JP2007147864A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2007147864A
JP2007147864A JP2005340369A JP2005340369A JP2007147864A JP 2007147864 A JP2007147864 A JP 2007147864A JP 2005340369 A JP2005340369 A JP 2005340369A JP 2005340369 A JP2005340369 A JP 2005340369A JP 2007147864 A JP2007147864 A JP 2007147864A
Authority
JP
Japan
Prior art keywords
mirror
light
optical
beams
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005340369A
Other languages
Japanese (ja)
Other versions
JP4779598B2 (en
Inventor
Masao Ito
昌夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005340369A priority Critical patent/JP4779598B2/en
Publication of JP2007147864A publication Critical patent/JP2007147864A/en
Application granted granted Critical
Publication of JP4779598B2 publication Critical patent/JP4779598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical scanner capable of precisely correcting the irregularity of light quantity of beams on the surface of a photoreceptor and stably obtaining a high-quality image. <P>SOLUTION: Two beams of a beam A0 having a polarizing direction in a main-scanning direction and a beam B0 having a polarizing direction in a sub-scanning direction are made incident to a mirror 1. Reflectance Rp for P-polarization and reflectance Rs for S-polarization at incident angle θ1 to the mirror 1 are respectively set to be 0.8 and 0.9. With respect to a beam A1 obtained by reflecting the beam A0 and a beam B1 obtained by reflecting the beam B0 with the mirror 1, optical intensities A1 and B1 respectively become A0*0.9 and B0*0.8. Subsequently, when beams are made incident to a mirror 2, with respect to a beam A2 obtained by reflecting the beam A1 and a beam B2 obtained by reflecting the beam B1 with the mirror 2, optical intensities A2 and B2 respectively become A0*0.9*0.8 and B1*0.8*0.9, therefore, the overall reflectances after passage of the beams A2, B2 through the mirrors 1, 2 get to 0.72, that is, the same value in both, and the light quantity of the two beams having different polarizing directions after passage through the optical system can be made even. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光走査装置に関し、特に複数の光源から発せられた光ビームを偏向素子にて偏向し走査露光を行う光走査装置に関する。   The present invention relates to an optical scanning device, and more particularly to an optical scanning device that performs scanning exposure by deflecting light beams emitted from a plurality of light sources with a deflecting element.

レーザープリンタやデジタル複写機の高速化・高画質化を達成する技術手段として、32ビームVCSELアレイ(面発光レーザーアレイ)を用いた走査光学系が提案されている(例えば、非特許文献1参照)。   A scanning optical system using a 32-beam VCSEL array (surface emitting laser array) has been proposed as a technical means for achieving high speed and high image quality of laser printers and digital copiers (see, for example, Non-Patent Document 1). .

レーザ光源である面発光レーザは直線偏光を発生するが、その偏光方向はレーザの発振強度によって回転する。この回転の程度は、面発光レーザの有する複数の光源毎に異なる。原因は各面発光レーザの発振モードがレーザ間で異なるためであるが、発振モードはレーザキャビティ内の温度分布や屈折率分布に依存する。レーザキャビティ内の温度分布や屈折率分布は、レーザに印加される電流量、発振レーザ光の分布、放熱の状態によって変動するため、一つの面発光レーザアレー内の複数のレーザ間で偏光方向を揃えることは困難である。   A surface emitting laser, which is a laser light source, generates linearly polarized light, and its polarization direction rotates depending on the oscillation intensity of the laser. The degree of this rotation differs for each of a plurality of light sources included in the surface emitting laser. The cause is that the oscillation modes of the surface emitting lasers differ among the lasers, but the oscillation modes depend on the temperature distribution and refractive index distribution in the laser cavity. The temperature distribution and refractive index distribution in the laser cavity vary depending on the amount of current applied to the laser, the distribution of oscillation laser light, and the state of heat dissipation, so the polarization directions are aligned among multiple lasers in one surface emitting laser array. It is difficult.

一方、光走査装置は複数の光学素子によって構成されるが、光学素子に直線偏光が入射した場合、素子への入射角によって反射率が変化する。光源からの複数ビームの偏光方向が異なる場合、同一のミラー面への入射において、ミラー面に対してP偏光成分とS偏光成分の割合がビーム間で異なるため、ミラーによって反射されたビームごとの光量に差が生じる。コーティングのないガラス表面における入射角度/反射率の関係を図16に示す。   On the other hand, the optical scanning device is constituted by a plurality of optical elements. When linearly polarized light is incident on the optical element, the reflectance changes depending on the incident angle to the element. When the polarization directions of a plurality of beams from the light source are different, the ratio of the P-polarized component and the S-polarized component with respect to the mirror surface differs between the beams at the incidence on the same mirror surface. A difference occurs in the amount of light. FIG. 16 shows the incident angle / reflectance relationship on the glass surface without coating.

図16(c)に示すようにP偏光とS偏光では反射率が異なる(Rs、Rp)ため、ビーム間で光量のばらつきが発生する。あるいはウインドウ等の透過型の素子でも同様の理由により透過率が異なるためビーム間の光量ばらつきが発生する。   As shown in FIG. 16 (c), since the reflectance differs between P-polarized light and S-polarized light (Rs, Rp), variation in the amount of light occurs between the beams. Alternatively, even in a transmission type element such as a window, the transmittance varies for the same reason, and thus the light amount variation between beams occurs.

上記のような光量ばらつきが発生すると、画像走査面(ここでは、感光体面)での光量変動を発生することになり、画像にムラ等の画質劣化をもたらす。   When the light amount variation as described above occurs, a light amount variation occurs on the image scanning surface (here, the photosensitive member surface), which causes image quality deterioration such as unevenness in the image.

例えば図15に示すような従来例において、LDアレー14のLD−AとLD−Bからのレーザ光の偏光方向は、LD−Aが主走査方向と、LD−Bが副走査方向と一致している。このときLDからシリンダーレンズ18までの素子およびf−θレンズ22、23に対する、主走査方向と副走査方向の直線偏光の反射率透過率はほぼ等しい。しかし、ポリゴンミラー20、シリンダーミラー124、シリンダーミラー125に対する、主走査方向と副走査方向の直線偏光の反射率は、ビームの各光学素子への入射角が異なるため、各入射面に対するLD−AとLD−BからのビームはS偏光またはP偏光の異なった状態となり、図17の様に両者の反射率に差が発生してしまう。図17の例では主走査/副走査間で総合して5.5%の反射率差が発生している。   For example, in the conventional example shown in FIG. 15, the polarization directions of the laser beams from the LD-A and LD-B of the LD array 14 coincide with the main scanning direction for LD-A and the sub-scanning direction for LD-B. ing. At this time, the reflectance transmittance of linearly polarized light in the main scanning direction and the sub-scanning direction is substantially equal to the elements from the LD to the cylinder lens 18 and the f-θ lenses 22 and 23. However, the reflectance of the linearly polarized light in the main scanning direction and the sub-scanning direction with respect to the polygon mirror 20, the cylinder mirror 124, and the cylinder mirror 125 is different in the incident angle of the beam to each optical element. And the beam from LD-B are in different states of S-polarized light or P-polarized light, resulting in a difference in reflectance between the two as shown in FIG. In the example of FIG. 17, a total reflectance difference of 5.5% occurs between the main scanning and the sub-scanning.

上記の理由により各光学素子の反射率・透過率は各レーザビームで異なるため、光学系の総合反射率・透過率はそれぞれのビームに対して異なり、露光面において図18に示すような光量変動をもたらす。図は32本ビームの例であるが、光量のばらつきがおよそ6%発生しており、この光量ばらつきにより画像にすじ等のムラを発生する。   Because of the above reasons, the reflectance and transmittance of each optical element are different for each laser beam. Therefore, the total reflectance and transmittance of the optical system are different for each beam. Bring. Although the figure shows an example of 32 beams, a variation in the amount of light occurs about 6%, and this variation in the amount of light causes unevenness such as streaks in the image.

また図19(a)〜(c)に示すように、単層膜ミラーを用いたポリゴンミラー20、シリンダーミラー124、シリンダーミラー125のS偏光とP偏光に対する反射率は、図19に示すような光学面のコーティングの構成と、各ミラーに対するビームの入射角によって決定される。   Further, as shown in FIGS. 19A to 19C, the reflectivity with respect to the S-polarized light and the P-polarized light of the polygon mirror 20, the cylinder mirror 124, and the cylinder mirror 125 using the single layer film mirror is as shown in FIG. It is determined by the coating composition of the optical surface and the angle of incidence of the beam on each mirror.

各単層膜ミラーでの入射角θに対する反射率Rp(反射係数ρpの自乗)は、図20乃至図22に示したように、特に入射角度42°の(a)、50°の(c)においてP偏光成分とS偏光成分との差が顕著であり、単層膜ミラーを用いて構成された光学系を通過した際のP偏光成分とS偏光成分との反射率差はポリゴンミラー20、シリンダーミラー124、シリンダーミラー125のP偏光成分とS偏光成分との反射率差の積となり、最終的に感光体上で結像される際の光量差は無視できないものとなってしまう。   The reflectivity Rp (the square of the reflection coefficient ρp) with respect to the incident angle θ in each single layer mirror is, as shown in FIGS. 20 to 22, particularly (a) at an incident angle of 42 ° and (c) at 50 °. The difference between the P-polarized component and the S-polarized component is remarkable, and the reflectance difference between the P-polarized component and the S-polarized component when passing through the optical system configured using the single-layer film mirror is the polygon mirror 20, This is the product of the difference in reflectance between the P-polarized component and the S-polarized component of the cylinder mirror 124 and cylinder mirror 125, and the difference in the amount of light when the image is finally formed on the photosensitive member is not negligible.

本発明の目的は上記問題を解決するため、光ビームが通過する全光学素子での主走査方向と副走査方向の偏光成分に対する総合透過率または総合反射率をほぼ同一とする光走査装置を提供することを目的とする。
市川順一、池田周穂、植木伸明、マルチビーム面発光レーザ素子を用いたプリンタ用露光装置、第29回光学シンポジウム、日本光学会、2004
In order to solve the above problems, an object of the present invention is to provide an optical scanning device in which the total transmittance or total reflectance for the polarization components in the main scanning direction and the sub-scanning direction is substantially the same in all optical elements through which the light beam passes. The purpose is to do.
Junichi Ichikawa, Shuho Ikeda, Nobuaki Ueki, Printer Exposure Equipment Using Multi-Beam Surface Emitting Laser Elements, 29th Optical Symposium, Japan Optical Society, 2004

本発明は上記事実を考慮し、感光体面上でのビームの光量ばらつきを精度良く補正し、高画質の画像を安定して得られる光走査装置を提供することを目的とする。   In consideration of the above-described facts, an object of the present invention is to provide an optical scanning device that can accurately correct a light amount variation of a beam on the surface of a photoreceptor and stably obtain a high-quality image.

請求項1に記載の光走査装置は、複数の光源と、
前記複数の光源から発せられる複数の光ビームを被走査物の表面に導き、及び被走査物の表面に結像させる複数の光学素子からなる光学系と、を備えた光走査装置であって、前記光ビームの偏光成分であるP偏光成分とS偏光成分に対して、前記光学素子上に形成されたコーティングの構成と、前記光学素子に入射する前記光ビームの入射角と、のうち少なくとも一方を制御することによって前記P偏光成分と前記S偏光成分の反射率または透過率が略等しくなるように制御したことを特徴とする。
The optical scanning device according to claim 1, a plurality of light sources;
An optical scanning apparatus comprising: an optical system including a plurality of optical elements that guides a plurality of light beams emitted from the plurality of light sources to the surface of the object to be scanned and forms an image on the surface of the object to be scanned; At least one of the configuration of the coating formed on the optical element and the incident angle of the light beam incident on the optical element with respect to the P-polarized component and the S-polarized component that are polarization components of the light beam By controlling the P-polarized light component and the S-polarized light component so that the reflectance or transmittance is substantially equal.

上記構成の発明では、複数の光ビームについてP偏光成分とS偏光成分の透過率または反射率をそれぞれ制御することで、偏光方向の回転角度が不揃いな複数の光源から発せられる光ビームの光量ばらつきを抑えることができる。   In the invention with the above-described configuration, by controlling the transmittance or reflectance of the P-polarized component and the S-polarized component for each of the plurality of light beams, the light amount variation of the light beams emitted from the plurality of light sources having uneven rotation angles in the polarization direction. Can be suppressed.

請求項2に記載の光走査装置は、前記複数の光源から発せられる複数の光ビームは直線偏光であることを特徴とする。   According to a second aspect of the present invention, the plurality of light beams emitted from the plurality of light sources are linearly polarized light.

上記構成の発明では、円偏光/楕円偏光と比較して振動方向が時間に拘わらず一定な直線偏光としたことで、正確な光量制御を行うことができる。   In the invention with the above configuration, the light quantity can be accurately controlled by using linearly polarized light whose vibration direction is constant regardless of time as compared with circularly polarized light / elliptically polarized light.

請求項3に記載の光走査装置は、前記光源は面発光レーザであることを特徴とする。   According to a third aspect of the present invention, the light source is a surface emitting laser.

上記構成の発明では、近接した複数の発光点を備えた面発光レーザにおいてもビームごとの光量差を抑え、ドットごとの明るさを揃えることができる。   In the invention with the above configuration, even in a surface emitting laser having a plurality of adjacent light emitting points, it is possible to suppress the light amount difference for each beam and make the brightness for each dot uniform.

本発明は上記構成としたので、感光体面上でのビームの光量ばらつきを精度良く補正し、高画質の画像を安定して得られる光走査装置とすることができた。   Since the present invention has the above-described configuration, it is possible to obtain an optical scanning device that can accurately correct the light amount variation of the beam on the surface of the photosensitive member and stably obtain a high-quality image.

<基本構成>
図1、2には本発明に係る光走査装置が示されている。
<Basic configuration>
1 and 2 show an optical scanning device according to the present invention.

図1、2に示すように、光走査装置10はLDアレー14を光源として光ビームを射出し、コリメータ16にて平行光とした光ビームをアパーチャ12で絞り、シリンダレンズ18を通ったのち回転するポリゴンミラー20の反射面で偏向され主走査方向に往復・走査露光する光ビームとする。   As shown in FIGS. 1 and 2, the optical scanning device 10 emits a light beam using the LD array 14 as a light source, the collimator 16 collimates the collimated light beam with the aperture 12, passes through the cylinder lens 18, and then rotates. The light beam is deflected by the reflecting surface of the polygon mirror 20 to be reciprocated and scanned and exposed in the main scanning direction.

主走査方向にパワーを持つfθレンズ22、23を通りシリンダーミラー24、25で反射された光ビームは走査面28上でビームスポットとして結像される。結像されたビームスポットはポリゴンミラー20の回転に伴って主走査方向に走査面28を走査する。これにより走査面28にはビームスポットによる画像が形成される。
<基本概念>
図3には本発明に係る光学系が示されている。
The light beams that pass through the fθ lenses 22 and 23 having power in the main scanning direction and are reflected by the cylinder mirrors 24 and 25 are imaged as beam spots on the scanning surface 28. The imaged beam spot scans the scanning surface 28 in the main scanning direction as the polygon mirror 20 rotates. As a result, an image by a beam spot is formed on the scanning surface 28.
<Basic concept>
FIG. 3 shows an optical system according to the present invention.

図3に示すようにポリゴンミラー20、シリンダーミラー24、シリンダーミラー25の反射面に設置されるコーティングの構成を調整することで、主走査方向と副走査方向の各偏光成分に対する反射率/透過率を制御する。これにより光学系全体を通した主走査方向と副走査方向の各偏光成分に対する総合反射率/透過率をほぼ同一とし、結像時におけるビームごとの光量差を抑制することができる。   As shown in FIG. 3, the reflectance / transmittance for each polarization component in the main scanning direction and the sub-scanning direction is adjusted by adjusting the configuration of the coating disposed on the reflecting surfaces of the polygon mirror 20, the cylinder mirror 24, and the cylinder mirror 25. To control. As a result, the total reflectance / transmittance for each polarization component in the main scanning direction and the sub-scanning direction through the entire optical system can be made substantially the same, and the light amount difference for each beam during imaging can be suppressed.

主走査方向に偏光方向を持つビームをA0、副走査方向に偏光方向を持つビームをB0とする。これらの2本のビームがミラー1に入射する。このときミラー1は任意の構成の表面コーティング層を持っているものとする。   A beam having a polarization direction in the main scanning direction is A0, and a beam having a polarization direction in the sub-scanning direction is B0. These two beams are incident on the mirror 1. At this time, the mirror 1 is assumed to have a surface coating layer having an arbitrary configuration.

ミラー1の法線は副走査方向にθ1傾いており、ビームA0はミラー1に対してS偏光、ビームB0はミラー1に対してP偏光となる。ミラー1への入射角θ1のときのP偏光に対する反射率をRp(=0.8)、S偏光の反射率をRs(=0.9)とする。このときミラー1にてA0が反射したビームA1と、B0が反射したビームB1の光強度は、
A1 = A0 * Rs = A0 * 0.9
B1 = B0 * Rp = B0 * 0.8
となる。
The normal of the mirror 1 is inclined by θ1 in the sub-scanning direction, the beam A0 is S-polarized with respect to the mirror 1, and the beam B0 is P-polarized with respect to the mirror 1. The reflectance for P-polarized light at the incident angle θ1 to the mirror 1 is Rp (= 0.8), and the reflectance for S-polarized light is Rs (= 0.9). At this time, the light intensity of the beam A1 reflected by A0 and the beam B1 reflected by B0 is
A1 = A0 * Rs = A0 * 0.9
B1 = B0 * Rp = B0 * 0.8
It becomes.

次に、A1、B1のビームがミラー2に入射する。ミラー2はミラー1と同様の構成の表面コーティング層を持っているものとする。   Next, the beams A1 and B1 enter the mirror 2. The mirror 2 has a surface coating layer having the same configuration as that of the mirror 1.

ミラー2の法線は主走査方向にθ2傾いており、ビームA1はミラー2に対してP偏光、ビームB1はミラー2に対してS偏光となる。ミラー2への入射角θ2をミラー1の入射角θ1と等しくすると、ミラー2にてA1が反射したビームA2と、B1が反射したビームB2の光強度は、
A2 = A1 * Rp = A0 * 0.9 * 0.8
B2 = B1 * Rs = B0 * 0.8 * 0.9
となる。
The normal line of the mirror 2 is inclined by θ2 in the main scanning direction. The beam A1 is P-polarized with respect to the mirror 2, and the beam B1 is S-polarized with respect to the mirror 2. If the incident angle θ2 to the mirror 2 is equal to the incident angle θ1 of the mirror 1, the light intensity of the beam A2 reflected by the mirror 2 and the beam B2 reflected by the B1 is
A2 = A1 * Rp = A0 * 0.9 * 0.8
B2 = B1 * Rs = B0 * 0.8 * 0.9
It becomes.

よって、ビームA2とビームB2のミラー1とミラー2の両者を通過後の総合反射率はRp=Rs=0.72で両者同一の値となり、ミラー1とミラー2を通過した後の2本のビームの光量を同一に揃えることが可能となる。
<光走査装置への応用>
図4には本発明の第1実施形態に係る光走査装置の光学系が示されている。
Therefore, the total reflectance of the beam A2 and the beam B2 after passing through both the mirror 1 and the mirror 2 is Rp = Rs = 0.72, and both of them have the same value, and the two after passing through the mirror 1 and the mirror 2 are the same. It becomes possible to make the light quantity of the beam uniform.
<Application to optical scanning device>
FIG. 4 shows an optical system of the optical scanning device according to the first embodiment of the present invention.

図4に示すポリゴンミラー20、シリンダーミラー24、シリンダーミラー25の反射面に設置されるコーティングの構成を図6に、また、それぞれのミラーでのS偏光とP偏光に対する反射率の入射角依存性を図7ないし図9に示す。   FIG. 6 shows the configuration of the coating disposed on the reflecting surfaces of the polygon mirror 20, the cylinder mirror 24, and the cylinder mirror 25 shown in FIG. 4, and the incident angle dependence of the reflectance with respect to S-polarized light and P-polarized light at each mirror. Is shown in FIGS.

各ミラーの反射面に形成されるコーティングの構成と、レーザビームに対する入射角を適当な値に組み合わせることにより、図5に示すように主走査方向と副走査方向の偏光成分に対する総合透過率をほぼ同一とすることが可能となる。   By combining the configuration of the coating formed on the reflection surface of each mirror and the incident angle with respect to the laser beam to an appropriate value, the total transmittance for the polarization components in the main scanning direction and the sub-scanning direction is almost as shown in FIG. It is possible to be the same.

図4に示すように主走査方向に偏光方向を持つビームをA0、副走査方向に偏光方向を持つビームをB0とする。これらの2本のビームがポリゴンミラー20に入射する。   As shown in FIG. 4, a beam having a polarization direction in the main scanning direction is A0, and a beam having a polarization direction in the sub-scanning direction is B0. These two beams are incident on the polygon mirror 20.

ポリゴンミラー20の法線は主走査方向に42°傾いており、ビームA0はポリゴンミラー20に対してP偏光、ビームB0はS偏光となる。ポリゴンミラー20は図6左図の構成のコーティングを有し、図7に示すように、入射角42°の場合のS偏光とP偏光の反射率RsとRpは、それぞれRs=0.90とRp=0.83である。このときコーティングの厚さ(nm)はλ(nm)×δ×1/2×(1/n)×(1/cosθ(j))で表され,300.9nmである。ここで,λはレーザ波長,δはコーティング層の位相シフト量,nはコーティング層の屈折率,θ(j)はj層中の光線のj+1層への入射角である。   The normal line of the polygon mirror 20 is inclined by 42 ° in the main scanning direction, the beam A0 is P-polarized with respect to the polygon mirror 20, and the beam B0 is S-polarized. The polygon mirror 20 has a coating having the configuration shown in the left diagram of FIG. 6, and as shown in FIG. 7, the reflectances Rs and Rp of the S-polarized light and the P-polarized light when the incident angle is 42 ° are Rs = 0.90 and Rp = 0.83. At this time, the thickness (nm) of the coating is represented by λ (nm) × δ × 1/2 × (1 / n) × (1 / cos θ (j)) and is 300.9 nm. Here, λ is the laser wavelength, δ is the phase shift amount of the coating layer, n is the refractive index of the coating layer, and θ (j) is the incident angle of the light beam in the j layer to the j + 1 layer.

ポリゴンミラー20にてA0が反射したビームA1と、B0が反射したビームB1の光強度は、
A1 = A0 * Rp = A0 * 0.83
B1 = B0 * Rs = B0 * 0.90
となる。
The light intensity of the beam A1 reflected by the polygon mirror 20 and the beam B1 reflected by the B0 is:
A1 = A0 * Rp = A0 * 0.83
B1 = B0 * Rs = B0 * 0.90
It becomes.

次に、A1、B1のビームがシリンダーミラー24に入射する。シリンダーミラー24は、図6中図に示す構成の表面コーティング層を持っているものとする。   Next, the beams A 1 and B 1 are incident on the cylinder mirror 24. The cylinder mirror 24 has a surface coating layer having the structure shown in FIG.

シリンダーミラー24の法線は副走査方向に15°傾いており、ビームA1はシリンダーミラー24に対してS偏光、ビームB1はシリンダーミラー24に対してP偏光となる。図8に示すように、シリンダーミラー24のS偏光とP偏光の入射角15°の場合の反射率RsとRpは、それぞれRs=0.94とRp=0.94である。このときコーティングの厚さ(nm)は,第一層が93.6nm,第二層が128.5nmである。   The normal line of the cylinder mirror 24 is inclined by 15 ° in the sub-scanning direction. The beam A1 is S-polarized with respect to the cylinder mirror 24, and the beam B1 is P-polarized with respect to the cylinder mirror 24. As shown in FIG. 8, the reflectances Rs and Rp when the incident angle of the S-polarized light and the P-polarized light of the cylinder mirror 24 is 15 ° are Rs = 0.94 and Rp = 0.94, respectively. At this time, the coating thickness (nm) is 93.6 nm for the first layer and 128.5 nm for the second layer.

よってシリンダーミラー24にてA1が反射したビームA2と、B1が反射したビームB2の光強度は、
A2 = A1 * Rs = A0 * 0.83 * 0.94
B2 = B1 * Rp = B0 * 0.90 * 0.94
となる。
Therefore, the light intensity of the beam A2 reflected by the cylinder mirror 24 and the beam B2 reflected by B1 is
A2 = A1 * Rs = A0 * 0.83 * 0.94
B2 = B1 * Rp = B0 * 0.90 * 0.94
It becomes.

次に、A2、B2のビームがシリンダーミラー25に入射する。シリンダーミラー25は、図6右に示す構成の表面コーティング層を持っているものとする。   Next, the beams A 2 and B 2 are incident on the cylinder mirror 25. The cylinder mirror 25 is assumed to have a surface coating layer configured as shown in the right side of FIG.

シリンダーミラー25の法線は副走査方向に50°傾いており、ビームA2はシリンダーミラー25に対してS偏光、ビームB2はシリンダーミラー25に対してP偏光となる。図9に示すように、シリンダーミラー25のS偏光とP偏光の入射角50°の場合の反射率RsとRpは、それぞれRs=0.97とRp=0.89である。このときコーティングの厚さ(nm)は,第一層が99.7nm,第二層が151.3nmである。   The normal line of the cylinder mirror 25 is inclined by 50 ° in the sub-scanning direction. The beam A2 is S-polarized with respect to the cylinder mirror 25, and the beam B2 is P-polarized with respect to the cylinder mirror 25. As shown in FIG. 9, the reflectances Rs and Rp when the incident angles of the S-polarized light and the P-polarized light of the cylinder mirror 25 are 50 ° are Rs = 0.97 and Rp = 0.89, respectively. At this time, the coating thickness (nm) is 99.7 nm for the first layer and 151.3 nm for the second layer.

よってシリンダーミラー25にてA2が反射したビームA3と、B2が反射したビームB3の光強度は、
A3 = A2 * Rs = A0 * 0.83 * 0.94 * 0.97 = A0 * 0.756
B3 = B2 * Rp = B0 * 0.90 * 0.94 * 0.89 = B0 * 0.753
となり、ビームA0、ビームB0に対する3枚のミラー、すなわちポリゴンミラー20、シリンダーミラー24、シリンダーミラー25の総合反射率はそれぞれ0.756および0.753となって、ほぼ等しくなる。
Therefore, the light intensity of the beam A3 reflected by the cylinder mirror 25 and the beam B3 reflected by B2 is
A3 = A2 * Rs = A0 * 0.83 * 0.94 * 0.97 = A0 * 0.756
B3 = B2 * Rp = B0 * 0.90 * 0.94 * 0.89 = B0 * 0.753
Thus, the total reflectivities of the three mirrors for the beam A0 and the beam B0, that is, the polygon mirror 20, the cylinder mirror 24, and the cylinder mirror 25 are 0.756 and 0.753, respectively, which are substantially equal.

上記の効果により、走査光学系から射出するビーム光量は、図10に示すように各ビームごとの光量ムラが少ない、略均一な分布とすることが可能となる。
<入射角度による制御>
図9に示すように、シリンダーミラー25への入射角を50°から45°に変更すると、S偏光とP偏光の反射率RsとRpは、それぞれ
Rs=0.969とRp=0.889から
Rs=0.965とRp=0.90に変化する。
Due to the above effects, the amount of beam emitted from the scanning optical system can have a substantially uniform distribution with little variation in the amount of light for each beam as shown in FIG.
<Control by incident angle>
As shown in FIG. 9, when the incident angle to the cylinder mirror 25 is changed from 50 ° to 45 °, the reflectances Rs and Rp of the S-polarized light and the P-polarized light are Rs = 0.969 and Rp = 0.899, respectively. Rs = 0.965 and Rp = 0.90.

よって3枚のミラーの総合反射率は
A3 = A2 * Rs = A0 * 0.83 * 0.94 * 0.965 = A0 * 0.753
B3 = B2 * Rp = B0 * 0.90 * 0.94 * 0.90 = B0 * 0.761
となる。
Therefore, the total reflectivity of the three mirrors is A3 = A2 * Rs = A0 * 0.83 * 0.94 * 0.965 = A0 * 0.753
B3 = B2 * Rp = B0 * 0.90 * 0.94 * 0.90 = B0 * 0.761
It becomes.

上記のように、ミラーへの入射角を変えることでビームA0、ビームB0に対する3枚のミラーの各偏光成分に対する総合反射率を変更することができる。これにより、例えば他のミラーの反射率が何らかの理由で変動した場合でも、ミラーの交換を行うかわりに入射角度を変更することで各偏光成分に対する反射率を制御し、対応可能とすることができる。
<光走査装置への応用>
図11には本発明の第2実施形態に係る光走査装置の光学系が示されている。
As described above, by changing the incident angle to the mirror, it is possible to change the total reflectance for each polarization component of the three mirrors for the beam A0 and the beam B0. As a result, for example, even when the reflectance of another mirror fluctuates for some reason, the reflectance for each polarization component can be controlled by changing the incident angle instead of replacing the mirror. .
<Application to optical scanning device>
FIG. 11 shows an optical system of an optical scanning device according to the second embodiment of the present invention.

図11に示すようにポリゴンミラー20にて入射光を偏向し、シリンダーミラー24、シリンダーミラー25の反射面にて反射し被走査面にビームを導く構成は第1実施形態と同様である。   As shown in FIG. 11, the configuration in which incident light is deflected by the polygon mirror 20, reflected by the reflecting surfaces of the cylinder mirror 24 and the cylinder mirror 25, and guided to the surface to be scanned is the same as in the first embodiment.

本実施形態においては、例えばポリゴンミラー20の入射側に透過型光学素子であるウィンドウ30を設け、P偏光とS偏光に対する透過率の違いを利用して光学系全体のP偏光とS偏光に対する透過率を一致させることを目的とする。   In the present embodiment, for example, a window 30 that is a transmissive optical element is provided on the incident side of the polygon mirror 20, and transmission of the entire optical system with respect to P-polarized light and S-polarized light using the difference in transmittance with respect to P-polarized light and S-polarized light. The goal is to match rates.

ウインドウ30は屈折率1.5の光学ガラスであり、入射するレーザビームに対し副走査方向に25°傾いた状態で設けられている。すなわちB0に対して傾く方向となるためA0はS偏光,B0はP偏光となる(図11参照)。   The window 30 is an optical glass having a refractive index of 1.5, and is provided in a state inclined by 25 ° in the sub-scanning direction with respect to the incident laser beam. That is, since the direction is inclined with respect to B0, A0 is S-polarized light and B0 is P-polarized light (see FIG. 11).

図12に示すように、ウインドウ30のS偏光に対する透過率は入射角25°で一面あたり0.944、P偏光に対する透過率は同じく一面あたり0.968であり、ウインドウ30の透過面は入射面と射出面の2面が存在するので、S偏光に対する透過率Tsは
Ts=0.944*0.944=0.891、
P偏光に対する透過率Tpは
Tp=0.968*0.968=0.937
となる。よって、ウィンドウ30を透過したビームの光強度は
A1=A0*Tp=A0*0.89
B1=B0*Ts=B0*0.94
となる。
As shown in FIG. 12, the transmittance of the window 30 for S-polarized light is 0.944 per surface at an incident angle of 25 °, and the transmittance for P-polarized light is 0.968 per surface, and the transmission surface of the window 30 is the incident surface. Therefore, the transmittance Ts for S-polarized light is Ts = 0.944 * 0.944 = 0.899.
The transmittance Tp for P-polarized light is Tp = 0.968 * 0.968 = 0.937
It becomes. Therefore, the light intensity of the beam transmitted through the window 30 is A1 = A0 * Tp = A0 * 0.89.
B1 = B0 * Ts = B0 * 0.94
It becomes.

続いてウィンドウ30を透過したビームはポリゴンミラー20にて走査偏向される。このときポリゴンミラー20にてA0が反射したビームA1と、B0が反射したビームB1の光強度は、
A2=A1*Rp=A0*0.89*0.83
B2=B1*Rs=B0*0.94*0.90
となるのは第1実施形態と同様である。
Subsequently, the beam transmitted through the window 30 is scanned and deflected by the polygon mirror 20. At this time, the light intensity of the beam A1 reflected by the polygon mirror 20 and the beam B1 reflected by B0 is:
A2 = A1 * Rp = A0 * 0.89 * 0.83
B2 = B1 * Rs = B0 * 0.94 * 0.90
This is the same as in the first embodiment.

次に、A2、B2のビームがシリンダーミラー24に入射する。シリンダーミラー24は、図6中図に示す構成の表面コーティング層を持っているものとする。   Next, the A2 and B2 beams are incident on the cylinder mirror 24. The cylinder mirror 24 has a surface coating layer having the structure shown in FIG.

シリンダーミラー24にてA2が反射したビームA3と、B2が反射したビームB3の光強度は、
A3=A2*Rs=A0*0.89*0.83*0.875
B3=B2*Rp = B0*0.94*0.90*0.866
となる。
The light intensity of the beam A3 reflected by the cylinder mirror 24 and the beam B3 reflected by B2 is
A3 = A2 * Rs = A0 * 0.89 * 0.83 * 0.875
B3 = B2 * Rp = B0 * 0.94 * 0.90 * 0.866
It becomes.

次に、A2、B2のビームがシリンダーミラー25に入射する。シリンダーミラー25は、図6右に示す構成の表面コーティング層を持っているものとする。   Next, the beams A 2 and B 2 are incident on the cylinder mirror 25. The cylinder mirror 25 is assumed to have a surface coating layer configured as shown in the right side of FIG.

シリンダーミラー25のS偏光とP偏光の入射角50°の場合の反射率RsとRpは、それぞれRs=0.92とRp=0.81である。よってシリンダーミラー25にてA3が反射したビームA4と、B3が反射したビームB4の光強度は、
A4=A3*Rs
=A0*0.89*0.83*0.875*0.92
=A0*0.595
B4=B3*Rp
=B0*0.94*0.90*0.866*0.81
=B0*0.593
となり、ビームA0、ビームB0に対する1枚のウィンドウと3枚のミラー、すなわちウィンドウ30とポリゴンミラー20、シリンダーミラー24、シリンダーミラー25の総合透過/反射率はそれぞれ0.595および0.593となって、ほぼ等しくなる。LDアレー14以降の光学系全体における主走査方向/副走査方向の透過・反射率を図13に示す。この表でも明らかなように、主/副方向の透過率差は1.004であり、1%以下に収まっている。
The reflectances Rs and Rp when the incident angles of the S-polarized light and the P-polarized light of the cylinder mirror 25 are 50 ° are Rs = 0.92 and Rp = 0.81, respectively. Therefore, the light intensity of the beam A4 reflected by the cylinder mirror 25 and the beam B4 reflected by B3 is
A4 = A3 * Rs
= A0 * 0.89 * 0.83 * 0.875 * 0.92
= A0 * 0.595
B4 = B3 * Rp
= B0 * 0.94 * 0.90 * 0.866 * 0.81
= B0 * 0.593
The total transmission / reflectance of one window and three mirrors for beam A0 and beam B0, that is, window 30, polygon mirror 20, cylinder mirror 24, and cylinder mirror 25 is 0.595 and 0.593, respectively. Almost equal. FIG. 13 shows the transmission / reflectance in the main scanning direction / sub-scanning direction in the entire optical system after the LD array 14. As is apparent from this table, the transmittance difference in the main / sub direction is 1.004, which is less than 1%.

上記の効果により、走査光学系から射出するビーム光量は各ビームごとの光量ムラが少ない、略均一な分布とすることが可能となる。
<まとめ>
以上のように複数の光源から発せられるレーザビームの偏光方向が異なっていても、走査光学系のそれぞれのビームに対する透過率/反射率を揃えることが可能となった。
Due to the above effects, the amount of light emitted from the scanning optical system can have a substantially uniform distribution with little unevenness in the amount of light for each beam.
<Summary>
As described above, even if the polarization directions of laser beams emitted from a plurality of light sources are different, it is possible to align the transmittance / reflectance for each beam of the scanning optical system.

また、レーザ変調時にレーザキャビティ内のレーザ発振モードが変動して偏光方向が瞬時に変わった場合でも、ビームの透過率/反射率は偏光方向によって変化しないため、複数のレーザビームのダイナミックな光量変動も回避可能となる。これにより感光体面上でのビームの光量ばらつきを精度良く補正することが可能であり、高い画質の画像を安定して得ることができた。   Even when the laser oscillation mode in the laser cavity changes during laser modulation and the polarization direction changes instantaneously, the beam transmittance / reflectance does not change depending on the polarization direction. Can also be avoided. As a result, it is possible to accurately correct the variation in the light amount of the beam on the surface of the photoreceptor, and a high-quality image can be stably obtained.

また、レーザアレーの個々の偏光方向に依存することなく、任意の偏光方向をもつビームの光学系透過率を調整することが可能となり、高い画質を得るとともに、走査光学系の組立時に発生するビーム間光量ばらつきに対する走査光学系の歩留まりを、大幅に向上させることができた。   In addition, the optical system transmittance of a beam having an arbitrary polarization direction can be adjusted without depending on the individual polarization direction of the laser array, so that high image quality can be obtained and the beam spacing generated during assembly of the scanning optical system can be adjusted. The yield of the scanning optical system with respect to variations in the amount of light could be significantly improved.

また、各ミラーの表面コーティングの調整のみで上記の構成には対応可能であり、他の特別な構成部品が不要となるので、走査光学系全体を低コストで製造可能である。
<その他>
以上、本発明の実施例について記述したが、本発明は上記の実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは言うまでもない。
In addition, the above-described configuration can be dealt with only by adjusting the surface coating of each mirror, and other special components are not required, so that the entire scanning optical system can be manufactured at low cost.
<Others>
As mentioned above, although the Example of this invention was described, it cannot be overemphasized that this invention is not limited to said Example at all, and can implement in a various aspect in the range which does not deviate from the summary of this invention.

例えば複数の光源と光学素子とを備え、各光源ごとの光量差が問題となるような種々の光学機器に対して本発明を利用することが可能である。   For example, the present invention can be used for various optical devices that include a plurality of light sources and optical elements and in which a difference in the amount of light for each light source is a problem.

本発明に係る光走査装置を示す斜視図である。1 is a perspective view showing an optical scanning device according to the present invention. 本発明に係る光走査装置を示す模式図である。1 is a schematic diagram showing an optical scanning device according to the present invention. 本発明に係るミラーの偏向制御を示す図である。It is a figure which shows the deflection | deviation control of the mirror which concerns on this invention. 本発明の第1実施形態に係るミラーの偏向制御を示す図である。It is a figure which shows the deflection | deviation control of the mirror which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るミラーの偏向制御を示す表である。It is a table | surface which shows the deflection | deviation control of the mirror which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るミラーの表面コーティングを示す図である。It is a figure which shows the surface coating of the mirror which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るミラーの入射角度と反射係数を示す図である。It is a figure which shows the incident angle and reflection coefficient of the mirror which concern on 1st Embodiment of this invention. 本発明の第1実施形態に係るミラーの入射角度と反射係数を示す図である。It is a figure which shows the incident angle and reflection coefficient of the mirror which concern on 1st Embodiment of this invention. 本発明の第1実施形態に係るミラーの入射角度と反射係数を示す図である。It is a figure which shows the incident angle and reflection coefficient of the mirror which concern on 1st Embodiment of this invention. 本発明に係るビームスポットの光量ムラを示す図である。It is a figure which shows the light quantity nonuniformity of the beam spot which concerns on this invention. 本発明の第2実施形態に係るミラーの入射角度と反射係数を示す図である。It is a figure which shows the incident angle and reflection coefficient of the mirror which concern on 2nd Embodiment of this invention. 本発明の第2実施形態に係る光走査装置を示す模式図である。It is a schematic diagram which shows the optical scanning device which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るウィンドウの偏向への影響を示す図である。It is a figure which shows the influence on the deflection | deviation of the window which concerns on 2nd Embodiment of this invention. 従来の光走査装置を示す斜視図である。It is a perspective view which shows the conventional optical scanning device. 従来の光走査装置を示す模式図である。It is a schematic diagram which shows the conventional optical scanning device. 従来の偏光方法による入射角度と反射率の関係を示す図である。It is a figure which shows the relationship between the incident angle by the conventional polarization method, and a reflectance. 従来のミラーの偏向への影響を示す図である。It is a figure which shows the influence on the deflection | deviation of the conventional mirror. 従来のビームスポットの光量ムラを示す図である。It is a figure which shows the light quantity nonuniformity of the conventional beam spot. 従来のミラーの表面コーティングを示す図である。It is a figure which shows the surface coating of the conventional mirror. 従来のミラーの入射角度と反射係数を示す図である。It is a figure which shows the incident angle and reflection coefficient of the conventional mirror. 従来のミラーの入射角度と反射係数を示す図である。It is a figure which shows the incident angle and reflection coefficient of the conventional mirror. 従来のミラーの入射角度と反射係数を示す図である。It is a figure which shows the incident angle and reflection coefficient of the conventional mirror.

符号の説明Explanation of symbols

10 光走査装置
12 アパーチャ
14 LDアレー
16 コリメータ
18 シリンダーレンズ
20 ポリゴンミラー
22 fθレンズ
23 fθレンズ
24 シリンダミラー
25 シリンダミラー
28 走査面
30 ウィンドウ
DESCRIPTION OF SYMBOLS 10 Optical scanning device 12 Aperture 14 LD array 16 Collimator 18 Cylinder lens 20 Polygon mirror 22 f (theta) lens 23 f (theta) lens 24 Cylinder mirror 25 Cylinder mirror 28 Scanning surface 30 Window

Claims (3)

複数の光源と、
前記複数の光源から発せられる複数の光ビームを被走査物の表面に導き、及び被走査物の表面に結像させる複数の光学素子からなる光学系と、を備えた光走査装置であって、
前記光ビームの偏光成分であるP偏光成分とS偏光成分に対して、
前記光学素子上に形成されたコーティングの構成と、
前記光学素子に入射する前記光ビームの入射角と、のうち
少なくとも一方を制御することによって前記P偏光成分と前記S偏光成分の反射率または透過率が略等しくなるように制御したことを特徴とする光走査装置。
Multiple light sources;
An optical scanning apparatus comprising: an optical system including a plurality of optical elements that guides a plurality of light beams emitted from the plurality of light sources to the surface of the object to be scanned and forms an image on the surface of the object to be scanned;
For the P-polarized component and the S-polarized component that are the polarized components of the light beam,
A coating configuration formed on the optical element;
The reflectance or transmittance of the P-polarized component and the S-polarized component is controlled to be substantially equal by controlling at least one of the incident angle of the light beam incident on the optical element. Optical scanning device.
前記複数の光源から発せられる複数の光ビームは直線偏光であることを特徴とする請求項1に記載の光走査装置。 The optical scanning device according to claim 1, wherein the plurality of light beams emitted from the plurality of light sources are linearly polarized light. 前記光源は面発光レーザであることを特徴とする請求項1乃至請求項2の何れかに記載の光走査装置。 3. The optical scanning device according to claim 1, wherein the light source is a surface emitting laser.
JP2005340369A 2005-11-25 2005-11-25 Optical scanning device Expired - Fee Related JP4779598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340369A JP4779598B2 (en) 2005-11-25 2005-11-25 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340369A JP4779598B2 (en) 2005-11-25 2005-11-25 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2007147864A true JP2007147864A (en) 2007-06-14
JP4779598B2 JP4779598B2 (en) 2011-09-28

Family

ID=38209355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340369A Expired - Fee Related JP4779598B2 (en) 2005-11-25 2005-11-25 Optical scanning device

Country Status (1)

Country Link
JP (1) JP4779598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441512B2 (en) 2010-03-12 2013-05-14 Ricoh Company, Limited Optical scanner and image forming apparatus addressing uneven birefringence distribution of a scanning lens
US8564635B2 (en) 2009-09-02 2013-10-22 Ricoh Company, Ltd. Optical scanner and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337285A (en) * 2000-05-29 2001-12-07 Minolta Co Ltd Optical scanner
JP2002006245A (en) * 2000-06-26 2002-01-09 Minolta Co Ltd Optical scanner
JP2002023083A (en) * 2000-07-03 2002-01-23 Minolta Co Ltd Optical scanning device
JP2005315997A (en) * 2004-04-27 2005-11-10 Fuji Xerox Co Ltd Optical scanner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337285A (en) * 2000-05-29 2001-12-07 Minolta Co Ltd Optical scanner
JP2002006245A (en) * 2000-06-26 2002-01-09 Minolta Co Ltd Optical scanner
JP2002023083A (en) * 2000-07-03 2002-01-23 Minolta Co Ltd Optical scanning device
JP2005315997A (en) * 2004-04-27 2005-11-10 Fuji Xerox Co Ltd Optical scanner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8564635B2 (en) 2009-09-02 2013-10-22 Ricoh Company, Ltd. Optical scanner and image forming apparatus
US8441512B2 (en) 2010-03-12 2013-05-14 Ricoh Company, Limited Optical scanner and image forming apparatus addressing uneven birefringence distribution of a scanning lens

Also Published As

Publication number Publication date
JP4779598B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US7889224B2 (en) Optical path switching device, optical scanning device, and image forming apparatus
US5834766A (en) Multi-beam scanning apparatus and multi-beam detection method for the same
JP5034053B2 (en) Optical scanning apparatus and image forming apparatus
JP2008276231A (en) Beam coupler for multi-color laser display, and multi-color laser display
JP4634881B2 (en) Optical scanning device and image forming device
JP4606046B2 (en) Optical scanning apparatus and image forming apparatus
US5126873A (en) Reflective surface coating for a uniform intensity of a polarized beam of a rotating polygon mirror optical scanning system
US6181363B1 (en) Light-source device of a multi-beam scanning apparatus
JPH09274152A (en) Multibeam writing optical system
JP4817668B2 (en) Optical scanning device
JP4779598B2 (en) Optical scanning device
US6963433B2 (en) Multibeam scanning optical device and image forming apparatus using the same
US7826118B2 (en) Composite scanning unit for reducing speckle noise and laser projection system employing the same
JP5746512B2 (en) Apparatus for forming an image on a photosensitive surface
JP2007156248A (en) Optical scanner
JP4166493B2 (en) Multi-beam scanning device and light source device
JP2003215485A (en) Optical scanner
JP2007140263A (en) Multi-beam scanning optical device and image forming apparatus using same
JP2002023083A (en) Optical scanning device
JP2001102663A (en) Multi-wavelength laser optical system
JP5029281B2 (en) Laser scanning optical device
JP3689746B2 (en) Beam synthesizing device, multi-beam light source device, and multi-beam scanning device
JP2002006245A (en) Optical scanner
JP5724932B2 (en) Laser scanning optical system
JP2011095684A (en) Optical scanner and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees