JP2007139733A - Microchannel scrubber - Google Patents

Microchannel scrubber Download PDF

Info

Publication number
JP2007139733A
JP2007139733A JP2005359555A JP2005359555A JP2007139733A JP 2007139733 A JP2007139733 A JP 2007139733A JP 2005359555 A JP2005359555 A JP 2005359555A JP 2005359555 A JP2005359555 A JP 2005359555A JP 2007139733 A JP2007139733 A JP 2007139733A
Authority
JP
Japan
Prior art keywords
microchannel
gas
permeable membrane
gas collector
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005359555A
Other languages
Japanese (ja)
Inventor
Takashi Toda
敬 戸田
Shinichi Ohira
慎一 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005359555A priority Critical patent/JP2007139733A/en
Publication of JP2007139733A publication Critical patent/JP2007139733A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and inexpensive gas collector for measuring an extremely low concentration of gas on real time. <P>SOLUTION: A microchannel of honeycomb structure is formed to fix a hydrophobic gas permeable membrane thereon. The gas permeable membrane is fixed in a process of polymerization solidification, when using a poly-dimethyl siloxiane (PDMS) as a base material for preparing the microchannel. A very thin liquid layer is formed over a wide area by forming not a simple microchannel but honeycomb type one. The absorption efficiency of the gas is enhanced thereby to collection-enriching a gas component in the absorption liquid layer even in a sort absorption time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は空気中に存在する極微量の成分を捕集し、連続的あるいは間欠的に測定に関わるものであり、環境科学、医療診断などの分野において簡便で高感度な測定を提供するものである。The present invention collects a very small amount of components present in the air and is related to measurement continuously or intermittently, and provides simple and highly sensitive measurement in fields such as environmental science and medical diagnosis. is there.

従来技術Conventional technology

従来の湿式ガス分析では、インピンジャー内に設置した吸収溶液に試料ガスを通気して取り込む方法が使われており、JISでもこの方法が定められている。排ガスのように目的成分が高濃度に含まれる場合はこの方法で構わないが、大気中の成分を調べる場合は長時間の捕集が必要となる。しかし、理想的には短時間の捕集あるいは連続的な分析をすることが望まれる。そこで、ガスケットを切り抜いて吸収液の流路を形成しその上にガス透過性の素材で覆ったいわゆるガスケットタイプの平面型ガス捕集装置もよく使われている。例えば非特許文献1のような例がある。また、特許文献1のように、チャネルをシリコーン膜で覆ったガスの捕集器も報告した。
特願2003−045742 マイクロガス捕集器 Analytical Chemistry、74、5890(2002)
In conventional wet gas analysis, a method is used in which a sample gas is introduced into an absorption solution installed in an impinger by aeration. This method is also defined by JIS. This method may be used when the target component is contained at a high concentration as in the case of exhaust gas. However, when the component in the atmosphere is examined, a long time collection is required. However, ideally it is desirable to collect in a short time or perform a continuous analysis. Therefore, a so-called gasket-type flat gas collecting device in which a gasket is cut out to form an absorption liquid flow path and covered with a gas-permeable material is often used. For example, there is an example such as Non-Patent Document 1. In addition, as in Patent Document 1, a gas collector in which the channel is covered with a silicone film has also been reported.
Japanese Patent Application No. 2003-045742 Micro gas collector Analytical Chemistry, 74, 5890 (2002)

大気などに含まれる微量ガス成分を湿式で分析する場合、インピンジャーに試料ガスを通気し、吸収液に捕集し、その後反応生成物を測定する。この場合、測定に十分な濃度を吸収液中に得るには長時間の捕集を要していた。また測定にも大型の装置を要していたので現場で分析することも困難であった。When a trace gas component contained in the atmosphere or the like is analyzed by a wet method, a sample gas is passed through an impinger and collected in an absorbing solution, and then a reaction product is measured. In this case, in order to obtain a concentration sufficient for measurement in the absorbing solution, it has been necessary to collect for a long time. In addition, since a large-scale device is required for the measurement, it is difficult to analyze it on site.

これらの問題を解決するために、ガスケット型のガス捕集装置がある。ここでさらに感度を上げようとすると、ガスケットの厚みを小さくする必要があった。分析種の吸収後の濃度が液層の厚みに反比例するからである。しかし、任意の厚みのガスケットを取り揃えることは現実的でなく、また薄くするにも入手できるガスケットの素材に限りがあった。In order to solve these problems, there is a gasket type gas collector. Here, in order to further increase the sensitivity, it was necessary to reduce the thickness of the gasket. This is because the concentration of the analyte after absorption is inversely proportional to the thickness of the liquid layer. However, it is not realistic to prepare gaskets of arbitrary thickness, and there are limits to the gasket materials that can be obtained to reduce the thickness.

液層を薄くしたときのもうひとつの問題は、この厚みを一定に背御することが難しいということである。基材やガス透過性の素材が少しでも曲がると液層厚みが変化し、場合によっては基材と透過性素材が密着してしまい、吸収液が流れなくなってしまうこともある。Another problem with thinning the liquid layer is that it is difficult to keep this thickness constant. If the substrate or the gas permeable material is bent even a little, the thickness of the liquid layer changes. In some cases, the substrate and the permeable material are in close contact with each other, and the absorbing liquid may not flow.

そのような問題を解決するため、幅の狭い溝、すなわちマイクロチャネル中にガスを取り込む装置を考案(特願2003−045742)したが、有効な吸収面積を得るには、チャネルを長くする必要があった。そのため、流れ抵抗が大きく吸収液を流すのが困難であり、また必要とされる吸収液流量も2マイクロリッター毎分程度と極めて小さく、既存のものでは流量の制御が極めて困難であった。また、吸収面積に関しても、気液との接触面積がガス捕集面の全面積に対して5%程度と不足していた。In order to solve such a problem, a device for taking gas into a narrow groove, that is, a microchannel has been devised (Japanese Patent Application No. 2003-045742). However, in order to obtain an effective absorption area, it is necessary to lengthen the channel. there were. Therefore, the flow resistance is large and it is difficult to flow the absorption liquid, and the required flow rate of the absorption liquid is as small as about 2 microliters per minute. In addition, the area of contact with the gas-liquid was insufficient with respect to the total area of the gas collection surface, about 5%.

ポリジメチルシロキサン(PDMS)製板の表面にハニカム構造のマイクロチャネルを形成し、吸収液を蓄える場とした。そのマイクロチャネル上には疎水性メンブランを固着する。マイクロチャネルに吸収液あるいは吸収反応溶液を流し、疎水性メンブランの外側に大気試料を導入し、目的性分を疎水性膜を介して取り込む。A microchannel having a honeycomb structure was formed on the surface of a plate made of polydimethylsiloxane (PDMS) to provide a place for storing the absorbing liquid. A hydrophobic membrane is fixed on the microchannel. An absorbing solution or absorbing reaction solution is allowed to flow through the microchannel, an air sample is introduced outside the hydrophobic membrane, and the target component is taken in through the hydrophobic membrane.

ハニカム構造のマイクロチャネルによって、極薄の液層を一定の厚みで得ることができる。しかもガスの吸収面積を広くすることが可能である。また、吸収反応液はハニカムの溝に従って液の分岐と集合を繰り返しながら、吸収面に一様に広がっていく。チャネルのどこかに欠陥があってもその周りのチャネルに吸収反応液が回り込んで流れるので全体の特性に与える影響も少ない。An ultrathin liquid layer can be obtained with a certain thickness by the microchannel of the honeycomb structure. In addition, the gas absorption area can be increased. The absorption reaction liquid spreads uniformly on the absorption surface while repeating the branching and collection of the liquid according to the grooves of the honeycomb. Even if there is a defect somewhere in the channel, the absorption reaction solution flows around the channel around the channel, so there is little influence on the overall characteristics.

高い効率でガスを捕集するのでリアルタイムもしくは短時間の捕集で極低濃度のガスを測定することができる。また、吸収反応溶液の流量が10から100マイクロリッター毎分とハンドリングしやすく簡便に吸収反応溶液を供給できる。Since gas is collected with high efficiency, extremely low concentration gas can be measured in real time or in a short time. Also, the absorption reaction solution can be easily supplied with a flow rate of the absorption reaction solution of 10 to 100 microliters per minute.

マイクロチャネルにはPDMS製の基材を用いるので、PDMSの重合固化の過程でガス透過性膜を固着することができる。その為、接着剤を用いずに固定することが出来る。接着剤を用いて固定した例も報告されているが、この場合接着剤がチャネルに流れ込み微小構造のマイクロチャネルに大きな影響を与えてしまう。Since a base material made of PDMS is used for the microchannel, the gas permeable membrane can be fixed in the process of PDMS polymerization and solidification. Therefore, it can be fixed without using an adhesive. An example of fixing using an adhesive has also been reported, but in this case, the adhesive flows into the channel and greatly affects the microchannel of the microstructure.

ハニカム構造のマイクロチャネルガス捕集器に硫化水素や二酸化硫黄を取り込み、その後マイクロ検出器で両ガスの検出を行った。硫化水素の場合はフルオレッセイン酢酸水銀溶液を用い、下流でフルオレッセイン酢酸水銀の蛍光を測定した。一方、二酸化硫黄は導電率検出から算出した。応答の例を図2に示す。Hydrogen sulfide and sulfur dioxide were taken into a microchannel gas collector with a honeycomb structure, and then both gases were detected with a microdetector. In the case of hydrogen sulfide, a fluorescein mercury acetate solution was used, and fluorescence of fluorescein mercury acetate was measured downstream. On the other hand, sulfur dioxide was calculated from conductivity detection. An example of the response is shown in FIG.

ハニカム構造のマイクロチャネルにガス透過性のメンブランを取り付けた様子を模式的に表したものである。It is a schematic representation of a gas permeable membrane attached to a honeycomb microchannel. 図1にガス捕集器を使って硫化水素と二酸化硫黄を同時に測定した例である。硫化水素によってフルオレッセイン酢酸水銀の蛍光シグナルが減少し、また二酸化硫黄によって導電率シグナルが上昇するのが見られる。ppbのオーダーでも十分な応答が得られている。FIG. 1 shows an example in which hydrogen sulfide and sulfur dioxide are simultaneously measured using a gas collector. It can be seen that hydrogen sulfide reduces the fluorescence signal of fluorescein mercury acetate and sulfur dioxide increases the conductivity signal. A sufficient response is obtained even in the order of ppb.

符号の説明Explanation of symbols

1 ガス透過膜
2 マイクロチャネル
3 マイクロチャネルブロック
4 吸収液入口
5 吸収液出口
1 Gas-permeable membrane 2 Microchannel 3 Microchannel block 4 Absorption liquid inlet 5 Absorption liquid outlet

Claims (11)

気液との接触面積がガス捕集面の全面積に対して30%以上となることを特徴とするマイクロチャネル2と、そのマイクロチャネル2が表面に設けられたブロック3、及びマイクロチャネル2上に設けられた厚さ30μm以下のガス透過膜1とからなるマイクロガス捕集器。Microchannel 2 characterized in that the contact area with the gas-liquid is 30% or more with respect to the total area of the gas collecting surface, block 3 on which microchannel 2 is provided, and microchannel 2 And a gas permeable membrane 1 having a thickness of 30 μm or less provided on the micro gas collector. マイクロチャネル2が、ハニカム状に形成されていることを特徴とする請求項1記載のマイクロガス捕集器。The micro gas collector according to claim 1, wherein the micro channel (2) is formed in a honeycomb shape. マイクロチャネル2の流路の深さが、10〜200μm、巾が40〜1000μmであることを特徴とする請求項1〜2記載のマイクロガス捕集器。The micro gas collector according to claim 1 or 2, wherein the flow path of the microchannel 2 has a depth of 10 to 200 µm and a width of 40 to 1000 µm. ブロック3が、ポリジメチルシロキサン、ポリシリコーン、アクリル樹脂、ポリ塩化ビニル樹脂、フッ素樹脂などの樹脂製ブロック、あるいは石英、ガラス、シリコン、アルミナなどの無機系の基板であることを特徴とする請求項1〜3記載のマイクロガス捕集器。The block 3 is a resin block such as polydimethylsiloxane, polysilicone, acrylic resin, polyvinyl chloride resin, or fluororesin, or an inorganic substrate such as quartz, glass, silicon, or alumina. The micro gas collector of 1-3. 透過膜が、多孔性のテフロン膜であることを特徴とする請求項1〜4記載のマイクロガス捕集器。The micro gas collector according to claim 1, wherein the permeable membrane is a porous Teflon membrane. 透過膜が、ブロックに固着された1枚の膜であることを特徴とする請求項1〜5記載のマイクロガス捕集器。6. The micro gas collector according to claim 1, wherein the permeable membrane is a single membrane fixed to the block. 透過膜が、ブロックに熱接着法により固着されていることを特徴とする請求項1〜6記載のマイクロガス捕集器。The micro gas collector according to claim 1, wherein the permeable membrane is fixed to the block by a thermal bonding method. 透過膜作成用基板が、透過膜とブロックとを接着した後、基板から透過膜を剥離するために、表面を予めフッ素化シランで表面処理してなるものであることを特徴とする請求項1〜7記載のマイクロガス捕集器。2. The substrate for forming a permeable membrane, wherein the surface is previously treated with fluorinated silane in order to peel the permeable membrane from the substrate after bonding the permeable membrane and the block. The micro gas collector according to -7. 請求項1記載のマイクロチャネルに吸収液あるいは吸収反応溶液を流し、大気試料の目的成分を透過膜を介して取り込むことを特徴とするガス分析方法A gas analysis method characterized by flowing an absorption solution or an absorption reaction solution into the microchannel according to claim 1 and taking in a target component of an air sample through a permeable membrane. 請求項9記載の大気試料が硫化水素であり、吸収反応溶液がアルカリ性のフルオレッセイン酢酸水銀であることを特徴とするガス分析方法。10. A gas analysis method according to claim 9, wherein the air sample is hydrogen sulfide and the absorption reaction solution is alkaline fluorescein mercury acetate. 請求項9記載の大気試料が二酸化硫黄であり、吸収反応溶液が微硫酸酸性の過酸化水素溶液であることを特徴とするガス分析方法。10. A gas analysis method according to claim 9, wherein the atmospheric sample is sulfur dioxide, and the absorption reaction solution is a slightly sulfuric acid acidic hydrogen peroxide solution.
JP2005359555A 2005-11-14 2005-11-14 Microchannel scrubber Pending JP2007139733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359555A JP2007139733A (en) 2005-11-14 2005-11-14 Microchannel scrubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359555A JP2007139733A (en) 2005-11-14 2005-11-14 Microchannel scrubber

Publications (1)

Publication Number Publication Date
JP2007139733A true JP2007139733A (en) 2007-06-07

Family

ID=38202764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359555A Pending JP2007139733A (en) 2005-11-14 2005-11-14 Microchannel scrubber

Country Status (1)

Country Link
JP (1) JP2007139733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078426A (en) * 2008-09-25 2010-04-08 Sekisui Medical Co Ltd Method for measuring nitrogen monoxide and apparatus therefor
JP2010540905A (en) * 2007-09-21 2010-12-24 アプライド バイオシステムズ インコーポレーティッド Device and method for thermally isolating chamber of analysis card

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155116A (en) * 1998-11-19 2000-06-06 Takashi Inaga Gas detection sensor
JP2004257748A (en) * 2003-02-24 2004-09-16 Kumamoto Technology & Industry Foundation Micro gas collector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155116A (en) * 1998-11-19 2000-06-06 Takashi Inaga Gas detection sensor
JP2004257748A (en) * 2003-02-24 2004-09-16 Kumamoto Technology & Industry Foundation Micro gas collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540905A (en) * 2007-09-21 2010-12-24 アプライド バイオシステムズ インコーポレーティッド Device and method for thermally isolating chamber of analysis card
JP2010078426A (en) * 2008-09-25 2010-04-08 Sekisui Medical Co Ltd Method for measuring nitrogen monoxide and apparatus therefor

Similar Documents

Publication Publication Date Title
Wan et al. Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring
US9476852B2 (en) Manufacturing method of a graphene-based electrochemical sensor, and electrochemical sensor
Pumera et al. New materials for electrochemical sensing VII. Microfluidic chip platforms
ES2319343T3 (en) METHOD AND APPLIANCE FOR AUTOMATIC ANALYSIS.
JP5629094B2 (en) Analysis equipment
DE60014676D1 (en) DEVICE AND METHOD FOR ANALYZING LIQUID SAMPLES
JP2004516481A5 (en)
CN102448602B (en) Microchannel chip and method for gas-liquid phase separation using same
Ohira et al. Micro gas analysis system for measurement of atmospheric hydrogen sulfide and sulfur dioxide
Lin et al. Gradient-based colorimetric sensors for continuous gas monitoring
Toda et al. Micro-gas analysis system μGAS comprising a microchannel scrubber and a micro-fluorescence detector for measurement of hydrogen sulfide
FR2964194B1 (en) SYSTEM AND METHOD FOR DETECTING ANALYTES PRESENT IN A GAS SAMPLE.
CN102331450A (en) Poisonous and harmful gas detection chip and preparation method thereof
US6296685B1 (en) Device and method for sampling in liquid phases using a diffusion body and an analyte-binding phase
Timmer et al. Miniaturized measurement system for ammonia in air
Trimarco et al. Fast and sensitive method for detecting volatile species in liquids
EP3218922B1 (en) A system for extracting and analyising including a device for extracting volatile species from a liquid
Hiki et al. Sensitive gas analysis system on a microchip and application for on-site monitoring of NH3 in a clean room
JP2007139733A (en) Microchannel scrubber
Zhu et al. Integrated microfluidic gas sensor for detection of volatile organic compounds in water
Yin et al. Separation and electrochemical detection platform for portable individual PM2. 5 monitoring
CN104412105A (en) Detection of hydrocarbons in aqueous environments
JP4397604B2 (en) Manufacturing method of micro gas collector
Toda Trends in atmospheric trace gas measurement instruments with membrane-based gas diffusion scrubbers
Timmer et al. Selective low concentration ammonia sensing in a microfluidic lab-on-a-chip

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20080813

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Effective date: 20080813

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Effective date: 20080813

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20080813

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A131 Notification of reasons for refusal

Effective date: 20110215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110707