JP2007146130A - Method for producing solid fuel - Google Patents

Method for producing solid fuel Download PDF

Info

Publication number
JP2007146130A
JP2007146130A JP2006282216A JP2006282216A JP2007146130A JP 2007146130 A JP2007146130 A JP 2007146130A JP 2006282216 A JP2006282216 A JP 2006282216A JP 2006282216 A JP2006282216 A JP 2006282216A JP 2007146130 A JP2007146130 A JP 2007146130A
Authority
JP
Japan
Prior art keywords
carbonization
solid fuel
organic sludge
facility
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282216A
Other languages
Japanese (ja)
Other versions
JP4988290B2 (en
Inventor
Mitsuaki Shiiya
光昭 椎屋
Atsushi Ueda
厚志 上田
Yoshiyuki Fukuzawa
義之 福沢
Yoshinori Onda
佳則 恩田
Takeshi Shirota
猛 城田
Hiroyuki Kogure
宏幸 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
NGK Insulators Ltd
Tsukishima Kikai Co Ltd
Original Assignee
Electric Power Development Co Ltd
NGK Insulators Ltd
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, NGK Insulators Ltd, Tsukishima Kikai Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2006282216A priority Critical patent/JP4988290B2/en
Publication of JP2007146130A publication Critical patent/JP2007146130A/en
Application granted granted Critical
Publication of JP4988290B2 publication Critical patent/JP4988290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a solid fuel derived from an organic sludge, capable of suppressing inflammability in spite of having a high calorific value as the solid fuel and also without having excessive smell. <P>SOLUTION: This method for producing the solid fuel by carbonizing dried organic sludge by carbonizing equipment to make it as the solid fuel is provided by having a carbonizing process of carbonizing the dried organic sludge until becoming to have ≥1.0 and ≤1.8 ratio of the number of atoms of hydrogen to carbon (H/C), and bringing the dried sludge in contact with steam during the treatment in the carbonizing process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機性汚泥を乾燥した後、炭化して得られる有機性汚泥由来の固形燃料、特に石炭と共に燃焼する下水処理場にて処理される汚泥(以下、下水汚泥と言う)、し尿汚泥、家畜糞尿汚泥、農業集落排水汚泥等の有機性汚泥由来の固形燃料の製造方法及び固形燃料の製造設備に関する。   The present invention relates to a solid fuel derived from organic sludge obtained by drying and sludgeting organic sludge, particularly sludge treated in a sewage treatment plant that burns with coal (hereinafter referred to as sewage sludge), human waste sludge. The present invention relates to a method for producing solid fuel derived from organic sludge such as livestock manure sludge and agricultural settlement drainage sludge, and a production facility for solid fuel.

環境問題の高まりに応じて、有機性汚泥の有効利用に関する技術開発が盛んに行われている。有機性汚泥の有効利用については、従来のコンポスト化による緑農地利用、建設資材への利用をさらに発展させて、炭化汚泥とする技術も開発されている。
特許文献1には、乾燥下水汚泥を造粒し、空気遮断雰囲気のロータリーキルンにより、300〜600℃で4〜22分間炭化し、その後に直ちに冷却したものを、ボイラーやセメントキルン等の燃料代替として使用することが開示されている。
特開2000‐265186号公報
Technology development related to effective use of organic sludge has been actively carried out in response to increasing environmental problems. Regarding the effective use of organic sludge, the technology to make carbonized sludge by further developing the use of green farmland and construction materials by composting has been developed.
In Patent Document 1, dry sewage sludge is granulated, carbonized at 300 to 600 ° C. for 4 to 22 minutes with a rotary kiln in an air shut-off atmosphere, and then immediately cooled, as a fuel substitute for boilers, cement kilns, etc. It is disclosed to use.
JP 2000-265186 A

特許文献1のものは、製紙スラッジ、食品汚泥、下水汚泥を例示しており、かつ一様なものとして当該技術について説明がなされている。
しかるに、先行特許文献1のものは、条件がかなり不明であるものの、原子数比H/Cは0.6以下ではないかと挙げられた各種の数値から推測される。
また、先行特許文献1のものでは、高発熱量、発火性の抑制及び臭気の抑制を同時に達成できるものとは考えられない。
したがって、本発明の主たる課題は、固形燃料として高発熱量でありながら、発火性を抑制でき、しかも臭気が過度のものではない有機性汚泥由来の固形燃料の製造方法及び固形燃料の製造設備を提供することにある。
The thing of patent document 1 has illustrated papermaking sludge, food sludge, and sewage sludge, and the said technique is made | formed as a uniform thing.
However, in the case of the prior art document 1, although the conditions are quite unclear, the atomic number ratio H / C is estimated from various numerical values listed as being 0.6 or less.
Moreover, in the thing of the prior patent document 1, it cannot be considered that high calorific value, suppression of ignitability, and suppression of odor can be achieved simultaneously.
Therefore, the main problem of the present invention is to provide a method for producing solid fuel derived from organic sludge and a facility for producing solid fuel that can suppress ignitability while having a high calorific value as a solid fuel and that does not have an excessive odor. It is to provide.

上記課題を解決した本発明は、次記のとおりである。
<請求項1項記載の発明>
乾燥した有機性汚泥を炭化設備により炭化し、これを固形燃料とする固形燃料の製造方法において、
前記乾燥有機性汚泥を水素分と炭素分の原子数比H/Cが1.0以上1.8以下となるまで炭化する炭化工程と、前記炭化工程の処理中にスチームと接触させることを特徴とする有機性汚泥由来の固形燃料の製造方法。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
In the method for producing a solid fuel in which the dried organic sludge is carbonized by a carbonization facility, and this is used as a solid fuel,
Carbonizing the dried organic sludge until the atomic ratio H / C of hydrogen to carbon is 1.0 or more and 1.8 or less, and contacting with steam during the carbonization process A method for producing solid fuel derived from organic sludge.

(作用効果)
炭化物を固形燃料とする場合、発熱量が高いほど望ましい。その発熱量は、後に具体的に説明するように、前記有機性汚泥中の水素分と炭素分の原子数比に大きく依存し、原子数比H/Cがほぼ1.0以下において急激に低下する。他方、本発明者は、炭化物の発火性は、前記原子数比H/Cに依存し、原子数比H/Cが0.6〜1.6、特に0.8〜1.0未満の範囲は発火性が高いことを知見した。さらに、本発明は有機性汚泥であるが故に、炭化物についても臭気が残存する傾向にあり、原子数比H/Cが1.0以上で残留臭気が強い。したがって、高発熱量、低発火性、臭気抑制のすべてを満足する領域は存しないことになる。
しかるに、本発明では、前記有機性汚泥中の水素分と炭素分の原子数比H/Cが1.0以上とし、炭化設備においてスチームを吹き込むものとする。前述のように、原子数比H/Cが1.0を少し超える領域(原子数比H/Cが1.0超〜1.6)で、なお発火性が低くはない。また、原子数比H/Cが1.0以上は残留臭気が強い範囲である。
これに対し、本発明に従って、炭化設備においてスチームを吹き込むと、発火性を抑制できるとともに、残留臭気が問題にならない程度に低減する。スチーム吹込みによって、発火性低減を図ることができる理由は、炭化処理中に生成する酸化されやすい成分が分解するものと推測される。臭気の低減を図ることができる理由は、炭化温度条件下で乾燥有機性汚泥の中の臭気成分の分解が、スチームと接触することで促進されるものと推測される。このように、本発明に従えば、高発熱量、低発火性、臭気抑制のすべてを満足するシステムとなるのである。なお、原子数比H/Cの上限は1.8が好ましいことを知見している。
ところで、石炭の原子数比H/Cは、産地によって異なるが、0.6〜1.0未満で、平均は0.8程度である。この点に関し、先行特許文献のものは、条件がかなり不明であるものの、原子数比H/Cは0.6以下ではないかと挙げられた各種の数値から推測される。この意味で、本発明が狙う原子数比H/Cの値はかなり高いものである。
(Function and effect)
When carbide is used as the solid fuel, the higher the calorific value, the better. As will be described in detail later, the calorific value greatly depends on the atomic ratio of hydrogen and carbon in the organic sludge, and rapidly decreases when the atomic ratio H / C is approximately 1.0 or less. To do. On the other hand, the present inventor has found that the ignition property of carbide depends on the atomic ratio H / C, and the atomic ratio H / C is in the range of 0.6 to 1.6, particularly 0.8 to less than 1.0. Found that it was highly ignitable. Furthermore, since the present invention is organic sludge, the odor also tends to remain for the carbide, and the residual odor is strong when the atomic ratio H / C is 1.0 or more. Therefore, there is no region that satisfies all of the high calorific value, low ignitability, and odor control.
However, in the present invention, the atomic ratio H / C of the hydrogen content and the carbon content in the organic sludge is 1.0 or more, and steam is blown into the carbonization facility. As described above, in the region where the atomic ratio H / C slightly exceeds 1.0 (the atomic ratio H / C is more than 1.0 to 1.6), the ignitability is not low. Further, when the atomic ratio H / C is 1.0 or more, the residual odor is strong.
On the other hand, when steam is blown in the carbonization facility according to the present invention, the ignitability can be suppressed, and the residual odor is reduced to an extent that does not become a problem. The reason why the ignition efficiency can be reduced by steam blowing is presumed that the easily oxidized components generated during carbonization are decomposed. It is estimated that the reason why the odor can be reduced is that the decomposition of the odor component in the dry organic sludge under the carbonization temperature condition is promoted by contact with steam. Thus, according to the present invention, the system satisfies all of the high calorific value, low ignitability, and odor suppression. It has been found that the upper limit of the atomic ratio H / C is preferably 1.8.
By the way, although the atomic ratio H / C of coal changes with production areas, it is less than 0.6-1.0, and an average is about 0.8. In this regard, although the conditions of the prior patent document are quite unclear, the atomic ratio H / C is estimated from various numerical values listed as being 0.6 or less. In this sense, the value of the atomic ratio H / C targeted by the present invention is quite high.

<請求項2項記載の発明>
前記固形燃料は、石炭と共に燃焼する固形燃料である請求項1記載の有機性汚泥由来の固形燃料の製造方法。
<Invention of Claim 2>
The method for producing a solid fuel derived from organic sludge according to claim 1, wherein the solid fuel is a solid fuel combusted with coal.

(作用効果)
本発明によって得られる固形燃料は高発熱量であるために、石炭火力発電所において石炭と混焼する場合などにおいて特に有用なものとなる。
(Function and effect)
Since the solid fuel obtained by the present invention has a high calorific value, it is particularly useful when co-firing with coal in a coal-fired power plant.

<請求項3項記載の発明>
前記炭化設備が前記乾燥有機性汚泥の投入する投入口と前記乾燥有機性汚泥が炭化された炭化物を排出する排出口とを有する炭化設備であって、前記炭化工程は、前記炭化設備の乾燥有機性汚泥の投入口から炭化物の排出口へ向けて炭化が進行する工程であり、前記スチームを前記炭化工程の進行方向と対向するよう吹き込む請求項1または2記載の有機性汚泥由来の固形燃料の製造方法。
<Invention of Claim 3>
The carbonization facility has a carbonization facility having an input port through which the dried organic sludge is charged and a discharge port through which the carbonized carbon from which the dry organic sludge is carbonized, wherein the carbonization step is a dry organic process of the carbonization facility. The solid fuel derived from organic sludge according to claim 1 or 2, wherein carbonization proceeds from the inlet of the activated sludge toward the carbide outlet, and the steam is blown so as to face the direction of the carbonization process. Production method.

(作用効果)
スチームを炭化物の排出側から吹き込むと、スチームを乾燥有機性汚泥の装入側から吹き込む場合に比較して、炭化が進行した領域において、よりスチーム分圧の高い状態で接触するので、発火性の抑制及び残留臭気の低減効果が高いものとなる。
(Function and effect)
When steam is blown from the carbide discharge side, it comes into contact with a higher partial pressure of steam in the area where carbonization has progressed compared to when steam is blown from the dry organic sludge charging side. The effect of suppressing and reducing the residual odor is high.

<請求項4項記載の発明>
前記炭化設備が外熱式ロータリーキルンまたは内部スクリューによって排出口に向かって移送するスクリュー式炭化設備であって、前記排出口側から前記炭化工程の進行方向と対向するように前記スチーム及び又は不活性ガスを吹き込むとともに、前記スチーム及び又は不活性ガスの吹込風量をVm3/秒、前記炭化設備の内空横断面積をSm2としたとき、V/Sを0.01〜5.0m/秒とする条件で吹き込む請求項3記載の有機性汚泥由来の固形燃料の製造方法。
<Invention of Claim 4>
The carbonization equipment is a screw-type carbonization equipment that is transported toward an exhaust port by an externally heated rotary kiln or an internal screw, and the steam and / or inert gas so as to face the advancing direction of the carbonization process from the exhaust port side. V / S is 0.01 to 5.0 m / sec when the steam and / or inert gas blowing air volume is Vm 3 / sec, and the inner air cross-sectional area of the carbonization facility is Sm 2. The manufacturing method of the solid fuel derived from the organic sludge of Claim 3 blown in on conditions.

(作用効果)
本発明は有機性汚泥、特に下水汚泥を対象とするものであるために、その汚泥特有の残留臭気を極力低減することが望まれる。炭化設備としては、流動層炭化炉より、外熱式ロータリーキルンまたはスクリュー式炭化炉が好適に採用できる。この場合、後に説明するように、設備の構造からして、熱が十分に与えることができないゾーンが特にスチーム吹込側(炭化物の排出側)に生じる。その吹込側(炭化物の排出側)において、乾留ガスが滞留する傾向にあると、炭化物に臭気が残留することが知見された。そこで、スチーム及び又は不活性ガスを上記の条件で吹き込むと、後述の実施例で示すように、臭気が低減されるものである。
(Function and effect)
Since the present invention is intended for organic sludge, particularly sewage sludge, it is desired to reduce the residual odor peculiar to the sludge as much as possible. As the carbonization equipment, an external heating type rotary kiln or a screw type carbonization furnace can be suitably employed rather than a fluidized bed carbonization furnace. In this case, as will be described later, due to the structure of the equipment, a zone where heat cannot be sufficiently applied is generated particularly on the steam blowing side (carbide discharge side). It has been found that if the dry distillation gas tends to stay on the blowing side (carbide discharge side), odor remains in the carbide. Therefore, when steam and / or inert gas is blown under the above conditions, the odor is reduced as shown in the examples described later.

<請求項5項記載の発明>
前記炭化工程の前に前記乾燥有機性汚泥を造粒する造粒工程を有することを特徴とする請求項1〜4のいずれか1項に記載の有機性汚泥由来の固形燃料の製造方法。
<Invention of Claim 5>
The method for producing a solid fuel derived from organic sludge according to any one of claims 1 to 4, further comprising a granulation step of granulating the dry organic sludge before the carbonization step.

(作用効果)
前記乾燥有機性汚泥を造粒することで、造粒しない場合と比較して、炭化物の比表面積が小さくなり酸素との接触が低減するので発火性が抑制される。また、造粒によりハンドリング性が向上し、かさ密度も増加する。
(Function and effect)
By granulating the dried organic sludge, the specific surface area of the carbide is reduced and contact with oxygen is reduced as compared with the case where no granulation is performed, so that the ignitability is suppressed. Moreover, handling property improves by granulation and a bulk density also increases.

<請求項6項記載の発明>
乾燥した有機性汚泥を炭化設備により炭化し、これを固形燃料とする固形燃料の製造設備において、
前記炭化設備における炭化処理中にスチームと接触させるスチーム接触手段を備えたことを特徴とする有機性汚泥由来の固形燃料の製造設備。
<Invention of Claim 6>
In a solid fuel production facility that carbonizes dried organic sludge with a carbonization facility and uses this as a solid fuel,
A facility for producing solid fuel derived from organic sludge, characterized by comprising steam contact means for contacting with steam during carbonization in the carbonization facility.

(作用効果)
設備の観点からみて請求項1と同様の作用効果を奏する。
(Function and effect)
From the viewpoint of equipment, the same effect as in claim 1 is obtained.

<請求項7項記載の発明>
前記炭化設備が、前記乾燥有機性汚泥の投入する投入口と前記乾燥有機性汚泥が炭化された炭化物を排出する排出口とを有し、かつ乾燥有機性汚泥の投入口から炭化物の排出口へ向けて炭化が進行する構成の炭化設備であって、前記スチームを前記炭化の進行方向と対向するよう吹き込むスチーム接触手段を備えた請求項6記載の有機性汚泥由来の固形燃料の製造設備。
<Invention of Claim 7>
The carbonization facility has an inlet for supplying the dried organic sludge and an outlet for discharging the carbonized carbon of the dried organic sludge, and from the inlet of the dried organic sludge to the carbide outlet. The apparatus for producing solid fuel derived from organic sludge according to claim 6, further comprising steam contact means for blowing the steam so as to face the direction of carbonization.

(作用効果)
設備の観点からみて請求項3と同様の作用効果を奏する。
(Function and effect)
From the viewpoint of equipment, the same effects as those of the third aspect can be achieved.

<請求項8項記載の発明>
前記炭化設備の前段において、前記乾燥有機性汚泥を造粒する造粒機を備えた請求項6または7記載の固形燃料の製造設備。
<Invention of Claim 8>
The production facility for solid fuel according to claim 6 or 7, further comprising a granulator for granulating the dried organic sludge in a preceding stage of the carbonization facility.

(作用効果)
設備の観点から見て請求項5と同様の作用効果を奏する。
(Function and effect)
The same effects as those of the fifth aspect can be obtained from the viewpoint of equipment.

本発明によれば、固形燃料として高発熱量でありながら、発火性を抑制でき、しかも臭気が過度のものではない有機性汚泥由来の固形燃料の製造できるなどの利点をもたらす。   According to the present invention, it is possible to produce an organic sludge-derived solid fuel that can suppress ignitability while having a high calorific value as a solid fuel and that does not have an excessive odor.

以下、本発明を具体例に基づき詳説する。
<基礎的な知見>
有機性汚泥の一例として下水汚泥を乾燥し炭化させた固形燃料を化石燃料の代替とする場合、その燃料を得る過程での消費エネルギーを、CO2の排出量の観点から考えることが、環境問題を解決する上で必要である。
すなわち、図1に示すように、下水汚泥の乾燥及び炭化に必要なエネルギーとして、電力及び化石燃料(たとえば灯油)を消費する。これらは電力消費に伴うCO2の排出量(1)及び化石燃料消費に伴うCO2の排出量(2)としてあらわすことができる。これに対し、下水汚泥の炭化物を代替燃料に使用すればその分がCO2の削減量(3)となる。
CO2の排出量の削減の観点からは、(1)+(2)<(3)であることが望ましい。
本発明においても有機性汚泥を代替燃料としようとするものである。
Hereinafter, the present invention will be described in detail based on specific examples.
<Basic knowledge>
As an example of organic sludge, when solid fuel obtained by drying and carbonizing sewage sludge is used as a substitute for fossil fuel, it is necessary to consider the energy consumed in the process of obtaining the fuel from the viewpoint of CO2 emissions. Necessary for solving.
That is, as shown in FIG. 1, electric power and fossil fuel (for example, kerosene) are consumed as energy required for drying and carbonization of sewage sludge. These can be expressed as CO2 emissions (1) associated with power consumption and CO2 emissions (2) associated with fossil fuel consumption. On the other hand, if the carbide | carbonized_material of a sewage sludge is used for an alternative fuel, the part will become the reduction amount (3) of CO2.
From the viewpoint of reducing CO2 emission, it is desirable that (1) + (2) <(3).
In the present invention, organic sludge is also used as an alternative fuel.

さて、本発明者は、多くの実験を試みた。すなわち、某都市下水処理場からの未消化下水汚泥について、炭化温度及び炭化時間を変えることにより、有機性汚泥中の水素分と炭素分の原子数比H/Cを種々に変えたものを得て、これらについて、発熱量を調べたところ、図2に示す結果を得た。
図2の結果によれば、発熱量は水素分と炭素分の原子数比に大きく依存し、原子数比H/Cがほぼ1.0以下において急激に低下する。他方、原子数比H/Cが1.8までは発熱量の低下が少ない。
The inventor has tried many experiments. That is, for undigested sewage sludge from Sakai city sewage treatment plant, by changing the carbonization temperature and carbonization time, the hydrogen content and carbon content ratio H / C in the organic sludge was variously changed. When the calorific value was examined for these, the results shown in FIG. 2 were obtained.
According to the result of FIG. 2, the calorific value greatly depends on the atomic ratio of hydrogen and carbon, and decreases rapidly when the atomic ratio H / C is approximately 1.0 or less. On the other hand, when the atomic number ratio H / C is up to 1.8, the decrease in the calorific value is small.

また、他の下水処理場からの下水汚泥も含めて炭化物の発火点温度を調べたところ、図3に示す結果を得た。この結果によれば、炭化物の発火性は、前記原子数比H/Cに依存し、原子数比H/Cが0.6〜1.6、特に0.8〜1.0未満の範囲は発火性が高いことが判る。したがって、発火性の観点から、原子数比H/Cは1.0以上であることが要求され、より望ましくは1.1以上であり、さらに他の特性をも加味すると特に望ましくは1.4以上である。   Moreover, when the ignition point temperature of the carbide | carbonized_material including the sewage sludge from other sewage treatment plants was investigated, the result shown in FIG. 3 was obtained. According to this result, the ignitability of the carbide depends on the atomic ratio H / C, and the atomic ratio H / C is in the range of 0.6 to 1.6, particularly 0.8 to less than 1.0. It turns out to be highly ignitable. Therefore, from the viewpoint of ignitability, the atomic ratio H / C is required to be 1.0 or more, more preferably 1.1 or more, and further preferably 1.4 considering the other characteristics. That's it.

他方、本発明者らは、下水汚泥の炭化物を代替燃料に使用すればCO2の排出量削減が可能であることを知見しているが、環境問題を解決する上ではCO2以外の温室効果ガスを含め、「温室効果ガス総排出量」をもって評価することがより重要となる。その評価手法として、たとえば、2006年4月1日より改正された「地球温暖化対策の推進に関する法律」(以下、「温対法」という。)によって評価することができる。温対法によると、CO2以外の温室効果ガスとしては、メタン(CH4)、一酸化二窒素(N2O)、ハイドロフルオロカーボン類(HFC)、パーフルオロカーボン類、六ふっ化硫黄(SF6)がある。また、「温室効果ガス総排出量」とは、温室効果ガスである物質ごとに政令で定める方法により算定される当該物質の排出量に当該物質の地球温暖化係数(温室効果ガスである物質ごとに地球の温暖化をもたらす程度の二酸化炭素に係る当該程度に対する比を示す数値として国際的に認められた知見に基づき政令で定める係数をいう。)を乗じて得た量の合計量(温対法第2条)、と規定されている。   On the other hand, the present inventors have found that CO2 emissions can be reduced by using carbide of sewage sludge as an alternative fuel. However, in order to solve environmental problems, greenhouse gases other than CO2 are used. In addition, it is more important to make an assessment based on “total greenhouse gas emissions”. As the evaluation method, for example, it can be evaluated by the “Act on Promotion of Countermeasures against Global Warming” (hereinafter referred to as “Warming Law”) revised from April 1, 2006. According to the warm method, greenhouse gases other than CO2 include methane (CH4), dinitrogen monoxide (N2O), hydrofluorocarbons (HFC), perfluorocarbons, and sulfur hexafluoride (SF6). In addition, “total greenhouse gas emissions” refers to the emissions of the substance calculated by the method specified by the Cabinet Order for each substance that is a greenhouse gas, for each substance that is a greenhouse gas. Is the total amount obtained by multiplying by the coefficient specified by a Cabinet Order based on internationally recognized knowledge as a numerical value indicating the ratio of carbon dioxide to the extent that causes global warming. Article 2 of the law).

下水汚泥から固形燃料を製造する場合、N2O以外の温室効果ガスの発生量は無視できる程度であるため、CO2以外の温室効果ガスとしては実際的にはN2Oだけを対象とすればよい。ここで、N2Oの地球温暖化係数が310であることから、CO2以外の温室効果ガスによる寄与分(4)≒N2Oの発生量×310とすることができる。したがって、温室効果ガス総排出量=(1)+(2)+(4)となるので、温対法に則して環境問題を論ずるには(1)+(2)+(4)<(3)であることが望ましい。
上記の関係に基づき、たとえば、化石燃料として灯油を使用する場合において、原子数比H/Cと温室効果ガス総排出量の関係を調べたところ、図15に示す結果を得た。この結果によれば、温室効果ガス総排出量を削減する観点から、原子数比H/Cが1.2以上がより望ましい範囲であることが判る。
When solid fuel is produced from sewage sludge, the amount of greenhouse gas other than N2O is negligible, so that practically only N2O may be used as a greenhouse gas other than CO2. Here, since the global warming potential of N2O is 310, the contribution due to greenhouse gases other than CO2 (4) ≈N2O generation amount × 310. Therefore, total greenhouse gas emissions = (1) + (2) + (4). To discuss environmental issues in accordance with the temperature law, (1) + (2) + (4) <( 3) is desirable.
Based on the above relationship, for example, when kerosene is used as a fossil fuel, the relationship between the atomic ratio H / C and the total greenhouse gas emission was examined, and the result shown in FIG. 15 was obtained. According to this result, from the viewpoint of reducing the total amount of greenhouse gas emissions, it can be seen that the atomic ratio H / C is more preferably 1.2 or more.

さらに、乾燥下水汚泥の臭気が強いことは周知であり、炭化物についても臭気が残存する傾向にあり、原子数比H/Cの低下に伴って臭気が低減するものの、乾燥汚泥から原子数比H/Cが1.0の範囲内において特に残留臭気が強いことは、多数の人間による臭気テストの結果から明らかとなっている。   Furthermore, it is well known that the odor of dried sewage sludge is strong, and there is a tendency for the odor to remain in the carbides, and the odor is reduced as the atomic ratio H / C decreases, but the atomic ratio H from the dried sludge is reduced. It is clear from the results of a number of human odor tests that the residual odor is particularly strong when / C is in the range of 1.0.

図3は単に炭化物の発火点温度の結果であるが、固形燃料としたときの保存や運搬時における発火性を、より実用の観点から調査するために、次の実験を行った。
すなわち、図4に示すように、容積216リットル(600mm立方体)の恒温槽1内に内径240mmφ高さ240mmの円筒ステンレス容器2を設置するとともに、その底面から30mm高の位置にテフロン(商品名)のパンチング板(孔径1mm、ピッチ1.5mm、厚さ0.5mm)からなる分散板3を設け、試料を3.5kgを入れた状態で、酸素ボンベ及び窒素ボンベからの所定の酸素濃度にした吹込みガスを、吹込み路4から円筒ステンレス容器2内の底壁を通して吹き込む。本実験では、空気を使用し、1分間当り100mlの流量で吹き込む。容器内のガスは、排気路5を通して大気へ放出する。その際に、排気ガスをガスクロマトグラフィー(図示せず)によりガスの成分分析を行う。
その際に、容器の底部から15mm高中心、容器の底部から70mm高(分散板から40mm高)中心、容器の底部から115mm高(分散板から85mm高)中心、容器の底部から115mm高(分散板から85mm高)で中心から60mm偏位、容器の底部から155mm高(分散板から125mm高)中心、排気ガス出口近傍、恒温槽1内部、容器の外面(分散板から85mm高)にそれぞれ熱電対を取り付け、連続的に温度測定を行う。
FIG. 3 is merely the result of the ignition point temperature of the carbide, but the following experiment was conducted in order to investigate the ignition properties during storage and transportation when solid fuel was used from a more practical viewpoint.
That is, as shown in FIG. 4, a cylindrical stainless steel container 2 having an inner diameter of 240 mm and a height of 240 mm is installed in a thermostat 1 having a volume of 216 liters (600 mm cube), and Teflon (trade name) is positioned 30 mm from the bottom. A dispersion plate 3 composed of a punching plate (hole diameter 1 mm, pitch 1.5 mm, thickness 0.5 mm) was provided, and the sample was charged with a predetermined oxygen concentration from an oxygen cylinder and a nitrogen cylinder in a state of 3.5 kg. Blowing gas is blown from the blowing passage 4 through the bottom wall in the cylindrical stainless steel container 2. In this experiment, air is used and blown at a flow rate of 100 ml per minute. The gas in the container is released to the atmosphere through the exhaust path 5. At that time, the exhaust gas is subjected to gas component analysis by gas chromatography (not shown).
At that time, 15mm height center from the bottom of the container, 70mm height from the bottom of the container (40mm height from the dispersion plate), 115mm height from the bottom of the container (85mm height from the dispersion plate) center, 115mm height from the bottom of the container (dispersion) Thermoelectrically on the center of the exhaust gas outlet, near the exhaust gas outlet, in the thermostatic chamber 1, and on the outer surface of the container (85 mm high from the dispersion plate). A pair is attached and temperature is measured continuously.

上記の形態で、空気の吹き込みを50時間程度継続すると、各温度測定点においてほぼ18〜25時間経過後に、最高温度に達する温度測定点がある。その最高温度に達する温度測定点での最高到達温度に基づき、発火性の指標とするものである。
かかる試験条件の下で、原子数比H/Cの変化、並びにスチームの添加の有無に伴う最高到達温度を調べた結果を図5に示す。
最高到達温度が低いほど発火性が低いことであると判断でき、図5の結果によると、スチーム添加により最高到達温度が低くなり、発火性を抑制できることが判る。また、排気ガスのガス分析における出口酸素濃度との関係を調べた結果を図6に示す。出口酸素濃度が高いほど発火性が低いことであると判断でき、図6の結果によると、スチーム添加により出口酸素濃度が高くなり、発火性を抑制できることが判る。
In the above form, when air blowing is continued for about 50 hours, there is a temperature measurement point that reaches the maximum temperature after approximately 18 to 25 hours at each temperature measurement point. Based on the maximum temperature at the temperature measurement point that reaches the maximum temperature, it is used as an indicator of ignition.
FIG. 5 shows the results obtained by examining the change in the atomic ratio H / C and the maximum temperature reached with or without the addition of steam under such test conditions.
It can be determined that the lower the maximum temperature is, the lower the ignitability, and the results shown in FIG. 5 indicate that the maximum temperature is lowered by the addition of steam and the ignitability can be suppressed. Further, FIG. 6 shows the result of examining the relationship with the outlet oxygen concentration in the gas analysis of the exhaust gas. It can be determined that the higher the outlet oxygen concentration is, the lower the ignitability is, and the results shown in FIG. 6 indicate that the addition of steam increases the outlet oxygen concentration and suppresses the ignitability.

他方、炭化工程の前に乾燥有機性汚泥を造粒する造粒工程を有することが望ましい。造粒に際しては、粒径が3〜20mm、特に4〜15mmとなるように望ましい。造粒径が小さいと、発火性の抑制効果が十分でなく、ハンドリング性の向上効果も十分に発揮しない。造粒径が過度に大きいと、炭化時間が長くなるなどの問題が残る。さらに、円筒状ペレットに造粒する場合に、発火性の抑制効果及びハンドリング性向上の効果が高く、その場合の造粒径としては、φ4〜8mm×5〜20mmLが最適であることを知見している。
表2には、乾燥汚泥を円筒状ペレット(φ5〜6mm×5〜12mmL)に造粒して炭化した場合と、造粒しないで炭化した場合の最高到達温度を示す。造粒することで最高到達温度が低くなり、発火性を抑制できることがわかる。
On the other hand, it is desirable to have a granulation step for granulating dry organic sludge before the carbonization step. In granulation, it is desirable that the particle size be 3 to 20 mm, particularly 4 to 15 mm. If the particle size is small, the effect of suppressing the ignitability is not sufficient, and the effect of improving the handling property is not sufficiently exhibited. If the particle size is excessively large, problems such as a long carbonization time remain. Furthermore, when granulating into cylindrical pellets, the effect of suppressing ignitability and the effect of improving handling properties are high, and it is found that φ4 to 8 mm × 5 to 20 mmL is optimal as the particle size in that case. ing.
Table 2 shows the maximum temperature achieved when the dried sludge is granulated into carbon pellets (φ5-6 mm × 5-12 mmL) and carbonized, and when carbonized without granulation. It can be seen that by granulating, the maximum temperature reached becomes low, and the ignitability can be suppressed.

図5及び図6に示した原子数比H/Cがそれぞれ1.58のスチーム添加したものと、スチーム添加なしのものについて、臭気テストを行った。
すなわち、製造後、間もない燃料物を一定量計り取り、一定容量の容器に封入後、1〜2日間、常温で保管する。このサンプルの臭気を「6段階臭気強度表示法」にて被験者が判定した。被験者の数は、個人差による偏りを防ぐために10人とした。ここで、臭気強度について次記の基準で評点した。
0: 無臭
1: やっと感知できるにおい
2: 何のにおいであるかわかる弱いにおい
3: 楽に感知できるにおい
4: 強いにおい
5: 強烈なにおい
また、同時に臭気強度の他に、においの質として以下の3段階の評価も行った
○: 許容できるにおい
△: やや不快
×: 不快
結果を表1に示す。参考に乾燥下水汚泥そのものの評価も行った。
An odor test was performed for the case where the steam ratio of H / C shown in FIGS. 5 and 6 was 1.58 and the case where no steam was added.
That is, after production, a certain amount of fuel is measured and stored in a container with a certain capacity, and then stored at room temperature for 1-2 days. The subject determined the odor of this sample by the “6-level odor intensity display method”. The number of subjects was 10 in order to prevent bias due to individual differences. Here, the odor intensity was rated according to the following criteria.
0: Odorless 1: Smell that can finally be detected 2: Weak scent that tells what smell it is 3: Smell that can be easily detected 4: Strong smell 5: Strong smell Three-stage evaluation was also conducted. ○: Acceptable odor △: Slightly unpleasant ×: Unpleasant results are shown in Table 1. For reference, dry sewage sludge itself was also evaluated.

Figure 2007146130
Figure 2007146130

表1の結果から、スチームを添加することで臭気強度も低下し、ほとんどの被験者が許容できるにおいとした。また、参考に乾燥下水汚泥の結果との対比では、臭気の低下は顕著である。   From the results shown in Table 1, the addition of steam also reduced the odor intensity, which was acceptable for most subjects. For reference, the odor reduction is significant in comparison with the results of dry sewage sludge.

Figure 2007146130
Figure 2007146130

<他の知見>
固形燃料における水素分と炭素分の原子数比H/Cは、炭化に供する炭化時間と、炭化温度と相関する。
図7にある下水汚泥の炭化について、炭化温度及び炭化時間によって原子数比H/Cが変化することを示した。
図8には、原子数比H/Cに対する燃料比の相関を示す。
図9には、炭化温度に対する種々の相関を示した。
有機性汚泥のその他の例として、し尿汚泥や家畜糞尿汚泥等があるが、下水汚泥の場合と大きな相違はないことは知見しており、かつ、排泄物の観点からも下水汚泥の場合と大きな相違がないことは容易に判るであろう。
<Other findings>
The atomic ratio H / C of the hydrogen content and the carbon content in the solid fuel correlates with the carbonization time used for carbonization and the carbonization temperature.
About carbonization of the sewage sludge in FIG. 7, it was shown that atomic ratio H / C changes with carbonization temperature and carbonization time.
FIG. 8 shows the correlation of the fuel ratio with respect to the atomic ratio H / C.
FIG. 9 shows various correlations with the carbonization temperature.
Other examples of organic sludge include human waste sludge and livestock manure sludge, but we know that there is no significant difference from the case of sewage sludge. It will be easy to see that there is no difference.

<設備例>
図10は第1の製造設備例を示すもので、ベルトプレスなどにより脱水された脱水有機性汚泥1は乾燥機10に供給される。乾燥機10には第1熱風炉12からの熱風により乾燥が図られ、乾燥した乾燥汚泥2は造粒機26によって造粒される。造粒機としては混合造粒機、圧縮造粒機等が適応可能であるが、特に押出造粒機が好適である。造粒された乾燥汚泥はロータリーキルンなどの炭化炉20に供給される。炭化炉20では、第2熱交換器18により燃焼空気が加温され、これが第2熱風炉22において燃料の下で昇熱された熱風が吹込まれ、炭化処理が行われる。炭化炉20は、乾燥有機性汚泥の投入口から炭化物の排出口へ向けて炭化が進行する構成のものである。
<Equipment example>
FIG. 10 shows a first example of manufacturing equipment. The dehydrated organic sludge 1 dehydrated by a belt press or the like is supplied to a dryer 10. The dryer 10 is dried by hot air from the first hot air furnace 12, and the dried sludge 2 is granulated by the granulator 26. As the granulator, a mixing granulator, a compression granulator, or the like can be applied, and an extrusion granulator is particularly suitable. The granulated dried sludge is supplied to a carbonization furnace 20 such as a rotary kiln. In the carbonization furnace 20, the combustion air is heated by the second heat exchanger 18, and this is blown with hot air heated under the fuel in the second hot air furnace 22 to perform carbonization. The carbonization furnace 20 has a configuration in which carbonization proceeds from a dry organic sludge inlet to a carbide outlet.

炭化汚泥は、冷却した後、固形燃料とされる。なお、造粒は炭化後に行っても良く、造粒機としては転動造粒や混合造粒が適応可能であるが、圧縮造粒が好適である。   The carbonized sludge is cooled and then used as a solid fuel. The granulation may be performed after carbonization, and rolling granulation and mixed granulation can be applied as the granulator, but compression granulation is preferable.

炭化炉20で発生する乾留ガスは、再燃炉14により燃焼空気及び燃料の吹込み下で再燃され、第1熱交換器16において、乾燥機10の乾燥用熱風の昇温熱源として利用する。乾燥機10の排ガスは、第1熱交換器16を通り、再燃炉14からの排ガスの熱を受けて、第1熱風炉12に送入される。乾燥機10の排ガスの一部は、減湿塔24に導かれ、湿度の低減が図られた上で、再燃炉14での燃焼効率を高められるように吹込まれる。   The dry distillation gas generated in the carbonization furnace 20 is reburned by the reburning furnace 14 under the blowing of combustion air and fuel, and is used as a heating source of the hot air for drying in the dryer 10 in the first heat exchanger 16. The exhaust gas from the dryer 10 passes through the first heat exchanger 16, receives the heat of the exhaust gas from the reburning furnace 14, and is sent to the first hot stove 12. A part of the exhaust gas from the dryer 10 is guided to the dehumidifying tower 24, and after the humidity is reduced, it is injected so that the combustion efficiency in the reburning furnace 14 can be increased.

図11は第2の設備例を示すもので、減湿塔24を使用せず、乾燥機10の排ガスを再燃炉14で再燃させた後、その排ガスを乾燥機10に返送するようにしたものである。また、第1熱交換器16では、再燃炉14からの排ガスにより燃焼空気を加熱し、再燃炉14に吹込むようにしてある。   FIG. 11 shows a second example of equipment, in which the dehumidifying tower 24 is not used, and the exhaust gas of the dryer 10 is reburned in the reburning furnace 14 and then the exhaust gas is returned to the dryer 10. It is. In the first heat exchanger 16, the combustion air is heated by the exhaust gas from the reburning furnace 14 and blown into the reburning furnace 14.

本発明において、上記のいずれの例においてもスチーム添加がなされる。
スチームの添加条件としては、炭化温度が250〜350℃が望ましい観点から、温度100〜350℃が温度低下を防止する観点から望ましい。圧力は適宜でよいが、大気圧〜0.1MPa程度が十分である。添加流量としては、乾燥汚泥1kg当り、0.1〜10kg−水蒸気が望ましい。また、吹込みは、図10及び図11のように、スチームを炭化物の排出側から、炭化の進行方向と対向するように吹き込むと、スチームを乾燥有機性汚泥の投入側から吹き込む場合に比較して、炭化が進行した領域において、よりスチーム分圧の高い状態で接触するので、発火性の抑制及び残留臭気の低減効果が高いものとなる。また、スチームに加えて不活性ガス(たとえば窒素ガス)を吹き込むことで、乾留ガスの凝縮を図ることができる。
In the present invention, steam is added in any of the above examples.
As the steam addition conditions, a carbonization temperature of 250 to 350 ° C is desirable, and a temperature of 100 to 350 ° C is desirable from the viewpoint of preventing temperature decrease. The pressure may be appropriate, but atmospheric pressure to about 0.1 MPa is sufficient. The added flow rate is preferably 0.1 to 10 kg-water vapor per 1 kg of dried sludge. In addition, as shown in FIGS. 10 and 11, when the steam is blown from the carbide discharge side so as to face the direction of carbonization, the steam is blown from the dry organic sludge input side. Thus, in the region where carbonization has progressed, the contact is made in a state where the steam partial pressure is higher, so that the effect of suppressing ignitability and reducing the residual odor is high. Moreover, condensation of dry distillation gas can be aimed at by blowing inactive gas (for example, nitrogen gas) in addition to steam.

これらの設備は例示であり、他の形態も当然に採用できる。また、乾燥機10や炭化炉20の形式に限定はない。ちなみに、炭化炉20の形式としては、ロータリーキルン、スクリュー式、流動床式などがある。乾燥機10では、出口水分が10〜40%、特に15〜25%とするのが望ましい。   These facilities are examples, and other forms can naturally be adopted. Moreover, there is no limitation on the type of the dryer 10 or the carbonization furnace 20. Incidentally, types of the carbonization furnace 20 include a rotary kiln, a screw type, a fluidized bed type, and the like. In the dryer 10, the outlet moisture is preferably 10 to 40%, particularly 15 to 25%.

なお、炭化条件としては、図7〜図9の結果からも、炭化温度が250〜350℃で、炭化時間が20〜60分が好適である。   In addition, as carbonization conditions, the carbonization temperature is 250-350 degreeC from the result of FIGS. 7-9, and carbonization time 20-60 minutes is suitable.

図12に示すように、ロータリーキルン20Aでは、一般的にその外筒20aに熱風を吹き込むことで、内筒内の汚泥に対して熱を与えるものであるが、内筒を回転支持するためにタイヤで支持する領域に相当する領域が、非加熱部(外筒20aの設置範囲外において十分に熱を与えることができない部分)Lとなる。その非加熱部Lにおいて、乾留ガスが滞留し炭化汚泥に臭気が残留することが知見された。
そこで、スチーム及び又は不活性ガスの吹込風量をVm3/秒、炭化設備、図12の例ではロータリーキルン20Aの内空(内部空間)横断面積をSm2としたとき、V/Sを0.01〜5.0m/秒とする条件で、より好適には0.03〜3.0m/秒で吹き込むと、炭化汚泥に残留する臭気の強度を低減できる。過度の吹き込む流速は、同伴する粉塵量を抑制するために避けるべきである。
好適に採用できるロータリーキルン20Aとしては、内直径が0.1〜4m、外筒20a長さが1〜35m、非加熱部L長さが0.3〜5mである。
As shown in FIG. 12, in the rotary kiln 20A, generally, hot air is blown into the outer cylinder 20a to give heat to the sludge in the inner cylinder. The region corresponding to the region supported by the non-heated portion (portion where heat cannot be sufficiently applied outside the installation range of the outer cylinder 20a) L. It was found that in the non-heated part L, dry distillation gas stays and odor remains in the carbonized sludge.
Therefore, when the steam and / or inert gas blowing rate is Vm3 / sec, the carbonization facility, in the example of FIG. 12, the inner space (internal space) cross-sectional area of the rotary kiln 20A is Sm2, V / S is 0.01-5. If it is blown at 0.03 to 3.0 m / sec under the condition of 0.0 m / sec, the strength of the odor remaining in the carbonized sludge can be reduced. Excessive blowing flow rate should be avoided to control the amount of entrained dust.
The rotary kiln 20A that can be suitably employed has an inner diameter of 0.1 to 4 m, an outer cylinder 20a length of 1 to 35 m, and a non-heated portion L length of 0.3 to 5 m.

他方、図13に示すように、非加熱部L領域を、ほぼ外筒20aの終端部から径を順次絞った絞り部20bを形成し、さらに細径部20cを形成したロータリーキルン20Bも使用できる。この形態では、吹込流速を高めることができるとともに、乾留ガスの滞留が生じることがほとんどなくなり、臭気の残留を抑制できる。絞り部20bの水平投影長さは0〜2m、細径部20cの長さは0.5〜5mとすることができる(絞り部20bの長さが0mは非加熱部L領域全体を細径部20cとすることを意味する。)。また、細径部20cの内直径は排出機構の構造上、0.1m以上のものである。   On the other hand, as shown in FIG. 13, a rotary kiln 20B can be used in which a non-heated portion L region is formed with a narrowed portion 20b whose diameter is gradually reduced from the end portion of the outer cylinder 20a and further formed with a small diameter portion 20c. In this embodiment, the blowing flow rate can be increased, and the retention of dry distillation gas hardly occurs, and the odor residue can be suppressed. The horizontal projection length of the narrowed portion 20b can be 0 to 2 m, and the length of the small diameter portion 20c can be 0.5 to 5 m (the length of the narrowed portion 20b is 0 m, the entire non-heated portion L region has a small diameter It means that it is a part 20c.) Further, the inner diameter of the small diameter portion 20c is 0.1 m or more due to the structure of the discharge mechanism.

図14のスクリュー式炭化炉20Cも使用できる。20dはスクリューコンベアを示す。好適に採用できるスクリュー式炭化炉20Cとしては、内直径が0.1〜1m、加熱部20e長さが1〜20m、非加熱部L長さが0.3〜3mのものである。   The screw type carbonization furnace 20C of FIG. 14 can also be used. Reference numeral 20d denotes a screw conveyor. The screw-type carbonization furnace 20C that can be suitably used has an inner diameter of 0.1 to 1 m, a heating part 20e length of 1 to 20 m, and a non-heating part L length of 0.3 to 3 m.

図12のロータリーキルン20Aを使用し(内直径が0.35m、外筒20a長さが2.5m、非加熱部L長さが0.4m)、スチーム及び又は不活性ガスを吹込み、上記と同じ臭気テストを行った。結果を表3に示す。吹込条件によって臭気は変化し、前記条件では残留臭気が問題とならないことが判る。なお、表3には0.01m/秒の結果を示していないが、残留臭気が問題とならないことが判明している。   Using the rotary kiln 20A of FIG. 12 (inner diameter is 0.35m, outer cylinder 20a length is 2.5m, non-heating part L length is 0.4m), steam and / or inert gas is blown, and The same odor test was performed. The results are shown in Table 3. The odor changes depending on the blowing conditions, and it can be seen that the residual odor is not a problem under the above conditions. Although Table 3 does not show the result of 0.01 m / sec, it has been found that residual odor does not cause a problem.

Figure 2007146130
Figure 2007146130

得られる固形燃料は、石炭火力発電所において石炭と混焼する場合に特に有効であるが、固形燃料物を燃料とするボイラーへの適用も可能である。   The obtained solid fuel is particularly effective when co-firing with coal in a coal-fired power plant, but it can also be applied to boilers that use solid fuel as fuel.

CO2量に関する説明図である。It is explanatory drawing regarding the amount of CO2. 原子数比H/Cと発熱量との相関図である。It is a correlation diagram of atomic ratio H / C and calorific value. 原子数比H/Cと発火点温度との相関図である。It is a correlation diagram of atomic number ratio H / C and ignition point temperature. 発火性試験装置の概要図である。It is a schematic diagram of a ignitability test device. 原子数比H/Cと最高到達温度との相関図である。It is a correlation diagram of atomic ratio H / C and the highest attained temperature. 原子数比H/Cと出口酸素濃度との相関図である。It is a correlation diagram of atomic number ratio H / C and exit oxygen concentration. 原子数比H/Cと炭化温度、炭化時間との相関図である。It is a correlation diagram of atomic number ratio H / C, carbonization temperature, and carbonization time. 原子数比H/Cに対する燃料比の相関を示すグラフである。It is a graph which shows the correlation of the fuel ratio with respect to atomic ratio H / C. 炭化温度に対する種々の相関を示すグラフである。It is a graph which shows the various correlation with carbonization temperature. 第1の設備例のフローシートである。It is a flow sheet of the 1st example of equipment. 第2の設備例のフローシートである。It is a flow sheet of the 2nd example of equipment. ロータリーキルンの概要図である。It is a schematic diagram of a rotary kiln. 他のロータリーキルンの概要図である。It is a schematic diagram of another rotary kiln. スクリュー式炭化炉の概要図である。It is a schematic diagram of a screw type carbonization furnace. 原子数比H/Cと温室効果ガス総排出量の関係を示すグラフである。It is a graph which shows the relationship between atomic number ratio H / C and greenhouse gas total discharge.

符号の説明Explanation of symbols

1…脱水有機性汚泥、10…乾燥機、14…再燃炉、16…第1熱交換器、20…炭化炉、22…第1熱風炉、26…造粒機。   DESCRIPTION OF SYMBOLS 1 ... Dehydrated organic sludge, 10 ... Dryer, 14 ... Recombustion furnace, 16 ... 1st heat exchanger, 20 ... Carbonization furnace, 22 ... 1st hot air furnace, 26 ... Granulator.

Claims (8)

乾燥した有機性汚泥を炭化設備により炭化し、これを固形燃料とする固形燃料の製造方法において、
前記乾燥有機性汚泥を水素分と炭素分の原子数比H/Cが1.0以上1.8以下となるまで炭化する炭化工程と、前記炭化工程の処理中にスチームと接触させることを特徴とする有機性汚泥由来の固形燃料の製造方法。
In the method for producing a solid fuel in which the dried organic sludge is carbonized by a carbonization facility, and this is used as a solid fuel,
Carbonizing the dried organic sludge until the atomic ratio H / C of hydrogen to carbon is 1.0 or more and 1.8 or less, and contacting with steam during the carbonization process A method for producing solid fuel derived from organic sludge.
前記固形燃料は、石炭と共に燃焼する固形燃料である請求項1記載の有機性汚泥由来の固形燃料の製造方法。   The method for producing a solid fuel derived from organic sludge according to claim 1, wherein the solid fuel is a solid fuel combusted with coal. 前記炭化設備が前記乾燥有機性汚泥の投入する投入口と前記乾燥有機性汚泥が炭化された炭化物を排出する排出口とを有する炭化設備であって、前記炭化工程は、前記炭化設備の乾燥有機性汚泥の投入口から炭化物の排出口へ向けて炭化が進行する工程であり、前記スチームを前記炭化工程の進行方向と対向するように吹き込む請求項1または2記載の有機性汚泥由来の固形燃料の製造方法。   The carbonization facility has a carbonization facility having an input port through which the dried organic sludge is charged and a discharge port through which the carbonized carbon from which the dry organic sludge is carbonized, wherein the carbonization step is a dry organic process of the carbonization facility. The solid fuel derived from organic sludge according to claim 1 or 2, wherein carbonization proceeds from the inlet of the activated sludge toward the carbide outlet, and the steam is blown so as to face the direction of progress of the carbonization step. Manufacturing method. 前記炭化設備が外熱式ロータリーキルンまたは内部スクリューによって排出口に向かって移送するスクリュー式炭化設備であって、前記排出口側から前記炭化工程の進行方向と対向するように前記スチーム及び又は不活性ガスを吹き込むとともに、前記スチーム及び又は不活性ガスの吹込風量をVm3/秒、前記炭化設備の内空横断面積をSm2としたとき、V/Sを0.01〜5.0m/秒とする条件で吹き込む請求項3記載の有機性汚泥由来の固形燃料の製造方法。 The carbonization equipment is a screw-type carbonization equipment that is transported toward an exhaust port by an externally heated rotary kiln or an internal screw, and the steam and / or inert gas so as to face the advancing direction of the carbonization process from the exhaust port side. V / S is 0.01 to 5.0 m / sec when the steam and / or inert gas blowing air volume is Vm 3 / sec, and the inner air cross-sectional area of the carbonization facility is Sm 2. The manufacturing method of the solid fuel derived from the organic sludge of Claim 3 blown in on conditions. 前記炭化工程の前に前記乾燥有機性汚泥を造粒する造粒工程を有することを特徴とする請求項1〜4のいずれか1項に記載の有機性汚泥由来の固形燃料の製造方法。   The method for producing a solid fuel derived from organic sludge according to any one of claims 1 to 4, further comprising a granulation step of granulating the dry organic sludge before the carbonization step. 乾燥した有機性汚泥を炭化設備により炭化し、これを固形燃料とする固形燃料の製造設備において、
前記炭化設備における炭化処理中にスチームと接触させるスチーム接触手段を備えたことを特徴とする有機性汚泥由来の固形燃料の製造設備。
In a solid fuel production facility that carbonizes dried organic sludge with a carbonization facility and uses this as a solid fuel,
A facility for producing solid fuel derived from organic sludge, characterized by comprising steam contact means for contacting with steam during carbonization in the carbonization facility.
前記炭化設備が、前記乾燥有機性汚泥の投入する投入口と前記乾燥有機性汚泥が炭化された炭化物を排出する排出口とを有し、かつ乾燥有機性汚泥の投入口から炭化物の排出口へ向けて炭化が進行する構成の炭化設備であって、前記スチームを前記炭化の進行方向と対向するよう吹き込むスチーム接触手段を備えた請求項6記載の有機性汚泥由来の固形燃料の製造設備。   The carbonization facility has an inlet for supplying the dried organic sludge and an outlet for discharging the carbonized carbon of the dried organic sludge, and from the inlet of the dried organic sludge to the carbide outlet. The apparatus for producing solid fuel derived from organic sludge according to claim 6, further comprising steam contact means for blowing the steam so as to face the direction of carbonization. 前記炭化設備の前段において、前記乾燥有機性汚泥を造粒する造粒機を備えた請求項6または7記載の固形燃料の製造設備。   The production facility for solid fuel according to claim 6 or 7, further comprising a granulator for granulating the dried organic sludge in a preceding stage of the carbonization facility.
JP2006282216A 2005-10-28 2006-10-17 Method for producing solid fuel Active JP4988290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282216A JP4988290B2 (en) 2005-10-28 2006-10-17 Method for producing solid fuel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005314989 2005-10-28
JP2005314989 2005-10-28
JP2006282216A JP4988290B2 (en) 2005-10-28 2006-10-17 Method for producing solid fuel

Publications (2)

Publication Number Publication Date
JP2007146130A true JP2007146130A (en) 2007-06-14
JP4988290B2 JP4988290B2 (en) 2012-08-01

Family

ID=38207907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282216A Active JP4988290B2 (en) 2005-10-28 2006-10-17 Method for producing solid fuel

Country Status (1)

Country Link
JP (1) JP4988290B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081555A1 (en) * 2007-12-20 2009-07-02 Toda Kogyo Corporation Method for treatment of organic liquid waste, and recycled fuel carbon
JP2009172521A (en) * 2008-01-24 2009-08-06 Taiheiyo Cement Corp Handleability improving method of sludge, and application method of sludge
JP2011246657A (en) * 2010-05-28 2011-12-08 Kobe Steel Ltd Method for manufacturing blast furnace coke
JP2019174199A (en) * 2018-03-27 2019-10-10 大阪瓦斯株式会社 Calorie measuring device and calorie measuring method
JP2019178189A (en) * 2018-03-30 2019-10-17 株式会社神鋼環境ソリューション Biomass carbide production system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265186A (en) * 1999-03-16 2000-09-26 Taiheiyo Cement Corp Production of solid fuel and apparatus therefor
JP2001131556A (en) * 1999-11-02 2001-05-15 Osaka Gas Engineering Co Ltd Carbonizing furnace
JP2006193622A (en) * 2005-01-13 2006-07-27 Japan Sewage Works Agency Carbonized product and method for producing the same
JP2007119641A (en) * 2005-10-28 2007-05-17 Electric Power Dev Co Ltd Solid fuel derived from organic sludge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265186A (en) * 1999-03-16 2000-09-26 Taiheiyo Cement Corp Production of solid fuel and apparatus therefor
JP2001131556A (en) * 1999-11-02 2001-05-15 Osaka Gas Engineering Co Ltd Carbonizing furnace
JP2006193622A (en) * 2005-01-13 2006-07-27 Japan Sewage Works Agency Carbonized product and method for producing the same
JP2007119641A (en) * 2005-10-28 2007-05-17 Electric Power Dev Co Ltd Solid fuel derived from organic sludge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081555A1 (en) * 2007-12-20 2009-07-02 Toda Kogyo Corporation Method for treatment of organic liquid waste, and recycled fuel carbon
JP2009172521A (en) * 2008-01-24 2009-08-06 Taiheiyo Cement Corp Handleability improving method of sludge, and application method of sludge
JP2011246657A (en) * 2010-05-28 2011-12-08 Kobe Steel Ltd Method for manufacturing blast furnace coke
JP2019174199A (en) * 2018-03-27 2019-10-10 大阪瓦斯株式会社 Calorie measuring device and calorie measuring method
JP7080083B2 (en) 2018-03-27 2022-06-03 大阪瓦斯株式会社 Calorific value measuring device and calorific value measuring method
JP2019178189A (en) * 2018-03-30 2019-10-17 株式会社神鋼環境ソリューション Biomass carbide production system

Also Published As

Publication number Publication date
JP4988290B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP4368964B2 (en) Method and apparatus for producing solid fuel
Rabaçal et al. Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones
US7766985B2 (en) Coal drying method and equipment, method for aging reformed coal and aged reformed coal, and process and system for producing reformed coal
JP4988290B2 (en) Method for producing solid fuel
De las Obras-Loscertales et al. NO and N2O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor
Granite et al. The thief process for mercury removal from flue gas
Jeguirim et al. A new valorisation strategy of olive mill wastewater: Impregnation on sawdust and combustion
Martinez et al. Influence of treatment techniques for pig slurry on methane emissions during subsequent storage
Ma et al. Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue
Chen et al. Analysis of heavy metals fixation and associated energy consumption during sewage sludge combustion: Bench scale and pilot test
Li et al. Properties of char particles obtained under O2/N2 and O2/CO2 combustion environments
Chouchene et al. Energetic valorisation of olive mill wastewater impregnated on low cost absorbent: Sawdust versus olive solid waste
Abdallah et al. Evaluation of biochars derived from food waste for synthesis gas production via pyrolysis and CO2 gasification
Chen et al. Pollutant emission characteristics and interaction during low-temperature oxidation of blended coal
CN108368444B (en) Combustible particle drying system
KR101154826B1 (en) Sewage sludge processing equipment using direct buring deo-dorization device
Malat'ák et al. Combustion of briquettes from oversize fraction of compost from wood waste and other biomass residues.
Wang et al. Influences of CO and O2 on the Reduction of N2O by Biomass Char
Ravi et al. Experimental investigation on using adsorbent for post‐combustion carbon dioxide capture from CI engine exhaust
Sharara et al. Influence of aeration rate on the physio-chemical characteristics of biodried dairy manure-wheat straw mixture
Han et al. The effect of the particle size of alumina sand on the combustion and emission behavior of cedar pellets in a fluidized bed combustor
Li et al. Characterization of the sulfation reactivity of limestones with different particle size in a large-capacity TGA
JP2007119641A (en) Solid fuel derived from organic sludge
JP2006193622A (en) Carbonized product and method for producing the same
CA2463980A1 (en) Process and apparatus for disposing of municipal solid waste

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Ref document number: 4988290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350