JP2007145075A - Vehicular anti-lock controller - Google Patents

Vehicular anti-lock controller Download PDF

Info

Publication number
JP2007145075A
JP2007145075A JP2005338729A JP2005338729A JP2007145075A JP 2007145075 A JP2007145075 A JP 2007145075A JP 2005338729 A JP2005338729 A JP 2005338729A JP 2005338729 A JP2005338729 A JP 2005338729A JP 2007145075 A JP2007145075 A JP 2007145075A
Authority
JP
Japan
Prior art keywords
wheel
road surface
hydraulic pressure
friction coefficient
surface friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005338729A
Other languages
Japanese (ja)
Other versions
JP4485457B2 (en
Inventor
Katsutaka Ito
雄貴 伊藤
Osamu Yamamoto
修 山本
Naoto Okubo
直人 大久保
Hiromi Inagaki
裕巳 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005338729A priority Critical patent/JP4485457B2/en
Publication of JP2007145075A publication Critical patent/JP2007145075A/en
Application granted granted Critical
Publication of JP4485457B2 publication Critical patent/JP4485457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve accuracy of anti-lock control by properly estimating a road surface frictional coefficient used for anti-lock control. <P>SOLUTION: A road surface frictional coefficient estimating part M5a estimates a road surface frictional coefficient based on a braking force calculated by a braking force calculating part M4, a wheel acceleration calculated by a wheel acceleration calculating part M2 and a wheel contact load calculated by a contact load calculating part M3. Moreover, a road surface frictional coefficient updating part M5 updates the road surface frictional coefficient when a slip rate calculated by a slip rate calculating part M1c based on a wheel speed and vehicle body speed is on an increase and is smaller than a predetermined value. Anti-lock control is performed with high accuracy based on a reference fluid pressure calculated by a reference fluid pressure calculating part M6 so as to stabilize the slip rate in a narrow range. An update timing of the road surface frictional coefficient is determined based on the stable slip rate to appropriately grasp a peak of the road surface frictional coefficient, thus attaining highly accurate anti-lock control. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車輪速度センサで検出した車輪速度に基づいて車輪がロック傾向にあると判断されたとき、車輪ブレーキに供給する液圧を基準液圧および路面摩擦係数に基づいて制御することで車輪のロックを抑制するアンチロック制御手段を備えた車両のアンチロック制御装置に関する。   The present invention controls the hydraulic pressure supplied to the wheel brake based on the reference hydraulic pressure and the road surface friction coefficient when it is determined that the wheel tends to lock based on the wheel speed detected by the wheel speed sensor. The present invention relates to an anti-lock control device for a vehicle provided with anti-lock control means for suppressing the lock of the vehicle.

液圧式の車輪ブレーキの過剰な制動力により車輪がロックしそうになったときに、車輪ブレーキに供給する液圧を減少させて車輪のロックを抑制する車両のアンチロック制御において、アンチロック制御開始時には、車輪ブレーキに供給する液圧をPIDフィードバック制御するための基準となる基準液圧を、アンチロック制御開始時の実際の液圧を車輪加・減速度で補正して得るとともに、アンチロック制御開始後には、前記制御開始時に得た基準液圧を車輪のロック傾向に応じて補正してPIDフィードバック制御に用いるものが、下記特許文献1により公知である。
特許第3382269号公報
When the anti-lock control is started in the anti-lock control of the vehicle which reduces the hydraulic pressure supplied to the wheel brake and suppresses the lock of the wheel when the wheel is about to be locked due to the excessive braking force of the hydraulic wheel brake. The reference hydraulic pressure that is used as the reference for PID feedback control of the hydraulic pressure supplied to the wheel brake is obtained by correcting the actual hydraulic pressure at the start of antilock control with the wheel acceleration / deceleration, and the antilock control is started. Later, it is known from Patent Document 1 below that the reference hydraulic pressure obtained at the start of the control is corrected in accordance with the wheel locking tendency and used for PID feedback control.
Japanese Patent No. 3382269

ところで上記従来のものは、アンチロック制御開始時の基準液圧に応じて路面摩擦係数を低路面摩擦係数領域、中路面摩擦係数領域および高路面摩擦係数領域の3段階に分類しているだけであり、路面摩擦係数を的確に推定してアンチロック制御に反映しているとは言い難かった。   By the way, the above-mentioned conventional one only classifies the road surface friction coefficient into three stages of a low road surface friction coefficient region, a middle road surface friction coefficient region, and a high road surface friction coefficient region according to the reference hydraulic pressure at the start of the antilock control. Yes, it was difficult to say that the road surface friction coefficient was accurately estimated and reflected in anti-lock control.

本発明は前述の事情に鑑みてなされたもので、アンチロック制御において使用する路面摩擦係数を的確に推定することで、アンチロック制御の精度を向上させることを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to improve the accuracy of antilock control by accurately estimating a road surface friction coefficient used in antilock control.

上記目的を達成するために、請求項1に記載された発明によれば、車輪速度センサで検出した車輪速度に基づいて車輪がロック傾向にあると判断されたとき、車輪ブレーキに供給する液圧を基準液圧および路面摩擦係数に基づいて制御することで車輪のロックを抑制するアンチロック制御手段を備えた車両のアンチロック制御装置において、前記アンチロック制御手段は、前記車輪ブレーキで発生している制動力を検出あるいは推定する制動力算出部と、前記車輪速度に基づいて車輪加速度を算出する車輪加速度算出部(M2)と、車輪の接地荷重を検出あるいは推定する接地荷重算出部と、前記制動力、前記車輪加速度および前記接地荷重に基づいて路面摩擦係数を推定する路面摩擦係数推定部と、前記車輪速度に基づいて車体速度を算出する車体速度算出部と、前記車輪速度および前記車体速度に基づいて車輪のスリップ率を算出するスリップ率算出部と、前記スリップ率が増加中でかつ所定値よりも小さいときに、前記路面摩擦係数推定部で推定した路面摩擦係数を更新する路面摩擦係数更新部とを備えることを特徴とする車両のアンチロック制御装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, the hydraulic pressure supplied to the wheel brake when it is determined that the wheel tends to lock based on the wheel speed detected by the wheel speed sensor. In the anti-lock control device of the vehicle provided with the anti-lock control means for suppressing the lock of the wheel by controlling the vehicle based on the reference hydraulic pressure and the road surface friction coefficient, the anti-lock control means is generated by the wheel brake. A braking force calculation unit that detects or estimates a braking force that is present, a wheel acceleration calculation unit (M2) that calculates wheel acceleration based on the wheel speed, a ground load calculation unit that detects or estimates a ground load on the wheel, A road surface friction coefficient estimator for estimating a road surface friction coefficient based on the braking force, the wheel acceleration and the ground load, and a vehicle body speed based on the wheel speed A vehicle body speed calculating section, a slip ratio calculating section for calculating a wheel slip ratio based on the wheel speed and the vehicle body speed, and the road surface friction coefficient when the slip ratio is increasing and smaller than a predetermined value. An antilock control device for a vehicle is provided, comprising: a road surface friction coefficient updating unit that updates a road surface friction coefficient estimated by the estimation unit.

請求項1の構成によれば、車輪速度に基づいて車輪がロック傾向にあると判断されたときに車輪ブレーキに供給する液圧を基準液圧および路面摩擦係数に基づいて制御するアンチロック制御手段が、車輪ブレーキで発生している制動力と、車輪速度に基づいて算出した車輪加速度と、車輪の接地荷重とに基づいて路面摩擦係数を推定するとともに、車輪速度および車体速度に基づいて算出した車輪のスリップ率が増加中でかつ所定値よりも小さいときに前記路面摩擦係数を更新するので、基準液圧に基づいてアンチロック制御を精度良く行ってスリップ率を狭い範囲に安定させ、この安定したスリップ率によって路面摩擦係数の更新時期を判定することで、路面摩擦係数のピークを的確に把握してより精度の高いアンチロック制御を行うことができる。   According to the configuration of the first aspect, the anti-lock control means controls the hydraulic pressure supplied to the wheel brake based on the reference hydraulic pressure and the road surface friction coefficient when it is determined that the wheel tends to be locked based on the wheel speed. Estimated the road friction coefficient based on the braking force generated by the wheel brake, the wheel acceleration calculated based on the wheel speed, and the wheel contact load, and calculated based on the wheel speed and the vehicle body speed. Since the road surface friction coefficient is updated when the slip ratio of the wheel is increasing and smaller than a predetermined value, the anti-lock control is accurately performed based on the reference hydraulic pressure to stabilize the slip ratio within a narrow range. By determining when to update the road friction coefficient based on the slip ratio, the peak of the road friction coefficient can be accurately grasped and more accurate antilock control can be performed. It can be.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図8は本発明の第1実施例を示すものであり、図1は車両の制動系統を示す図、図2は制動液圧回路の構成を示す図、図3は電子制御ユニットの構成を示すブロック図、図4は路面摩擦係数および接地荷重から基準液圧を検索するマップを示す図、図5はスリップ率から下側基準液圧を補正する補正係数を検索するマップを示す図、図6は下側基準液圧および上側基準液圧の機能を説明する図、図7はアンチロック制御時の目標液圧の変化を示すグラフ、図8はスリップ率と路面摩擦係数との関係を示すグラフである。   1 to 8 show a first embodiment of the present invention, FIG. 1 is a diagram showing a braking system of a vehicle, FIG. 2 is a diagram showing a configuration of a braking hydraulic circuit, and FIG. 3 is an electronic control unit. FIG. 4 is a block diagram showing the configuration, FIG. 4 is a diagram showing a map for searching the reference hydraulic pressure from the road surface friction coefficient and the contact load, and FIG. 5 is a diagram showing a map for searching for a correction coefficient for correcting the lower reference hydraulic pressure from the slip ratio. 6 is a diagram for explaining the functions of the lower reference hydraulic pressure and the upper reference hydraulic pressure, FIG. 7 is a graph showing a change in the target hydraulic pressure during antilock control, and FIG. 8 is a relationship between the slip ratio and the road surface friction coefficient. It is a graph which shows.

図1に示すように、エンジンおよび変速機を含むパワーユニット11からの動力は駆動輪である左右の前輪WFL,WFRに伝達され、これらの前輪WFL,WFRには、車輪ブレーキBFL,BFRがそれぞれ装着されるとともに車輪速度センサ12FL,12FRがそれぞれ付設される。また従動輪である左右の後輪WRL,WRRには、車輪ブレーキBRL,BRRがそれぞれ装着されるとともに車輪速度センサ12RL,12RRがそれぞれ付設される。しかして、前記各車輪ブレーキBFL,BFR,BRL,BRRには、制動液圧回路13から制動液圧が与えられる。   As shown in FIG. 1, power from a power unit 11 including an engine and a transmission is transmitted to left and right front wheels WFL and WFR which are driving wheels, and wheel brakes BFL and BFR are mounted on the front wheels WFL and WFR, respectively. At the same time, wheel speed sensors 12FL and 12FR are additionally provided. Further, wheel brakes BRL and BRR are mounted on the left and right rear wheels WRL and WRR, which are driven wheels, respectively, and wheel speed sensors 12RL and 12RR are respectively attached. Accordingly, the brake fluid pressure is applied from the brake fluid pressure circuit 13 to the wheel brakes BFL, BFR, BRL, BRR.

図2に示すように、制動液圧回路13は、左前輪ブレーキBFLの制動力を調整可能なアクチュエータとしてのモジュレータ14FL、右前輪ブレーキBFRの制動力を調整可能なアクチュエータとしてのモジュレータ14FRと、左後輪ブレーキBRLの制動力を調整可能なアクチュエータとしてのモジュレータ14RLと、右後輪ブレーキBRRの制動力を調整可能なアクチュエータとしてのモジュレータ14RRと、各モジュレータ14FL,14FR,14RL,14RRに共通な液圧源15とを備える。   As shown in FIG. 2, the braking hydraulic circuit 13 includes a modulator 14FL as an actuator capable of adjusting the braking force of the left front wheel brake BFL, a modulator 14FR as an actuator capable of adjusting the braking force of the right front wheel brake BFR, A modulator 14RL as an actuator capable of adjusting the braking force of the rear wheel brake BRL, a modulator 14RR as an actuator capable of adjusting the braking force of the right rear wheel brake BRR, and liquids common to the modulators 14FL, 14FR, 14RL, and 14RR. And a pressure source 15.

液圧源15は、作動液タンク16から作動油を汲上げる液圧ポンプ17と、その液圧ポンプ17に接続されるアキュムレータ18と、液圧ポンプ17の作動を制御するための圧力スイッチ19とを備える。   The hydraulic pressure source 15 includes a hydraulic pump 17 that pumps hydraulic oil from the hydraulic fluid tank 16, an accumulator 18 that is connected to the hydraulic pump 17, and a pressure switch 19 that controls the operation of the hydraulic pump 17. Is provided.

各モジュレータ14FL,14FR,14RL,14RRは、共通のハウジング20に相互に平行にして並設されるものであり、それらのモジュレータ14FL,14FR,14RL,14RRは基本的に同一の構成を有するので、一つのモジュレータ14FLについてのみ以下に詳述し、他のモジュレータ14FR,14RL,14RRについては詳細な説明を省略する。   The modulators 14FL, 14FR, 14RL, and 14RR are arranged in parallel to each other in the common housing 20, and the modulators 14FL, 14FR, 14RL, and 14RR basically have the same configuration. Only one modulator 14FL will be described in detail below, and detailed description of the other modulators 14FR, 14RL, and 14RR will be omitted.

ハウジング20には、液圧源15に接続される入力ポート21と、作動液タンク16に通じる解放ポート22と、各車輪ブレーキBFL,BFR,BRL,BRRにそれぞれ個別に接続される4つの出力ポート23FL,23FR,23RL,23RRとが設けられる。   The housing 20 has an input port 21 connected to the hydraulic pressure source 15, a release port 22 communicating with the hydraulic fluid tank 16, and four output ports individually connected to each wheel brake BFL, BFR, BRL, BRR. 23FL, 23FR, 23RL, and 23RR are provided.

モジュレータ14FLは、ハウジング20に摺動自在に嵌合されるスプール24と、そのスプール24を軸方向に押圧すべくハウジング20に取付けられるリニアソレノイド25FLとを備え、リニアソレノイド25FLの駆動ロッド26はスプール24の一端部に同軸に当接し、ハウジング20内にはスプール24の他端面を臨ませる出力室27が形成される。しかも出力室27は出力ポート23FLに通じるものであり、出力室27内には、スプール24をリニアソレノイド25FL側に付勢する戻しばね28が収納される。従って、スプール24は、戻しばね28のばね力により駆動ロッド26に常時当接することになり、スプール24とリニアソレノイド25FLとが連動、連結される。   The modulator 14FL includes a spool 24 that is slidably fitted to the housing 20, and a linear solenoid 25FL that is attached to the housing 20 so as to press the spool 24 in the axial direction. A drive rod 26 of the linear solenoid 25FL is a spool. An output chamber 27 is formed in the housing 20 so that the other end surface of the spool 24 faces the one end portion of the spool 24. Moreover, the output chamber 27 communicates with the output port 23FL, and a return spring 28 that urges the spool 24 toward the linear solenoid 25FL is accommodated in the output chamber 27. Therefore, the spool 24 always comes into contact with the drive rod 26 by the spring force of the return spring 28, and the spool 24 and the linear solenoid 25FL are linked and connected.

ハウジング20にはスプール24を摺動自在に支持するシリンダ孔29が設けられており、このシリンダ孔29の内面には、入力ポート21に通じる環状溝30と、解放ポート22に通じる環状溝31とが軸方向に間隔をあけた位置に設けられる。またスプール24の外面には、出力室27に常時通じる環状凹部32が設けられる。しかして、スプール24は、環状凹部32を環状溝30に通じさせて入力ポート21と出力室27すなわち出力ポート23FLとを連通する状態、ならびに環状凹部32を環状溝31に通じさせて出力室27と解放ポート22とを連通する状態を、軸方向一端に作用するリニアソレノイド25FLの推力と軸方向他端に作用する出力室27の液圧力との大小関係による軸方向位置変化に応じて切替えるものである。   The housing 20 is provided with a cylinder hole 29 that slidably supports the spool 24. An annular groove 30 that communicates with the input port 21 and an annular groove 31 that communicates with the release port 22 are formed on the inner surface of the cylinder hole 29. Are provided at positions spaced apart in the axial direction. An annular recess 32 that always communicates with the output chamber 27 is provided on the outer surface of the spool 24. Thus, the spool 24 communicates the input port 21 and the output chamber 27, that is, the output port 23FL, by communicating the annular recess 32 with the annular groove 30, and the output chamber 27 by communicating the annular recess 32 with the annular groove 31. And the release port 22 communicate with each other in accordance with a change in axial position due to the magnitude relationship between the thrust of the linear solenoid 25FL acting on one axial end and the hydraulic pressure of the output chamber 27 acting on the other axial end. It is.

ところで、リニアソレノイド25FLは、その入力電気量に応じた推力を発生するものであり、出力室27の液圧すなわち出力ポート23FLから左前輪ブレーキBFLに与えられる液圧は、リニアソレノイド25FLの付勢電力量を制御することにより任意に制御可能となる。   By the way, the linear solenoid 25FL generates a thrust according to the input electric quantity, and the hydraulic pressure in the output chamber 27, that is, the hydraulic pressure applied from the output port 23FL to the left front wheel brake BFL is applied to the linear solenoid 25FL. It can be arbitrarily controlled by controlling the electric energy.

他のモジュレータ14FR,14RL,14RRについても、上記モジュレータ14FLと同様に、リニアソレノイド25FR,25RL,25RRの付勢電力量を制御することにより車輪ブレーキBFR,BRL,BRRに作用する液圧を制御可能である。   For the other modulators 14FR, 14RL, and 14RR, the hydraulic pressure acting on the wheel brakes BFR, BRL, and BRR can be controlled by controlling the energizing power amount of the linear solenoids 25FR, 25RL, and 25RR, similarly to the modulator 14FL. It is.

図1に戻り、アンチロック制御を実行するための電子制御ユニットUには、ブレーキペダル33の踏力を検出する踏力センサ34と、各車輪速度センサ12FL,12FR,12RL,12RRと、各車輪ブレーキBFL,BFR,BRL,BRRに作用する液圧を検出する液圧センサ35FL,35FR,35RL,35RRとが接続される。   Returning to FIG. 1, the electronic control unit U for executing the anti-lock control includes a pedal force sensor 34 for detecting the pedal force of the brake pedal 33, wheel speed sensors 12FL, 12FR, 12RL, 12RR, and wheel brakes BFL. , BFR, BRL, and hydraulic pressure sensors 35FL, 35FR, 35RL, and 35RR for detecting hydraulic pressure acting on the BRR are connected.

車輪WFL,WFR,WRL,WRRがロック傾向にない通常制御時には、電子制御ユニットUは、踏力センサ34で検出したブレーキペダル33の踏力に基づいて、その踏力に応じた制動力を各車輪ブレーキBFL,BFR,BRL,BRRに発生させるべく、制動液圧回路13の各モジュレータ14FL,14FR,14RL,14RRにおけるリニアソレノイド25FL,25FR,25RL,25RRの電力付勢量を制御する。   During normal control in which the wheels WFL, WFR, WRL, WRR do not tend to lock, the electronic control unit U applies a braking force corresponding to the pedaling force based on the pedaling force of the brake pedal 33 detected by the pedaling force sensor 34 to each wheel brake BFL. , BFR, BRL, BRR, the power energizing amounts of the linear solenoids 25FL, 25FR, 25RL, 25RR in the modulators 14FL, 14FR, 14RL, 14RR of the brake hydraulic circuit 13 are controlled.

一方、車輪WFL,WFR,WRL,WRRがロック傾向にあるアンチロック制御時には、各電子制御ユニットUは、車輪速度センサ12FL,12FR,12RL,12RRおよび液圧センサ35FL,35FR,35RL,35RRの検出値に応じて、各モジュレータ14FL,14FR,14RL,14RRにおけるリニアソレノイド25FL,25FR,25RL,25RRの電力付勢量を制御する。   On the other hand, at the time of anti-lock control in which the wheels WFL, WFR, WRL, WRR tend to lock, each electronic control unit U detects the wheel speed sensors 12FL, 12FR, 12RL, 12RR and the hydraulic pressure sensors 35FL, 35FR, 35RL, 35RR. The power energizing amounts of the linear solenoids 25FL, 25FR, 25RL, and 25RR in the modulators 14FL, 14FR, 14RL, and 14RR are controlled according to the values.

次に電子制御ユニットUの構成について説明する。   Next, the configuration of the electronic control unit U will be described.

図3に示すように、アンチロック制御を実行するための電子制御ユニットUは、車体速度算出部M1aと、目標車輪速度算出部M1bと、スリップ率算出部M1cと、目標液圧算出部M1dと、車輪加速度・角速度算出部M2と、接地荷重算出部M3と、制動力算出部M4と、路面摩擦係数推定部M5aと、路面摩擦係数更新部M5bと、基準液圧算出部M6と、基準液圧補正部M7と、目標液圧調整部M8とで構成される。前記車体速度算出部M1a、目標車輪速度算出部M1b、スリップ率算出部M1cおよび目標液圧算出部M1dは、併せてアンチロック基本制御部M1を構成する。前記路面摩擦係数推定部M5aおよび路面摩擦係数更新部M5bは、併せて路面摩擦係数算出部M5を構成する。   As shown in FIG. 3, the electronic control unit U for performing anti-lock control includes a vehicle body speed calculation unit M1a, a target wheel speed calculation unit M1b, a slip ratio calculation unit M1c, and a target hydraulic pressure calculation unit M1d. , Wheel acceleration / angular velocity calculation unit M2, contact load calculation unit M3, braking force calculation unit M4, road surface friction coefficient estimation unit M5a, road surface friction coefficient update unit M5b, reference hydraulic pressure calculation unit M6, and reference fluid A pressure correction unit M7 and a target hydraulic pressure adjustment unit M8 are included. The vehicle body speed calculation unit M1a, the target wheel speed calculation unit M1b, the slip ratio calculation unit M1c, and the target hydraulic pressure calculation unit M1d together constitute an antilock basic control unit M1. The road surface friction coefficient estimating unit M5a and the road surface friction coefficient updating unit M5b together constitute a road surface friction coefficient calculating unit M5.

尚、アンチロック制御は、四輪WFL,WFR,WRL,WRRの各々について同様に行われるが、図3には、その代表として左前輪WFLのアンチロック制御装置が示されている。   The antilock control is similarly performed for each of the four wheels WFL, WFR, WRL, and WRR. FIG. 3 shows an antilock control device for the left front wheel WFL as a representative example.

車体速度算出部M1aは、例えば四輪WFL,WFR,WRL,WRRの車輪速度センサ12FL,12FR,12RL,12RRの出力の平均値に基づいて車体速度を算出する。   The vehicle body speed calculation unit M1a calculates the vehicle body speed based on, for example, the average values of the outputs of the wheel speed sensors 12FL, 12FR, 12RL, and 12RR of the four wheels WFL, WFR, WRL, and WRR.

目標車輪速度算出部M1bは、車体速度算出部M1aで算出した車体速度に所定のスリップ率を加味することで、アンチロック制御中の車輪速度の目標値となる目標車輪速度を算出する。   The target wheel speed calculation unit M1b calculates a target wheel speed that becomes a target value of the wheel speed during the antilock control by adding a predetermined slip ratio to the vehicle body speed calculated by the vehicle body speed calculation unit M1a.

スリップ率算出部M1cは、車体速度算出部M1aで算出した車体速度と、車輪速度センサ12FLで検出した左前輪WFLの車輪速度とから、左前輪WFLのスリップ率を算出する。   The slip ratio calculation unit M1c calculates the slip ratio of the left front wheel WFL from the vehicle body speed calculated by the vehicle body speed calculation unit M1a and the wheel speed of the left front wheel WFL detected by the wheel speed sensor 12FL.

目標液圧算出部M1dは、スリップ率算出部M1cで算出した左前輪WFLのスリップ率が所定の閾値を越えて該左前輪WFLがロック傾向にあると判断すると、目標車輪速度算出部M1bで算出した目標車輪速度と車輪速度センサ12FLで検出した左前輪WFLの車輪速度との偏差に応じた目標液圧を算出する。   When the target hydraulic pressure calculator M1d determines that the slip ratio of the left front wheel WFL calculated by the slip ratio calculator M1c exceeds a predetermined threshold and the left front wheel WFL is in a locking tendency, the target wheel speed calculator M1b calculates it. The target hydraulic pressure corresponding to the deviation between the target wheel speed and the wheel speed of the left front wheel WFL detected by the wheel speed sensor 12FL is calculated.

車輪加速度・角速度算出手部M2は、左前輪WFLの車輪速度センサ12FLの出力の微分値として左前輪WFLの車輪加速度を算出するとともに、車輪速度を車輪半径で除算して車輪角速度ωを算出する。   The wheel acceleration / angular velocity calculation hand M2 calculates the wheel acceleration of the left front wheel WFL as a differential value of the output of the wheel speed sensor 12FL of the left front wheel WFL, and calculates the wheel angular velocity ω by dividing the wheel speed by the wheel radius. .

接地荷重算出部M3は、車輪加速度・角速度算出手部M2で算出した車輪加速度Gを用いて、左前輪WFLの接地荷重Wを次式により算出する
W=Wfl+G×(HG/LWB×WT×1/2)
但し、Wfl:左前輪の静荷重
HG:重心高
LWB:ホイールベース
WT:車重
WF:左右の前輪の静荷重の和
尚、前記接地荷重Wの算出式において、車輪加速度Gに代えて、車両の前後加速度を車体に取り付けられる加速度センサで検出するようにし、該加速度センサの検出値を用いることも可能である。更に、車輪加速度Gおよび車両前後加速度の代替値として、後述する路面摩擦係数推定部M5aおよび路面摩擦係数更新部M5bで推定、更新された路面摩擦係数を用いることも可能である。
The contact load calculation unit M3 calculates the contact load W of the left front wheel WFL by the following equation using the wheel acceleration G calculated by the wheel acceleration / angular velocity calculation hand M2.
W = Wfl + G × (HG / LWB × WT × 1/2)
Wfl: Static load on the left front wheel
HG: High center of gravity
LWB: Wheelbase
WT: Vehicle weight
WF: Sum of static loads of left and right front wheels In the calculation formula of the ground load W, instead of the wheel acceleration G, the longitudinal acceleration of the vehicle is detected by an acceleration sensor attached to the vehicle body, and the acceleration sensor detects It is also possible to use a value. Further, as a substitute value for the wheel acceleration G and the vehicle longitudinal acceleration, it is also possible to use the road friction coefficient estimated and updated by a road surface friction coefficient estimating unit M5a and a road surface friction coefficient updating unit M5b described later.

制動力算出部M4は、左前輪WFLの液圧センサ35FLで検出した車輪ブレーキBFLの液圧に基づいて、左前輪WFLの制動力を算出する。   The braking force calculation unit M4 calculates the braking force of the left front wheel WFL based on the hydraulic pressure of the wheel brake BFL detected by the hydraulic pressure sensor 35FL of the left front wheel WFL.

路面摩擦係数推定部M5aは、制動力算出部M4で算出した制動力FBと、前記接地荷重Wと、前記車輪角速度ωとを用いて、路面摩擦係数μを次式により算出する。   The road surface friction coefficient estimation unit M5a calculates the road surface friction coefficient μ by the following equation using the braking force FB calculated by the braking force calculation unit M4, the ground load W, and the wheel angular velocity ω.

μ={FB+(I×dω/dt)/r)/W
但し、I:車輪の慣性モーメント
r:車輪の半径
尚、この路面摩擦係数の推定は、ブレーキが作動している間に行われるもので、ブレーキが作動していないときにはμ=1とされる。
μ = {FB + (I × dω / dt) / r) / W
Where I: Wheel inertia moment
r: Wheel radius Note that this road surface friction coefficient is estimated while the brake is in operation, and μ = 1 when the brake is not in operation.

路面摩擦係数更新部M5bは、スリップ率算出部M1cで算出した左前輪WFLのスリップ率が増加中であり、かつ所定範囲内(例えば、0%〜10%)の場合に、路面摩擦係数推定部M5aで推定した路面摩擦係数を更新する(図8参照)。   The road surface friction coefficient updating unit M5b is a road surface friction coefficient estimating unit when the slip ratio of the left front wheel WFL calculated by the slip ratio calculating unit M1c is increasing and within a predetermined range (for example, 0% to 10%). The road surface friction coefficient estimated in M5a is updated (see FIG. 8).

基準液圧算出部M6は、接地荷重算出部M3で算出した左前輪WFLの接地荷重Wと、路面摩擦係数更新部M5bで更新した路面摩擦係数μとに基づいて、アンチロック制御に使用する基準液圧をマップ検索により算出する。即ち、左前輪WFLと路面間に作用可能な摩擦力に相当するμ×Wを、図4のマップに適用することで下側基準液圧および上側基準液圧を算出する。   The reference hydraulic pressure calculation unit M6 is a reference used for antilock control based on the contact load W of the left front wheel WFL calculated by the contact load calculation unit M3 and the road surface friction coefficient μ updated by the road surface friction coefficient update unit M5b. The hydraulic pressure is calculated by map search. That is, the lower reference hydraulic pressure and the upper reference hydraulic pressure are calculated by applying μ × W corresponding to the frictional force that can be applied between the left front wheel WFL and the road surface to the map of FIG.

基準液圧補正部M7は、基準液圧算出部M6で算出した下側基準液圧を、スリップ率算出部M1cで算出したスリップ率λで補正する。即ち、図5に示すマップにスリップλを適用して補正係数Kを検索し、この補正係数Kを基準液圧に乗算して補正する。例えば、補正係数Kは、スリップ率λが5%以下の領域では1に設定され、スリップ率λが20%以上の領域では0に近い小さい値に設定され、スリップ率λが5%から20%の領域では1から前記0に近い小さい値へとリニアに減少する。従って、スリップ率が小さい領域では下側基準液圧はそのまま出力され、スリップ率の増加に応じて下側基準液圧は減少することになる。   The reference hydraulic pressure correction unit M7 corrects the lower reference hydraulic pressure calculated by the reference hydraulic pressure calculation unit M6 with the slip rate λ calculated by the slip rate calculation unit M1c. That is, the slip λ is applied to the map shown in FIG. 5 to search for the correction coefficient K, and the correction coefficient K is multiplied by the reference hydraulic pressure to be corrected. For example, the correction coefficient K is set to 1 when the slip ratio λ is 5% or less, and is set to a small value close to 0 when the slip ratio λ is 20% or more, and the slip ratio λ is 5% to 20%. In this region, the value decreases linearly from 1 to a small value close to 0. Accordingly, in the region where the slip ratio is small, the lower reference hydraulic pressure is output as it is, and the lower reference hydraulic pressure decreases as the slip ratio increases.

目標液圧調整部M8は、目標液圧算出部M1dで算出した目標液圧と、基準液圧算出部M6で算出した上側基準液圧とを比較する。図6に示すように、ブレーキ液圧は車輪速度が減圧側の目標車輪速度を下回ると減圧制御され、増圧側の目標車輪速度(>減圧側の目標車輪速度)を上回ると増圧制御されることで周期的に増減するが、その減圧の過程で目標液圧が下側基準液圧未満になると、目標液圧は下側基準液圧に一致するようにリミット処理される。即ち、
目標液圧←下側基準液圧
のように制御される。
The target hydraulic pressure adjustment unit M8 compares the target hydraulic pressure calculated by the target hydraulic pressure calculation unit M1d with the upper reference hydraulic pressure calculated by the reference hydraulic pressure calculation unit M6. As shown in FIG. 6, the brake fluid pressure is controlled to be reduced when the wheel speed falls below the target wheel speed on the pressure reduction side, and is controlled to increase when the wheel pressure exceeds the target wheel speed on the pressure increase side (> target wheel speed on the pressure reduction side). However, when the target hydraulic pressure becomes lower than the lower reference hydraulic pressure during the pressure reduction process, the target hydraulic pressure is subjected to limit processing so as to coincide with the lower reference hydraulic pressure. That is,
Control is performed as follows: target hydraulic pressure ← lower reference hydraulic pressure.

また増圧の過程で目標液圧が上側基準液圧を越えると、目標液圧の増加が緩やかになるように調整される。   Further, when the target hydraulic pressure exceeds the upper reference hydraulic pressure in the process of increasing pressure, the target hydraulic pressure is adjusted to increase gradually.

即ち、目標液圧>上側基準液圧であって、かつ目標液圧が増加中の場合には、
目標液圧←(目標液圧−上側基準液圧)×k+上側基準液圧
但し、0<k<1
のように制御され、また目標液圧>上側基準液圧であって、かつ目標液圧が減少中の場合には、
目標液圧←目標液圧
のように制御される。
That is, when the target hydraulic pressure> the upper reference hydraulic pressure and the target hydraulic pressure is increasing,
Target fluid pressure ← (Target fluid pressure−Upper reference fluid pressure) × k + Upper reference fluid pressure
However, 0 <k <1
And when the target hydraulic pressure> the upper reference hydraulic pressure and the target hydraulic pressure is decreasing,
Control is performed as follows: target hydraulic pressure ← target hydraulic pressure.

しかして、目標液圧調整部M8が出力する目標液圧に基づいて制動液圧回路13のモジュレータ14FLの作動が制御される。   Accordingly, the operation of the modulator 14FL of the brake hydraulic circuit 13 is controlled based on the target hydraulic pressure output from the target hydraulic pressure adjusting unit M8.

図7は、路面摩擦係数が次第に減少する路面でのアンチロック制御時の目標液圧の変化を示すものであり、実線は下側基準液圧を用いた本実施例の制御、破線は下側基準液圧を用いない従来の制御を示している。この図により、本実施例では路面摩擦係数の減少に応じて下側基準液圧が減少していることが理解される。尚、図7の例では、上側基準液圧による目標液圧の規制は行われていない。   FIG. 7 shows changes in the target hydraulic pressure during anti-lock control on the road surface where the road surface friction coefficient gradually decreases. The solid line indicates the control of this embodiment using the lower reference hydraulic pressure, and the broken line indicates the lower side. The conventional control which does not use a reference | standard hydraulic pressure is shown. From this figure, it is understood that the lower reference hydraulic pressure is decreased in accordance with the decrease in the road surface friction coefficient in this embodiment. In the example of FIG. 7, the target hydraulic pressure is not regulated by the upper reference hydraulic pressure.

このように本実施例によれば、アンチロック制御時の基準液圧として、車輪の接地荷重および路面摩擦係数の積、つまり車輪と路面間に実際に作用する摩擦力に基づいて下側基準液圧および上側基準液圧を算出し、それら下側基準液圧および上側基準液圧を用いて減圧時の目標液圧の過剰な減少および増圧時の目標液圧の過剰な増加を抑制するので、制動効率を向上させて制動距離を一層短縮するとともに、ブレーキフィーリングの向上を図ることができる。   As described above, according to this embodiment, as the reference hydraulic pressure at the time of anti-lock control, the lower reference liquid is calculated based on the product of the wheel ground load and the road surface friction coefficient, that is, the frictional force actually acting between the wheel and the road surface. Pressure and upper reference fluid pressure are calculated, and the lower reference fluid pressure and upper reference fluid pressure are used to suppress excessive decrease in target fluid pressure during pressure reduction and excessive increase in target fluid pressure during pressure increase. Thus, the braking efficiency can be improved to further shorten the braking distance, and the brake feeling can be improved.

また本実施例によれば、下側基準液圧および上側基準液圧を用いてアンチロック制御を精度良く行うことができるので、車輪のスリップ率を狭い範囲に安定させることができる。そして路面摩擦係数更新部M5bは、前記安定したスリップ率に基づいて、図8に示すスリップ率と路面摩擦係数との関係を示すグラフから、路面摩擦係数のピークを含むスリップ率の所定の領域(例えば、0%〜10%の領域)でスリップ率が増加中である場合に路面摩擦係数の更新を行うので、路面摩擦係数のピーク値を精度良く算出することができる。   Further, according to the present embodiment, the anti-lock control can be accurately performed using the lower reference hydraulic pressure and the upper reference hydraulic pressure, so that the slip ratio of the wheel can be stabilized in a narrow range. Then, the road surface friction coefficient updating unit M5b determines, based on the stable slip ratio, a predetermined region of the slip ratio including the peak of the road surface friction coefficient from the graph showing the relationship between the slip ratio and the road surface friction coefficient shown in FIG. For example, since the road surface friction coefficient is updated when the slip ratio is increasing in the range of 0% to 10%), the peak value of the road surface friction coefficient can be calculated with high accuracy.

図9および図10は本発明の第2実施例を示すもので、図9は左前輪の制動液圧回路の構成を示す図、図10は電子制御ユニットの構成を示すブロック図である。   FIGS. 9 and 10 show a second embodiment of the present invention. FIG. 9 is a diagram showing a configuration of a brake hydraulic circuit for the left front wheel, and FIG. 10 is a block diagram showing a configuration of an electronic control unit.

図9に示すように、ブレーキペダル33により作動するタンデム型のマスタシリンダ41は第1出力ポート42および第2出力ポート43を備えており、ブレーキペダル33の踏込み操作に応じてマスタシリンダ41の第1出力ポート42および第2出力ポート43からは相互に独立した液圧が出力される。第1出力ポート42は、左前輪WFLの車輪ブレーキBFLに制動液圧回路13FLを介して接続されるとともに、右後輪WRRの車輪ブレーキBRRに制動液圧回路13RRを介して接続される。また第2出力ポート43は、右前輪WFRの車輪ブレーキBFRに制動液圧回路13FRを介して接続されるとともに、左後輪WRLの車輪ブレーキBRLに制動液圧回路13RLを介して接続される。各制動液圧回路13FL,13FR,13RL,13RRの構造は実質的に同一であるため、図9には代表として左前輪WFLの制動液圧回路13FLが示される。   As shown in FIG. 9, the tandem master cylinder 41 operated by the brake pedal 33 includes a first output port 42 and a second output port 43, and the master cylinder 41 has a first output port 42 and a second output port 43. The first output port 42 and the second output port 43 output hydraulic pressures independent of each other. The first output port 42 is connected to the wheel brake BFL of the left front wheel WFL via the brake hydraulic pressure circuit 13FL, and is connected to the wheel brake BRR of the right rear wheel WRR via the brake hydraulic pressure circuit 13RR. The second output port 43 is connected to the wheel brake BFR of the right front wheel WFR via the brake hydraulic pressure circuit 13FR and is connected to the wheel brake BRL of the left rear wheel WRL via the brake hydraulic pressure circuit 13RL. Since the brake fluid pressure circuits 13FL, 13FR, 13RL, and 13RR have substantially the same structure, FIG. 9 shows the brake fluid pressure circuit 13FL for the left front wheel WFL as a representative.

制動液圧回路13FLは、マスタシリンダ41の第1出力ポート42および車輪ブレーキBFL間に設けられる常開型電磁弁44と、リザーバ45と、車輪ブレーキBFLおよびリザーバ45間に設けられる常閉型電磁弁46と、吸入口がリザーバ45に接続されるとともに吐出口が第1出力ポート42および常開型電磁弁44間に接続される戻しポンプ47とを備える。   The brake hydraulic circuit 13FL includes a normally open solenoid valve 44 provided between the first output port 42 of the master cylinder 41 and the wheel brake BFL, a reservoir 45, and a normally closed solenoid provided between the wheel brake BFL and the reservoir 45. A valve 46 and a return pump 47 having a suction port connected to the reservoir 45 and a discharge port connected between the first output port 42 and the normally open solenoid valve 44 are provided.

常開型電磁弁44は、消磁時に第1出力ポート42および車輪ブレーキBFL間を連通する状態と、励磁時に第1出力ポート42から車輪ブレーキBFLへの液圧作用を阻止するが該車輪ブレーキBFLから第1出力ポート42側への作動液の流れを許容する状態とを切換可能であり、常閉型電磁弁46は、消磁時に車輪ブレーキBFLおよびリザーバ45間を遮断する状態と、励磁時に該車輪ブレーキBFLおよびリザーバ45間を連通する状態とを切換可能である。   The normally open solenoid valve 44 communicates between the first output port 42 and the wheel brake BFL during demagnetization and prevents hydraulic action from the first output port 42 to the wheel brake BFL during excitation, but the wheel brake BFL. Between the wheel brake BFL and the reservoir 45 at the time of demagnetization, and at the time of excitation, the normally closed solenoid valve 46 can switch between the state allowing the flow of hydraulic fluid from the first to the first output port 42 side. The state of communication between the wheel brake BFL and the reservoir 45 can be switched.

しかして、制動液圧回路13FLにおける常開型電磁弁44、常閉型電磁弁46および戻しポンプ47の作動は図10に示す電子制御ユニットUにより制御される。図10を図3(第1実施例)と比較すると明らかなように、第2実施例は第1実施例の目標液圧算出部M1dに代えて増減保持信号出力部M1eを備えている。また第2実施例は増減保持信号出力部M1eからの増減保持信号と、左前輪WFLの液圧センサ35FLからの液圧と、基準液圧算出部M6からの上側基準液圧とが入力される増圧時間調整部M9を備えている。更に第2実施例は、左前輪WFLの液圧センサ35FLからの液圧と、増圧時間調整部M9で調整された増減保持信号と、基準液圧補正部M7で補正された基準液圧とが入力される最終調整部M10を備えている。第2実施例のその他構成は、第1実施例と同じである。   Thus, the operations of the normally open solenoid valve 44, the normally closed solenoid valve 46, and the return pump 47 in the brake hydraulic circuit 13FL are controlled by the electronic control unit U shown in FIG. As is apparent from a comparison of FIG. 10 with FIG. 3 (first embodiment), the second embodiment includes an increase / decrease holding signal output unit M1e instead of the target hydraulic pressure calculation unit M1d of the first embodiment. In the second embodiment, the increase / decrease holding signal from the increase / decrease holding signal output unit M1e, the hydraulic pressure from the hydraulic pressure sensor 35FL of the left front wheel WFL, and the upper reference hydraulic pressure from the reference hydraulic pressure calculation unit M6 are input. A pressure increase time adjustment unit M9 is provided. Further, in the second embodiment, the hydraulic pressure from the hydraulic pressure sensor 35FL of the left front wheel WFL, the increase / decrease holding signal adjusted by the pressure increasing time adjusting unit M9, and the reference hydraulic pressure corrected by the reference hydraulic pressure correcting unit M7, Is input to the final adjustment unit M10. Other configurations of the second embodiment are the same as those of the first embodiment.

しかして、アンチロック制御が行われない制御停止モードでは、常開型電磁弁44を開弁し、常閉型電磁弁46を閉弁することで、マスタシリンダ41からのブレーキ圧を車輪ブレーキBFLにそのまま伝達することができる。   Therefore, in the control stop mode in which the antilock control is not performed, the normally open solenoid valve 44 is opened and the normally closed solenoid valve 46 is closed, so that the brake pressure from the master cylinder 41 is applied to the wheel brake BFL. Can be transmitted as is.

一方、アンチロック制御の減圧モードでは、常閉型電磁弁46を開弁することで車輪ブレーキBFLのブレーキ圧が減少され、保持モードでは、常開型電磁弁44を閉弁することで車輪ブレーキBFLの作動液圧が保持され、増圧モードでは、常開型電磁弁44の開弁および閉弁を短い周期で繰返し、マスタシリンダ41からの作動液圧を車輪ブレーキBFLに徐々に伝えることによって車輪ブレーキBFLのブレーキ圧が増圧される。よって前記減圧モード、保持モードでおよび増圧モードを繰り返し行うことで、車輪WFLのロックが抑制しながら制動距離の短縮が図られる。   On the other hand, in the anti-lock control decompression mode, the brake pressure of the wheel brake BFL is reduced by opening the normally closed solenoid valve 46, and in the holding mode, the wheel brake is closed by closing the normally open solenoid valve 44. The hydraulic fluid pressure of the BFL is maintained, and in the pressure increasing mode, the normally open solenoid valve 44 is repeatedly opened and closed in a short cycle, and the hydraulic fluid pressure from the master cylinder 41 is gradually transmitted to the wheel brake BFL. The brake pressure of the wheel brake BFL is increased. Therefore, by repeatedly performing the pressure reducing mode, the holding mode, and the pressure increasing mode, the braking distance can be shortened while the lock of the wheel WFL is suppressed.

次に、電子制御ユニットUの作用について、第1実施例と異なる部分を中心に説明する。アンチロック基本制御部M1の増減保持信号出力部M1eは、スリップ率算出部M1cで算出した左前輪WFLのスリップ率が所定の閾値を越えて該左前輪WFLがロック傾向にあると判断すると、目標車輪速度算出部M1bで算出した目標車輪速度と実車輪速度との偏差に応じた増圧信号、減圧信号あるいは保持信号(増減保持信号)を算出する。 増圧時間調整部M9は、液圧センサ35FLで検出した実液圧が上側基準液圧よりも高いときに、常開型電磁弁44が開弁する増圧時間を補正係数k(0<k<1)を用いて以下のように減少方向に補正する。   Next, the operation of the electronic control unit U will be described focusing on the differences from the first embodiment. When the increase / decrease holding signal output unit M1e of the anti-lock basic control unit M1 determines that the slip ratio of the left front wheel WFL calculated by the slip ratio calculation unit M1c exceeds a predetermined threshold and the left front wheel WFL is in a locking tendency, A pressure increase signal, a pressure reduction signal or a holding signal (increase / decrease holding signal) corresponding to the deviation between the target wheel speed calculated by the wheel speed calculation unit M1b and the actual wheel speed is calculated. The pressure increase time adjustment unit M9 determines the pressure increase time during which the normally open solenoid valve 44 opens when the actual hydraulic pressure detected by the hydraulic pressure sensor 35FL is higher than the upper reference hydraulic pressure, as a correction coefficient k (0 <k <1) is used to correct in the decreasing direction as follows.

増圧時間←増圧時間×k
補正係数kは、実液圧および上側基準液圧をパラメータとするマップから検索される。この制御により、実液圧が上側基準液圧を越えると、増圧時間が減少方向に補正されて実液圧の増加が緩やかになるように抑制される。
Pressure increase time ← Pressure increase time x k
The correction coefficient k is retrieved from a map using the actual fluid pressure and the upper reference fluid pressure as parameters. With this control, when the actual hydraulic pressure exceeds the upper reference hydraulic pressure, the pressure increase time is corrected in the decreasing direction and the increase in the actual hydraulic pressure is suppressed to be moderate.

そして最終調整部M10では、増減保持信号が減圧(あるいは保持)であって実液圧が減少傾向にあり、かつ実液圧が下側基準液圧を下回っているとき、実液圧が下側基準液圧に一致するように常開型電磁弁44および常閉型電磁弁46の開閉をフィードバック制御する。   In the final adjustment unit M10, when the increase / decrease holding signal is reduced (or held), the actual hydraulic pressure tends to decrease, and the actual hydraulic pressure is lower than the lower reference hydraulic pressure, the actual hydraulic pressure is lower. Feedback control is performed to open and close the normally open solenoid valve 44 and the normally closed solenoid valve 46 so as to match the reference hydraulic pressure.

しかして、この第2実施例によっても、上述した第1実施例と同様の作用効果を達成することができる。   Thus, the second embodiment can achieve the same effects as those of the first embodiment described above.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例では下側基準液圧および上側基準液圧を用いた制御を行っているが、上側基準液圧を用いた制御は省略することができる。   For example, in the embodiment, the control using the lower reference hydraulic pressure and the upper reference hydraulic pressure is performed, but the control using the upper reference hydraulic pressure can be omitted.

また、以上の説明においては、四輪全てのアンチロック制御装置に本発明を適用したが、必要に応じて一部の車輪(例えば左右の前輪)のアンチロック制御装置に適用しても良い。   In the above description, the present invention is applied to the antilock control devices for all four wheels, but may be applied to the antilock control devices for some wheels (for example, the left and right front wheels) as necessary.

第1実施例に係る車両の制動系統を示す図The figure which shows the braking system of the vehicle which concerns on 1st Example. 制動液圧回路の構成を示す図Diagram showing the configuration of the brake hydraulic circuit 電子制御ユニットの構成を示すブロック図Block diagram showing the configuration of the electronic control unit 路面摩擦係数および接地荷重から基準液圧を検索するマップを示す図The figure which shows the map which searches the standard hydraulic pressure from road surface friction coefficient and contact load スリップ率から下側基準液圧を補正する補正係数を検索するマップを示す図The figure which shows the map which searches the correction coefficient which correct | amends a lower reference | standard hydraulic pressure from slip ratio 下側基準液圧および上側基準液圧の機能を説明する図The figure explaining the function of lower reference fluid pressure and upper reference fluid pressure アンチロック制御時の目標液圧の変化を示すグラフGraph showing change in target hydraulic pressure during anti-lock control スリップ率と路面摩擦係数との関係を示すグラフGraph showing the relationship between slip ratio and road friction coefficient 第2実施例に係る左前輪の制動液圧回路の構成を示す図The figure which shows the structure of the brake hydraulic circuit of the left front wheel which concerns on 2nd Example. 電子制御ユニットの構成を示すブロック図Block diagram showing the configuration of the electronic control unit

符号の説明Explanation of symbols

12FL 車輪速度センサ
12FR 車輪速度センサ
12RL 車輪速度センサ
12RR 車輪速度センサ
BFL 車輪ブレーキ
BFR 車輪ブレーキ
BRL 車輪ブレーキ
BRR 車輪ブレーキ
M1a 車体速度算出部
M1c スリップ率算出部
M2 車輪加速度・角速度算出部(車輪加速度算出部)
M3 接地荷重算出部
M4 制動力算出部
M5a 路面摩擦係数推定部
M5b 路面摩擦係数更新部
U 電子制御ユニット(アンチロック制御手段)
WFL 左前輪(車輪)
WFR 右前輪(車輪)
WRL 左後輪(車輪)
WRR 右後輪(車輪)
12FL wheel speed sensor 12FR wheel speed sensor 12RL wheel speed sensor 12RR wheel speed sensor BFL wheel brake BFR wheel brake BRL wheel brake BRR wheel brake M1a vehicle body speed calculation unit M1c slip rate calculation unit M2 wheel acceleration / angular velocity calculation unit (wheel acceleration calculation unit) )
M3 Contact load calculation unit M4 Braking force calculation unit M5a Road surface friction coefficient estimation unit M5b Road surface friction coefficient update unit U Electronic control unit (anti-lock control means)
WFL Left front wheel (wheel)
WFR Right front wheel (wheel)
WRL Left rear wheel (wheel)
WRR Right rear wheel (wheel)

Claims (1)

車輪速度センサ(12FL,12FR,12RL,12RR)で検出した車輪速度に基づいて車輪(WFL,WFR,WRL,WRR)がロック傾向にあると判断されたとき、車輪ブレーキ(BFL,BFR,BRL,BRR)に供給する液圧を基準液圧および路面摩擦係数に基づいて制御することで車輪(WFL,WFR,WRL,WRR)のロックを抑制するアンチロック制御手段(U)を備えた車両のアンチロック制御装置において、
前記アンチロック制御手段(U)は、
前記車輪ブレーキ(BFL,BFR,BRL,BRR)で発生している制動力を検出あるいは推定する制動力算出部(M4)と、
前記車輪速度に基づいて車輪加速度を算出する車輪加速度算出部(M2)と、
車輪(WFL,WFR,WRL,WRR)の接地荷重を検出あるいは推定する接地荷重算出部(M3)と、
前記制動力、前記車輪加速度および前記接地荷重に基づいて路面摩擦係数を推定する路面摩擦係数推定部(M5a)と、
前記車輪速度に基づいて車体速度を算出する車体速度算出部(M1a)と、
前記車輪速度および前記車体速度に基づいて車輪(WFL,WFR,WRL,WRR)のスリップ率を算出するスリップ率算出部(M1c)と、
前記スリップ率が増加中でかつ所定値よりも小さいときに、前記路面摩擦係数推定部(M5a)で推定した路面摩擦係数を更新する路面摩擦係数更新部(M5b)と、
を備えることを特徴とする車両のアンチロック制御装置。
When it is determined that the wheels (WFL, WFR, WRL, WRR) tend to be locked based on the wheel speeds detected by the wheel speed sensors (12FL, 12FR, 12RL, 12RR), the wheel brakes (BFL, BFR, BRL, The anti-lock control means (U) for suppressing the lock of the wheels (WFL, WFR, WRL, WRR) by controlling the hydraulic pressure supplied to the BRR) based on the reference hydraulic pressure and the road surface friction coefficient. In the lock control device,
The antilock control means (U)
A braking force calculation unit (M4) for detecting or estimating a braking force generated in the wheel brake (BFL, BFR, BRL, BRR);
A wheel acceleration calculating unit (M2) for calculating wheel acceleration based on the wheel speed;
A contact load calculation unit (M3) for detecting or estimating a contact load of the wheels (WFL, WFR, WRL, WRR);
A road surface friction coefficient estimating unit (M5a) for estimating a road surface friction coefficient based on the braking force, the wheel acceleration, and the ground load;
A vehicle body speed calculation unit (M1a) for calculating a vehicle body speed based on the wheel speed;
A slip ratio calculation unit (M1c) that calculates a slip ratio of a wheel (WFL, WFR, WRL, WRR) based on the wheel speed and the vehicle body speed;
A road surface friction coefficient updating unit (M5b) for updating the road surface friction coefficient estimated by the road surface friction coefficient estimating unit (M5a) when the slip ratio is increasing and smaller than a predetermined value;
An antilock control device for a vehicle, comprising:
JP2005338729A 2005-11-24 2005-11-24 Anti-lock control device for vehicle Expired - Fee Related JP4485457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005338729A JP4485457B2 (en) 2005-11-24 2005-11-24 Anti-lock control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338729A JP4485457B2 (en) 2005-11-24 2005-11-24 Anti-lock control device for vehicle

Publications (2)

Publication Number Publication Date
JP2007145075A true JP2007145075A (en) 2007-06-14
JP4485457B2 JP4485457B2 (en) 2010-06-23

Family

ID=38207010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338729A Expired - Fee Related JP4485457B2 (en) 2005-11-24 2005-11-24 Anti-lock control device for vehicle

Country Status (1)

Country Link
JP (1) JP4485457B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061432A1 (en) 2008-11-25 2010-06-03 トヨタ自動車株式会社 Travel control device for vehicle
EP2366597A2 (en) 2010-03-05 2011-09-21 Honda Motor Co., Ltd. Vehicle Motion Control Apparatus
EP2368779A2 (en) 2010-03-05 2011-09-28 Honda Motor Co., Ltd. Vehicle motion control apparatus
KR102206718B1 (en) * 2019-12-26 2021-01-26 상신브레이크주식회사 Estimation of road surface for vehicles equipped with ABS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106740769B (en) * 2016-12-26 2019-03-26 清华大学苏州汽车研究院(相城) A kind of autonomous emergency braking control algolithm that road surface attachment is adaptive

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061432A1 (en) 2008-11-25 2010-06-03 トヨタ自動車株式会社 Travel control device for vehicle
US8676463B2 (en) 2008-11-25 2014-03-18 Toyota Jidosha Kabushiki Kaisha Travel controlling apparatus of vehicle
EP2366597A2 (en) 2010-03-05 2011-09-21 Honda Motor Co., Ltd. Vehicle Motion Control Apparatus
EP2368779A2 (en) 2010-03-05 2011-09-28 Honda Motor Co., Ltd. Vehicle motion control apparatus
US8718875B2 (en) 2010-03-05 2014-05-06 Honda Motor Co., Ltd. Vehicle motion control apparatus
KR102206718B1 (en) * 2019-12-26 2021-01-26 상신브레이크주식회사 Estimation of road surface for vehicles equipped with ABS

Also Published As

Publication number Publication date
JP4485457B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
EP1433682B1 (en) Vehicular brake system and method of controlling same brake system
JP3719116B2 (en) Vehicle driving force control device
US7125086B2 (en) Vehicle dynamics control system
JP5295750B2 (en) Control device for brake device
JP3610738B2 (en) Vehicle behavior control device with wheel slip control device
EP2351675B1 (en) Travel control device for vehicle
US6003959A (en) Vehicle dynamics control system
JP4485457B2 (en) Anti-lock control device for vehicle
JP4717607B2 (en) Anti-lock control device for vehicle
JP2002037047A (en) Braking control device for vehicle
JPH092222A (en) Method for controlling distribution of braking force of vehicle
JP2627453B2 (en) Vehicle traction control method
JP4293092B2 (en) Vehicle motion control device
US6863355B2 (en) Brake control device for a vehicle
JP3205684B2 (en) Vehicle braking force distribution control method
JP3832499B2 (en) Vehicle driving force control device
JP2001315633A (en) Road surface friction coefficient detector
JP3845127B2 (en) Brake force distribution control method for vehicle
JP5088255B2 (en) Vehicle motion control system
JP3401987B2 (en) Vehicle behavior control device
JP3856041B2 (en) Vehicle driving force control device
JP2004217131A (en) Braking system
JP3034302B2 (en) Anti-skid brake system for vehicles
JPH0885430A (en) Behavior control device for vehicle
JPH1071939A (en) Vehicle behavior controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Ref document number: 4485457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees