JP2007146092A - Composition for producing biodegradable molded product and method for production of paste, plate form material and molded product using the composition - Google Patents

Composition for producing biodegradable molded product and method for production of paste, plate form material and molded product using the composition Download PDF

Info

Publication number
JP2007146092A
JP2007146092A JP2005352230A JP2005352230A JP2007146092A JP 2007146092 A JP2007146092 A JP 2007146092A JP 2005352230 A JP2005352230 A JP 2005352230A JP 2005352230 A JP2005352230 A JP 2005352230A JP 2007146092 A JP2007146092 A JP 2007146092A
Authority
JP
Japan
Prior art keywords
producing
powder
molded article
composition
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005352230A
Other languages
Japanese (ja)
Inventor
Wan Yong Lim
ワン−ヨン リム
Yon-Min Park
ヨン−ミン パク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECONEER CO Ltd
Original Assignee
ECONEER CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECONEER CO Ltd filed Critical ECONEER CO Ltd
Publication of JP2007146092A publication Critical patent/JP2007146092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D191/00Coating compositions based on oils, fats or waxes; Coating compositions based on derivatives thereof
    • C09D191/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for producing a biodegradable molded product, and a method for production of a paste, a plate form material and a molded product using the composition. <P>SOLUTION: The composition contains a glutinous material prepared by mixing, stirring and heating one or more natural material powder selected from a group consisting of wheat, starch, rice, glutinous rice, potato, corn, tapioca and sweet potato, and water at 0-80°C of a 1-15 fold amount relative to the powder, vegetable starch material powder and vegetable fibrous material powder. Each one of the glutinous material, vegetable starch material powder and vegetable fibrous material powder is contained at 1-50 wt.%, respectively, relative to the whole weight of the composition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生分解性成形品製造用組成物とこれを用いたペースト、板状材及び成形品の製造方法に関するものであって、さらに詳しくは生分解性を有する天然素材の機械的強度を改選した生分解性成形品製造用組成物とこれを用いたペースト、板状材及び成形品の製造方法に関する。   The present invention relates to a composition for producing a biodegradable molded article and a method for producing a paste, a plate-like material and a molded article using the composition, and more specifically, the mechanical strength of a natural material having biodegradability. The present invention relates to a composition for producing a biodegradable molded article that has been selected, and a paste, a plate-like material, and a method for producing a molded article using the composition.

日常生活において汎用されているプラスチック類の成形品内には、人体に有害な環境ホルモンが内在している。環境ホルモンとは、動物や人間の体内に入ってホルモンの作用を妨げたり攪乱する物質を総称する言葉であって、学術的には内分泌系攪乱物質(endocrine disrupter)と言う。環境ホルモンと名づけられた理由は、環境ホルモンの化学的構造が生体ホルモンに似ているため体内でまるで天然ホルモンかのように働く場合が多いからである。このような環境ホルモンが人体に流入されると、生殖機能の異常、性比均衡の破壊、ホルモン分泌の不均衡、免疫機能の阻害、乳房癌または前立腺癌の増加など、人類の健康に致命的な問題点をもたらすため、環境ホルモンを発生させ得る物質の使用を減らしており、現在世界各国においては特定の生活成形品、特に、乳兒用品に対しては環境ホルモンを発生させる物質の使用を法的に禁じている。今までは韓国国内においては、環境ホルモンに対する認識及びその副作用に対する自覚が普遍化されてはいないが、まもなく韓国国内においてもこれに対する関心が高まることになり、従って現在無意的に用いている環境ホルモンの誘発物質で製造された成形品の使用は自制され、ひいては禁じられると見込まれる。   Environmental plastics that are harmful to the human body are inherent in plastic molded products that are widely used in daily life. Environmental hormone is a general term for substances that enter the body of animals or humans and interfere with or disturb the action of hormones, and is scientifically referred to as an endocrine disrupter. The reason why it was named environmental hormone is that the chemical structure of environmental hormone resembles that of biological hormones, so it often works as if it were a natural hormone in the body. When these environmental hormones flow into the human body, they are fatal to human health, such as abnormal reproductive function, disruption of sex ratio balance, imbalance in hormone secretion, inhibition of immune function, increased breast cancer or prostate cancer. The use of substances that can generate environmental hormones has been reduced, and the use of substances that generate environmental hormones is now legal in certain countries around the world. Forbidden. Until now, awareness of environmental hormones and awareness of their side effects have not been universalized in Korea, but interest in this will soon increase in Korea, so environmental hormones that are currently used voluntarily. The use of articles made with this inducer is expected to be restrained and thus forbidden.

これとともに、現在用いられている各種の生活用品、建築資材、包装材の大半は、木材、鉄材、プラスチック材などを用いて製造しており、これら製品に対する使用寿命が終わった後の事後処理、即ち廃棄に大きい問題点が内在されている。特に、各種のプラスチック材成形品の廃棄物が自然界に放置される場合には、数十年〜数百年間腐敗されないままその原型が維持されるのでごみ処理に関する深刻な問題が発生している。特に、これらの成形品廃棄物を焼却方法によって除去する場合には、大気汚染源を排出することはもちろんダイオキシンのような発癌物質を自然系に発生させることによって結局人類の健康を害する悪循環が継続する問題がある。   At the same time, most of the various daily necessities, building materials, and packaging materials that are currently used are manufactured using wood, iron, plastic materials, etc., and post-processing after the end of the service life of these products. That is, there is a big problem in disposal. In particular, when wastes of various plastic material molded products are left in the natural world, the original shape is maintained without being spoiled for several decades to several hundreds of years, so that a serious problem regarding waste disposal has occurred. In particular, when these waste products are removed by the incineration method, a vicious cycle that eventually harms human health continues by generating carcinogens such as dioxin as well as releasing air pollution sources. There's a problem.

また、最近の研究で提示されている生分解性成形品の場合には、十分な強度が具現されない問題点が提起されており、従来のプラスチック製品または紙製品などの代替品としての限界が台頭されている。よって、生分解性を保ちながらも強度が強化された成形品を製造するための努力が進んでおり、このような技術的背景下で本発明が案出されたのである。   In addition, in the case of biodegradable molded products presented in recent research, there is a problem that sufficient strength is not realized, and the limit as a substitute for conventional plastic products or paper products has risen. Has been. Therefore, efforts have been made to produce molded articles with enhanced strength while maintaining biodegradability, and the present invention has been devised under such a technical background.

本発明が解決しようとする技術的課題は、前述した諸問題、即ち、従来の各種の生活容器や建築用品などを用いるにあたって、これら素材からの環境ホルモンの放出、自然環境の汚染、その廃棄物の処理などの問題点を抱えており、究極的には人類の健康を直接的に脅かしている従来の資材、例えば、木材、鉄材、プラスチック材からなる品物の内外装材などに代替できる程度の強度が確保できる代替材料を提示することに技術的課題があり、このような技術的課題を達成できる生分解性成形品製造用組成物とこれを用いたペースト、板状材及び成形品の製造方法を提供することに本発明の目的がある。   The technical problem to be solved by the present invention is to solve the above-mentioned problems, that is, when using various conventional living containers and building supplies, release of environmental hormones from these materials, pollution of the natural environment, waste thereof It can be replaced by conventional materials that directly threaten human health, such as interior and exterior materials made of wood, iron, and plastic materials. There is a technical problem in presenting an alternative material that can ensure strength, and a composition for manufacturing a biodegradable molded article that can achieve such a technical problem, and manufacture of a paste, a plate-like material, and a molded article using the composition. It is an object of the present invention to provide a method.

本発明が解決しようとする技術的課題を達成するための本発明による生分解性成形品製造用組成物は、小麦、澱粉、米、もち米、ジャガイモ、トウモロコシ及びサツマイモのうち選択された一つまたは二つ以上の天然材の粉末と上記天然材の粉末の重量の1〜15倍の量に該当する0〜80℃の水を混合した後、これを撹伴加熱して得られた糊化物と、植物性澱粉材の粉末及び植物性繊維質材の粉末を含んて組成物を成し、上記糊化物、植物性澱粉材の粉末及び植物性繊維質材の粉末の各々は、上記組成物の全体重量対比1〜50重量%の含量で組成されることを特徴とする。   The composition for producing a biodegradable molded article according to the present invention for achieving the technical problem to be solved by the present invention is one selected from wheat, starch, rice, glutinous rice, potato, corn and sweet potato Alternatively, gelatinized material obtained by mixing two or more natural material powders and water at 0 to 80 ° C. corresponding to 1 to 15 times the weight of the natural material powders, followed by stirring and heating. And a vegetable starch material powder and a vegetable fiber material powder to form a composition, and each of the gelatinized product, the vegetable starch material powder, and the vegetable fiber material powder comprises the above composition It is characterized in that it is composed with a content of 1 to 50% by weight relative to the total weight.

本発明が解決しようとする技術的課題を達成するための本発明による生分解性成形品製造用ペーストの製造方法は、(S1)小麦、澱粉、米、もち米、ジャガイモ、トウモロコシ及びサツマイモのうち選択された一つまたは二つ以上の天然材の粉末と、上記天然材の粉末の重量の1〜15倍の量である0〜80℃の水を1次混合する段階と、(S2)上記1次混合段階で得られた混合物を撹伴加熱して糊化物に変性させる段階と、(S3)上記糊化物に所定の植物性澱粉材の粉末と植物性繊維質材の粉末とを、上記糊化物、植物性澱粉材の粉末及び植物性繊維質材の粉末からなる組成物の各々の成分が組成物の全体重量対比1〜50重量%の含量で含まれるように、順次または同時に2次混合する段階と、(S4)上記2次混合段階で得られた混合物に粘弾性を与えるために練る段階と、を含んで進めることを特徴とする。   In order to achieve the technical problem to be solved by the present invention, the method for producing a biodegradable molded article paste according to the present invention comprises (S1) wheat, starch, rice, glutinous rice, potato, corn and sweet potato. Primary mixing of the selected one or more natural powders and water of 0 to 80 ° C., which is 1 to 15 times the weight of the natural powder, (S2) A step of stirring and heating the mixture obtained in the primary mixing step to modify the gelatinized product, and (S3) the gelatinized product with a predetermined vegetable starch material powder and vegetable fiber material powder, Secondary or sequential so that each component of the composition comprising gelatinized material, vegetable starch material powder and vegetable fiber material powder is contained in an amount of 1 to 50% by weight relative to the total weight of the composition. And (S4) obtained in the secondary mixing step. A step of kneading to give a viscoelastic mixture, characterized in that the advancing contain.

本発明が解決しようとする技術的課題を達成するための本発明による生分解性成形品製造用板状材の製造方法は、(S5)前述した(S1)〜(S4)段階に従って製造された生分解性成形品製造用ペーストを圧延ローリングさせる段階と、(S6)上記圧延ローリングされた結果物を乾燥させる段階と、(S7)上記乾燥された結果物の上面にコーテイング層を形成させる段階と、を含んで進めることを特徴とする。   In order to achieve the technical problem to be solved by the present invention, a method for producing a biodegradable molded product for producing a plate-like material according to the present invention was manufactured according to the steps (S5) (S1) to (S4) described above. A step of rolling the biodegradable molded product paste, (S6) a step of drying the rolled and rolled product, and (S7) a step of forming a coating layer on an upper surface of the dried product. It is characterized by progressing including.

本発明が解決しようとする技術的課題を達成するための本発明による生分解性成形品の製造方法は、(S8)前述した(S5)〜(S7)段階に従って製造された板状材に予備的に熱を加える予熱段階と、(S9)上記予熱された板状材を圧縮成形する段階と、を含んで進めることを特徴とする。   In order to achieve the technical problem to be solved by the present invention, a method for producing a biodegradable molded product according to the present invention comprises: The method includes a preheating step of applying heat and a step (S9) of compression-molding the preheated plate-like material.

以下、本発明を具体的に説明するために実施例を挙げて説明し、発明に対する理解を助けるために添付図面を参照して詳しく説明する。しかし、本発明による実施例はいろいろな他の形態に変形されることができて、本発明の範囲が以下で詳述する実施例に限定されると解釈されてはならない。本発明の実施例は当業界において平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。   Hereinafter, the present invention will be described in detail by way of examples, and will be described in detail with reference to the accompanying drawings in order to facilitate understanding of the present invention. However, the embodiments according to the present invention can be modified in various other forms, and the scope of the present invention should not be construed to be limited to the embodiments described in detail below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

機械的強度のポイントであると言える糊化現象とは、約60〜150℃の温度で澱粉の粒子が破壊されペーストの中に入っている水分によって囲まれて表面が膨脹する現象を言う。通常、澱粉は炭水化物であって光合成作用によって炭酸ガスと水から作られ、主に二糖類(di‐saccharide)と非常に少ない量の単糖類(mono‐saccharide)から構成されている。このような炭水化物はいろいろな作用において重要なエネルギー源になるが、熟成された小麦から得られる多くの炭水化物は多糖類(polysaccharide)である澱粉であって小麦粉の重さの約70%を占めて製品の骨格を成す。本発明による変性された糊化物は、セルロース含有物の網構造を補強する機能とともに天然素材の粘弾性も極大化させる役割を果たす。   The gelatinization phenomenon, which can be said to be a point of mechanical strength, refers to a phenomenon in which starch particles are broken at a temperature of about 60 to 150 ° C. and the surface is expanded by being surrounded by moisture contained in the paste. Starch is usually a carbohydrate, made from carbon dioxide and water by photosynthesis, and is mainly composed of di-saccharide and a very small amount of mono-saccharide. Although such carbohydrates are important energy sources in various actions, many carbohydrates obtained from ripened wheat are starches that are polysaccharides, accounting for about 70% of the weight of flour. Forms the product framework. The modified gelatinized material according to the present invention serves to maximize the viscoelasticity of natural materials as well as to reinforce the network structure of the cellulose-containing material.

本発明が解決しようとする技術的課題を達成するための本発明による生分解性成形品製造用組成物は、天然材の粉末に上記天然材の粉末の重量の1〜15倍の量に該当する0〜80℃の水を混合した後、撹伴加熱して変性された糊化物を用意し、これに植物性澱粉材の粉末及び植物性繊維質材の粉末を混合して用意する。このとき、上記糊化物、植物性澱粉材の粉末及び植物性繊維質材の粉末の各々の含量は、上記天然材の粉末と水とが混合されて変性された糊化物、植物性澱粉材の粉末及び植物性繊維質材の粉末からなる組成物の総重量対比1〜50重量%に該当する量を用いる。   The composition for producing a biodegradable molded article according to the present invention for achieving the technical problem to be solved by the present invention corresponds to an amount of 1 to 15 times the weight of the natural material powder in the natural material powder. After mixing water at 0 to 80 ° C., a gelatinized material modified by stirring and heating is prepared, and a vegetable starch material powder and a vegetable fiber material powder are mixed and prepared. At this time, the contents of the gelatinized material, the vegetable starch material powder, and the vegetable fiber material powder are the same as those of the gelatinized material and vegetable starch material modified by mixing the natural material powder and water. An amount corresponding to 1 to 50% by weight relative to the total weight of the composition comprising the powder and the powder of plant fiber material is used.

上記糊化物には、上記天然材の粉末の重量に対して1〜20重量%の含量で二酸化チタンがさらに添加されることが望ましい。このような添加成分によって糊化物の粘度を向上させることができて、白色の顔料機能を発現させることもできる。上記添加される二酸化チタンの含量の数値範囲に関して、上記下限値に達しない場合にはその添加の効果が達成できないため望ましくなく、上記上限値を超える場合には過添加に比例する機能発現が成されないため望ましくない。   It is desirable that titanium dioxide is further added to the gelatinized material in a content of 1 to 20% by weight with respect to the weight of the natural material powder. Such an additive component can improve the viscosity of the gelatinized product, and can also exhibit a white pigment function. Regarding the numerical range of the content of titanium dioxide to be added, if the lower limit is not reached, the effect of the addition cannot be achieved, and this is not desirable. Is not desirable.

上記天然材の粉末の含量の数値範囲に関して、上記下限値に達しない場合には糊化物の生成の際、糊化物の粘性が低くなって練る際に流れ性の増大によって組成物の必要粘性に及ばない組成物が作られるため望ましくなく、上記上限値を超える場合には粘性が高まって混合するときに円滑な混合作業が不可能であり、練る際に過度な熱の発生によって板状材の結合力が著しく落ちるため望ましくない。   Regarding the numerical range of the content of the natural material powder, if the above lower limit is not reached, the viscosity of the gelatinized product is lowered when the gelatinized product is produced, and the viscosity of the composition is reduced to increase the flowability when kneaded. It is not desirable because a composition that does not reach the upper limit is produced, and if the above upper limit is exceeded, the viscosity increases and smooth mixing work is impossible when mixing, and excessive heat is generated during kneading, resulting in the This is not desirable because the bond strength is significantly reduced.

上記水の含量の数値範囲に関して、上記下限値に達しない場合には天然材の粉末との十分な配合が成されなくて望ましくなく、上記上限値を超える場合には薄すぎる配合が成されて適正な粘性が確保できないため望ましくない。一方、上記用いられた水の温度の数値範囲に関して、上記下限値に達しなかったり上限値を超える場合には天然材の粉末の糊化温度より低い温度で糊化が成されて要求される粘性が具現されないため望ましくない。   Regarding the numerical range of the water content, when the lower limit is not reached, it is not desirable that sufficient blending with natural powder is made, and when the upper limit is exceeded, too thin blending is achieved. This is not desirable because proper viscosity cannot be secured. On the other hand, regarding the numerical range of the temperature of the water used, the viscosity required for gelatinization at a temperature lower than the gelatinization temperature of the natural material powder when the lower limit is not reached or exceeds the upper limit. Is not desirable because it is not implemented.

上記植物性澱粉材の粉末の含量の数値範囲に関して、上記下限値に達しない場合には粘性を与えてくれる蛋白質であるグルテン(gluten)の含量が足りなくなるため必要粘性に及ばなくなり、形成される板状材の結合力も著しく落ちて連続的な形態の板状材に形成できないため望ましくなく、上記上限値を超える場合には過度なグルテンの投入により板状材の形成の際に柔軟性が落ちるようになり、乾燥過程を経ると板状材に脆性が与えられ折れる現象が発生するため望ましくない。   Regarding the numerical range of the content of the vegetable starch material powder, when the lower limit is not reached, the content of gluten, which is a protein that gives viscosity, is insufficient, so that the necessary viscosity is not reached and formed. It is not desirable because it can not be formed into a continuous plate-like material because the bonding force of the plate-like material is also significantly reduced, and when the above upper limit is exceeded, flexibility is reduced when forming the plate-like material due to excessive gluten addition Then, after the drying process, the plate-like material is brittle and breaks.

上記植物性繊維質材の粉末の含量の数値範囲に関して、上記下限値に達しない場合には板状材のマトリックス組織(matrix organization)が十分に形成されないため板状材の形態に生成することが不可能になるため望ましくなく、上記上限値を超える場合には過度なマトリックス組織の形成によって練る際に繊維質の結合力が増加するため原材料の分離現象が発生するようになり望ましくない。   Regarding the numerical range of the content of the powder of the plant fiber material, when the lower limit is not reached, the matrix organization of the plate material is not sufficiently formed, so that it may be generated in the form of the plate material. This is not desirable because it becomes impossible, and when the above upper limit is exceeded, the binding force of the fibers increases when kneading due to the formation of an excessive matrix structure, so that a separation phenomenon of raw materials occurs, which is undesirable.

上記天然材の粉末は、小麦、澱粉、米、もち米、ジャガイモ、トウモロコシ、タピオカ及びサツマイモのうち選択された一つまたは二つ以上の材料の粉末であれば望ましい。上記植物性澱粉材の粉末は、小麦、もち米、米、麦、トウモロコシ、ジャガイモ、サツマイモ及びタピオカのうち選択された一つまたは二つ以上の材料の粉末であれば望ましい。上記植物性繊維質材の粉末は、砂糖黍、稲わら、麦わら、葦、小麦の茎、トウモロコシの茎、ココナツ、牧草、山野草及び綿のうち選択された一つまたは二つ以上の材料の粉末であれば望ましい。
図1は、本発明による生分解性成形品製造用組成物を用いて生分解性成形品を製造する方法を段階別(S1〜S9)に説明するための工程流れ図である。
The natural material powder is preferably a powder of one or more materials selected from wheat, starch, rice, glutinous rice, potato, corn, tapioca and sweet potato. The vegetable starch material powder is preferably a powder of one or more materials selected from wheat, glutinous rice, rice, wheat, corn, potato, sweet potato and tapioca. The vegetable fiber material powder is a powder of one or more materials selected from among sugar cane, rice straw, straw, straw, wheat stalk, corn stalk, coconut, pasture, wild grass and cotton. Is desirable.
FIG. 1 is a process flow chart for explaining a method for producing a biodegradable molded article using the composition for producing a biodegradable molded article according to the present invention step by step (S1 to S9).

(S1)天然材の粉末と水との混合<第1段階>
前述したような天然材の粉末に上記天然材の粉末の重量の1〜15倍の量に該当する0〜80℃の水を混合した後、撹伴加熱して変性された糊化物を用意する。このとき、天然材の粉末と水の含量及び水の温度範囲は前述した数値範囲を満足するように注意が要求される。特に、第1段階の混合過程において用いられた水の温度が要求される範囲を外れる場合には、糊化物の粘性付与が十分に成されない可能性があるため注意が要求される。上記第1段階では必要によって上記天然材の粉末の重量に対して1〜20重量%の含量で二酸化チタンがさらに添加されれば粘度向上の機能及び白色顔料の機能を発現させることができて望ましい。
(S1) Mixing of natural powder and water <first stage>
After mixing the natural material powder as described above with water of 0 to 80 ° C. corresponding to 1 to 15 times the weight of the natural material powder, the mixture is stirred and heated to prepare a modified gelatinized product. . At this time, attention is required so that the content of the natural material powder and water and the temperature range of the water satisfy the above-described numerical ranges. In particular, when the temperature of the water used in the mixing process in the first stage is out of the required range, attention is required because there is a possibility that the viscosity of the gelatinized material may not be sufficiently achieved. In the first stage, if necessary, titanium dioxide may be further added in an amount of 1 to 20% by weight based on the weight of the natural material powder, so that the function of improving viscosity and the function of white pigment can be expressed. .

(S2)糊化物変性のための加熱段階<第2段階>
上記第2段階(S2)で糊化物の変性のために施す加熱は、60〜150℃の温度条件を保ちながら5〜30分間施すことが望ましい。上記第1段階の混合が完結された以後に撹伴及び加熱を施すことによって糊化現象が最適の条件で起こることができて、加熱温度及び加熱時間の維持は糊化物の物性確保のために重要な因子であるため、これらの条件維持に各別な注意が要求される。特に、加熱時間が長くなれば糊化物の量によっては加熱部と近い所と遠い所とでの温度差が発生しながら加熱部と近接した所に位置した糊化物が炭化される現象が発生する。一方、糊化温度を保ちながら加熱時間を短縮させるための方法として、高温の蒸気や熱風を糊化物に接触させたり糊化物内に注入させる方式を用いれば望ましい。
(S2) Heating step for gelatinization modification <second step>
The heating applied for denaturation of the gelatinized product in the second stage (S2) is preferably performed for 5 to 30 minutes while maintaining a temperature condition of 60 to 150 ° C. The gelatinization phenomenon can occur under optimum conditions by stirring and heating after the first stage of mixing is completed, and maintaining the heating temperature and heating time is to ensure the physical properties of the gelatinized product. Because it is an important factor, special attention is required to maintain these conditions. In particular, if the heating time is longer, depending on the amount of gelatinized material, a phenomenon occurs in which the gelatinized material located in the vicinity of the heating unit is carbonized while a temperature difference between the heating unit and the distant region occurs. . On the other hand, as a method for shortening the heating time while maintaining the gelatinization temperature, it is desirable to use a method in which high-temperature steam or hot air is brought into contact with the gelatinized material or injected into the gelatinized material.

(S3)糊化物と植物性澱粉材の粉末及び植物性繊維質材の粉末の混合<第3段階>
上記第2段階を通じて変性された糊化物に植物性澱粉材の粉末と植物性繊維質材の粉末を適当量計量して混合する。このとき、上記糊化物、植物性澱粉材の粉末と植物性繊維質材の粉末の各々の含量は、上記糊化物、植物性澱粉材の粉末及び植物性繊維質材の粉末からなる組成物の総重量対比1〜50重量%に該当する量を各々用いた。一方、上記天然材の粉末や植物性澱粉材の粉末の粒径は、200ワイヤーメッシュ(wire mesh)程度の大きさであればさらに望ましく、上記植物性繊維質材の粉末の粒径は0.1〜5mm程度であればさらに望ましい。
(S3) Mixing of gelatinized material, vegetable starch material powder and vegetable fiber material powder <third stage>
An appropriate amount of vegetable starch material powder and vegetable fiber material powder are weighed and mixed with the gelatinized material modified through the second step. At this time, the contents of the gelatinized product, the vegetable starch material powder, and the vegetable fiber material powder are the contents of the gelatinized material, the vegetable starch material powder, and the vegetable fiber material powder. An amount corresponding to 1 to 50% by weight relative to the total weight was used. On the other hand, the particle size of the powder of the natural material or the vegetable starch material is more preferably about 200 wire mesh, and the particle size of the powder of the vegetable fiber material is preferably 0.00. If it is about 1-5 mm, it is still more desirable.

(S4)混合物の練り<第4段階>
上記第3段階によって得られた混合物に所定の粘弾性を与えるために練りを行う。上記練る過程は粘弾性付与と密接な因子であるため、練り時間を調節するに注意が要求される。上記練る過程において練り時間は澱粉材の粉末を糊化直前の最高値の粘性にするための最小時間であり、この時間を超えると炭化されて粘性が激しく落ちるようになる。従って、適切な練り時間を与えることは練る過程におけるポイントであると言える。練りの際、温度条件と練りの物理的強度もまた重要な因子であると言えるが、これは時間当たり作られるペーストの生産量と関連づけて各種の条件を与えるべきである。練る過程が急激に進む場合には、繊維質と植物性澱粉材の分離現象が発生し、植物性澱粉材を最適な粘性状態にすることができない。逆に、練り時間が長すぎると練り温度の上昇による水分状態の変化によってペーストの物性が低下する。従って、最適な練り時間は生成されたペーストの表面温度が100℃を超えない範囲内で施されるべきである。
(S4) Kneading the mixture <4th stage>
In order to give a predetermined viscoelasticity to the mixture obtained by the third step, kneading is performed. Since the above kneading process is a factor closely related to imparting viscoelasticity, attention is required to adjust the kneading time. In the above kneading process, the kneading time is the minimum time for making the starch material powder have the maximum viscosity just before gelatinization. If this time is exceeded, carbonization occurs and the viscosity drops drastically. Therefore, it can be said that giving appropriate kneading time is a point in the kneading process. During kneading, temperature conditions and physical strength of kneading are also important factors, but this should give various conditions in relation to the amount of paste produced per hour. When the kneading process proceeds rapidly, a separation phenomenon between the fiber and the vegetable starch material occurs, and the vegetable starch material cannot be brought into an optimum viscous state. On the other hand, if the kneading time is too long, the physical properties of the paste deteriorate due to a change in the moisture state due to an increase in kneading temperature. Therefore, the optimum kneading time should be applied so that the surface temperature of the produced paste does not exceed 100 ° C.

(S5)ペーストの圧延ローリング段階<第5段階>
上記第4段階を通じて得られたペーストを板状材(sheet)に製造するために圧延ローリング過程を進める。圧延過程によってペーストの粘弾性を極大化させることができて、それによって今後進まれる成形過程において自由な形態変形が可能になる。一方、ペーストが板状材に変形される過程において周囲温度などによって粘弾性を変化させることができるため、短い時間内で進めるのが望ましい。このような圧延過程は圧延ローラーを配置し、ペーストを投入して進めるが、このような圧延ローラーは複数個が直列で配列されるようにした。
(S5) Roll rolling stage of paste <fifth stage>
In order to manufacture the paste obtained through the fourth step into a sheet, a rolling rolling process is performed. The viscoelasticity of the paste can be maximized by the rolling process, which allows free form deformation in the molding process to be performed in the future. On the other hand, since the viscoelasticity can be changed by the ambient temperature or the like in the process of transforming the paste into a plate-like material, it is desirable to proceed within a short time. In such a rolling process, a rolling roller is arranged and a paste is put in, and a plurality of such rolling rollers are arranged in series.

(S6)板状材の乾燥段階<第6段階>
上記第6段階(S6)の乾燥工程は、加熱方式及び加熱温度を異ならせた二つの乾燥区間、即ち第1乾燥区間及び第2乾燥区間に区分して順次施すのが望ましい。上記第1乾燥区間は間接加熱方式によって乾燥が施され、その加熱温度は50〜130℃であれば望ましく、上記第2乾燥区間は直接加熱方式によって乾燥が施され、その加熱温度は50〜140℃であれば望ましい。上記第1乾燥区間(間接加熱方式)の加熱温度の数値範囲に関して、上記下限値に達しない場合には第2乾燥区間の直接加熱方式の乾燥機によって急激に板状材の表面温度が上昇するようになり、板状材の表面のみが乾燥され板状材内部の水分を乾燥できないようになるため望ましくなく、上記上限値を超える場合には第1乾燥区間において板状材の表面乾燥が急激に進まれるため板状材の外部と内部との水分移動が著しく落ちるようになり第2乾燥区間を経て組成された板状材の必要乾燥率を達成できないため望ましくなく、上記第2乾燥区間(直接加熱方式)の加熱温度の数値範囲に関して、上記下限値に達しない場合には圧縮成形段階での必要含水率より高い含水率で板状材が形成されて、成形作業後完成品の後変形が問題になるため望ましくなく、上記上限値を超える場合には板状材の表面が発泡するようになり炭化現象も発生するため望ましくない。
(S6) Drying stage of plate-like material <Sixth stage>
The drying process of the sixth step (S6) is preferably performed sequentially in two drying sections with different heating methods and heating temperatures, that is, a first drying section and a second drying section. The first drying section is dried by an indirect heating method, and the heating temperature is desirably 50 to 130 ° C., and the second drying section is dried by a direct heating method, and the heating temperature is 50 to 140. Desirable if it is ° C. Regarding the numerical range of the heating temperature in the first drying section (indirect heating method), when the lower limit is not reached, the surface temperature of the plate material is rapidly increased by the direct heating method dryer in the second drying section. This is undesirable because only the surface of the plate-like material is dried and moisture inside the plate-like material cannot be dried. When the upper limit is exceeded, the surface of the plate-like material is rapidly dried in the first drying section. Therefore, the movement of moisture between the outside and inside of the plate-like material is remarkably lowered, and the required drying rate of the plate-like material composed through the second drying zone cannot be achieved. With regard to the numerical range of the heating temperature of the direct heating method), if the above lower limit is not reached, a plate-like material is formed with a moisture content higher than the required moisture content in the compression molding stage, and post-deformation of the finished product after the molding operation Because it becomes a problem Mashiku without undesirable because the surface of the plate-shaped member also occurs carbonization phenomenon comes to foam when exceeding the above upper limit.

一方、上記第6段階以後にカレンダリング工程をさらに含んで進めた後、予定された後続工程である下記の第7段階を進めることもできる。このようなカレンダリング工程は圧延ローリング過程を通じてシート状態の板状材が収縮されながら表面状態が不均一に変形されることを防止し、その表面を滑らかに保たせる目的で施される付加的な工程である。板状材を構成する各種の粉末材成分そのものに含湿された水分量は、周辺温度や湿度条件によって変化されることができて、特に乾燥過程が進まれる間には乾燥速度や乾燥量などによって板状材の収縮現象の要因になる可能性があるため、カレンダリング工程を通じた製品性向上のための努力は望ましい措置である。   On the other hand, after further including the calendaring process after the sixth stage, the following seventh stage, which is a planned subsequent process, can be performed. Such a calendering process is performed for the purpose of preventing the surface state from being deformed unevenly while the plate-like material in the sheet state is contracted through the rolling rolling process, and keeping the surface smooth. It is a process. The amount of moisture contained in the various powder material components that make up the plate material can vary depending on the ambient temperature and humidity conditions, especially during the course of the drying process. Therefore, efforts to improve product quality through the calendering process is a desirable measure.

(S7)コーテイング層の形成段階<第7段階>
上記第6段階(S6)の乾燥過程を進めた以後、製品性向上の目的で板状材表面にコーテイング層を形成する段階を進める。このようなコーテイング層の形成はコーテイング剤を塗布する方式で形成することもできて、コーテイング層として用いることができるフィルムを付着する方式で形成することもできる。前者の方法による例として、ワックス系のコーテイング剤、例えば、パラフィンワックス、マイクロワックス、合成ワックス及び天然ワックスのうち選択された何れか一つまたは二つ以上のコーテイング剤を板状材の上面に塗布して形成できる。一方、後者の方法による例として、板状材の上面に機能性フィルム層、例えば、生分解性物質、光分解性物質、熱分解性物質及びエンジニアリングプラスチックのうち選択された何れか一つの物質として製造されたフィルム層を付着させる方法で形成することができる。
(S7) Coating layer formation stage <Seventh stage>
After proceeding with the drying process of the sixth step (S6), a step of forming a coating layer on the surface of the plate-like material is advanced for the purpose of improving product quality. Such a coating layer can be formed by a method of applying a coating agent or by a method of attaching a film that can be used as a coating layer. As an example of the former method, a wax-based coating agent, for example, one or more selected from paraffin wax, microwax, synthetic wax and natural wax is applied to the upper surface of the plate-like material. Can be formed. On the other hand, as an example of the latter method, a functional film layer, for example, a biodegradable substance, a photodegradable substance, a thermally decomposable substance, or an engineering plastic is selected on the upper surface of the plate-like material. It can be formed by a method of attaching the manufactured film layer.

(S8)板状材の予熱段階<第8段階>
予熱段階は、40〜150℃の温度を有するように進めるのが望ましい。このような予熱段階は上記前段階の工程が完了した以後板状材の硬い性質に軟性を与える過程である。上記予熱段階の予熱温度の数値範囲に関して、上記下限値に達しない場合には目的する軟性付与の効果が発現されないため望ましくなく、上記上限値を超える場合には板状材が炭化されるので製品不良の要因として働くため望ましくない。
(S8) Preheating stage of plate-like material <8th stage>
Desirably, the preheating stage proceeds to have a temperature of 40-150 ° C. Such a preheating stage is a process of imparting softness to the hard properties of the plate-like material after the above-described process is completed. Regarding the numerical range of the preheating temperature in the preheating stage, if the lower limit is not reached, the desired softness imparting effect is not exhibited, which is not desirable. It is undesirable because it works as a cause of failure.

(S9)圧縮成形段階<第9段階>
圧縮成形段階は、3〜180℃の温度条件と20〜350kg/cmの圧力条件で進めるのが望ましい。上記温度条件は成形される板状材に軟性を付加するための物理的条件であり、上記圧力条件は成形が完了した製品が元の形態である板状材へと復元されようとする復元力を除去するために付加する物理的条件である。上記圧縮成形条件に関する温度及び圧力の数値範囲に関して、上記下限値に達しなかったり上限値を超える場合には炭化現象及び脆性が発生されて望ましくない。
(S9) Compression molding stage <9th stage>
It is desirable that the compression molding stage proceeds under a temperature condition of 3 to 180 ° C. and a pressure condition of 20 to 350 kg / cm 2 . The above temperature condition is a physical condition for adding flexibility to the plate material to be molded, and the above pressure condition is a restoring force that the product that has been molded is restored to the original plate material. Is a physical condition to be added to remove Regarding the numerical ranges of temperature and pressure related to the compression molding conditions, if the lower limit is not reached or the upper limit is exceeded, carbonization and brittleness are generated, which is not desirable.

上記第1段階(S1)〜第4段階(S1)の過程は本発明による生分解性成形品製造用ペーストの製造方法に関するものであって、上記第1段階(S1)〜第7段階(S7)の過程は本発明による生分解性成形品製造用板状材の製造方法に関するものであり、上記第1段階(S1)〜第9段階(S9)の過程は本発明による生分解性成形品の製造方法に関するものである。   The process from the first stage (S1) to the fourth stage (S1) relates to a method for producing a biodegradable molded article paste according to the present invention, and includes the first stage (S1) to the seventh stage (S7). ) Relates to a method for producing a plate material for producing a biodegradable molded article according to the present invention, and the processes of the first stage (S1) to the ninth stage (S9) are the biodegradable molded article according to the present invention. It is related with the manufacturing method.

実施例1〜3
本発明による組成を有する生分解性成形品製造用組成物を下記表1のような組成を有するように区分して設定した。下記表1のように区分された組成を有する実施例1〜3では前述した方法(S1〜S7)を用いて板状材を製造した。一方、その結果物を用いて後続工程(S8及びS9)を進めて圧縮成形品を製造する場合には前述した説明によって進めれば当業者が容易に実施できることは自明である。
Examples 1-3
The composition for producing a biodegradable molded article having the composition according to the present invention was set so as to have the composition shown in Table 1 below. In Examples 1 to 3 having compositions classified as shown in Table 1 below, plate-like materials were manufactured using the method (S1 to S7) described above. On the other hand, it is obvious that those skilled in the art can easily carry out the subsequent steps (S8 and S9) using the resulting product to produce a compression molded product by proceeding according to the above description.

Figure 2007146092
Figure 2007146092

本発明の実施例1による組成物を用いて製造された板状材に対して引張強度、圧縮強度及び伸長率を下記のように測定し、その比較対象として紙材質の板状材の測定値を下記表2に示した。   The tensile strength, compressive strength, and elongation rate of the plate-like material produced using the composition according to Example 1 of the present invention were measured as follows, and the measured values of the paper-like plate-like material as comparison targets. Is shown in Table 2 below.

下記表2での引張強度及び伸長率は韓国工業規格(KSM3006)に従って各々測定し、圧縮強度は万能材料試験機(イントロン社の6027)を用いて測定した。   The tensile strength and elongation in Table 2 below were measured according to the Korean Industrial Standard (KSM3006), and the compressive strength was measured using a universal material testing machine (Intron 6027).

Figure 2007146092
Figure 2007146092

上記表2を通じて確認できるように、実施例1による板状材の場合の引張強度は、比較例として設定された紙材板状材に比べて18倍程度の強い引張強度を有していることがわかり、圧縮強度の場合にも14倍程度強いことがわかる。一方、本発明による実施例の場合には小さい程度であるが、ある程度の伸長率が存在するため、後続の成形工程で裂かれることなく形態の変形が容易に起きるように軟性を保有していることがわかる。一方、圧縮成形工程を進めて成形品を製造する場合には、準備された板状材を予熱する段階を経ながらその軟性が増すにつれて伸長率が増加しながら適切な形態変形を伴うことができることから成形品の製造に適している。   As can be confirmed through Table 2, the tensile strength in the case of the plate-like material according to Example 1 has a tensile strength about 18 times that of the paper-like plate-like material set as the comparative example. It can be seen that the compression strength is about 14 times stronger. On the other hand, in the case of the embodiment according to the present invention, although it is a small degree, since there is a certain degree of elongation, it retains flexibility so that the deformation of the form can easily occur without tearing in the subsequent molding process. I understand that. On the other hand, when a molded product is manufactured by advancing the compression molding process, it can be accompanied by an appropriate shape deformation while increasing the elongation rate as the flexibility increases while preheating the prepared plate-like material. Suitable for the production of molded products.

以上で説明された本発明の最適な実施例が開示された。ここで特定の用語が用いられたが、これは単に当業者に本発明を詳しく説明する目的で用いられたものであって、意味の限定や特許請求の範囲に記載された本発明の範囲を制限するために用いられたものではない。   The preferred embodiment of the present invention described above has been disclosed. Certain terms have been used herein to merely serve the purpose of explaining the invention in detail to those skilled in the art, and are intended to limit the meaning and scope of the invention as defined in the claims. It was not used to limit.

本発明によると、その組成物の成分そのものが全て天然から確保できる材料であり、これらの材料以外に他の添加剤を用いないことによって原料の安定的な受給が可能なことはもちろん、製造工程が容易になり、従来のプラスチック製品に比べて親環境的で、人体に無害なことはもちろん価格競争力も十分に保障される長所を有する。   According to the present invention, the components themselves of the composition are all materials that can be secured from nature, and it is possible to stably receive raw materials by using no other additives besides these materials. Compared to conventional plastic products, it is more environmentally friendly and harmless to the human body.

また、本明細書に添付される次の図面は本発明の望ましい実施例を例示するものであって、発明の詳細な説明とともに本発明の技術思想をさらに理解させる役割を果たすものであるため、本発明はこのような図面に記載された事項にのみ限定されて解釈されてはいけない。   Further, the following drawings attached to the present specification illustrate preferred embodiments of the present invention, and serve to further understand the technical idea of the present invention together with the detailed description of the invention. The present invention should not be construed as being limited to the matters described in the drawings.

図1は、本発明による生分解性成形品製造用組成物を用いて成形品を製造する方法を説明するための工程流れ図である。FIG. 1 is a process flow chart for explaining a method for producing a molded article using the composition for producing a biodegradable molded article according to the present invention.

Claims (20)

小麦、澱粉、米、もち米、ジャガイモ、トウモロコシ、タピオカ及びサツマイモのうち選択された一つまたは二つ以上の天然材の粉末と上記天然材の粉末の重量の1〜15倍の量に該当する0〜80℃の水を混合した後、これを撹伴加熱して得られた糊化物と、
植物性澱粉材の粉末と、
植物性繊維質材の粉末とを含んで組成物を成し、
上記糊化物、植物性澱粉材の粉末及び植物性繊維質材の粉末の各々は、上記組成物の全体重量対比1〜50重量%の含量で組成されることを特徴とする生分解性成形品製造用組成物。
Corresponds to 1 to 15 times the weight of one or more natural powders selected from wheat, starch, rice, glutinous rice, potato, corn, tapioca and sweet potato After mixing water at 0 to 80 ° C., the gelatinized material obtained by stirring and heating this,
Plant starch powder,
A composition comprising plant fiber material powder,
Each of the gelatinized product, the vegetable starch material powder and the vegetable fiber material powder is composed of 1 to 50% by weight relative to the total weight of the composition. Composition for manufacture.
上記糊化物には、上記天然材の粉末の重量に対して1〜20重量%の含量で二酸化チタンがさらに添加されることを特徴とする請求項1に記載の生分解性成形品製造用組成物。   The composition for producing a biodegradable molded article according to claim 1, wherein titanium dioxide is further added to the gelatinized material in a content of 1 to 20% by weight based on the weight of the powder of the natural material. object. 上記植物性澱粉材の粉末は、小麦、もち米、米、麦、トウモロコシ、ジャガイモ、サツマイモ及びタピオカのうち選択された一つまたは二つ以上の材料の粉末であることを特徴とする請求項1に記載の生分解性成形品製造用組成物。   2. The vegetable starch material powder is a powder of one or more materials selected from wheat, glutinous rice, rice, wheat, corn, potato, sweet potato and tapioca. A composition for producing a biodegradable molded article according to 1. 上記植物性繊維質材の粉末は、砂糖黍、稲わら、麦わら、葦、小麦の茎、トウモロコシの茎、ココナツ、牧草、山野草及び綿のうち選択された一つまたは二つ以上の材料の粉末であることを特徴とする請求項1に記載の生分解性成形品製造用組成物。   The vegetable fiber material powder is a powder of one or more materials selected from among sugar cane, rice straw, straw, straw, wheat stalk, corn stalk, coconut, pasture, wild grass and cotton. The composition for producing a biodegradable molded article according to claim 1, wherein: 小麦、澱粉、米、もち米、ジャガイモ、トウモロコシ、タピオカ及びサツマイモのうち選択された一つまたは二つ以上の天然材の粉末と上記天然材の粉末の重量の1〜15倍の量である0〜80℃の水を混合する第1段階と、
上記第1段階で得られた混合物を撹伴加熱して糊化物に変性させる第2段階と、
上記糊化物に所定の植物性澱粉材の粉末と植物性繊維質材の粉末とを、上記糊化物、植物性澱粉材の粉末及び植物性繊維質材の粉末からなる組成物の各々の成分が、組成物の全体重量対比1〜50重量%の含量で含まれるように、順次または同時に2次混合する第3段階と、
上記第3段階で得られた混合物に粘弾性を与えるために練る第4段階と、を含んで進めることを特徴とする生分解性成形品製造用ペーストの製造方法。
0 to 1 to 15 times the weight of one or more natural powders selected from wheat, starch, rice, glutinous rice, potato, corn, tapioca and sweet potato A first stage of mixing water at ~ 80 ° C;
A second stage in which the mixture obtained in the first stage is stirred and heated to denature into a gelatinized product;
Each of the components of the composition comprising the gelatinized material, the powder of the vegetable starch material and the powder of the vegetable fiber material, and the gelatinized material, the powder of the vegetable starch material, and the powder of the vegetable fiber material are included. A third stage of secondary mixing sequentially or simultaneously so as to be contained at a content of 1 to 50% by weight relative to the total weight of the composition;
And a fourth step of kneading to give viscoelasticity to the mixture obtained in the third step.
上記第1段階において、上記天然材の粉末の重量対比1〜20重量%の二酸化チタンをさらに添加することを特徴とする請求項5に記載の生分解性成形品製造用ペーストの製造方法。   The method for producing a paste for producing a biodegradable molded article according to claim 5, wherein in the first step, 1 to 20% by weight of titanium dioxide is further added to the weight of the natural material powder. 上記第2段階の撹伴加熱は、60〜150℃の温度条件を保ちながら5〜30分間施すことを特徴とする請求項6に記載の生分解性成形品製造用ペーストの製造方法。   The method for producing a paste for producing a biodegradable molded article according to claim 6, wherein the second stage of stirring heating is performed for 5 to 30 minutes while maintaining a temperature condition of 60 to 150 ° C. 上記第3段階において用いられた植物性澱粉材の粉末は、小麦、もち米、米、麦、トウモロコシ、ジャガイモ、サツマイモ及びタピオカのうち選択された一つまたは二つ以上の材料の粉末であることを特徴とする請求項6に記載の生分解性成形品製造用ペーストの製造方法。   The plant starch powder used in the third stage is a powder of one or more materials selected from wheat, glutinous rice, rice, wheat, corn, potato, sweet potato and tapioca. The manufacturing method of the paste for biodegradable molded article manufacture of Claim 6 characterized by these. 上記第3段階において用いられた植物性繊維質材の粉末は、砂糖黍、稲わら、麦わら、葦、小麦の茎、トウモロコシの茎、ココナツ、牧草、山野草及び綿のうち選択された一つまたは二つ以上の材料の粉末であることを特徴とする請求項6に記載の生分解性成形品製造用ペーストの製造方法。   The vegetable fiber material powder used in the third step is one selected from sugar cane, rice straw, straw, straw, wheat stalk, corn stalk, coconut, pasture, wild grass and cotton. The method for producing a paste for producing a biodegradable molded article according to claim 6, wherein the paste is a powder of two or more materials. 請求項4または請求項5に従って製造された生分解性成形品製造用ペーストを圧延ローリングさせる第5段階と、
上記圧延ローリングされた結果物を乾燥させる第6段階と、
上記乾燥された結果物の上面にコーテイング層を形成させる第7段階と、を含んで進めることを特徴とする生分解性成形品製造用板状材の製造方法。
A fifth stage of rolling and rolling the biodegradable molded article paste produced according to claim 4 or claim 5;
A sixth stage of drying the rolled and rolled product;
And a seventh step of forming a coating layer on the upper surface of the dried product, and a method for producing a plate-like material for producing a biodegradable molded article.
上記第6段階の乾燥工程は、第1乾燥区間と第2乾燥区間とに乾燥区間を区分して加熱方式及び加熱温度を異ならせて順次加熱乾燥して施すことを特徴とする請求項10に記載の生分解性成形品製造用板状材の製造方法。   The drying process of the sixth step is performed by heating and drying sequentially by dividing the drying section into a first drying section and a second drying section and different heating methods and heating temperatures. The manufacturing method of the plate-shaped material for biodegradable molded article manufacture of description. 上記第1乾燥区間は50〜130℃の温度条件で間接加熱方式で施し、上記第2乾燥区間は50〜140℃の温度条件で直接加熱方式で施すことを特徴とする請求項11に記載の生分解性成形品製造用板状材の製造方法。   The first drying section is performed by an indirect heating method at a temperature condition of 50 to 130 ° C, and the second drying section is performed by a direct heating method at a temperature condition of 50 to 140 ° C. A method for producing a plate-like material for producing a biodegradable molded product. 上記第6段階の乾燥過程を進める途中にカレンダリング工程をさらに含んで施すことを特徴とする請求項10に記載の生分解性成形品製造用板状材の製造方法。   The method for producing a plate-like material for producing a biodegradable molded article according to claim 10, further comprising a calendering step during the course of the drying process of the sixth stage. 上記第7段階のコーテイング層は、ワックス系のコーテイング剤を塗布させて形成されることを特徴とする請求項10に記載の生分解性成形品製造用板状材の製造方法。   The method for producing a plate-like material for producing a biodegradable molded article according to claim 10, wherein the seventh coating layer is formed by applying a wax-based coating agent. 上記ワックス系のコーテイング剤は、パラフィンワックス、マイクロワックス、合成ワックス及び天然ワックスのうち選択された何れか一つまたは二つ以上のコーテイング剤であることを特徴とする請求項14に記載の生分解性成形品製造用板状材の製造方法。   The biodegradation according to claim 14, wherein the wax-based coating agent is one or more selected from paraffin wax, microwax, synthetic wax, and natural wax. For producing a plate-like material for producing a molded article. 上記第7段階のコーテイング層は、機能性フィルム層を上記第6段階の結果物の上面に付着させて形成されることを特徴とする請求項10に記載の生分解性成形品製造用板状材の製造方法。   The plate for manufacturing a biodegradable molded article according to claim 10, wherein the coating layer of the seventh stage is formed by attaching a functional film layer to the upper surface of the resultant product of the sixth stage. A method of manufacturing the material. 上記機能性フィルム層は、生分解性物質、光分解性物質、熱分解性物質及びエンジニアリングプラスチックのうち選択された何れか一つの物質として製造されたフィルム層であることを特徴とする請求項16に記載の生分解性成形品製造用板状材の製造方法。   The functional film layer is a film layer manufactured as any one material selected from a biodegradable material, a photodegradable material, a heat decomposable material, and an engineering plastic. The manufacturing method of the plate-shaped material for biodegradable molded article manufacture as described in 2. 請求項10に従って製造された板状材を予熱する第8段階と、
上記予熱された板状材を圧縮成形する第9段階と、を含んで進めることを特徴とする生分解性成形品の製造方法。
An eighth stage of preheating the plate-like material manufactured according to claim 10;
And a ninth step of compression-molding the preheated plate-like material.
上記第8段階は、40〜150℃の温度を有するように施すことを特徴とする請求項18に記載の生分解性成形品製造用板状材の製造方法。   The method for producing a plate-like material for producing a biodegradable molded article according to claim 18, wherein the eighth step is performed so as to have a temperature of 40 to 150 ° C. 上記第9段階は、3〜180℃の温度条件と20〜350kg/cmの圧力条件で施すことを特徴とする請求項18に記載の生分解性成形品製造用板状材の製造方法。 The method according to claim 18, wherein the ninth step is performed under a temperature condition of 3 to 180 ° C and a pressure condition of 20 to 350 kg / cm 2 .
JP2005352230A 2005-11-25 2005-12-06 Composition for producing biodegradable molded product and method for production of paste, plate form material and molded product using the composition Pending JP2007146092A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050113653A KR100758646B1 (en) 2005-11-25 2005-11-25 Composition for production biogradable molded articles, method for production paste, sheet and molded articles using the same

Publications (1)

Publication Number Publication Date
JP2007146092A true JP2007146092A (en) 2007-06-14

Family

ID=38207878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005352230A Pending JP2007146092A (en) 2005-11-25 2005-12-06 Composition for producing biodegradable molded product and method for production of paste, plate form material and molded product using the composition

Country Status (2)

Country Link
JP (1) JP2007146092A (en)
KR (1) KR100758646B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522883A (en) * 2009-04-06 2012-09-27 バイオスフィア・インダストリーズ・リミテッド・ライアビリティ・カンパニー Eco-friendly composition with beneficial additives
CN104449077A (en) * 2014-12-18 2015-03-25 贵州科新应化工贸有限公司 Environment-friendly coating
CN106146896A (en) * 2015-04-21 2016-11-23 浙江新木材料科技有限公司 A kind of cotton fiber composite
CN106566000A (en) * 2016-11-09 2017-04-19 广西师范学院 Disposable degradable dish and preparation method therefor
CN114644772A (en) * 2020-12-18 2022-06-21 湖南登科材料科技有限公司 Degradable salivation film produced by using plant starch and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101588795B1 (en) * 2014-10-17 2016-01-26 주식회사 금아바이오 The method of manufacturing for pipe using eco-friendly natural materials
KR20190093940A (en) 2018-02-02 2019-08-12 정연복 Manufacturing method and sheet of artificial pattern wood
KR102069001B1 (en) * 2018-10-12 2020-01-22 거류영농조합법인 Manufacturing method of straw using rice

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438144B1 (en) 2001-09-19 2004-07-01 에코니아 주식회사 Method for producing a biodegradable plastic goods
CN100402593C (en) * 2002-01-11 2008-07-16 新冰有限公司 Biodegradable or compostable vessel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522883A (en) * 2009-04-06 2012-09-27 バイオスフィア・インダストリーズ・リミテッド・ライアビリティ・カンパニー Eco-friendly composition with beneficial additives
CN104449077A (en) * 2014-12-18 2015-03-25 贵州科新应化工贸有限公司 Environment-friendly coating
CN106146896A (en) * 2015-04-21 2016-11-23 浙江新木材料科技有限公司 A kind of cotton fiber composite
CN106566000A (en) * 2016-11-09 2017-04-19 广西师范学院 Disposable degradable dish and preparation method therefor
CN114644772A (en) * 2020-12-18 2022-06-21 湖南登科材料科技有限公司 Degradable salivation film produced by using plant starch and preparation method thereof

Also Published As

Publication number Publication date
KR100758646B1 (en) 2007-09-14

Similar Documents

Publication Publication Date Title
Cinelli et al. Foamed articles based on potato starch, corn fibers and poly (vinyl alcohol)
JP2007146092A (en) Composition for producing biodegradable molded product and method for production of paste, plate form material and molded product using the composition
DE60313679T2 (en) Biodegradable and compostable containers
Balda et al. Banana fibre: a natural and sustainable bioresource for eco-friendly applications
Gironès et al. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing
Rouilly et al. Agro-materials: a bibliographic review
Cerqueira et al. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films–A comparative study
US8927622B2 (en) Biodegradable and compostable composition having improved physical and chemical properties
JP6224243B2 (en) Biodegradable composition using cellulose, method for producing the same, waterproofing agent and molded article using the composition
Makhijani et al. Biodegradability of blended polymers: A comparison of various properties
US9085677B2 (en) Bioplastics
JP4077027B1 (en) Biodegradable film or sheet, production method thereof, and composition for biodegradable film or sheet
JPH09508422A (en) Method for producing molded body from biodegradable material and molded body
Song et al. Green biocomposites from wheat gluten and hydroxyethyl cellulose: Processing and properties
Chiellini et al. Environmentally compatible foamed articles based on potato starch, corn fiber, and poly (vinyl alcohol)
TW200925202A (en) A tenacity adjuster, a biodegradable material comprising the tenacity adjuster and application thereof
Ibrahim et al. Processing and characterization of cornstalk/sugar palm fiber reinforced cornstarch biopolymer hybrid composites
KR20030018151A (en) Composion for producing a biodegradable plastic goods and for producing a plastic goods using the same
Tadini Bio-based materials from traditional and nonconventional native and modified starches
CN111995874A (en) Naturally degradable polymeric material and preparation method thereof
WO2020254877A1 (en) Biodegradable, compostable molding mass compositions, molded articles and methods of manufacture
CN112011095A (en) Naturally degradable corner protector and preparation method thereof
KR100438144B1 (en) Method for producing a biodegradable plastic goods
Obasi Tensile and biodegradable properties of extruded sorghum flour filled high density polyethylene films
Nikolaev et al. Obtaining compostable composites from secondary raw materials of crop production