JP2007147195A - Material input method into rotary hearth furnace, and reduction treatment method of iron oxide by rotary hearth furnace using it - Google Patents

Material input method into rotary hearth furnace, and reduction treatment method of iron oxide by rotary hearth furnace using it Download PDF

Info

Publication number
JP2007147195A
JP2007147195A JP2005344215A JP2005344215A JP2007147195A JP 2007147195 A JP2007147195 A JP 2007147195A JP 2005344215 A JP2005344215 A JP 2005344215A JP 2005344215 A JP2005344215 A JP 2005344215A JP 2007147195 A JP2007147195 A JP 2007147195A
Authority
JP
Japan
Prior art keywords
rotary hearth
raw material
hearth furnace
iron oxide
auxiliary agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005344215A
Other languages
Japanese (ja)
Other versions
JP5342098B2 (en
Inventor
Shohei Yoshida
昌平 吉田
Masahiko Tetsumoto
理彦 鉄本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005344215A priority Critical patent/JP5342098B2/en
Publication of JP2007147195A publication Critical patent/JP2007147195A/en
Application granted granted Critical
Publication of JP5342098B2 publication Critical patent/JP5342098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inputting a material containing an auxiliary substance into a rotary hearth furnace without degrading productivity by a material supply means of one system; and to provide a reduction treatment method of iron oxide by a rotary hearth furnace using the material input method. <P>SOLUTION: This material input method is used for dividing a material comprising a mixture of agglomerate 2a and an auxiliary substance 2b into the agglomerate 2a and the auxiliary substance 2b by using an input chute 6 having a sieve means 3 to input them into circumferential different dropping positions on a rotary hearth 10 in moving. This reduction treatment method is used for subjecting, to a reduction treatment, a material being a mixture of agglomerate 2a formed of iron oxide such as ironstone or iron-making dust and an auxiliary substance 2b formed of a reducing agent such as coal or coke by a rotary hearth furnace 1 by inputting, by using the material input method, the auxiliary substance 2b and the agglomerate 2a on the upstream side on the rotary hearth 10 in moving and on the upper surface of the auxiliary agent 2b on the downstream side, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、補助的物質を含む原料の回転炉床炉への投入方法、およびこの原料投入方法を用いた回転炉床炉による酸化鉄の還元処理方法に関する。   The present invention relates to a method for charging a raw material containing an auxiliary substance into a rotary hearth furnace, and a method for reducing iron oxide by a rotary hearth furnace using the raw material charging method.

回転炉床炉は、外周壁、内周壁およびこれら壁間に配置された円環状の回転炉床とで構成されてなる。そして、前記回転炉床は、円環状の炉体フレーム、前記炉体フレーム上に配置された炉床断熱材およびこの炉床断熱材上に配置された耐火物とで構成される。   The rotary hearth furnace is composed of an outer peripheral wall, an inner peripheral wall, and an annular rotary hearth disposed between these walls. And the said rotary hearth is comprised with the annular | circular shaped furnace body frame, the hearth heat insulating material arrange | positioned on the said furnace body frame, and the refractory material arrange | positioned on this hearth heat insulating material.

このような回転炉床は、炉床下部に設けられた回転軸によって駆動されるピニオン歯車と、前記炉体フレーム底部に円周状に固定されたラックレールとの噛み合い機構や、床面に円周状に敷設された軌道とこの軌道上に配置されて、前記炉体フレーム底部に設けられた複数の駆動車輪との組み合わせ等によって回転移動される。   Such a rotary hearth has a meshing mechanism between a pinion gear driven by a rotating shaft provided at the bottom of the hearth and a rack rail fixed circumferentially to the bottom of the furnace body frame, and a circular on the floor surface. It is rotationally moved by a combination of a track laid in a circumferential shape and a plurality of drive wheels provided on the bottom of the furnace body frame.

前記構造を有する回転炉床炉は、鋼材ビレット等金属の加熱処理あるいは可燃性廃棄物の燃焼処理等に用いられ、また近年は、回転炉床炉を用いて鉄酸化物から還元鉄を製造する方法が注目されている。回転炉床炉による還元鉄製造プロセスの一例を、図3に示した従来の発明に係る回転炉床炉の設備構成の概略図を用いて以下に説明する(例えば、特許文献1参照)   The rotary hearth furnace having the above-described structure is used for heat treatment of metals such as steel billets or combustion treatment of combustible waste, and recently, reduced iron is produced from iron oxide using a rotary hearth furnace. The method is drawing attention. An example of a reduced iron manufacturing process using a rotary hearth furnace will be described below with reference to the schematic diagram of the equipment configuration of the rotary hearth furnace according to the conventional invention shown in FIG. 3 (see, for example, Patent Document 1).

(1)粉末の鉄酸化物(鉄鉱石、電炉ダスト等)および粉末の炭素質還元剤(石炭、コークス等)を混合して造粒し、生ペレットまたはブリケットを製造する。
(2)この生ペレットを、ペレット内から発生する可燃性揮発分が発火しない程度の温度域に加熱して付着水分を除去し、乾燥ペレットとする。ブリケットで低水分率の場合は、乾燥せずにそのまま使用することもある。
(1) Powdered iron oxide (iron ore, electric furnace dust, etc.) and powdered carbonaceous reducing agent (coal, coke, etc.) are mixed and granulated to produce raw pellets or briquettes.
(2) The raw pellets are heated to a temperature range in which combustible volatile matter generated from the pellets does not ignite to remove adhering moisture to obtain dry pellets. If the moisture content is briquette, it may be used without drying.

(3)この乾燥ペレット(原料14)を、適当な装入装置12を用いて回転炉床炉16中に供給して、回転炉床11上にペレット1〜2個程度の厚さを有するペレット層を形成する。
(4)このペレット層を、炉内上方に設置したバーナー17の燃焼により輻射加熱して還元し、金属化を進める。
(3) This dry pellet (raw material 14) is supplied into the rotary hearth furnace 16 using an appropriate charging device 12, and the pellet having a thickness of about 1 to 2 pellets on the rotary hearth 11 Form a layer.
(4) The pellet layer is reduced by radiant heating by combustion of a burner 17 installed in the upper part of the furnace, and metallization proceeds.

(5)金属化したペレットを冷却器18により冷却する。この場合の冷却は、ペレットにガスを直接吹き付けて冷却するか、または、水冷ジャケットで間接冷却すること等が行われ、排出時および排出後のハンドリングに耐える機械的強度を発現させてから排出装置13により炉外に排出する。
(6)金属化したペレット(還元鉄15)を排出後、直ちに乾燥ペレット(原料14)を装入し、上記のプロセスを繰り返して還元鉄を製造する。
(5) The metallized pellet is cooled by the cooler 18. Cooling in this case is performed by blowing gas directly onto the pellets, or indirectly cooling with a water cooling jacket, etc., and the discharge device after expressing mechanical strength that can withstand handling during and after discharge 13 is discharged outside the furnace.
(6) Immediately after discharging the metallized pellets (reduced iron 15), dry pellets (raw material 14) are charged, and the above process is repeated to produce reduced iron.

このようにして還元鉄を製造する前記回転炉床炉において、原料を投入する際には、全ての原料に対して均等な加熱を行うために、回転炉床上に原料を均等な厚さに敷くことが重要となる。そのために、回転炉床炉への原料供給には、振動式供給機やスクリューフィーダにより原料を供給している。場合によっては、前記炉床上での原料の偏りを解消するため、スクリュー式の原料レベリング装置を用いている。   In the rotary hearth furnace for producing reduced iron in this way, when the raw materials are charged, the raw materials are laid on the rotary hearth in a uniform thickness in order to uniformly heat all the raw materials. It becomes important. For this purpose, raw materials are supplied to the rotary hearth furnace using a vibratory feeder or a screw feeder. In some cases, a screw-type material leveling device is used to eliminate the unevenness of the material on the hearth.

このような回転炉床炉に原料を供給するための原料供給装置の従来例として、その一実施形態を示した図4の原料供給装置がある(特許文献2参照)。
即ち、この原料供給装置は、振動コンベアを用いて原料を供給する回転炉床炉用原料供給装置であって、前記振動コンベアは、原料を案内する外枠23、および水平または傾斜した底面24を有している。
As a conventional example of a raw material supply apparatus for supplying a raw material to such a rotary hearth furnace, there is a raw material supply apparatus of FIG. 4 showing an embodiment thereof (see Patent Document 2).
That is, this raw material supply device is a rotary hearth raw material supply device that supplies raw materials using a vibrating conveyor, and the vibrating conveyor includes an outer frame 23 that guides the raw material and a horizontal or inclined bottom surface 24. Have.

そして、前記底面24の上方に、原料の搬送供給面として、目開きが原料の平均径より小さくかつ水平または傾斜した網25を設け、この網25は、線27で前記外枠23に固定されて前記底面24から離れた面を形成しており、前記外枠23および/または底面24を振動させる振動装置26を有する。そして、図の矢印で示すように、大径原料21と小径原料22とが一緒に網25の上に装入されると、振動装置26が外枠23を振動させ、この振動が網25に伝わって小径原料22が網25の下に振るい落とされるのである。
特開2001−181720号公報 特開2004−218995号公報
A mesh 25 having a mesh opening smaller than the average diameter of the raw material and horizontal or inclined is provided above the bottom surface 24 as a raw material conveyance and supply surface. The mesh 25 is fixed to the outer frame 23 by a line 27. And a vibration device 26 that vibrates the outer frame 23 and / or the bottom surface 24. Then, as shown by the arrows in the figure, when the large diameter raw material 21 and the small diameter raw material 22 are loaded together on the net 25, the vibration device 26 vibrates the outer frame 23, and this vibration is applied to the net 25. Then, the small diameter raw material 22 is shaken off under the net 25.
JP 2001-181720 A Japanese Patent Application Laid-Open No. 2004-218995

ところが、還元鉄を製造する前記回転炉床炉においては、原料の反応を促進したり燃料の代替となる補助剤を原料とともに供給することがある。この際には、先ず、前記補助剤を回転炉床に均等な厚さになるよう供給し、その後この補助剤の上面に均等に原料を供給し、被加熱物である原料上に補助剤が被さり、原料の加熱を妨げないようにする必要がある。   However, in the rotary hearth furnace for producing reduced iron, an auxiliary agent that promotes the reaction of the raw material or substitutes for the fuel may be supplied together with the raw material. In this case, first, the auxiliary agent is supplied to the rotary hearth so as to have a uniform thickness, and then the raw material is supplied uniformly to the upper surface of the auxiliary agent. It is necessary to avoid covering and heating the raw material.

このような場合の回転炉床炉への従来の原料投入方法の一例を、図5の従来例に係る回転炉床炉の原料投入部を示す模式的構成図を用いて以下説明する。
即ち、従来の原料投入部においては、先ず、1段目の補助剤供給装置32によって、矢印方向に移動中の回転炉床10の上流側に前記補助剤33を投入し、次に、2段目の原料供給装置30によって、下流側の前記補助剤33の上面に前記原料31を投入している。
An example of a conventional raw material charging method to the rotary hearth furnace in such a case will be described below with reference to a schematic configuration diagram showing a raw material charging portion of the rotary hearth furnace according to the conventional example of FIG.
That is, in the conventional raw material charging unit, first, the auxiliary agent 33 is supplied to the upstream side of the rotary hearth 10 moving in the direction of the arrow by the auxiliary agent supply device 32 of the first stage, and then the second stage. The raw material supply device 30 puts the raw material 31 on the upper surface of the auxiliary agent 33 on the downstream side.

この場合には、前記補助剤33と原料31の2系統の供給設備が必要となる上、回転炉床炉1全体における原料投入部の占める割合が大きくなるので、必要な処理時間を確保する上で回転速度を低速にせざるを得ず、著しく生産性を低下させていた。更に、前記炉床10上での原料31や補助剤33の偏りを解消するため、スクリュー式の原料レベリング装置34を用いている。   In this case, two supply systems for the auxiliary agent 33 and the raw material 31 are required, and the proportion of the raw material charging portion in the entire rotary hearth furnace 1 is increased, so that the necessary processing time is ensured. Thus, the rotational speed had to be lowered, and the productivity was significantly reduced. Furthermore, in order to eliminate the unevenness of the raw material 31 and the auxiliary agent 33 on the hearth 10, a screw-type raw material leveling device 34 is used.

従って、本発明の目的は、補助剤を含む原料を、1系統の供給手段により生産性を低下させることなく回転炉床炉へ投入する方法、およびこの原料投入方法を用いた回転炉床炉による酸化鉄の還元処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for feeding a raw material containing an auxiliary agent into a rotary hearth furnace without reducing productivity by a single supply means, and a rotary hearth furnace using this raw material charging method. An object of the present invention is to provide a method for reducing iron oxide.

前記目的を達成するために、本発明の請求項1に係る回転炉床炉の原料投入方法が採用した手段は、回転炉床炉への原料投入方法において、塊成化物と補助剤との混合物からなる原料を、篩い手段を有する投入シュートを用いて前記塊成化物と補助剤とに分離し、移動中の回転炉床上円周方向の異なる落下位置に投入することを特徴とするものである。   In order to achieve the above-mentioned object, the means adopted by the raw material charging method of the rotary hearth furnace according to claim 1 of the present invention is a mixture of an agglomerate and an auxiliary agent in the raw material charging method to the rotary hearth furnace. The raw material consisting of is separated into the agglomerated material and the auxiliary agent using a charging chute having a sieving means, and is charged at different dropping positions in the circumferential direction on the moving rotary hearth. .

本発明の請求項2に係る回転炉床炉による酸化鉄の還元処理方法が採用した手段は、鉄鉱石や製鉄ダスト等の酸化鉄からなる塊成化物と、石炭やコークス等の還元剤からなる補助剤との混合物である原料を、請求項1に記載の回転炉床炉への原料投入方法を用いて、移動中の回転炉床上の上流側に前記補助剤を、下流側の前記補助剤の上面に前記塊成化物を投入して、回転炉床炉により前記原料を還元処理することを特徴とするものである。   The means adopted by the method for reducing iron oxide by a rotary hearth furnace according to claim 2 of the present invention comprises an agglomerate composed of iron oxide such as iron ore and iron dust, and a reducing agent such as coal and coke. A raw material that is a mixture with an auxiliary agent is added to the upstream side of the moving rotary hearth using the raw material charging method to the rotary hearth furnace according to claim 1, and the auxiliary agent on the downstream side. The agglomerated material is put on the upper surface of the steel, and the raw material is reduced by a rotary hearth furnace.

本発明の請求項3に係る回転炉床炉への原料投入方法または酸化鉄の還元処理方法が採用した手段は、請求項1に記載の回転炉床炉への原料投入方法または請求項2に記載の酸化鉄の還元処理方法において、前記篩い手段の篩い面隙間寸法が4〜10mmであることを特徴とするものである。   The means employed in the raw material charging method or iron oxide reduction treatment method according to claim 3 of the present invention is the raw material charging method into the rotary hearth furnace according to claim 1 or claim 2. In the iron oxide reduction treatment method described above, the sieving surface clearance dimension of the sieving means is 4 to 10 mm.

本発明の請求項4に係る回転炉床炉への原料投入方法または酸化鉄の還元処理方法が採用した手段は、請求項1に記載の回転炉床炉への原料投入方法または請求項2に記載の酸化鉄の還元処理方法において、前記篩い面が櫛状の篩いであることを特徴とするものである。   The means employed by the raw material charging method or iron oxide reduction method according to claim 4 of the present invention is the raw material charging method to the rotary hearth furnace according to claim 1 or claim 2. In the iron oxide reduction treatment method described above, the sieving surface is a comb-like sieve.

本発明の請求項5に係る回転炉床炉への原料投入方法または酸化鉄の還元処理方法が採用した手段は、請求項3に記載の回転炉床炉への原料投入方法または酸化鉄の還元処理方法において、前記篩い面が櫛状の篩いであることを特徴とするものである。   The means adopted in the raw material charging method or iron oxide reduction treatment method according to claim 5 of the present invention is the raw material charging method or iron oxide reduction method in the rotary hearth furnace according to claim 3. In the processing method, the sieve surface is a comb-like sieve.

本発明の請求項1に係る回転炉床炉の原料投入方法は、塊成化物と補助剤との混合物からなる原料を、篩い手段を有する投入シュートを用いて前記塊成化物と補助剤とに分離し、移動中の回転炉床上円周方向の異なる落下位置に投入できるようにしたので、補助剤を含む前記原料を、1系統の原料供給手段により効率的に分離投入が可能となった。   A raw material charging method for a rotary hearth furnace according to claim 1 of the present invention is that a raw material comprising a mixture of agglomerated material and an auxiliary agent is converted into the agglomerated material and auxiliary agent using an input chute having a sieving means. Separation and introduction of the raw material containing the auxiliary agent into one of the raw material supply means can be efficiently performed because the separation can be performed at different dropping positions in the circumferential direction on the moving rotary hearth.

本発明の請求項2に係る回転炉床炉による酸化鉄の還元処理方法は、鉄鉱石や製鉄ダスト等の酸化鉄からなる塊成化物と、石炭やコークス等の還元剤からなる補助剤との混合物である原料を、請求項1に記載の回転炉床炉への原料投入方法を用いて、移動中の回転炉床上の上流側に前記補助剤を、下流側の前記補助剤の上面に前記塊成化物を投入して、回転炉床炉により前記酸化鉄を還元処理するので、酸化鉄を生産性良く製造できるようになった。   The method for reducing iron oxide by a rotary hearth furnace according to claim 2 of the present invention comprises an agglomerate composed of iron oxide such as iron ore or iron dust, and an auxiliary agent composed of a reducing agent such as coal or coke. Using the raw material charging method of the rotary hearth furnace according to claim 1, the auxiliary material on the upstream side of the moving rotary hearth and the auxiliary agent on the upper surface of the auxiliary agent on the downstream side. Since the agglomerated material is charged and the iron oxide is reduced by a rotary hearth furnace, the iron oxide can be produced with high productivity.

本発明の請求項3に係る回転炉床炉への原料投入方法または酸化鉄の還元処理方法は、前記篩い手段の篩い面隙間寸法が4〜10mmとしたので、前記原料を構成する塊成化物と補助剤との分離を確実に行うことができる。   In the raw material charging method or iron oxide reduction treatment method according to claim 3 of the present invention, the sieving surface gap size of the sieving means is 4 to 10 mm. Therefore, the agglomerated material constituting the raw material And the auxiliary agent can be reliably separated.

本発明の請求項5に係る回転炉床炉への原料投入方法または酸化鉄の還元処理方法は、前記篩い手段の篩い面が櫛状の篩いであるので、目詰まりしにくい。   In the raw material charging method or iron oxide reduction method according to claim 5 of the present invention, the sieving surface of the sieving means is a comb-like sieving, so that clogging is difficult.

先ず、本発明の実施の形態に係る回転炉床炉への原料投入方法およびこれを用いた回転炉床炉による酸化鉄の還元処理方法を、添付図1および図2を用いて以下に説明する。図1は、本発明の実施の形態に係る回転炉床炉への原料投入方法を、前記回転炉床炉の円周に沿った立断面で示した模式的構成図、図2は図1の矢視A−Aを示す模式的平面図である。   First, a raw material charging method to a rotary hearth furnace according to an embodiment of the present invention and an iron oxide reduction treatment method using the rotary hearth furnace using the same will be described below with reference to FIGS. 1 and 2. . FIG. 1 is a schematic configuration diagram showing a raw material charging method to a rotary hearth furnace according to an embodiment of the present invention in a vertical section along the circumference of the rotary hearth furnace, and FIG. It is a schematic plan view which shows arrow AA.

図中の符号6は、回転炉床炉1へ原料2を投入する本発明の実施の形態に係る投入シュートを示している。前記投入シュート6は、前記回転炉床炉1の原料供給領域に、篩い手段3と、この篩い手段3と対向して炉体内壁に形成され略垂直な垂直壁面4と、前記篩い手段3と略垂直壁面4との間に形成された原料投入空間5とから構成されてなる。回転炉床炉1へのこの投入シュート6による原料投入方法、およびこの原料投入方法を用いた回転炉床炉1による酸化鉄の還元処理方法については、後ほど詳細に述べる。   Reference numeral 6 in the figure indicates a charging chute according to the embodiment of the present invention for charging the raw material 2 into the rotary hearth furnace 1. The charging chute 6 is provided in the raw material supply region of the rotary hearth furnace 1 with the sieving means 3, the vertical wall surface 4 formed on the wall of the furnace body facing the sieving means 3, and the sieving means 3 It is comprised from the raw material injection | throwing-in space 5 formed between the substantially vertical wall surfaces 4. FIG. The raw material charging method using the charging chute 6 to the rotary hearth furnace 1 and the iron oxide reduction treatment method using the rotary hearth furnace 1 using this raw material charging method will be described in detail later.

一方、本発明の実施の形態に係る回転炉床炉1について更に詳細に述べるなら、図示しない外周壁、内周壁およびこれらの間に配置された円環状の回転炉床10とからなる。そして、この回転炉床10は、図示しない駆動装置によって、外周壁と内周壁との間を回転移動する構成をなしている。また、前記回転炉床10は、円環状の炉体フレームとこの炉体フレーム上に配設された炉床断熱材とこの炉床断熱材上に配設された耐火物とで構成されている。   On the other hand, the rotary hearth furnace 1 according to the embodiment of the present invention will be described in more detail. The rotary hearth furnace 1 includes an outer peripheral wall, an inner peripheral wall, and an annular rotary hearth 10 arranged between them. And this rotary hearth 10 has comprised the structure which rotates between the outer peripheral wall and an inner peripheral wall with the drive device which is not shown in figure. The rotary hearth 10 is composed of an annular hearth frame, a hearth heat insulating material disposed on the hearth frame, and a refractory disposed on the hearth heat insulating material. .

そして、塊成化物と補助剤との混合物からなる原料2を、炉外から原料供給手段7を介して篩い手段3の篩い面3aに供給し、この篩い手段3によって前記原料2を塊成化物2aと補助剤2bとに分離して、回転炉床10上に投入するのである。そして、前記回転炉床10を矢印方向に低速回転させながら、前記原料2に加熱・還元等の処理を施すのである。   And the raw material 2 which consists of a mixture of an agglomerated material and an adjuvant is supplied to the sieving surface 3a of the sieving means 3 from the outside of the furnace via the raw material supplying means 7, and the raw material 2 is agglomerated by this sieving means 3. 2a and auxiliary agent 2b are separated and put on the rotary hearth 10. Then, the raw material 2 is subjected to treatment such as heating and reduction while rotating the rotary hearth 10 in the direction of the arrow at a low speed.

前記原料供給手段7には、振動フィーダやスクリューフィーダを用いることができるが、前記原料2を篩い手段3の篩い面3a上に、炉床幅方向に均等に分散落下させる点からは、振動フィーダの方が好ましい。   The raw material supply means 7 can be a vibration feeder or a screw feeder. From the viewpoint of evenly dispersing and dropping the raw material 2 on the sieving surface 3a of the sieving means 3 in the hearth width direction, the vibration feeder is used. Is preferred.

そして、塊成化物と補助剤との混合物からなる前記原料2は、前記投入シュート6を構成する篩い手段3によって、前記塊成化物2aと補助剤2bとに分離され、移動中の回転炉床10上円周方向の異なる落下位置に投入されるように構成される。   The raw material 2 made of a mixture of agglomerated material and auxiliary agent is separated into the agglomerated material 2a and auxiliary agent 2b by the sieving means 3 constituting the charging chute 6, and the rotating hearth in motion 10 It is comprised so that it may inject | pour into the different fall position of the upper circumferential direction.

即ち、前記補助剤2bは粉末状の形態を有しており、ペレット状に形成された前記塊成化物2aより細かい寸法からなる。従って、前記補助剤2bは塊成化物2aより小さく、補助剤2bより大きい隙間の篩い面3aから構成された篩い手段3を有する投入シュート6を用いることにより、図1に示したように、前記補助剤2bは篩い面3aの隙間をすり抜けて、移動中の回転炉床10上の上流側に投入されるのである。前記篩い手段3の下面は開放面であるため、篩い面3aの隙間をすり抜けた前記補助剤2bは、そのまま直下の回転炉床10上に投入される。   That is, the auxiliary agent 2b has a powdery form and has a smaller size than the agglomerated product 2a formed in a pellet form. Therefore, the auxiliary agent 2b is smaller than the agglomerate 2a, and by using the charging chute 6 having the sieving means 3 composed of the sieving surface 3a of the gap larger than the auxiliary agent 2b, as shown in FIG. The auxiliary agent 2b passes through the clearance of the sieving surface 3a and is introduced to the upstream side of the moving rotary hearth 10. Since the lower surface of the sieving means 3 is an open surface, the auxiliary agent 2b that has passed through the gap of the sieving surface 3a is put on the rotary hearth 10 directly below.

一方、前記塊成化物2aは篩い面3aに捕捉されて、下流側の前記補助剤2bの上面に投入されるのである。その後、必要なら原料レベリング手段8によって、回転炉床10上に投入された前記原料2のレベルを均一化しても良い。このような操作によって、原料2への加熱を均一化できるのである。   On the other hand, the agglomerated material 2a is captured by the sieving surface 3a and is put on the upper surface of the auxiliary agent 2b on the downstream side. Thereafter, if necessary, the level of the raw material 2 charged on the rotary hearth 10 may be made uniform by the raw material leveling means 8. By such an operation, the heating to the raw material 2 can be made uniform.

また、前記投入シュート6を構成する垂直壁面4にはマンホール9を設けておくのが良い。前記篩い手段3の篩い面3aが目詰まりを起こしたり損傷したような場合には、このマンホール9を開放して、前記篩い面3aを補修や交換するメンテナンスを行うことができる。   A manhole 9 is preferably provided on the vertical wall surface 4 constituting the charging chute 6. When the sieving surface 3a of the sieving means 3 is clogged or damaged, the manhole 9 can be opened to perform maintenance for repairing or replacing the sieving surface 3a.

以上のように、塊成化物2aと補助剤2bとの混合物からなる前記原料2を、上述したような投入方法によりに回転炉床炉1へ投入することによって、従来は2系統の原料供給手段を要したが、1系統の原料供給手段で効率的に分離投入することが可能となった。   As described above, the raw material 2 composed of the mixture of the agglomerated material 2a and the auxiliary agent 2b is charged into the rotary hearth furnace 1 by the charging method as described above. However, it has become possible to efficiently separate and input with one system of raw material supply means.

また、このような回転炉床炉1への原料投入方法を用いて、鉄鉱石や製鉄ダスト等の酸化鉄からなる塊成化物と、石炭やコークス等の還元剤からなる補助剤との混合物である原料2を、移動中の回転炉床10上の上流側に前記補助剤2aを、下流側の前記補助剤2aの上面に前記塊成化物2bを投入して、回転炉床炉1により前記原料2を還元処理して酸化鉄を得ることができる。   Further, using such a raw material charging method to the rotary hearth furnace 1, a mixture of an agglomerate composed of iron oxide such as iron ore and ironmaking dust and an auxiliary agent composed of a reducing agent such as coal and coke is used. The raw material 2 is charged with the auxiliary agent 2a on the upstream side of the moving rotary hearth 10 and the agglomerate 2b is introduced on the upper surface of the downstream auxiliary agent 2a. The raw material 2 can be reduced to obtain iron oxide.

一方、前記篩い手段3は、その篩い面3aが静置型のもので良いが、この篩い面3aに振動を付与するための加振機能を有する振動篩い機であっても良い。また、この篩い面3aは、網目から構成されたものが好ましく、櫛状に構成されたものが更に好ましい。篩い面3aが櫛状の場合は、この櫛目の方向が、前記回転炉床10の回転方向に略平行な方向に向いたものが好ましい。   On the other hand, the sieving means 3 may have a sieving surface 3a of a stationary type, but may also be a vibration sieving machine having a vibration function for applying vibration to the sieving surface 3a. The sieving surface 3a is preferably composed of a mesh, and more preferably composed of a comb shape. When the sieving surface 3a is comb-shaped, it is preferable that the direction of the comb is oriented in a direction substantially parallel to the rotation direction of the rotary hearth 10.

更に、このような篩い面3aは、その上面で前記塊成化物2bが捕捉されて篩い面3aに沿って落下し易いように、図1に示す如く、前記回転炉床10の回転方向に向かって傾斜して構成されるものが好ましい。この篩い面3aの傾斜角度は、水平面に対して30〜45度の範囲とするのが良い。   Further, such a sieving surface 3a faces the rotational direction of the rotary hearth 10 as shown in FIG. 1 so that the agglomerate 2b is captured on the upper surface and easily falls along the sieving surface 3a. It is preferable that it is configured to be inclined. The inclination angle of the sieving surface 3a is preferably in the range of 30 to 45 degrees with respect to the horizontal plane.

また、この篩い面3aの隙間寸法は、4〜10mmの範囲であることが好ましい。前記篩い面3aが櫛状に構成される場合は、この隙間寸法は櫛状をなす櫛間の隙間寸法をいう。このような隙間寸法が4mm未満であると、補助剤2bの一部が篩い面3aに捕捉されて隙間をすり抜けることができなくなり、逆に、前記隙間寸法が10mmを越えると、前記塊成化物2aの中には、篩い面3aの隙間をすり抜けてしまうものが出て来るからである。   Moreover, it is preferable that the clearance dimension of this sieving surface 3a is the range of 4-10 mm. When the sieving surface 3a is formed in a comb shape, the gap size refers to a gap size between combs that form a comb shape. If the gap dimension is less than 4 mm, a part of the auxiliary agent 2b is trapped by the sieving surface 3a and cannot pass through the gap. Conversely, if the gap dimension exceeds 10 mm, the agglomerated product This is because some of 2a slips through the gap of the sieving surface 3a.

そして、上述したような構成からなる篩い手段3を有する投入シュート6を用いて、鉄鉱石や製鉄ダスト等の酸化鉄からなる塊成化物と、石炭やコークス等の還元剤からなる補助剤との混合物である原料2を、移動中の回転炉床10上に投入して、回転炉床炉1により還元処理して酸化鉄を得ることもできる。   And using the input chute 6 having the sieving means 3 having the above-described configuration, an agglomerate composed of iron oxide such as iron ore and iron-making dust and an auxiliary agent composed of a reducing agent such as coal and coke. The raw material 2 which is a mixture can be put on the moving rotary hearth 10 and reduced by the rotary hearth furnace 1 to obtain iron oxide.

以上のように、本発明に係る回転炉床炉の原料投入方法は、塊成化物と補助剤との混合物からなる原料を、篩い手段を有する投入シュートを用いて前記塊成化物と補助剤とに分離し、移動中の回転炉床上円周方向の異なる落下位置に投入できるようにしたので、1系統の原料供給手段により効率的に分離投入することが可能となった。   As described above, the raw material charging method of the rotary hearth furnace according to the present invention uses a charging chute having a sieving means for the raw material consisting of a mixture of the agglomerated material and the auxiliary agent. Therefore, it is possible to efficiently separate and charge by a single material supply means.

また、本発明に係る回転炉床炉への原料投入方法を用いて、鉄鉱石や製鉄ダスト等の酸化鉄からなる塊成化物と、石炭やコークス等の還元剤からなる補助剤との混合物である原料を、移動中の回転炉床上の上流側に前記補助剤を、下流側の前記補助剤の上面に前記塊成化物を投入して、回転炉床炉により前記酸化鉄を還元処理するので、酸化鉄を生産性良く製造できるようになった。   In addition, using the raw material charging method to the rotary hearth furnace according to the present invention, a mixture of agglomerates composed of iron oxide such as iron ore and iron dust and an auxiliary composed of a reducing agent such as coal and coke. Since a certain raw material is charged with the auxiliary agent on the upstream side of the moving rotary hearth and the agglomerate is put on the upper surface of the auxiliary agent on the downstream side, the iron oxide is reduced by the rotary hearth furnace. Iron oxide can be produced with high productivity.

本発明の実施の形態に係る回転炉床炉への原料投入方法を、前記回転炉床炉の円周に沿った立断面で示した模式的構成図である。It is the typical block diagram which showed the raw material injection | throwing-in method to the rotary hearth furnace which concerns on embodiment of this invention with the vertical cross section along the periphery of the said rotary hearth furnace. 図1の矢視A−Aを示す模式的平面図である。It is a typical top view which shows arrow AA of FIG. 従来例に係る回転炉床炉の設備構成の概略図である。It is the schematic of the equipment structure of the rotary hearth furnace which concerns on a prior art example. 従来例に係る回転炉床炉の原料供給装置の一実施形態を示した図である。It is the figure which showed one Embodiment of the raw material supply apparatus of the rotary hearth furnace which concerns on a prior art example. 従来例に係る回転炉床炉の原料投入部を示す模式的構成図である。It is a typical block diagram which shows the raw material input part of the rotary hearth furnace which concerns on a prior art example.

符号の説明Explanation of symbols

1…回転炉床炉,
2…原料,2a…塊成化物,2b…補助剤,
3…篩い手段,3a…篩い面,
4…垂直壁面, 5…原料投入空間, 6…投入シュート,
7…原料供給手段, 8…原料レベリング手段, 10…回転炉床
1 ... Rotary hearth furnace,
2 ... Raw material, 2a ... Agglomerate, 2b ... Adjuvant,
3 ... sieving means, 3a ... sieving surface,
4 ... Vertical wall surface, 5 ... Raw material input space, 6 ... Input chute,
7 ... Raw material supply means, 8 ... Raw material leveling means, 10 ... Rotary hearth

Claims (5)

回転炉床炉への原料投入方法において、塊成化物と補助剤との混合物からなる原料を、篩い手段を有する投入シュートを用いて前記塊成化物と補助剤とに分離し、移動中の回転炉床上円周方向の異なる落下位置に投入することを特徴とする回転炉床炉への原料投入方法。   In the raw material charging method to the rotary hearth furnace, the raw material consisting of the mixture of the agglomerated material and the auxiliary agent is separated into the agglomerated material and the auxiliary agent by using the charging chute having the sieving means, and the rotating while moving A raw material charging method for a rotary hearth furnace, wherein the raw material is charged at different dropping positions in the circumferential direction on the hearth. 鉄鉱石や製鉄ダスト等の酸化鉄からなる塊成化物と、石炭やコークス等の還元剤からなる補助剤との混合物である原料を、請求項1に記載の回転炉床炉への原料投入方法を用いて、移動中の回転炉床上の上流側に前記補助剤を、下流側の前記補助剤の上面に前記塊成化物を投入して、回転炉床炉により前記原料を還元処理することを特徴とする酸化鉄の還元処理方法。   The raw material input method to the rotary hearth furnace according to claim 1, wherein a raw material that is a mixture of an agglomerate composed of iron oxide such as iron ore and iron dust and an auxiliary agent composed of a reducing agent such as coal or coke is used. The above-mentioned auxiliary agent is introduced into the upstream side of the moving rotary hearth and the agglomerate is introduced into the upper surface of the downstream auxiliary agent, and the raw material is reduced by the rotary hearth furnace. A method for reducing iron oxide, which is characterized. 前記篩い手段の篩い面隙間寸法が、4〜10mmであることを特徴とする請求項1に記載の回転炉床炉への原料投入方法または請求項2に記載の酸化鉄の還元処理方法。   The method for charging a raw material into a rotary hearth furnace according to claim 1 or the method for reducing iron oxide according to claim 2, wherein a sieving surface gap size of the sieving means is 4 to 10 mm. 前記篩い面が、櫛状の篩いであることを特徴とする請求項1に記載の回転炉床炉への原料投入方法または請求項2に記載の酸化鉄の還元処理方法。   The method for charging a raw material into a rotary hearth furnace according to claim 1 or the method for reducing iron oxide according to claim 2, wherein the sieving surface is a comb-like sieve. 前記篩い面が、櫛状の篩いであることを特徴とする請求項3に記載の回転炉床炉への原料投入方法または酸化鉄の還元処理方法。



The method for charging a raw material into a rotary hearth furnace or the method for reducing iron oxide according to claim 3, wherein the sieving surface is a comb-like sieve.



JP2005344215A 2005-11-29 2005-11-29 Reduction method of iron oxide by rotary hearth furnace Expired - Fee Related JP5342098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005344215A JP5342098B2 (en) 2005-11-29 2005-11-29 Reduction method of iron oxide by rotary hearth furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344215A JP5342098B2 (en) 2005-11-29 2005-11-29 Reduction method of iron oxide by rotary hearth furnace

Publications (2)

Publication Number Publication Date
JP2007147195A true JP2007147195A (en) 2007-06-14
JP5342098B2 JP5342098B2 (en) 2013-11-13

Family

ID=38208798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344215A Expired - Fee Related JP5342098B2 (en) 2005-11-29 2005-11-29 Reduction method of iron oxide by rotary hearth furnace

Country Status (1)

Country Link
JP (1) JP5342098B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141849A (en) * 2015-02-03 2016-08-08 株式会社神戸製鋼所 Method and apparatus for producing reduced iron
CN106403594A (en) * 2016-11-22 2017-02-15 江苏省冶金设计院有限公司 Combination oxidation-reducing roasting rotary hearth furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248988A (en) * 1986-04-21 1987-10-29 新日本製鐵株式会社 Method of charging sintering raw material
JPH0868594A (en) * 1994-08-30 1996-03-12 Nkk Corp Charging device for sintering raw material
JP2000109912A (en) * 1998-09-30 2000-04-18 Mitsubishi Heavy Ind Ltd Reduction method of wet pellet in rotary hearth type reduction furnace and rotary hearth type reduction furnace
WO2001018256A1 (en) * 1999-09-06 2001-03-15 Nkk Corporation Method and facilities for metal smelting
JP2001279314A (en) * 2000-03-28 2001-10-10 Kawasaki Steel Corp Method for producing reduced metal from metal- containing material
JP2005076909A (en) * 2003-08-28 2005-03-24 Jfe Steel Kk Raw material charger and moving hearth furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248988A (en) * 1986-04-21 1987-10-29 新日本製鐵株式会社 Method of charging sintering raw material
JPH0868594A (en) * 1994-08-30 1996-03-12 Nkk Corp Charging device for sintering raw material
JP2000109912A (en) * 1998-09-30 2000-04-18 Mitsubishi Heavy Ind Ltd Reduction method of wet pellet in rotary hearth type reduction furnace and rotary hearth type reduction furnace
WO2001018256A1 (en) * 1999-09-06 2001-03-15 Nkk Corporation Method and facilities for metal smelting
JP2001279314A (en) * 2000-03-28 2001-10-10 Kawasaki Steel Corp Method for producing reduced metal from metal- containing material
JP2005076909A (en) * 2003-08-28 2005-03-24 Jfe Steel Kk Raw material charger and moving hearth furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141849A (en) * 2015-02-03 2016-08-08 株式会社神戸製鋼所 Method and apparatus for producing reduced iron
WO2016125598A1 (en) * 2015-02-03 2016-08-11 株式会社神戸製鋼所 Reduced iron production method and device
CN107208168A (en) * 2015-02-03 2017-09-26 株式会社神户制钢所 The manufacture method and device of reduced iron
RU2669493C1 (en) * 2015-02-03 2018-10-11 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Method and device for obtaining reduced iron
CN107208168B (en) * 2015-02-03 2019-05-21 株式会社神户制钢所 The manufacturing method and device of reduced iron
US10571193B2 (en) 2015-02-03 2020-02-25 Kobe Steel, Ltd. Reduced iron production method and device
CN106403594A (en) * 2016-11-22 2017-02-15 江苏省冶金设计院有限公司 Combination oxidation-reducing roasting rotary hearth furnace

Also Published As

Publication number Publication date
JP5342098B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP4231960B2 (en) Method and apparatus for producing carbon-containing iron using hearth rotary furnace
CN1294281C (en) Method for producing reduced iron
US6284017B1 (en) Method and facility for producing reduced iron
RU2194771C2 (en) Method of metallic iron production and device for method embodiment
US5100314A (en) Apparatus and process for direct reduction of materials in a kiln
US20110226092A1 (en) Process for producing molten iron and apparatus for producing molten iron
JP2972796B2 (en) Method and apparatus for reduction annealing of iron powder
JP3304872B2 (en) Method and apparatus for rapid reduction of iron oxide in rotary hearth heating furnace
JP5342098B2 (en) Reduction method of iron oxide by rotary hearth furnace
KR100331211B1 (en) Method of producing reduced iron and production facilities therefor
JP2012144788A (en) Method and device for producing hot briquette iron
US6749664B1 (en) Furnace hearth for improved molten iron production and method of operation
JP5211637B2 (en) How to operate a vertical furnace
JP2015196896A (en) Method of regenerating oil-containing waste to useful material
JP2000109912A (en) Reduction method of wet pellet in rotary hearth type reduction furnace and rotary hearth type reduction furnace
KR19990077174A (en) Method and apparatus for producing reduced iron
JP3756754B2 (en) Repair method for reduced iron rotary hearth
JP2006257545A (en) Method for producing molten iron and apparatus therefor
JP4506521B2 (en) Raw material charging method on moving floor in moving hearth furnace
JP2010012409A (en) Heat treatment device/method
JP3828778B2 (en) Operation method of rotary hearth, method of laying agglomerates on rotary hearth, and raw material supply equipment
JP5488662B2 (en) In-furnace powdering prevention equipment
JP2002167624A (en) Method for producing agglomerated material for treating in rotary hearth furnace
JP2004204287A (en) Method for manufacturing reduced metal
DK2964793T3 (en) SYSTEM FOR THE PROCESSING OF PELLET SMALL PARTICLES AND / OR ORE PIECES AND / OR HARDENED PELLETS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees