JP2007141928A - Device of controlling photo coupler and method of controlling the same - Google Patents

Device of controlling photo coupler and method of controlling the same Download PDF

Info

Publication number
JP2007141928A
JP2007141928A JP2005329927A JP2005329927A JP2007141928A JP 2007141928 A JP2007141928 A JP 2007141928A JP 2005329927 A JP2005329927 A JP 2005329927A JP 2005329927 A JP2005329927 A JP 2005329927A JP 2007141928 A JP2007141928 A JP 2007141928A
Authority
JP
Japan
Prior art keywords
output
signal
optical
light emitting
photocoupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005329927A
Other languages
Japanese (ja)
Other versions
JP4607742B2 (en
Inventor
Kenji Yamamoto
山本健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Priority to JP2005329927A priority Critical patent/JP4607742B2/en
Publication of JP2007141928A publication Critical patent/JP2007141928A/en
Application granted granted Critical
Publication of JP4607742B2 publication Critical patent/JP4607742B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily compensate the variation of current transmission ratio in high accuracy to either or both of a transmission/reception route for signals with an optional modulation mode. <P>SOLUTION: One of controllers (46 and 49) of the photo couplers (22, D1, P2, 43; 27, D2, P1, 48) is integrally provided with an optical transmitter (22, D1) including light emitting elements (D1) such as a light emitting diode or the like, and an optical receiver (P2, 43) including an optical detector (P2) to receive optical signal output which the optical transmitter transmits according to the light emission of the light emitting element. Then, it emits a light at the maximum output and the minimum output from the light emitting element before the start of transmission of the optical signal output from the optical transmitter, and determines the amplification rate of the photo coupler on the basis of a difference between the maximum output and the minimum output. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はフォトカプラに関し、特にフォトカプラの電流伝達比(CTR:Current Transfer Ratio)の変動を自動的に補正するための制御を行なうフォトカプラの制御装置及びフォトカプラの制御方法に関する。   The present invention relates to a photocoupler, and more particularly to a photocoupler control apparatus and a control method for a photocoupler that perform control for automatically correcting fluctuations in a current transfer ratio (CTR) of the photocoupler.

従来、電力線に接続される種々の低電圧機器、たとえば、自動検針(AMR)システム、電力線モデム、ホーム・オートメーション/コントロ−ル、警備・監視システム、汎用絶縁トランシーバ(送受信機)、インターネット機器など、が広く利用されている。これら低電圧回路には、本来の信号送受信や信号処理の機能に加えて、電力線からの高電圧、高雑音に対処する共通の機能が不可欠である。以下では本発明の理解に十分と考え、汎用絶縁トランシーバ(送受信機)について説明するが、他の前記低電圧機器やその回路等にも適用できる考えが説明されていることは当業者に容易に理解できよう。   Conventionally, various low-voltage devices connected to power lines, such as automatic meter reading (AMR) systems, power line modems, home automation / control, security / monitoring systems, general-purpose insulated transceivers (transceivers), Internet devices, etc. Is widely used. In addition to the original signal transmission / reception and signal processing functions, these low voltage circuits must have a common function for dealing with high voltage and high noise from the power line. In the following, a general-purpose isolation transceiver (transceiver) will be described, which is considered to be sufficient for understanding the present invention. However, it is easily understood by those skilled in the art that the concept applicable to the other low-voltage devices and their circuits is described. I understand.

汎用絶縁トランシーバを電力線に接続する先端部分であるアナログ・フロント・エンド(AFE:Analog Front End)回路は最も過酷な環境にあり、特に電力線からの高圧が低電圧機器に及ばないように、電力線側と低電圧機器側とを絶縁する絶縁手段が設けられる。典型的なAFEには、送信フィルタ、送信ライン・ドライバ(増幅器)、結合変圧器(絶縁変圧器)、結合コンデンサ、受信フィルタ、受信増幅器及びサージ保護装置などが含まれる。このように、絶縁手段としては、絶縁変圧器(アイソレーション・トランスフォーマー)が多用されていた。しかしながら、絶縁変圧器が比較的大きく、また、絶縁変圧器を用いたこれらAFEでは、個別部品が多く、したがってAFEが大型となり、機器の小型化への妨げとなり、また、価格も高く、取扱いも不便であるという問題があった。   The analog front end (AFE) circuit, which is the tip of connecting the general-purpose isolated transceiver to the power line, is in the harshest environment, especially on the power line side so that the high voltage from the power line does not reach the low voltage equipment. And an insulating means for insulating the low-voltage device side. Typical AFEs include transmission filters, transmission line drivers (amplifiers), coupling transformers (isolation transformers), coupling capacitors, reception filters, reception amplifiers and surge protection devices. Thus, an insulating transformer (isolation transformer) has been frequently used as an insulating means. However, the insulation transformer is relatively large, and these AFEs using the insulation transformer have many individual parts. Therefore, the AFE becomes large, hinders downsizing of the equipment, is expensive, and is easy to handle. There was a problem of inconvenience.

一方、高電圧回路と低電圧回路の絶縁を行なうための光結合素子(オプトカプラあるいはフォトカプラ)を用いて、絶縁変圧器を除去し、あわせて回路素子を集積して小型化を進め、低価格化を図る努力がなされてきた。たとえば、非特許文献1に記載の米国アジレント・テクノロジー・インクから市販されているAgilent HCPL−800J DAA(Data Access Arrangement;以下、「データ・アクセス装置」と称し、また「DAA」と略称する。)は、市販のPLM(電力線モデム)トランシーバ/ENDEC(エンコーダ‐デコーダ)IC(集積回路)に直接接続できるICである。該DAAは、送信フィルタ、結合コンデンサ、受信フィルタ、サージ保護装置などを外付けして電力線に接続される。   On the other hand, using an optical coupling element (optocoupler or photocoupler) to insulate the high-voltage circuit from the low-voltage circuit, the insulation transformer is removed, and the circuit elements are integrated to reduce the size and cost. Efforts to make it easier have been made. For example, Agilent HCPL-800J DAA (Data Access Arrangement; hereinafter referred to as “data access device” and abbreviated as “DAA”) commercially available from Agilent Technologies, Inc. described in Non-Patent Document 1. Is an IC that can be directly connected to a commercially available PLM (power line modem) transceiver / ENDEC (encoder-decoder) IC (integrated circuit). The DAA is connected to the power line by externally attaching a transmission filter, a coupling capacitor, a reception filter, a surge protection device, and the like.

図1は、上記DAA10の簡易化したブロック図である。DAA10は低圧側の制御ICと高圧側のラインICとが光結合素子を介して対向した構成になっている。制御ICとラインICはそれぞれ別の電源で駆動されている。信号TX−ENにより送信モードに設定されると、モデムの変調器からの送信信号(TX−IN)が、入力増幅器とLEDドライバの縦続回路である送信増幅器/ドライバ2に入力され、発光素子D1により光信号に変換される。次いで、該光信号は絶縁部(図の点線で表す。)を介して受光素子P2により検出される。受光素子P2の出力電流は送信伝達インピーダンス増幅器(TX―TIA)3により増幅されフィルタ(不図示)、スイッチ(Hi−Z SW)5を介して送信出力信号(TX−OUT)として出力される。一方、受信入力信号(RX−IN)は受信増幅器/ドライバ7により増幅された後発光素子D2により光信号に変換され、絶縁部(図の点線で表す。)を介して受光素子P1により検出される。受光素子P1の出力電流は受信伝達インピーダンス増幅器(RX―TIA)8により増幅され受信出力信号(RX−OUT)として出力される。また、ラインIC側の電源電圧等の情報が状態論理回路6を介して制御IC側に送信され、状態検出回路9により検出され出力される。   FIG. 1 is a simplified block diagram of the DAA 10. The DAA 10 has a configuration in which a control IC on the low-voltage side and a line IC on the high-voltage side face each other via an optical coupling element. The control IC and line IC are driven by different power sources. When the transmission mode is set by the signal TX-EN, the transmission signal (TX-IN) from the modem modulator is input to the transmission amplifier / driver 2 which is a cascade circuit of the input amplifier and the LED driver, and the light emitting element D1 Is converted into an optical signal. Next, the optical signal is detected by the light receiving element P2 through an insulating portion (represented by a dotted line in the figure). The output current of the light receiving element P2 is amplified by a transmission transfer impedance amplifier (TX-TIA) 3 and output as a transmission output signal (TX-OUT) through a filter (not shown) and a switch (Hi-Z SW) 5. On the other hand, the received input signal (RX-IN) is amplified by the receiving amplifier / driver 7 and then converted into an optical signal by the light emitting element D2, and detected by the light receiving element P1 through the insulating portion (shown by a dotted line in the figure). The The output current of the light receiving element P1 is amplified by a reception transfer impedance amplifier (RX-TIA) 8 and output as a reception output signal (RX-OUT). Further, information such as the power supply voltage on the line IC side is transmitted to the control IC side via the state logic circuit 6 and detected and output by the state detection circuit 9.

図1のDAA10では、モデムの変調器からの送信信号TX−INの変動やDAA10自身の温度特性や経時特性あるいは製造時の部品間偏差等による送信出力信号(TX−OUT)の変動を補正するため、AGC回路4を設けている。AGC回路4は送信伝達インピーダンス増幅器(TX―TIA)3の出力を検出して該増幅器3に帰還し該増幅器3の増幅率を変化させて該出力が所定の振幅(たとえば3VPK-PK)となるように制御している。DAA10自身による送信出力信号(TX−OUT)の変動の原因の多くは発光素子D1と受光素子P2が(あるいは発光素子D2と受光素子P1が)構成する光結合器の電流伝達比(CTR:Current Transfer Ratio)、すなわち、発光素子の発光効率と受光素子の受光効率の積の変動にある。 The DAA 10 in FIG. 1 corrects fluctuations in the transmission output signal (TX-OUT) due to fluctuations in the transmission signal TX-IN from the modem modulator, temperature characteristics and aging characteristics of the DAA 10 itself, or deviations between components during manufacture. Therefore, an AGC circuit 4 is provided. The AGC circuit 4 detects the output of the transmission transfer impedance amplifier (TX-TIA) 3 and feeds it back to the amplifier 3 to change the amplification factor of the amplifier 3 so that the output has a predetermined amplitude (for example, 3V PK-PK ). It is controlled to become. Many of the causes of fluctuations in the transmission output signal (TX-OUT) by the DAA 10 itself are the current transfer ratio (CTR: Current) of the optical coupler formed by the light emitting element D1 and the light receiving element P2 (or the light emitting element D2 and the light receiving element P1). Transfer Ratio), that is, a variation in the product of the light emitting efficiency of the light emitting element and the light receiving efficiency of the light receiving element.

図1のDAA10のAGC回路4による送信出力信号のピーク値の制御では、一定振幅の信号が送信され周波数変調、位相変調、パルス変調などではうまくゆくが、振幅や振幅の包絡線が変動する、振幅の変動に情報が載っている振幅変調や他の方式(OFDM、DSB、SSB、マルチキャリア、ASK,QPSK等)では、増幅率を変化させる制御の速度と変調速度が近づくと変調波に無視できない歪を生じることがある。そこで、特許文献1に記載の受光回路では、受光素子の動作点制御回路を設け、受光素子の動作点を不飽和領域内に置き、所要の変換利得を得るために動作点を移動させて変換利得と動作点の安定を実現する装置を開示する。
Agilent HCPL-800J Application Note 5074 (http://cp.literature.agilent.com/litweb/pdf/5989−1242EN.pdf; 2004−07−25更新) 特開平9−260712号公報
In the control of the peak value of the transmission output signal by the AGC circuit 4 of the DAA 10 in FIG. 1, a signal having a constant amplitude is transmitted and works well in frequency modulation, phase modulation, pulse modulation, etc., but the amplitude and amplitude envelope fluctuate. In amplitude modulation and other methods (OFDM, DSB, SSB, multicarrier, ASK, QPSK, etc.) in which information is included in the amplitude fluctuation, the modulation wave is ignored when the control speed and the modulation speed that change the amplification factor approach each other. It may cause distortion that cannot be done. Therefore, in the light receiving circuit described in Patent Document 1, an operating point control circuit for the light receiving element is provided, the operating point of the light receiving element is placed in the unsaturated region, and the operating point is moved and converted in order to obtain a required conversion gain. An apparatus is disclosed that achieves stability of gain and operating point.
Agilent HCPL-800J Application Note 5074 (http://cp.literature.agent.com/literweb/pdf/5989-1242EN.pdf; 2004-07-25 update) JP-A-9-260712

上記非特許文献1に記載の出力信号の変動を小さくする補償方法では、送信側での振幅一定の信号に対する補正のみが可能で、当然受信側の変動の補償を行なうことができないし、また、特許文献1に記載の補償方法では、受信側においてのみ、可変振幅の信号に対する補償も可能であるが、当然送信側の変動の補償はできない、という問題がある。   In the compensation method for reducing the fluctuation of the output signal described in Non-Patent Document 1, it is only possible to correct the signal having a constant amplitude on the transmission side, and naturally it is not possible to compensate for the fluctuation on the reception side. The compensation method described in Patent Document 1 can compensate for a variable amplitude signal only on the reception side, but naturally has a problem that fluctuation on the transmission side cannot be compensated.

従って、本発明の目的は、上記の課題を解決あるいは軽減することにあり、所望の変調方式の信号に対して送受信経路の一方あるいは双方の全体にわたって、精度の高い電流伝達比の変動の補償を容易に行なえる簡易なフォトカプラの制御装置と制御方法とを提供することである。なお、本発明の記載において、発光素子を含む光送信機、及び該光送信機から前記発光素子の発光に基づいて送信された光信号を受信する光検出素子を含む光受信機を含んでフォトカプラと称する。   Accordingly, an object of the present invention is to solve or alleviate the above-mentioned problems, and to compensate for fluctuations in the current transfer ratio with high accuracy over one or both of the transmission and reception paths for a signal of a desired modulation method. It is an object of the present invention to provide a simple photocoupler control device and control method that can be easily performed. In the description of the present invention, a photo including an optical transmitter including a light emitting element and an optical receiver including a light detecting element that receives an optical signal transmitted from the optical transmitter based on light emission of the light emitting element. It is called a coupler.

本発明の別の目的は、アナログ波形が通過するフォトカプラの電流伝達比の変動を補償してフォトカプラの増幅率を一定にすることである。   Another object of the present invention is to make the gain of the photocoupler constant by compensating for variations in the current transfer ratio of the photocoupler through which the analog waveform passes.

本発明のさらに別の目的は、電力線通信における送信受信の切り替えのように頻繁に切り替えが起きても、送受信波形に対する増幅率を一定に維持しやすくすることである。   Still another object of the present invention is to make it easy to maintain a constant amplification factor for a transmission / reception waveform even when frequent switching occurs, such as switching between transmission and reception in power line communication.

上記課題を解決するためのフォトカプラの制御装置のひとつは、発光ダイオードなどの発光素子を含む光送信機、及び該光送信機から前記発光素子の発光に基づいて送信された光信号出力を受信する光検出素子を含む光受信機を一体に備える。そして、前記光送信機からの光信号出力の送信の開始前に、前記発光素子の最大出力及び最小出力となる発光を生ぜしめ、前記最大出力及び前記最小出力の差を基に前記フォトカプラの増幅率を決定することを特徴とする。   One of the photocoupler control devices for solving the above problems is an optical transmitter including a light emitting element such as a light emitting diode, and an optical signal output transmitted from the optical transmitter based on light emission of the light emitting element. An optical receiver including a photodetecting element is integrally provided. And before the start of transmission of the optical signal output from the optical transmitter, it generates light emission that becomes the maximum output and the minimum output of the light emitting element, and based on the difference between the maximum output and the minimum output of the photocoupler The amplification factor is determined.

前記発光素子による前記最小出力の発光は、前記最大出力の発光の直後に連続して行なわれるよう構成するのがよい。また、前記最大出力の発光と前記最小出力の発光の連続を複数回繰り返してもよい。   It is preferable that the light emission at the minimum output by the light emitting element is continuously performed immediately after the light emission at the maximum output. Further, the light emission with the maximum output and the light emission with the minimum output may be repeated a plurality of times.

また、前記信号送信の開始前に、前記光検出素子が所定の強度を超えた前記光信号を前記光受信機が受光したときに、該光信号が前記最大出力による信号出力であること、及び前記光信号に続いて受光した比較的強度の小さな前記光信号が前記最小出力による信号であることを識別できるようにするトリガ検知手段を備えるようにしてもよい。   In addition, when the optical receiver receives the optical signal that has exceeded a predetermined intensity before the signal transmission starts, the optical signal is a signal output by the maximum output, and You may make it provide the trigger detection means which enables it to identify that the said optical signal with comparatively small intensity | strength received following the said optical signal is a signal by the said minimum output.

さらに、前記制御装置は、少なくとも一部が前記フォトカプラと一体のIC装置を構成してもよい。   Further, at least a part of the control device may constitute an IC device integrated with the photocoupler.

上記課題を解決するためのフォトカプラの制御方法では、フォトカプラが、発光素子を含む光送信機、及び該光送信機から前記発光素子の発光に基づいて送信された光信号を受信する光検出素子を含む光受信機を一体に備え、前記光送信機からの信号送信の開始前に、前記発光素子の最大出力及び最小出力となる発光を生ぜしめる工程と、前記最大出力及び前記最小出力の差を基に前記フォトカプラの増幅率を決定する工程とを有することを特徴とする。   In the photocoupler control method for solving the above-described problem, the photocoupler includes an optical transmitter including a light emitting element, and optical detection for receiving an optical signal transmitted from the optical transmitter based on light emission of the light emitting element. An optical receiver integrally including an element, and before starting signal transmission from the optical transmitter, generating light emission that is a maximum output and a minimum output of the light-emitting element; and the maximum output and the minimum output And a step of determining an amplification factor of the photocoupler based on the difference.

そして、前記発光素子による前記最小出力の発光は、前記最大出力の発光の直後に連続して行なうのがよい。また、そのような連続を複数回繰り返してもよい。   The light emission at the minimum output by the light emitting element is preferably performed immediately after the light emission at the maximum output. Moreover, such a continuation may be repeated a plurality of times.

また、前記信号送信の開始前に、前記光検出素子が所定の強度を超えた前記光信号を前記光受信機が受光したときに、該光信号が前記最大出力による信号出力として識別する工程と、前記光信号に続いて受光した比較的強度の小さな前記光信号が前記最小出力による信号出力であることを識別する工程とを有するようにしてもよい。   A step of identifying the optical signal as a signal output by the maximum output when the optical receiver receives the optical signal in which the photodetector exceeds a predetermined intensity before the signal transmission is started; And a step of discriminating that the optical signal having a relatively low intensity received after the optical signal is a signal output by the minimum output.

上記の課題を解決あるいは軽減する手段により、所望の変調方式の信号に対して送受信経路の全体にわたって、精度の高い電流伝達比の変動の補償を容易に行なえる簡易なフォトカプラの制御装置と制御方法とが提供される。   A simple photocoupler control device and control that can easily compensate for fluctuations in the current transfer ratio with high accuracy over the entire transmission / reception path for a signal of a desired modulation method by means of solving or reducing the above problems A method is provided.

また、アナログ波形が通過するフォトカプラの電流伝達比の変動を補償してフォトカプラの増幅率が一定にされ、電力線通信における送信受信の切り替えのように頻繁に切り替えが起きても、送受信波形に対する増幅率を一定に維持しやすくなる効果が得られる。その他の本発明の特徴、効果の詳細については、以下の説明から明瞭となる。   Moreover, even if switching frequently occurs, such as switching between transmission and reception in power line communication, the gain of the photocoupler is made constant by compensating for fluctuations in the current transfer ratio of the photocoupler through which the analog waveform passes. There is an effect that the amplification factor can be easily maintained constant. The details of other features and effects of the present invention will become clear from the following description.

以下に記載する本発明の実施形態は、本発明を理解するためのものであり、本発明を実施形態に限定するためのものではない。そのため、装置やその要素の寸法や形状は実際に製造される装置や要素との寸法や形状と特定の幾何学的関係を持つことを意図していない。また、完全に一致するものではないが、本発明の理解に支障がないと考えられる範囲で、同様の機能を発揮する装置やその構成要素には同じ参照番号を付してある。また、以下の実施例の説明では、構成要素を接続する配線や電気,機械的作用要素は発明の理解に必要な範囲のみを記載している。又、従来技術に属する部分の説明は省略されるか簡略化されている。   The embodiments of the present invention described below are for understanding the present invention and are not intended to limit the present invention to the embodiments. Therefore, the size and shape of the device and its elements are not intended to have a specific geometric relationship with the size or shape of the device or element that is actually manufactured. In addition, devices that exhibit similar functions and components thereof are given the same reference numerals as long as they do not completely coincide, but are considered to have no problem in understanding the present invention. In the following description of the embodiments, only the range necessary for understanding the invention is described for the wiring, electrical, and mechanical elements that connect the components. Further, the description of the parts belonging to the prior art is omitted or simplified.

図2は本発明の1実施例のフォトカプラとその制御装置とDAA20の概略を示すブロック図である。以下の説明は、DAA20がモデムと電力線間に設置された場合について述べられるが、他の装置間においてもDAA20が使用できることは容易に理解できよう。DAA20は送信側フォトカプラ(22、D1、P2,13、25)と受信側フォトカプラ(27、D2,P1,18,28)とを有し、制御装置である制御回路26,29が制御を行なっている。送信側フォトカプラ(22、D1、P2,13、25)は、光送信機となる部分(22、D1)と光受信機となる部分(P2,13、25)とを有し、受信側フォトカプラ(27、D2,P1,18,28)も、光送信機となる部分(27、D2)と光受信機となる部分(P1,18、28)とを有する。DAA20は好ましくは従来のDAA10と同様に集積化される。DAA20はモード切替信号TX−ENの活性(ON)、非活性(OFF)に応じて送信モード、受信モードに設定される。   FIG. 2 is a block diagram showing an outline of the photocoupler, its control device, and DAA 20 according to one embodiment of the present invention. In the following description, the DAA 20 is described as being installed between the modem and the power line, but it will be easily understood that the DAA 20 can be used between other devices. The DAA 20 includes a transmission-side photocoupler (22, D1, P2, 13, 25) and a reception-side photocoupler (27, D2, P1, 18, 28), and control circuits 26 and 29 that are control devices perform control. Is doing. The transmission-side photocoupler (22, D1, P2, 13, 25) has a portion (22, D1) to be an optical transmitter and a portion (P2, 13, 25) to be an optical receiver, The coupler (27, D2, P1, 18, 28) also has a portion (27, D2) that becomes an optical transmitter and a portion (P1, 18, 28) that becomes an optical receiver. DAA 20 is preferably integrated in the same manner as conventional DAA 10. The DAA 20 is set to the transmission mode and the reception mode according to the activation (ON) and inactivation (OFF) of the mode switching signal TX-EN.

送信増幅器/ドライバ22はモデム(不図示)からのモード切替信号TX−ENが活性となるに応じて、モデムからの送信信号TX−INを緩衝増幅し発光ダイオードなどの発光素子D1を駆動する、発光素子D1の発光に基づいて送信された光信号出力は光検出素子P2により電流として検出され該電流は送信TIA(送信伝達インピーダンス増幅器)13により緩衝増幅された後、出力バッファ付減衰器25を経て送信出力信号TX−OUTとなり電力線へ送信される。制御回路29は送信モードへの切り替えに応じて送信増幅器/ドライバ22の入力を所定値に所定周期で強制して発光素子D1の発光が最大出力値と引き続く最小出力値をとるようにし、続く所定の休止期を経てモデムよりの送信信号TX−INが送信できるようにする。送信信号TX−INは光信号に変換されて光検出素子P2により電流として検出され、該電流は送信TIA(送信伝達インピーダンス増幅器)13により緩衝増幅される。制御回路26は、送信TIA13の出力を検出して前記所定値に応じた出力値を決定して、送信増幅器/ドライバ22から送信TIA13までの増幅率(伝達比)を決定する。該増幅率は発光ダイオード(LED)でよい発光素子D1とフォトダイオード(PD)やフォトトランジスタ(PTR)でよい受光素子P1間の電流伝達比(CTR)の変動に依存して変動する。そこで、制御回路26は、出力バッファ付減衰器25の減衰率を調整して増幅率の変動を補償し、送信信号TX−INが一定の所定増幅率で増幅されて送信出力信号TX−OUTとなるようにする。なお、出力バッファ付減衰器25は減衰器を前置して緩衝増幅器を後置するようにして減衰率の精度を高くとることは周知である。また、制御回路26は従来の状態論理回路のように電源電圧等を検出して受信増幅器/ドライバ27を介して送信して、制御回路29により検出出力するようにしてもよい。また、発光の最大出力値と最小出力値とは、送信信号TX−INが線形増幅される範囲に設定されるように選ぶべきである。   The transmission amplifier / driver 22 buffers and amplifies the transmission signal TX-IN from the modem in response to the activation of the mode switching signal TX-EN from the modem (not shown), and drives the light emitting element D1 such as a light emitting diode. The optical signal output transmitted based on the light emission of the light emitting element D1 is detected as a current by the light detecting element P2, and the current is buffered and amplified by the transmission TIA (transmission transfer impedance amplifier) 13, and then the attenuator with output buffer 25 Then, the transmission output signal TX-OUT is transmitted to the power line. In response to switching to the transmission mode, the control circuit 29 forces the input of the transmission amplifier / driver 22 to a predetermined value at a predetermined cycle so that the light emission of the light emitting element D1 takes the maximum output value and the minimum output value, and continues to the predetermined value. The transmission signal TX-IN from the modem can be transmitted through the idle period. The transmission signal TX-IN is converted into an optical signal and detected as a current by the light detection element P2, and the current is buffered and amplified by a transmission TIA (transmission transfer impedance amplifier) 13. The control circuit 26 detects the output of the transmission TIA 13 and determines the output value corresponding to the predetermined value, and determines the amplification factor (transmission ratio) from the transmission amplifier / driver 22 to the transmission TIA 13. The amplification factor varies depending on the variation of the current transfer ratio (CTR) between the light emitting element D1 which may be a light emitting diode (LED) and the light receiving element P1 which may be a photodiode (PD) or a phototransistor (PTR). Therefore, the control circuit 26 adjusts the attenuation rate of the attenuator 25 with output buffer to compensate for fluctuations in the amplification rate, and the transmission signal TX-IN is amplified at a constant predetermined amplification rate to obtain the transmission output signal TX-OUT. To be. It is well known that the output buffer attenuator 25 has a high attenuation rate accuracy by placing an attenuator in front and a buffer amplifier. Further, the control circuit 26 may detect the power supply voltage and the like as in the conventional state logic circuit, transmit the detected voltage via the reception amplifier / driver 27, and detect and output it by the control circuit 29. Further, the maximum output value and the minimum output value of the light emission should be selected so that the transmission signal TX-IN is set in a linear amplification range.

また、受信増幅器/ドライバ27はモード切替信号TX−ENが非活性となるに応じて、受信信号RX−INを緩衝増幅し発光ダイオードなどの発光素子D2を駆動する、発光素子D2の発光に基づいて送信された光信号出力は光検出素子P1により電流として検出され該電流は受信TIA(受信伝達インピーダンス増幅器)18により緩衝増幅された後、出力バッファ付減衰器28を経て受信出力信号RX−OUTとなりモデムへ送信される。送信側フォトカプラも受信側フォトカプラもその増幅率の制御については同様であり、以下、送信側について、図3を参照して説明する。図3において横軸は時間tを表し、縦軸は振幅を任意尺度で相対表示するものである。   Further, the reception amplifier / driver 27 buffers and amplifies the reception signal RX-IN and drives the light emitting element D2 such as a light emitting diode in response to the inactivation of the mode switching signal TX-EN, based on the light emission of the light emitting element D2. The optical signal output transmitted in this manner is detected as a current by the light detection element P1, and the current is buffered and amplified by a reception TIA (reception transfer impedance amplifier) 18 and then passed through an attenuator 28 with an output buffer to receive a reception output signal RX-OUT. And sent to the modem. The control of the amplification factor is the same for both the transmission-side photocoupler and the reception-side photocoupler. Hereinafter, the transmission side will be described with reference to FIG. In FIG. 3, the horizontal axis represents time t, and the vertical axis represents amplitude relative to an arbitrary scale.

図3において DAA20の受信モード(RX)におけるモード切替信号(TX−EN)32が非活性(OFF)の状態から活性(ON)の状態に変化するのに応じて(トリガされて)DAA20は送信モード(TX)となり、発光ダイオード(LED)D1の発光強度(LOP)34は最大出力値(LOPmax)期間34aを経て、次に最小出力値(LOPmin)をとる期間34bに至り、モデムが送信信号(TX−IN)を立ち上げ変調された信号に対応する発光強度38をとる期間まで待機消光状態となる。次いで、モード切替信号32が活性に転じた時点から設定期間Txsを経た時点よりモデムが送信信号(TX−IN)を立ち上げ変調された信号38を送出する。送信信号(TX−IN)の送出終了か、一定時間の経過に応じて、モード切替信号(TX−EN)32が活性(ON)の状態から非活性(OFF)の状態に変化する。それに応じて、受信側の発光ダイオードD2の発光が同様に制御されてもよい。   In FIG. 3, the DAA 20 transmits (triggered) when the mode switching signal (TX-EN) 32 in the reception mode (RX) of the DAA 20 changes from the inactive (OFF) state to the active (ON) state. The mode (TX) is entered, and the light emission intensity (LOP) 34 of the light emitting diode (LED) D1 passes through the maximum output value (LOPmax) period 34a and then reaches the period 34b in which the minimum output value (LOPmin) is obtained. The standby extinction state is maintained until a period of emission intensity 38 corresponding to the signal modulated by raising (TX-IN). Next, the modem raises the transmission signal (TX-IN) from the time when the set period Txs has passed from the time when the mode switching signal 32 becomes active, and transmits the modulated signal 38. The mode switching signal (TX-EN) 32 changes from the active (ON) state to the inactive (OFF) state in response to the end of transmission of the transmission signal (TX-IN) or the elapse of a fixed time. Accordingly, the light emission of the light-emitting diode D2 on the reception side may be similarly controlled.

LED D1の発光強度34の期間34a、34b、34cに応じて、送信TIA13の出力(IPD)36は出力強度がIPDmaxの期間36a、IPDminの期間36b、無信号の期間36cをとり、変調された信号38に応じて変調された信号39を生ずる。制御回路26は、出力36を測定し、所定のレベル以上で所定の幅を超える幅を有する出力パルスを期間36aに対応する出力(あるいはその積分値)をIPDmaxとし、また該期間36aの終了でトリガされて所定期間内にサンプルされた、あるいは積分された、出力36を期間36bに対応する出力IPDminをあらわすものとして、IPDmaxとIPDminを記憶する。そして、IPDmax―IPDminを算出して、所定の増幅率に対応する値IPDsとの比を求める。減衰器の設定をIPDs/(IPDmax―IPDmin)とする。   According to the periods 34a, 34b, 34c of the emission intensity 34 of the LED D1, the output (IPD) 36 of the transmission TIA 13 is modulated by taking the period 36a of the output intensity IPDmax, the period 36b of IPDmin, and the period 36c of no signal. A signal 39 modulated in response to the signal 38 is produced. The control circuit 26 measures the output 36, sets an output pulse corresponding to the period 36a (or an integrated value thereof) as an output pulse having a width greater than a predetermined level and exceeding a predetermined width as IPDmax, and at the end of the period 36a. IPDmax and IPDmin are stored, with output 36 representing the output IPDmin corresponding to period 36b, triggered and sampled within a predetermined period. Then, IPDmax−IPDmin is calculated to obtain a ratio with the value IPDs corresponding to a predetermined amplification factor. The setting of the attenuator is IPDs / (IPDmax−IPDmin).

あるいは、期間36aと期間36bとを同じに取り、期間36aと期間36bとで入力を反転して積分する積分器により出力(IPD)36を期間36a+期間36bの間積分すれば雑音による影響の少ないIPDmax―IPDminがえられる。そのほかの種々の工夫が周知であろう。   Alternatively, if the period 36a is equal to the period 36b, and the output (IPD) 36 is integrated for the period 36a + the period 36b by an integrator that inverts and integrates the input in the period 36a and the period 36b, the influence of noise is small. IPDmax-IPDmin is obtained. Various other devices will be known.

図4は、本発明が適用される別の実施例のDAA40の概略ブロック図である。図2におけるDAA20と同様の構成部品には同じ参照番号が付されており、ここでは説明を省略する。DAA40においても、送信側と受信側は同様の動作をするのであり、送信伝達インピーダンス増幅器(TX―TIA)43と受信伝達インピーダンス増幅器(RX―TIA)48は同様の機能と性能を有する。また、制御回路46が電源電圧のような状態パラメータを検出して送信し、制御回路49が該パラメータを検出出力するようにもできる。しかし、DAA20と異なりDAA40には出力バッファ付減衰器25、28がなく、図1の従来技術におけるTX−TIA3ように、可変増幅度を有する構成のTX―TIA43の増幅度を設定するようにしたものである。   FIG. 4 is a schematic block diagram of a DAA 40 according to another embodiment to which the present invention is applied. Components similar to those of the DAA 20 in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted here. Also in the DAA 40, the transmission side and the reception side perform the same operation, and the transmission transfer impedance amplifier (TX-TIA) 43 and the reception transfer impedance amplifier (RX-TIA) 48 have the same function and performance. Further, the control circuit 46 can detect and transmit a state parameter such as a power supply voltage, and the control circuit 49 can detect and output the parameter. However, unlike the DAA 20, the DAA 40 does not have the output buffer attenuators 25 and 28, and the TX-TIA 43 having a variable amplification degree is set like the TX-TIA 3 in the prior art of FIG. Is.

DAA20においてもDAA40においても、送信出力信号TX−OUTを図1におけるように、スイッチを介して出力するようにして、期間Txsの間は出力をしないようにしてもよい。DAA20においてもDAA40においてもDAA10と同様に集積化が可能であり、低圧側と電力線側をそれぞれもモノリシック集積回路として形成した後それらをひとつのダイに集積してもよい。   In both the DAA 20 and the DAA 40, the transmission output signal TX-OUT may be output via a switch as shown in FIG. 1, and may not be output during the period Txs. Both the DAA 20 and the DAA 40 can be integrated in the same manner as the DAA 10, and the low-voltage side and the power line side may be formed as monolithic integrated circuits, and then integrated on one die.

図5は、本発明の一実施例である、発光素子を含む光送信機、及び該光送信機から前記発光素子の発光に基づいて送信された光信号を受信する光検出素子を含む光受信機を一体に備えるフォトカプラの制御方法を表すフローチャート50である。工程52では、光送信機からの信号送信の開始前に、発光素子の最大出力及び最小出力となる発光を生ぜしめる。工程54では、最大出力及び前記最小出力の差を基にフォトカプラの増幅率を決定する。   FIG. 5 is an embodiment of the present invention, an optical transmitter including a light emitting element, and an optical receiver including a light detecting element that receives an optical signal transmitted from the optical transmitter based on light emission of the light emitting element. It is the flowchart 50 showing the control method of the photocoupler with which a machine is integrated. In step 52, before starting the signal transmission from the optical transmitter, light emission that produces the maximum output and the minimum output of the light emitting element is generated. In step 54, the gain of the photocoupler is determined based on the difference between the maximum output and the minimum output.

図6は、図5に示す方法とは別の本発明の一実施例である、発光素子を含む光送信機、及び該光送信機から前記発光素子の発光に基づいて送信された光信号を受信する光検出素子を含む光受信機を一体に備えるフォトカプラの制御方法を表すフローチャート60である。工程62において、光送信機からの信号送信の開始前に、光送信機が発光素子の発光を最大出力とする。工程64において、光受信機の光検出素子が所定の強度を超えた光信号を受光し、該光信号が前記最大出力による信号出力として識別する。工程66において、光送信機が発光素子の発光を最小出力とする。工程68において、光受信機は前記光信号に続いて受光した比較的強度の小さな前記光信号が前記最小出力による信号出力であることを識別する。工程70において、前記最大出力による信号出力と前記最小出力による信号出力の差からフォトカプラの増幅率を決定する。   FIG. 6 is an embodiment of the present invention different from the method shown in FIG. 5 and shows an optical transmitter including a light emitting element, and an optical signal transmitted from the optical transmitter based on light emission of the light emitting element. It is the flowchart 60 showing the control method of the photocoupler which is provided with the optical receiver containing the photon detection element to receive integrally. In step 62, the optical transmitter sets the light emission of the light emitting element to the maximum output before starting the signal transmission from the optical transmitter. In step 64, the optical detection element of the optical receiver receives an optical signal exceeding a predetermined intensity, and the optical signal is identified as a signal output by the maximum output. In step 66, the optical transmitter sets the light emission of the light emitting element to the minimum output. In step 68, the optical receiver identifies that the relatively low intensity optical signal received following the optical signal is a signal output by the minimum output. In step 70, the amplification factor of the photocoupler is determined from the difference between the signal output by the maximum output and the signal output by the minimum output.

以上実施例について説明したが、種々の変形が可能であり、本発明が以上の実施例に限定されるものではない。   Although the embodiments have been described above, various modifications are possible, and the present invention is not limited to the above embodiments.

従来技術によるフォトカプラとその制御装置とを含むDAA(データ・アクセス装置)10の概略ブロック図である。1 is a schematic block diagram of a DAA (Data Access Device) 10 including a photocoupler and its control device according to the prior art. 本発明の一実施例のフォトカプラとその制御装置とを含むDAA20の概略を示すブロック図である。It is a block diagram which shows the outline of DAA20 including the photocoupler of one Example of this invention, and its control apparatus. 本発明の一実施例のフォトカプラとその制御装置とを含むDAA20に関連する信号のタイミング図である。FIG. 4 is a timing diagram of signals related to the DAA 20 including the photocoupler and its control device according to an embodiment of the present invention. 本発明の一実施例のフォトカプラとその制御装置とを含むDAA40の概略を示すブロック図である。It is a block diagram which shows the outline of DAA40 containing the photocoupler of one Example of this invention, and its control apparatus. 本発明の一実施例のフォトカプラの制御方法を示すフローチャートである。It is a flowchart which shows the control method of the photocoupler of one Example of this invention. 本発明の一実施例のフォトカプラの制御方法を示すフローチャートである3 is a flowchart showing a method of controlling a photocoupler according to an embodiment of the present invention.

符号の説明Explanation of symbols

10、20、40 DAA(データ・アクセス装置)
2,22 送信増幅器/ドライバ
7,27 受信増幅器/ドライバ
3、13,43 送信TIA(送信伝達インピーダンス増幅器)
8、18、48 受信TIA(受信伝達インピーダンス増幅器)
26、29、46、49 制御回路
D1、D2 発光素子
P1、P2 受光素子
10, 20, 40 DAA (data access device)
2,22 Transmission amplifier / driver 7,27 Reception amplifier / driver 3,13,43 Transmission TIA (transmission transfer impedance amplifier)
8, 18, 48 Receiving TIA (Receiving Transfer Impedance Amplifier)
26, 29, 46, 49 Control circuit D1, D2 Light emitting element P1, P2 Light receiving element

Claims (8)

発光素子を含む光送信機、及び該光送信機から前記発光素子の発光に基づいて送信された光信号出力を受信する光検出素子を含む光受信機を一体に備えるフォトカプラの制御装置において、
前記光送信機からの光信号出力の送信の開始前に、前記発光素子の最大出力及び最小出力となる発光を生ぜしめ、前記最大出力及び前記最小出力の差を基に前記フォトカプラの増幅率を決定することを特徴とするフォトカプラの制御装置。
In a control device for a photocoupler integrally including an optical transmitter including a light emitting element, and an optical receiver including a light detection element that receives an optical signal output transmitted from the optical transmitter based on light emission of the light emitting element,
Before starting the transmission of the optical signal output from the optical transmitter, the light emitting element emits light having the maximum output and the minimum output, and the amplification factor of the photocoupler is based on the difference between the maximum output and the minimum output. A control device for a photocoupler, characterized by:
前記発光素子による前記最小出力の発光は、前記最大出力の発光の直後に連続して行なわれるよう構成されることを特徴とする、請求項1に記載のフォトカプラの制御装置。   2. The photocoupler control device according to claim 1, wherein the light emission of the minimum output by the light emitting element is continuously performed immediately after the light emission of the maximum output. 3. 前記信号送信の開始前に、前記光検出素子が所定の強度を超えた前記光信号を前記光受信機が受光したときに、該光信号が前記最大出力による信号出力であること、及び前記光信号に続いて受光した比較的強度の小さな前記光信号が前記最小出力による信号であることを識別できるようにするトリガ検知手段を備えたことを特徴とする、請求項2に記載のフォトカプラの制御装置。   Before the start of signal transmission, when the optical receiver receives the optical signal that has exceeded a predetermined intensity, the optical signal is a signal output by the maximum output, and the light 3. The photocoupler according to claim 2, further comprising: a trigger detection unit that makes it possible to identify that the optical signal having a relatively low intensity received following the signal is a signal with the minimum output. Control device. 前記制御装置は、少なくとも一部が前記フォトカプラと一体のIC装置を構成することを特徴とする、請求項1に記載のフォトカプラの制御装置。   The photocoupler control device according to claim 1, wherein at least a part of the control device constitutes an IC device integrated with the photocoupler. 前記発光素子は、発光ダイオードを含むことを特徴とする、請求項1に記載のフォトカプラの制御装置。   The photocoupler control device according to claim 1, wherein the light emitting element includes a light emitting diode. 発光素子を含む光送信機、及び該光送信機から前記発光素子の発光に基づいて送信された光信号を受信する光検出素子を含む光受信機を一体に備えるフォトカプラの制御方法において、
前記光送信機からの信号送信の開始前に、前記発光素子の最大出力及び最小出力となる発光を生ぜしめる工程と、
前記最大出力及び前記最小出力の差を基に前記フォトカプラの増幅率を決定する工程とを有することを特徴とするフォトカプラの制御方法。
In a control method of a photocoupler integrally including an optical transmitter including a light emitting element and an optical receiver including a light detection element that receives an optical signal transmitted from the optical transmitter based on light emission of the light emitting element.
Before starting signal transmission from the optical transmitter, generating light emission that is the maximum output and minimum output of the light emitting element;
And a step of determining an amplification factor of the photocoupler based on a difference between the maximum output and the minimum output.
前記発光素子による前記最小出力の発光は、前記最大出力の発光の直後に連続して行なうことを特徴とする、請求項6に記載のフォトカプラの制御方法。   The photocoupler control method according to claim 6, wherein the light emission of the minimum output by the light emitting element is continuously performed immediately after the light emission of the maximum output. 前記信号送信の開始前に、前記光検出素子が所定の強度を超えた前記光信号を前記光受信機が受光したときに、該光信号が前記最大出力による信号出力として識別する工程と、前記光信号に続いて受光した比較的強度の小さな前記光信号が前記最小出力による信号出力であることを識別する工程とを有する、請求項6に記載のフォトカプラの制御方法。   Identifying the optical signal as the signal output by the maximum output when the optical receiver receives the optical signal that has exceeded a predetermined intensity by the optical detection element before the start of the signal transmission; and 7. The method of controlling a photocoupler according to claim 6, further comprising the step of identifying that the optical signal having a relatively low intensity received following the optical signal is a signal output by the minimum output.
JP2005329927A 2005-11-15 2005-11-15 Photocoupler control device and photocoupler control method Expired - Fee Related JP4607742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329927A JP4607742B2 (en) 2005-11-15 2005-11-15 Photocoupler control device and photocoupler control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329927A JP4607742B2 (en) 2005-11-15 2005-11-15 Photocoupler control device and photocoupler control method

Publications (2)

Publication Number Publication Date
JP2007141928A true JP2007141928A (en) 2007-06-07
JP4607742B2 JP4607742B2 (en) 2011-01-05

Family

ID=38204488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329927A Expired - Fee Related JP4607742B2 (en) 2005-11-15 2005-11-15 Photocoupler control device and photocoupler control method

Country Status (1)

Country Link
JP (1) JP4607742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071582A (en) * 2007-09-13 2009-04-02 Toa Corp In-plant broadcast system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260712A (en) * 1996-03-19 1997-10-03 Hitachi Maxell Ltd Light receiving circuit and device using thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260712A (en) * 1996-03-19 1997-10-03 Hitachi Maxell Ltd Light receiving circuit and device using thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071582A (en) * 2007-09-13 2009-04-02 Toa Corp In-plant broadcast system

Also Published As

Publication number Publication date
JP4607742B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
US10122469B2 (en) Optical transmitter, active optical cable, and optical transmission method
US7512166B2 (en) Apparatus and method for controlling optical power and extinction ratio
JPS62200929A (en) Bias controller for light emitting device of data transmitter for burst communication of fiber optics communication
JP2003318682A (en) Bottom level detection device for burst mode optical receiver
JP2007173908A (en) Burst optical signal receiver and gain setting method thereof
JP4607742B2 (en) Photocoupler control device and photocoupler control method
JPH10163960A (en) Optical burst transmission/reception circuit
JP4315165B2 (en) Station side device and optical receiving circuit
WO2000048340A1 (en) Method and apparatus for converting electrical signals and optical signals for bidirectional communication over a single optical fiber
KR101023981B1 (en) Method, Transmitter, Receiver and System for Visible Light Communication
JP2011244350A (en) Optical transceiver and method of controlling the same
CN217276797U (en) Optical fiber time delay measuring device
JP4173688B2 (en) Optical module and optical communication system
JP2022010899A (en) Transmitter/receiver, terminal device and transmission/reception system
JPH10243475A (en) Optical communication system
JP2006060640A (en) Light receiving circuit and its decision threshold control method
CN203313195U (en) Automatic control-power optical transmitter
KR100442355B1 (en) Automatic controlling apparatus for reception gain
JPS628615Y2 (en)
KR200286900Y1 (en) remote control system using the remote-controller
JPH10173290A (en) Light transmission circuit
TW202147796A (en) Optical wavelength modulation method capable of achieving wavelength modulation for optical signal without losing original characteristics
KR100498720B1 (en) remote control system of remote-control
JPH0345046A (en) Optical communication system
CN114373662A (en) Adjustable waveform device applied to microwave excitation source

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Ref document number: 4607742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees