、GaNと大気との境界の法線に対して、23.6度(以下、この法線に対して23.6度より小さい領域で形成された円錐領域をエスケープコーンと呼ぶ)より大きい角度で境界に入射された光は、大気中に放射されず、境界面で全反射され、GaNの中へ閉込められてしまう。   In recent years, III-N compounds (hereinafter referred to as "nitrides") are used to form quantum wells, and an electric current is applied from outside to generate electrons by combining electrons and holes in these quantum wells. The development of semiconductor solid state light emitting devices is remarkable. The nitride GaN is most frequently used as the III-V compound. The refractive index of nitride, including this GaN, is larger than 1, and there is a problem in extracting light into the atmosphere. . Taking the case of GaN as an example, the refractive index is about 2.5, which is 23.6 degrees with respect to the normal of the boundary between GaN and the atmosphere (hereinafter referred to as 23.6 degrees with respect to this normal). Light incident on the boundary at a larger angle (conical region formed by a small region is called an escape cone) is not emitted into the atmosphere, but is totally reflected at the boundary surface and confined in GaN.

その閉込められた光の一部は発光層に再吸収され、電子―正孔対発生と再結合とによって再発光に寄与するが、その再発光した光も一部のエスケープコーン内で発光されれば大気中へ放射されるが、大部分のエスケープコーン外で発光された光は再びGaN中に閉込められる。そして、閉込められた光は、結晶や電極材料に再吸収されて熱に変化してしまう。このため、平坦なGaN層では、この屈折率による全反射のために発光効率を向上することは難しいという問題がある。   Part of the confined light is reabsorbed by the light-emitting layer and contributes to re-emission due to electron-hole pair generation and recombination, but the re-emitted light is also emitted in some escape cones. The light emitted outside the escape cone is confined in GaN again. Then, the confined light is reabsorbed by the crystal and the electrode material and changed into heat. For this reason, a flat GaN layer has a problem that it is difficult to improve the light emission efficiency due to the total reflection due to the refractive index.

そこで、このような課題に対して、たとえば特許文献1では、光取出し面に矩形の凹凸を形成しておくことで、前記光取り出し面で光が反射する際に、凹部と凸部とでそれぞれ反射される光が互いの位相のλ/2だけ異なって打消し合い、反射が低減して、結果的に光取り出し効率を向上するように工夫されている。   Thus, for such a problem, for example, in Patent Document 1, by forming a rectangular unevenness on the light extraction surface, when light is reflected on the light extraction surface, the concave portion and the convex portion respectively. It is devised that the reflected light cancels each other out by λ / 2 of the phase of each other, the reflection is reduced, and as a result, the light extraction efficiency is improved.

しかしながら、その従来技術では、表面付近に凹凸が形成されるので、発光層から面方向に放射された光は、なかなか凹凸に捉えられないという問題がある。そこで、このような課題に対して、特許文献2が提案された。   However, the conventional technology has a problem that unevenness is formed in the vicinity of the surface, so that light emitted from the light emitting layer in the surface direction cannot be easily captured by the unevenness. Therefore, Patent Document 2 has been proposed for such a problem.

図6は、その特許文献2による発光ダイオード1の構造を示す断面図である。この発光ダイオード1は、大略的に、サファイア(Al)などの基板2上に、n型のバッファ層3、nGaN層4、発光層5、pGaN層6が順に形成され、発光層5で発生した光をサファイア基板2側から取出すフリップチップ(フェイスダウン)タイプの発光ダイオードである。前記nGaN層4上で、一部分の発光層5およびpGaN層6が除去されてn型電極7が形成され、前記pGaN層6上にp型電極8が形成される。 FIG. 6 is a sectional view showing the structure of the light-emitting diode 1 according to Patent Document 2. As shown in FIG. The light emitting diode 1 is, generally, the above substrate 2, such as sapphire (Al 2 O 3), n-type buffer layer 3, The InGaN layer 4, the light emitting layer 5, pGaN layer 6 are formed in this order, the light emitting layer 5 This is a flip-chip (face-down) type light emitting diode that takes out the light generated in step 1 from the sapphire substrate 2 side. A part of the light emitting layer 5 and the pGaN layer 6 are removed on the nGaN layer 4 to form an n-type electrode 7, and a p-type electrode 8 is formed on the pGaN layer 6.

この従来技術で注目すべきは、pGaN層6から発光層5を超えて、nGaN層4へ達する溝9が刻設され、その溝9の内面に、透明絶縁膜10が形成され、さらに前記p型電極8が形成されることで、前記溝9の内面におけるp型電極8の部分8aが、反射鏡となることである。この反射鏡を形成することで、たとえば矢符F1で示すように、発光層5の遠くの位置から前記のような面方向に放射された光を、基板2方向に反射させて角度変換することができ、GaNから空気層または該基板2のエスケープコーン内に入射させ、光取出し効率が向上されている。
特開平7−202257号公報 特表2004−506331号公報
It should be noted in this prior art that a groove 9 reaching the nGaN layer 4 from the pGaN layer 6 to the light emitting layer 5 is formed, and a transparent insulating film 10 is formed on the inner surface of the groove 9. By forming the mold electrode 8, the portion 8 a of the p-type electrode 8 on the inner surface of the groove 9 becomes a reflecting mirror. By forming this reflecting mirror, for example, as indicated by an arrow F1, light emitted in a plane direction as described above from a distant position of the light emitting layer 5 is reflected in the direction of the substrate 2 to convert the angle. The light extraction efficiency is improved by allowing the light to enter the air layer or the escape cone of the substrate 2 from GaN.
JP-A-7-202257 JP-T-2004-506331

上述の従来技術では、溝9は、深く形成される程、発光層5で発生した光の取出し効率は高くなる。しかしながら、たとえば図7で示すように、前記溝9は、平面視では、多角形に形成されている。したがって、nGaN層4、発光層5およびpGaN層6は、その溝9に囲まれた区画毎に、面方向に分離、すなわち柱状に切り離されることになる。このため、相対的に低抵抗なnGaN層4から、中抵抗なn型のバッファ層3へ向けて、前記溝9を深く形成する程、nGaN層4の各部から、端部に形成されたn型電極7へ、矢符F2で示すようにnGaN層4の面方向に流れる電流に対する抵抗が大きくなり、発光層5での発光光量が減少し、前記光取出し効率の向上分を打ち消してしまうという問題がある。なお、pGaN層6が相対的に高抵抗である。   In the above-described prior art, the deeper the groove 9 is formed, the higher the efficiency of extracting light generated in the light emitting layer 5. However, as shown in FIG. 7, for example, the groove 9 is formed in a polygonal shape in plan view. Therefore, the nGaN layer 4, the light emitting layer 5, and the pGaN layer 6 are separated in the plane direction, that is, separated into columns, for each section surrounded by the groove 9. For this reason, the deeper the groove 9 is formed from the relatively low resistance nGaN layer 4 toward the medium resistance n-type buffer layer 3, the n n layers formed at the end portions from the respective portions of the nGaN layer 4. As indicated by the arrow F2, the resistance to the current flowing in the surface direction of the nGaN layer 4 increases, and the amount of light emitted from the light emitting layer 5 decreases, canceling the improvement in the light extraction efficiency. There's a problem. Note that the pGaN layer 6 has a relatively high resistance.

本発明の目的は、n型窒化物半導体層において、面方向への電流経路が低抵抗なまま、溝を深く彫り込むことができる半導体発光素子およびその製造方法を提供することである。   An object of the present invention is to provide a semiconductor light emitting device and a method for manufacturing the same, in which a groove can be deeply carved in an n-type nitride semiconductor layer while a current path in a plane direction has a low resistance.

本発明の半導体発光素子は、少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層させて成り、前記p型窒化物半導体層側から前記n型窒化物半導体層側へ達する溝が刻設され、その溝の内面に反射鏡が形成されて成る半導体発光素子において、前記n型窒化物半導体層内を面方向に電流が流れ、前記溝は、閉ループを形成しないように、複数が前記面方向に相互に離散して刻設されることを特徴とする。   The semiconductor light emitting device of the present invention is formed by sequentially laminating at least an n-type nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer, from the p-type nitride semiconductor layer side to the n-type nitride semiconductor layer side. In a semiconductor light emitting device in which a reaching groove is formed and a reflecting mirror is formed on the inner surface of the groove, a current flows in the surface direction in the n-type nitride semiconductor layer so that the groove does not form a closed loop. , And a plurality of them are discretely engraved in the plane direction.

また、本発明の半導体発光素子の製造方法は、少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層させて成り、前記n型窒化物半導体層内を面方向に電流が流れる半導体発光素子の製造方法において、前記p型窒化物半導体層側から前記n型窒化物半導体層側へ到達し、閉ループを形成しないように、面方向に相互に離散して複数の溝を刻設する工程と、前記溝の内面に反射鏡を形成する工程とを含むことを特徴とする。   The method for manufacturing a semiconductor light-emitting device according to the present invention includes at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer that are sequentially stacked. In the method of manufacturing a semiconductor light emitting device in which a plurality of grooves are formed, a plurality of grooves are formed discretely in a plane direction so as not to form a closed loop from the p-type nitride semiconductor layer side to the n-type nitride semiconductor layer side. And a step of forming a reflecting mirror on the inner surface of the groove.

上記の構成によれば、発光ダイオードなどとして実現され、基板上に、少なくともn型窒化物半導体(nGaN)層、発光層(活性層)およびp型窒化物半導体(pGaN)層を順次積層させて成り、或いは成長後に前記基板を除去して成り、前記p型窒化物半導体層側から前記n型窒化物半導体層側へ到達する(彫り込まれた)溝の内面に反射鏡を形成することで、発光層から出た光が、直接前記反射鏡に入射し、または多重反射して入射することによって、反射された光がn型窒化物半導体層側に臨界角以下で入射し、外部へ取出し可能となることで、光取出し効率を向上するようにした半導体発光素子において、n型電極が、該半導体発光素子の面方向の一端に形成され、或いは中央に形成されるなどして、n型窒化物半導体層内を面方向に電流が流れる場合、前記溝を、閉ループを形成しないように、複数が前記面方向に相互に離散するように刻設する。   According to the above configuration, it is realized as a light emitting diode or the like, and at least an n-type nitride semiconductor (nGaN) layer, a light emitting layer (active layer), and a p-type nitride semiconductor (pGaN) layer are sequentially stacked on the substrate. Or by removing the substrate after growth, and forming a reflecting mirror on the inner surface of the groove reaching (engraved) from the p-type nitride semiconductor layer side to the n-type nitride semiconductor layer side, The light emitted from the light emitting layer is directly incident on the reflecting mirror, or is incident after multiple reflection, so that the reflected light is incident on the n-type nitride semiconductor layer side below the critical angle and can be taken out to the outside. Thus, in the semiconductor light emitting device in which the light extraction efficiency is improved, the n-type electrode is formed at one end in the surface direction of the semiconductor light emitting device, or formed at the center, so that the n-type nitriding is performed. Inside the semiconductor layer If the current flows in the direction, the groove, so as not to form a closed loop, the plurality is engraved so as to discretely from each other in said surface direction.

したがって、閉ループを形成しないことで、n型窒化物半導体層、発光層およびp型窒化物半導体層を面方向に分離しないように(柱状に切り離さないように)なり、n型窒化物半導体層において、一端側から他端側へ電流経路を確保でき、低抵抗なまま、前記溝を深く彫り込む、すなわち反射鏡を高くすることができる。これによって、反射鏡に当たる成分を増加させ、光取出し効率を向上することができる。   Therefore, by not forming a closed loop, the n-type nitride semiconductor layer, the light-emitting layer, and the p-type nitride semiconductor layer are not separated in the plane direction (so as not to be separated into columns), and in the n-type nitride semiconductor layer A current path can be secured from one end side to the other end side, and the groove can be deeply carved, that is, the reflecting mirror can be made high with low resistance. Thereby, the component which hits a reflecting mirror can be increased, and light extraction efficiency can be improved.

さらにまた、本発明の半導体発光素子では、前記溝は、テーパ面を有することを特徴とする。   Furthermore, in the semiconductor light emitting device of the present invention, the groove has a tapered surface.

上記の構成によれば、断面形状が矩形の溝に比べて、光取出し効率を向上することができる。   According to said structure, compared with a groove | channel with a rectangular cross-sectional shape, light extraction efficiency can be improved.

また、本発明の半導体発光素子は、基板上に、前記n型窒化物半導体層、発光層およびp型窒化物半導体層を成長させた後に、該基板を剥離した構造であることを特徴とする。   In addition, the semiconductor light emitting device of the present invention has a structure in which the n-type nitride semiconductor layer, the light emitting layer, and the p-type nitride semiconductor layer are grown on a substrate and then the substrate is peeled off. .

上記の構成によれば、前記n型窒化物半導体層、発光層およびp型窒化物半導体層を成長させた後に、成長基板を剥離することで、光取出し効率を一層向上することができる。   According to the above configuration, after the n-type nitride semiconductor layer, the light emitting layer, and the p-type nitride semiconductor layer are grown, the light extraction efficiency can be further improved by peeling the growth substrate.

本発明の半導体発光素子およびその製造方法は、以上のように、発光ダイオードなどとして実現され、基板上に、少なくともn型窒化物半導体(nGaN)層、発光層(活性層)およびp型窒化物半導体(pGaN)層を順次積層させて成り、或いは成長後に前記基板を除去して成り、前記p型窒化物半導体層側から前記n型窒化物半導体層側へ到達する(彫り込まれた)溝の内面に反射鏡を形成することで、発光層から出た光が、直接前記反射鏡に入射し、または多重反射して入射することによって、反射された光がn型窒化物半導体層側に臨界角以下で入射し、外部へ取出し可能となることで、光取出し効率を向上するようにした半導体発光素子において、n型電極が該半導体発光素子の面方向の一端に形成されるなどして前記n型窒化物半導体層内を面方向に電流が流れる場合、前記溝を、閉ループを形成しないように、複数が前記面方向に相互に離散するように刻設する。   As described above, the semiconductor light-emitting device and the method for manufacturing the same according to the present invention are realized as a light-emitting diode or the like. At least an n-type nitride semiconductor (nGaN) layer, a light-emitting layer (active layer), and a p-type nitride are formed on a substrate. A semiconductor (pGaN) layer is sequentially stacked, or the substrate is removed after growth, and a groove reaching (engraved) from the p-type nitride semiconductor layer side to the n-type nitride semiconductor layer side is formed. By forming the reflecting mirror on the inner surface, the light emitted from the light emitting layer is directly incident on the reflecting mirror or incident by multiple reflection, so that the reflected light is critical to the n-type nitride semiconductor layer side. In a semiconductor light emitting device that is incident at an angle or less and can be extracted to the outside so that the light extraction efficiency is improved, the n-type electrode is formed at one end in the surface direction of the semiconductor light emitting device, etc. n-type nitriding If the current flows through the semiconductor layer in the plane direction, the groove, so as not to form a closed loop, the plurality is engraved so as to discretely from each other in said surface direction.

それゆえ、前記n型窒化物半導体層、発光層およびp型窒化物半導体層は面方向に分離されず(柱状に切り離されず)、n型窒化物半導体層において、一端側から他端側へ電流経路を確保でき、低抵抗なまま、前記溝を深く彫り込む、すなわち反射鏡を高くすることができる。これによって、反射鏡に当たる成分を増加させ、光取出し効率を向上することができる。   Therefore, the n-type nitride semiconductor layer, the light emitting layer, and the p-type nitride semiconductor layer are not separated in the plane direction (not separated into columns), and the current flows from one end side to the other end side in the n-type nitride semiconductor layer. The path can be secured, and the groove can be deeply carved, that is, the reflecting mirror can be made high with low resistance. Thereby, the component which hits a reflecting mirror can be increased, and light extraction efficiency can be improved.

[実施の形態1]
図1は、本発明の実施の一形態に係る発光ダイオード11の構造を示す断面図である。この発光ダイオード11は、大略的に、サファイア(Al)などの基板12上に、n型のバッファ層13、nGaN層14、発光層15、pGaN層16が順に形成され、発光層15で発生した光をサファイア基板12側から取出すフリップチップ(フェイスダウン)タイプの発光ダイオードである。前記nGaN層14上で、一部分の発光層15およびpGaN層16が除去されてn型電極17が形成され、前記pGaN層16上にp型電極18が形成される。
[Embodiment 1]
FIG. 1 is a sectional view showing a structure of a light emitting diode 11 according to an embodiment of the present invention. The light emitting diode 11 is, generally, the above substrate 12 such as sapphire (Al 2 O 3), n-type buffer layer 13, The InGaN layer 14, the light emitting layer 15, pGaN layer 16 are formed in this order, the light emitting layer 15 This is a flip-chip (face-down) type light emitting diode that takes out the light generated in step 1 from the sapphire substrate 12 side. A part of the light emitting layer 15 and the pGaN layer 16 are removed on the nGaN layer 14 to form an n-type electrode 17, and a p-type electrode 18 is formed on the pGaN layer 16.

前記基板12は、前記サファイアに限定されず、発光波長に対して透光性を持つものであればよいことは言うまでもない。またこの種の発光ダイオードの製造方法については、当業者には公知のMOCVD法などを用いて実現することができ、ここでの詳しい説明は省略する。   Needless to say, the substrate 12 is not limited to the sapphire, and may be any material having translucency with respect to the emission wavelength. A manufacturing method of this type of light emitting diode can be realized by using a MOCVD method known to those skilled in the art, and a detailed description thereof will be omitted here.

前記電極17,18を形成する前には、前記pGaN層16から発光層15を超えて、nGaN層14へ達するテーパー状の溝19が刻設され、その溝19の内面に、透明絶縁膜20が形成される。その後に、前記p型電極18が形成されることで、前記溝19の内面におけるp型電極18の部分18aが、反射鏡となる。この反射鏡を形成することで、発光層15の遠くの位置から面方向に放射された光を、基板12方向に反射させて角度変換することができ、GaNから空気層または該基板12のエスケープコーン内に入射させ、光取出し効率を向上することができる。以上の構成は、前述の図6で示す発光ダイオード1と同様である。   Before forming the electrodes 17, 18, a tapered groove 19 reaching the nGaN layer 14 from the pGaN layer 16 to the light emitting layer 15 is formed, and a transparent insulating film 20 is formed on the inner surface of the groove 19. Is formed. Thereafter, the p-type electrode 18 is formed, so that the portion 18a of the p-type electrode 18 on the inner surface of the groove 19 becomes a reflecting mirror. By forming this reflecting mirror, light emitted in a plane direction from a distant position of the light emitting layer 15 can be reflected in the direction of the substrate 12 and angle-converted, and the air layer or the escape of the substrate 12 can be converted from GaN. It can enter into a cone and can improve the light extraction efficiency. The above configuration is the same as that of the light-emitting diode 1 shown in FIG.

注目すべきは、本実施の形態では、図2で示すように、n型電極17が該発光ダイオード11の面方向の一端に形成され、nGaN層14内を面方向に電流が流れることになるのに対して、前記溝19は、閉ループを形成しないように、複数が前記面方向に相互に離散して刻設される(独立して配置されている)ことである。なお、本発明では、前記n型電極17は、発光ダイオード11の中央に形成されてもよく、局所的に形成されることで、nGaN層14内を面方向に電流が流れるようになっていればよい。   It should be noted that in the present embodiment, as shown in FIG. 2, the n-type electrode 17 is formed at one end in the surface direction of the light emitting diode 11, and a current flows in the nGaN layer 14 in the surface direction. On the other hand, a plurality of the grooves 19 are engraved discretely in the plane direction (disposed independently) so as not to form a closed loop. In the present invention, the n-type electrode 17 may be formed in the center of the light-emitting diode 11 and may be locally formed so that a current flows in the plane direction in the nGaN layer 14. That's fine.

この図2の例では、前記溝19は、図3で示すように、6角形を敷き詰めたパターンを相互にずらせて3種類重ね合わせ、各パターンにおいて、相互に対向する2辺を前記溝19としたものである。パターンは、より多角形である程、多方面からの光を捉えることができるが、円は、前記閉ループを形成してしまうので、不適である。   In the example of FIG. 2, as shown in FIG. 3, the groove 19 is formed by superimposing three types of hexagonal patterns so as to overlap each other, and in each pattern, two sides facing each other are formed as the groove 19. It is a thing. The more polygonal the pattern is, the more light can be captured from many directions, but the circle is not suitable because it forms the closed loop.

図4は、上述のように構成される発光ダイオード11の製造工程を説明するための図である。本実施の形態では、上記溝19を、ナノインプリントリソグラフィー法によって作製する。   FIG. 4 is a diagram for explaining a manufacturing process of the light-emitting diode 11 configured as described above. In the present embodiment, the groove 19 is produced by a nanoimprint lithography method.

先ず、溝19の作成にあたって、図4(c)で示すような、前記溝19の反転形状を有する型30を作成する。型30の作成には、たとえば電子線リソグラフィー法を用いることができる。具体的には、シリコンウエハ上にスピンコートにより形成した電子線用レジストに、電子線を照射して溝19のレジストパターンを作成する。前記溝19のテーパー状に対応してパターン高さを変化させるには、電子線のドーズ量を変化させることで対応でき、ドーズ量が多いと電子線レジストの感光深さが深くなり、ドーズ量が少ないと電子線レジストの感光深さが浅くなる。こうして、異なる高さのレジストパターンを作成することができる。そのレジストパターンのNi電鋳を採ることで、プレス用の型30を作成することができる。   First, when the groove 19 is formed, a mold 30 having the inverted shape of the groove 19 as shown in FIG. For example, an electron beam lithography method can be used to create the mold 30. Specifically, a resist pattern for the grooves 19 is created by irradiating an electron beam resist formed on a silicon wafer by spin coating with an electron beam. The pattern height can be changed corresponding to the taper shape of the groove 19 by changing the dose amount of the electron beam. If the dose amount is large, the photosensitive depth of the electron beam resist becomes deep, and the dose amount is increased. If the amount is small, the exposure depth of the electron beam resist becomes shallow. In this way, resist patterns having different heights can be created. By adopting Ni electroforming of the resist pattern, a press die 30 can be created.

前記MOCVD法などを用いて、図4(a)で示すように各層13〜16を基板12上に作成した後、図4(b)で示すように、ウエハ状態の発光ダイオード11の基板12の表面に、レジスト31をスピンコートし、前記図4(c)で示すように型30を押し付け、形状を転写する。レジスト31の材料は、有機もしくは無機どちらでも良いが、転写性が良く、かつ耐ドライエッチング性が高い必要がある。たとえば、スピンオンガラスを使用することができる。図4(d)で示すように、離型後、レジスト31には、型30のパターンが転写される。その転写後のレジスト31をマスクとして、塩素ガスを用いたリアクティブイオンエッチングを行うことで、図4(e)で示すように、発光ダイオード11の基板12の表面に、型30のパターンを反転して転写し、溝19を形成することができる。その後、公知の手法で、前記透明絶縁膜20が形成された後、電極17,18が形成される。   After the respective layers 13 to 16 are formed on the substrate 12 as shown in FIG. 4A by using the MOCVD method or the like, the substrate 12 of the light emitting diode 11 in the wafer state is formed as shown in FIG. A resist 31 is spin-coated on the surface, and the mold 30 is pressed as shown in FIG. 4C to transfer the shape. The material of the resist 31 may be either organic or inorganic, but it needs to have good transferability and high dry etching resistance. For example, spin-on glass can be used. As shown in FIG. 4D, the pattern of the mold 30 is transferred to the resist 31 after the mold release. By performing reactive ion etching using chlorine gas using the resist 31 after the transfer as a mask, the pattern of the mold 30 is inverted on the surface of the substrate 12 of the light emitting diode 11 as shown in FIG. Thus, the groove 19 can be formed. Thereafter, after the transparent insulating film 20 is formed by a known method, the electrodes 17 and 18 are formed.

このように作製することで、溝19を閉ループとしないので、nGaN層14、発光層15およびpGaN層16を面方向に分離しないように(柱状に切り離さないように)なり、nGaN層14において、n型電極17が形成される一端側から他端側へ電流経路を確保でき、低抵抗なまま、前記溝19を深く彫り込む、すなわち反射鏡を高くすることができる。これによって、反射鏡に当たる成分を増加させ、光取出し効率を向上することができる。また、前記溝19がテーパ面を有することで、断面形状が矩形の溝に比べて、光取出し効率を向上することができる。   By manufacturing in this way, the groove 19 is not a closed loop, so that the nGaN layer 14, the light emitting layer 15 and the pGaN layer 16 are not separated in the plane direction (so as not to be separated into pillars), and in the nGaN layer 14, A current path can be secured from one end side to the other end side where the n-type electrode 17 is formed, and the groove 19 can be deeply carved, that is, the reflecting mirror can be made high with low resistance. Thereby, the component which hits a reflecting mirror can be increased, and light extraction efficiency can be improved. Further, since the groove 19 has a tapered surface, the light extraction efficiency can be improved as compared with a groove having a rectangular cross-sectional shape.

[実施の形態2]
図5は、本発明の実施の他の形態に係る発光ダイオード41の構造を示す断面図である。この発光ダイオード41は、前述の発光ダイオード11に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。注目すべきは、この発光ダイオード41では、前記溝19から電極17,18まで形成された後に、サファイアの基板12が除去されることである。
[Embodiment 2]
FIG. 5 is a sectional view showing the structure of a light emitting diode 41 according to another embodiment of the present invention. The light-emitting diode 41 is similar to the light-emitting diode 11 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. It should be noted that in the light emitting diode 41, the sapphire substrate 12 is removed after the grooves 19 to the electrodes 17 and 18 are formed.

この場合、基板12を前記nGaN層14から剥離する必要があり、一般的には紫外レーザが用いられる。具体的には、基板12(サファイア)側から、KrFエキシマレーザ(λ=248nm、照射強度:0.3J/cm)を入射する。レーザは、透明な結晶基板12を透過してnGaN層14で吸収されるので、界面でアブレーションが生じ、結果、基板12がnGaN層14から剥離する。 In this case, it is necessary to peel off the substrate 12 from the nGaN layer 14, and generally an ultraviolet laser is used. Specifically, a KrF excimer laser (λ = 248 nm, irradiation intensity: 0.3 J / cm 2 ) is incident from the substrate 12 (sapphire) side. Since the laser passes through the transparent crystal substrate 12 and is absorbed by the nGaN layer 14, ablation occurs at the interface, and as a result, the substrate 12 peels from the nGaN layer 14.

このように基板12上に、前記nGaN層14、発光層15およびpGaN層16を成長させた後に、該基板12を剥離することで、前記nGaN層14が光取出し面となり、光取出し効率を一層向上することができる。   In this way, after the nGaN layer 14, the light emitting layer 15 and the pGaN layer 16 are grown on the substrate 12, the substrate 12 is peeled off so that the nGaN layer 14 becomes a light extraction surface, and the light extraction efficiency is further increased. Can be improved.

本発明の実施の一形態に係る発光ダイオードの構造を示す断面図である。It is sectional drawing which shows the structure of the light emitting diode which concerns on one Embodiment of this invention. 図1で示す発光ダイオードの平面図である。It is a top view of the light emitting diode shown in FIG. 図1で示す発光ダイオードにおける溝の形成パターンを説明するための平面図である。It is a top view for demonstrating the formation pattern of the groove | channel in the light emitting diode shown in FIG. 図1で示す発光ダイオードの製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the light emitting diode shown in FIG. 本発明の実施の他の形態に係る発光ダイオードの構造を示す断面図である。It is sectional drawing which shows the structure of the light emitting diode which concerns on the other embodiment of this invention. 従来技術の発光ダイオードの構造を示す断面図である。It is sectional drawing which shows the structure of the light emitting diode of a prior art. 図6で示す発光ダイオードの平面図である。It is a top view of the light emitting diode shown in FIG.

符号の説明Explanation of symbols

11,41 発光ダイオード
12 基板
13 バッファ層
14 nGaN層
15 発光層
16 pGaN層
17 n型電極
18 p型電極
19 溝
20 透明絶縁膜
30 型
31 レジスト
11, 41 Light-emitting diode 12 Substrate 13 Buffer layer 14 nGaN layer 15 Light-emitting layer 16 pGaN layer 17 n-type electrode 18 p-type electrode 19 groove 20 transparent insulating film 30 type 31 resist

Claims (4)

少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層させて成り、前記p型窒化物半導体層側から前記n型窒化物半導体層側へ達する溝が刻設され、その溝の内面に反射鏡が形成されて成る半導体発光素子において、
前記n型窒化物半導体層内を面方向に電流が流れ、
前記溝は、閉ループを形成しないように、複数が前記面方向に相互に離散して刻設されることを特徴とする半導体発光素子。
At least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer are sequentially stacked, and a groove is formed from the p-type nitride semiconductor layer side to the n-type nitride semiconductor layer side. In the semiconductor light-emitting device in which the reflecting mirror is formed on the inner surface of the groove,
A current flows in the plane direction in the n-type nitride semiconductor layer,
A plurality of grooves are engraved discretely in the plane direction so as not to form a closed loop.
前記溝は、テーパ面を有することを特徴とする請求項1記載の半導体発光素子。   The semiconductor light emitting element according to claim 1, wherein the groove has a tapered surface. 基板上に、前記n型窒化物半導体層、発光層およびp型窒化物半導体層を成長させた後に、該基板を剥離した構造であることを特徴とする請求項1または2記載の半導体発光素子。   3. The semiconductor light emitting device according to claim 1, wherein the n type nitride semiconductor layer, the light emitting layer and the p type nitride semiconductor layer are grown on the substrate and then the substrate is peeled off. . 少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層させて成り、前記n型窒化物半導体層内を面方向に電流が流れる半導体発光素子の製造方法において、
前記p型窒化物半導体層側から前記n型窒化物半導体層側へ到達し、閉ループを形成しないように、面方向に相互に離散して複数の溝を刻設する工程と、
前記溝の内面に反射鏡を形成する工程とを含むことを特徴とする半導体発光素子の製造方法。
In a method for manufacturing a semiconductor light emitting device, comprising at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer sequentially stacked, wherein a current flows in a plane direction in the n-type nitride semiconductor layer.
Reaching the n-type nitride semiconductor layer side from the p-type nitride semiconductor layer side and forming a plurality of grooves discretely in the plane direction so as not to form a closed loop;
And a step of forming a reflecting mirror on the inner surface of the groove.
JP2005340819A 2005-11-25 2005-11-25 Semiconductor light emitting device and manufacturing method thereof Expired - Fee Related JP4857733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340819A JP4857733B2 (en) 2005-11-25 2005-11-25 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340819A JP4857733B2 (en) 2005-11-25 2005-11-25 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007149875A true JP2007149875A (en) 2007-06-14
JP4857733B2 JP4857733B2 (en) 2012-01-18

Family

ID=38210934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340819A Expired - Fee Related JP4857733B2 (en) 2005-11-25 2005-11-25 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4857733B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047923A1 (en) * 2006-10-20 2008-04-24 Mitsubishi Chemical Corporation Nitride semiconductor light-emitting diode device
JP2008199004A (en) * 2007-02-12 2008-08-28 Samsung Electro-Mechanics Co Ltd Nitride semiconductor light emitting element and manufacturing method
KR20110109497A (en) * 2010-03-31 2011-10-06 서울옵토디바이스주식회사 High efficiency light emitting diode and method for fabricating the same
JP2011216882A (en) * 2010-03-31 2011-10-27 Seoul Opto Devices Co Ltd High-efficiency light emitting diode, and method for fabricating the same
JP2013093412A (en) * 2011-10-25 2013-05-16 Showa Denko Kk Light emitting diode, manufacturing method of light emitting diode, light emitting diode lamp, and lighting device
JP2014064012A (en) * 2013-10-28 2014-04-10 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
US9130134B2 (en) 2012-09-21 2015-09-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
JP2016528728A (en) * 2013-07-18 2016-09-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. High reflection flip chip LED die
KR101744933B1 (en) * 2010-03-31 2017-06-09 서울바이오시스 주식회사 High efficiency light emitting diode and method for fabricating the same
JP2018529230A (en) * 2015-08-25 2018-10-04 エルジー イノテック カンパニー リミテッド Light emitting device and light emitting device package including the same
JP2019522360A (en) * 2016-06-10 2019-08-08 エルジー イノテック カンパニー リミテッド Semiconductor element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026386A (en) * 2000-07-10 2002-01-25 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
JP2002164574A (en) * 2000-11-24 2002-06-07 Mitsubishi Cable Ind Ltd Semiconductor light emitting element
JP2004506331A (en) * 2000-08-08 2004-02-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor chip and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026386A (en) * 2000-07-10 2002-01-25 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
JP2004506331A (en) * 2000-08-08 2004-02-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor chip and method of manufacturing the same
JP2002164574A (en) * 2000-11-24 2002-06-07 Mitsubishi Cable Ind Ltd Semiconductor light emitting element

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008047923A1 (en) * 2006-10-20 2008-04-24 Mitsubishi Chemical Corporation Nitride semiconductor light-emitting diode device
US8716728B2 (en) 2006-10-20 2014-05-06 Mitsubishi Chemical Corporation Nitride semiconductor light-emitting diode device
JP2008199004A (en) * 2007-02-12 2008-08-28 Samsung Electro-Mechanics Co Ltd Nitride semiconductor light emitting element and manufacturing method
US9455378B2 (en) 2010-03-31 2016-09-27 Seoul Viosys Co., Ltd. High efficiency light emitting diode and method for fabricating the same
KR20110109497A (en) * 2010-03-31 2011-10-06 서울옵토디바이스주식회사 High efficiency light emitting diode and method for fabricating the same
JP2011216882A (en) * 2010-03-31 2011-10-27 Seoul Opto Devices Co Ltd High-efficiency light emitting diode, and method for fabricating the same
KR101744933B1 (en) * 2010-03-31 2017-06-09 서울바이오시스 주식회사 High efficiency light emitting diode and method for fabricating the same
KR101669640B1 (en) * 2010-03-31 2016-10-26 서울바이오시스 주식회사 High efficiency light emitting diode and method for fabricating the same
US9705034B2 (en) 2011-10-25 2017-07-11 Showa Denko K.K. Light-emitting diode, method for manufacturing light-emitting diode, light-emitting diode lamp and illumination device
JP2013093412A (en) * 2011-10-25 2013-05-16 Showa Denko Kk Light emitting diode, manufacturing method of light emitting diode, light emitting diode lamp, and lighting device
US9130134B2 (en) 2012-09-21 2015-09-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
JP2016528728A (en) * 2013-07-18 2016-09-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. High reflection flip chip LED die
JP2019179927A (en) * 2013-07-18 2019-10-17 ルミレッズ ホールディング ベーフェー High reflection flip chip LED die
JP2014064012A (en) * 2013-10-28 2014-04-10 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
JP2018529230A (en) * 2015-08-25 2018-10-04 エルジー イノテック カンパニー リミテッド Light emitting device and light emitting device package including the same
JP7148131B2 (en) 2015-08-25 2022-10-05 スージョウ レキン セミコンダクター カンパニー リミテッド Light emitting device and light emitting device package including the same
JP2019522360A (en) * 2016-06-10 2019-08-08 エルジー イノテック カンパニー リミテッド Semiconductor element
JP7209339B2 (en) 2016-06-10 2023-01-20 スージョウ レキン セミコンダクター カンパニー リミテッド semiconductor element

Also Published As

Publication number Publication date
JP4857733B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4857733B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2007173579A (en) Semiconductor light emitting device and its manufacturing method
JP4843284B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4824293B2 (en) Photonic crystal light emitting device
JP5379434B2 (en) Method for manufacturing sapphire substrate for light emitting device
EP2940741B1 (en) Reversely-installed photonic crystal led chip and method for manufacturing same
TW200302613A (en) Semiconductor light emitting device and its manufacturing method
US20120292630A1 (en) Led substrate and led
TW200534510A (en) Laser patterning of light emitting devices and patterned light emitting devices
KR101249924B1 (en) Semiconductor devices and fabrication method thereof
JP6072541B2 (en) Method of manufacturing nitride semiconductor device
JP2017513234A (en) Nitrogen nitride semiconductor light emitting device and manufacturing method thereof
JP2008283191A (en) Light emitting diode using silicon nanowire, and method of manufacturing it
JP2005268734A (en) Light emitting diode and manufacturing method therefor
JP2007288106A (en) Method for manufacturing semiconductor luminous element and element obtained from the same
KR100714626B1 (en) Nitride based semiconductor light emitting devices and manufacturing methods
JP2008226962A (en) Semiconductor light-emitting element and manufacturing method therefor
JP2009252826A (en) Semiconductor light-emitting element and method of manufacturing the same
KR100604562B1 (en) Light emitting diode and fabricating method thereof
JP6001476B2 (en) Manufacturing method of semiconductor light emitting device
US12009456B2 (en) Light-emitting diode structure and manufacturing method thereof
TWI601306B (en) Light-emitting diode chip manufacturing method and light-emitting diode chip and semi-finished product thereof
KR101216664B1 (en) method for manufacturing high-brightness LED using diffractive optical elements and high-brightness LED using thereof
TWI786276B (en) Manufacturing method of light-emitting device
KR20130046402A (en) Semiconductor light emitting diode and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees