JP2007138562A - Tap water line temperature stabilizing method - Google Patents

Tap water line temperature stabilizing method Download PDF

Info

Publication number
JP2007138562A
JP2007138562A JP2005334228A JP2005334228A JP2007138562A JP 2007138562 A JP2007138562 A JP 2007138562A JP 2005334228 A JP2005334228 A JP 2005334228A JP 2005334228 A JP2005334228 A JP 2005334228A JP 2007138562 A JP2007138562 A JP 2007138562A
Authority
JP
Japan
Prior art keywords
tap water
line
water
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005334228A
Other languages
Japanese (ja)
Inventor
Masaaki Yoshida
正明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005334228A priority Critical patent/JP2007138562A/en
Publication of JP2007138562A publication Critical patent/JP2007138562A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of stabilizing a tap water temperature safely to a summer season temperature to make fuel and light expenses lower than the present expenses for tap water consumers, introducible into many areas because of not costing much for installation without needing to lay a line in addition to an existing tap water line and furthermore reducing CO<SB>2</SB>, utilizing waste heat from garbage incineration and recovering waste heat generated in a factory in a area into which this method is introduced, which leads also to countermeasures against global warming and heat islands. <P>SOLUTION: A tap water line through which tap water is circulated, or a flow-through tap water line without a stop or an extreme decrease of a tap water flow is set from a tap water line extending in the order of a purification plant to a service reservoir to a water supply station to a main pipe and to a branch pipe, and a heat exchange part which receives heat from a waste heat source is interposed in the set line. Tap water variable according to the season is heated to 20-35°C and returned to the tap water line. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水道水を年間通して定温供給するための水道水温度を安定化する方法に関するものである。更に詳しくは、ごみ焼却炉、火力発電所等からでる排熱と水道水を熱交換することによって、水道水を加温し、水道水温度を安定化する方法に関するものである。   The present invention relates to a method for stabilizing tap water temperature for supplying tap water at a constant temperature throughout the year. More specifically, the present invention relates to a method for heating tap water and stabilizing the tap water temperature by exchanging heat between waste heat generated from a waste incinerator, a thermal power plant, and the like and tap water.

水道水は、河川等の水源から取水した水(原水)を浄水処理して、濁質や有害物質を取り除き、水質検査に適合した水(浄水)となったものである。図1は河川等の水源から取水してから、家庭、店舗、企業等の需要家へ水道水として送られるまでのフロー図である。河川等の水源の水は取水場1によって取り入れられて浄水場2へ送られる。浄水場2へ送られた水は、浄水場2で浄水処理をされ浄水(水道水)となり、配水池3へ送られる。配水池3へ送られた水道水は、配水池3に貯留され、使用量に応じて給水所4を介して家庭、店舗、企業等の需要家5へ送られる。   Tap water is water (raw water) suitable for water quality inspection by purifying water (raw water) taken from water sources such as rivers to remove turbidity and harmful substances. FIG. 1 is a flow chart from when water is taken from a water source such as a river until it is sent as tap water to a consumer such as a home, a store, or a company. Water from a water source such as a river is taken in by a water intake 1 and sent to a water purification plant 2. The water sent to the water purification plant 2 is subjected to water purification treatment at the water purification plant 2 to become purified water (tap water) and is sent to the distribution reservoir 3. The tap water sent to the distribution reservoir 3 is stored in the distribution reservoir 3, and is sent to the customer 5, such as a home, a store, or a company, via the water supply station 4 according to the amount of use.

前記の方法で得られた水道水の水温は、水源、配水池3等で外気にさらされている等の理由により外気温の影響を受けるため、季節の移り変わりによる外気温変化の影響を受けて変動する。この変動は地方により異なるが、例えば東京都庁付近では、非特許文献1に開示されているように、年間変動は平成15年度には最低6.0℃から最高26.4℃まで20.4℃の変動幅があり、家庭、店舗、企業等の需要家5へ送られる水道水は外気温の低い冬場は水温も低く、外気温の高い夏場は水温も高かった。   The water temperature of the tap water obtained by the above method is affected by the outside air temperature because it is exposed to the outside air at the water source, the distribution reservoir 3, etc., and is therefore affected by changes in the outside air temperature due to seasonal changes. fluctuate. Although this variation varies depending on the region, for example, as disclosed in Non-Patent Document 1, near the Tokyo Metropolitan Government Office, the annual variation is 20.4 ° C from a minimum of 6.0 ° C to a maximum of 26.4 ° C in FY2003. The tap water sent to consumers 5, such as households, stores, and companies, has a low water temperature in winter when the outside temperature is low, and a high water temperature in summer when the outside temperature is high.

ところで、需要家5は給水所4より送られてきた水温そのままの水として利用する他、水道水を需要家の敷地内に引き込んだ後、給湯設備等の温水発生装置7を用いて温水として利用する等、外部手段によって水温を変化させて使用することもある。例えば家庭においては、水道水を給湯器で温め温水として入浴用に使用する量の割合が大きい。   By the way, the consumer 5 uses the water as it is sent from the water supply station 4 as it is, and also draws the tap water into the customer's premises and then uses it as hot water using the hot water generator 7 such as a hot water supply facility. For example, the water temperature may be changed by an external means. For example, in homes, the proportion of the amount of tap water that is warmed with a water heater and used as hot water for bathing is large.

また、水温の低い冬場と、水温の高い夏場に、同じ温度の温水を得るためには、水温の低い冬場の方が温水発生装置で必要なエネルギーが多くなり、光熱費も高額になる。そのため、家庭においては冬場の光熱費が夏場に比べて高いという問題がある。例えば温水発生装置として東京ガス株式会社製RF式24号風呂給湯器を使用し、水温の高い7月と水温の低い1月に200Lの浴槽にお風呂(40℃)を沸かす場合、東京ガス株式会社のガス料金において7月は約33円/回であるのに対し、1月は約79円/回と7月と比べると2倍以上大きな金額であることが、非特許文献2に開示されている。さらに、1人1回あたり12L/分の水流量で5分間温水シャワーを利用すると、60L/回・人の温水を使用することとなり、世帯平均人数2.21人であるため、1世帯全員が温水シャワーを利用した場合、60×2.21=132.6L/回・世帯の温水使用量となる。非特許文献2に開示されている方法と同様に、東京ガス株式会社製RF式24号風呂給湯器を使用し、世帯員全員が温水シャワー(40℃)を使用する場合、東京ガス株式会社のガス料金において、7月は約22円/回・世帯であるのに対し、1月は約52円/回・世帯と7月と比べるとやはり2倍以上の金額となる。
つまり、1世帯が、200Lの浴槽にお風呂(40℃)を1回沸かし、世帯員全員が温水シャワー(40℃)を使用した場合、東京ガス株式会社のガス料金は、7月は33+22=55円/回・世帯であるのに対し、1月は79+52=131円/回・世帯となる。
ここで、前記温水シャワー使用時の水流量及び時間は非特許文献3に開示されている数値を用い、前記世帯平均人数は非特許文献4に平成12年国勢調査における東京都の人口が11864419人であり、世帯数が5371057世帯であることが開示されているため、前記人口及び世帯数から計算して求めた。
Also, in order to obtain hot water of the same temperature in winter when the water temperature is low and in summer when the water temperature is high, more energy is required for the hot water generator in winter when the water temperature is low, and the utility cost is also high. For this reason, there is a problem that the utility cost in winter is higher than that in summer. For example, if you use Tokyo Gas Co., Ltd. RF type No. 24 bath water heater as a hot water generator and boil a bath (40 ° C) in a 200 L bathtub in July when the water temperature is high and January when the water temperature is low, Tokyo Gas Co., Ltd. It is disclosed in Non-Patent Document 2 that the company's gas rate is about 33 yen / time in July, whereas it is about 79 yen / time in January, which is more than twice as much as July. ing. Furthermore, if you use a hot water shower for 5 minutes at a water flow rate of 12 L / min per person, you will use 60 L / time / person of hot water, and the average household size is 2.21 people. When a hot water shower is used, it becomes 60 × 2.21 = 132.6 L / time / household hot water usage. Similar to the method disclosed in Non-Patent Document 2, when using a Tokyo Gas Co., Ltd. RF type No. 24 bath water heater and all household members use a hot water shower (40 ° C.), The gas fee is about 22 yen / time / household in July, but it is more than twice as much in January as it is about 52 yen / time / household in July.
In other words, if one household boiles a bath (40 ° C) once in a 200L bathtub and all household members use a hot water shower (40 ° C), the gas price of Tokyo Gas Co., Ltd. is 33 + 22 = While it is 55 yen / time / household, in January it will be 79 + 52 = 131 yen / time / household.
Here, the water flow rate and time when using the hot water shower are the values disclosed in Non-Patent Document 3, and the average number of households is as follows: Non-Patent Document 4 shows that the population of Tokyo in the 2000 national census is 11864419 Since it is disclosed that the number of households is 5371557, it was calculated from the population and the number of households.

そこで、水道の配水管から分岐される給水管の水道メーター以降の需要家敷地内において、熱交換器を地中の常温帯に埋設し、給水管に熱交換器を接続することにより、年間を通じて水道水が常温となる水道水の常温化装置が特許文献1に開示されている。   Therefore, in the customer premises after the water meter of the water supply pipe branched from the water distribution pipe, a heat exchanger is buried in the underground room temperature zone, and a heat exchanger is connected to the water supply pipe throughout the year. Patent Document 1 discloses an apparatus for normal temperature of tap water in which tap water becomes normal temperature.

しかしながら、特許文献1に開示された方法は、水温の安定した水道水は得られるが、地表から3〜5m以下の層で一般的に12℃前後に保持されている地中に埋設した熱交換器で地熱を利用する構造のために、得られる水道水の水温も地中温度と同様な12℃程度である。平成15年度の東京都庁付近の年間平均水道水温は、非特許文献1に開示されているように16.3℃であるから、特許文献1で得られる水温の安定した水は年間を通じると現行の年間平均水温よりも低温である。従って非特許文献2に開示されている方法と同様に、東京ガス株式会社製RF式24号風呂給湯器を使用し、200Lの浴槽にお風呂(40℃)を沸かし、世帯員全員が温水シャワー(40℃)を使用する場合、東京ガス株式会社のガス料金において、現行の水道水温では年間平均約98円/回であるのに対し、特許文献1に開示された方法では115円/回となり、光熱費の削減にはならない。   However, the method disclosed in Patent Document 1 can obtain tap water having a stable water temperature, but heat exchange buried in the ground generally held at about 12 ° C. in a layer of 3 to 5 m or less from the ground surface. Due to the structure that uses geothermal heat in the vessel, the water temperature of the tap water obtained is about 12 ° C., similar to the underground temperature. The annual average tap water temperature in the vicinity of the Tokyo Metropolitan Government in FY2003 is 16.3 ° C. as disclosed in Non-Patent Document 1, so the stable water temperature obtained in Patent Document 1 is current throughout the year. The temperature is lower than the annual average water temperature. Therefore, similar to the method disclosed in Non-Patent Document 2, the RF type No. 24 bath water heater manufactured by Tokyo Gas Co., Ltd. is used, a bath (40 ° C.) is boiled in a 200 L bathtub, and all household members are showered with hot water When using (40 ° C), the gas price of Tokyo Gas Co., Ltd. is about 98 yen / time annually at the current tap water temperature, whereas the method disclosed in Patent Document 1 is 115 yen / time. It does not reduce utility costs.

また、特許文献1に開示された方法は、一般に需要家に供給する側の水道管本管(配水管)に分岐された小管(給水管)の埋設深さはせいぜい地中2m前後であり、このため熱交換器で地熱を利用した後の冷水(加温水)が再度外気温により奪熱されて外気温に近づくのを防止するため水道の配水管から分岐される給水管の給水メーター以降の需要家敷地内に熱交換器を埋設する必要がある。
即ち、外気による奪熱を極力さけるために、家庭、店舗、企業等の需要家は使用位置の近傍に熱交換器を埋設する必要があり、この方法は給湯器の設置が個々の使用者に依存するためにその設備負担が大きいという課題もある。
又特許文献1は熱交換器自体が地熱吸収をよくするために開放形であるが故に一度熱交換した後の冷水(加温水)は吸水管側に戻せない(安全のため)という事情もある。
In addition, in the method disclosed in Patent Document 1, the embedding depth of a small pipe (water supply pipe) branched to a water pipe main pipe (distribution pipe) on the side that is generally supplied to consumers is at most about 2 m in the ground, For this reason, the chilled water (heated water) after using geothermal heat in the heat exchanger is again heated by the outside air temperature, and the water meter after the water meter of the water pipe branched from the water distribution pipe is prevented from approaching the outside air temperature. It is necessary to embed a heat exchanger in the customer premises.
In other words, in order to minimize the heat lost by the outside air, consumers such as homes, stores, and companies need to embed a heat exchanger near the use location. There is also a problem that the equipment burden is heavy to depend on.
In addition, since Patent Document 1 is an open type in order to improve the heat absorption of the heat exchanger itself, there is also a circumstance that cold water (warming water) after heat exchange once cannot be returned to the water absorption pipe side (for safety). .

昨今、地球全体の平均気温は上昇傾向を示しており、この地球全体の温暖化現象は、人間活動の拡大により二酸化炭素(CO)、メタン(CH)等の温室効果ガスの大気中の濃度が増加したためといわれている。また、地球温暖化現象は世界規模で問題視されており、CO等6種類の温室効果ガスの削減を日本を含む先進国に義務付ける京都議定書が2005年2月には発効されている。特に各需要家が温水化するために温水発生装置を使用していることにより温室効果ガスの1つであるCOが発生し、地球温暖化の一原因となっており、CO削減が必要である Recently, the global average temperature has been on the rise, and this global warming phenomenon is caused by the expansion of human activities in the atmosphere of greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ). It is said that the concentration has increased. In addition, global warming phenomenon is a problem on a global scale, the Kyoto Protocol mandating the reduction of CO 2, etc. six kinds of greenhouse gases in industrialized countries, including Japan, in February 2005, has been entered into force. In particular, each consumer uses hot water generators to generate hot water, which generates CO 2, one of the greenhouse gases, which contributes to global warming and requires CO 2 reduction. Is

また、都市の中心部と郊外と比較すると常に都市の気温が高いというヒートアイランド現象と呼ばれる現象も起きており、この原因の一つとして、都市への人口の集中によりエネルギーの使用量が増え排熱量が増加しているということがあげられている。
ヒートアイランド対策として、前記排熱量を削減する方法には、例えば、車の排気ガスの排出抑制、住宅建設における断熱材の使用、風力発電システムの導入等が行われており、また、ごみ焼却排熱の利用、工場で発生する排熱の回収も求められている。
Also, compared to the city center and suburbs, there is also a phenomenon called the heat island phenomenon in which the city's temperature is always higher, and one of the causes is the increase in energy use due to the concentration of the population in the city, and the amount of waste heat. Is increasing.
As a countermeasure for heat island, the method for reducing the amount of exhaust heat includes, for example, suppression of exhaust gas from vehicles, use of heat insulating material in housing construction, introduction of wind power generation system, etc., and waste incineration exhaust heat. And the recovery of waste heat generated in factories is also required.

そこで近年、清掃工場近くにおいて、温水プールやレクレーション施設を並設して焼却炉等の排熱を有効利用して、水道水の一部を温水化して温水プールや給湯に利用しているものもある。図2(A)は温水プールやレクレーション施設へ水道水を加温して供給するシステムのフロー図であり、水道施設運用者は、浄水場11で得た水道水を配水池12、給水所13を経て配水管(本管)15及び給水管(支管)16を介して清掃工場近くの温水発生装置14で温水を発生させて、温水プールやレクレーション施設を並設してなる需要家へ送る。このシステムは、東京都江東清掃工場の排熱を利用している夢の島公園の温水プールや、東京都大井清掃工場の排熱を暖房給湯に利用している品川八潮団地地区、東京都練馬清掃工場光が丘分場の排熱を暖房給湯に利用している光が丘団地地区等の一部の地域において既に実用化されている。   Therefore, in recent years, some hot water pools and recreational facilities have been installed near the incineration plant to effectively use the exhaust heat from incinerators, etc., and part of the tap water has been warmed and used for hot water pools and hot water supplies. is there. FIG. 2A is a flow diagram of a system for heating and supplying tap water to a warm water pool and a recreational facility. The water facility operator supplies the tap water obtained at the water purification plant 11 to the distribution reservoir 12 and the water supply station 13. Then, hot water is generated by the hot water generator 14 near the cleaning factory through the water distribution pipe (main pipe) 15 and the water supply pipe (branch pipe) 16 and sent to a customer who is provided with a hot water pool and a recreational facility. This system is a hot water pool in Yumenoshima Park, which uses the exhaust heat from the Koto Incineration Plant in Tokyo, and the Shinagawa Yashio Danchi District, which uses the exhaust heat from the Tokyo Oi Incineration Plant for heating hot water, and the Nerima Incineration Plant in Tokyo. It has already been put into practical use in some areas, such as the Hikarigaoka housing complex, where the exhaust heat from the Hikarigaoka branch is used for heating and hot water.

そしてこのような焼却炉等の排熱を有効利用システムを利用したものとして図2(B)のシステムが検討される(非公知の比較技術)。
本比較例は前記焼却炉等の排熱を利用して、配水池より下流側の本管内の水道水の一部を温水化してから需要家へ供給するシステムのフロー図であり、水道水施設運用者は、浄水場21で得られた水を配水池22へ送り、配水池22より出た水道水は給水所23を経て一部は焼却炉等排熱源25の排熱利用熱交換器24で例えば給湯可能な50〜60℃の温水としてから、また別の一部はそのまま水として需要家へ送る。需要家は、送られてきた50〜60℃の温水は給湯に、水は浄水としての利用等、目的に合わせて適宜使用する。
And the system of FIG. 2 (B) is examined as what utilized the exhaust heat of such an incinerator etc. using an effective utilization system (unknown comparative technique).
This comparative example is a flow diagram of a system that uses waste heat from the incinerator or the like to heat a part of tap water in the main pipe downstream from the distribution reservoir and then supply it to the customer. The operator sends the water obtained at the water purification plant 21 to the distributing reservoir 22, and the tap water discharged from the distributing reservoir 22 passes through the water supply station 23, and a part of the exhaust heat utilization heat exchanger 24 of the exhaust heat source 25 such as an incinerator. For example, hot water of 50-60 ° C. that can supply hot water, and another part is sent as it is to the customer as water. The customer uses the hot water of 50-60 ° C. that has been sent to the hot water supply, and the water is appropriately used according to the purpose such as use as purified water.

前記図2(B)のような排熱を有効利用して温水を発生させて需要家に送るシステムは、現行の図2(A)のシステムと比較すると、水道施設運用者は排熱利用することで安価に付加価値の高い温水を供給でき、需要家は温水発生装置の必要エネルギーが少なくなり、さらに、排熱発生者は排熱有効利用するため排熱処理量が減るという利点がある。   As compared with the current system of FIG. 2 (A), the water facility operator uses the waste heat in the system that generates the hot water by effectively utilizing the exhaust heat as shown in FIG. 2 (B) and sends it to the consumer. Thus, it is possible to supply hot water with high added value at a low cost, and there is an advantage that the customer needs less energy for the hot water generator, and the exhaust heat generator effectively uses the exhaust heat to reduce the amount of exhaust heat treatment.

特開2003−27534号公報Japanese Patent Laid-Open No. 2003-27534 東京都水道局http://www.waterworks.metro.tokyo.jp/Tokyo Waterworks Bureau http://www.waterworks.metro.tokyo.jp/ 省エネエコライフ 東京ガス株式会社 http://www.tokyo-gas.co.jp/ultraene/Energy Saving Eco Life Tokyo Gas Co., Ltd. http://www.tokyo-gas.co.jp/ultraene/ 環境報告書 株式会社ノーリツhttp://www.noritz.co.jp/eco/shiryo/img/2003kankyou.pdfEnvironmental Report Noritz Corporation http://www.noritz.co.jp/eco/shiryo/img/2003kankyou.pdf 東京都の総計 東京都総務局統計部http://www.toukei.metro.tokyo.jp/Tokyo Metropolitan Government General Affairs Bureau Statistics Department http://www.toukei.metro.tokyo.jp/

しかしながら、前記図2(B)で示した方法は、温水化しない通常の水道水のラインの他に、温水ラインを別個に敷設する必要があり、多大な設置費用がかかるのみならず、さらに給水所より下流側の本管内の水道水は一方通行の停滞水であるために、この温水ライン50℃以上であるために、雑菌が繁殖しやすく、特に35℃〜60℃のタンパク質凝固点以下の温度では雑菌が繁殖しやすく生活上水としての利用は不可能である。   However, in the method shown in FIG. 2 (B), it is necessary to separately lay a hot water line in addition to a normal tap water line that is not heated, and not only a great installation cost is required, but also water supply. Since the tap water in the main pipe downstream from the station is one-way stagnant water, this hot water line is 50 ° C. or higher, so that various germs are likely to propagate, especially at temperatures below the protein freezing point of 35 ° C. to 60 ° C. Therefore, it is difficult for bacteria to propagate and it cannot be used as domestic water.

また、図2(A)で示した方法においても、前記非特許文献2に開示されている冬場の光熱費が高いという問題も解決できていない。さらに、夏場であれば水道水をそのまま利用できる炊事、洗濯、掃除等の家事を行う際においても、冬場は水温が低いために20〜40℃に加温化された水を用いなければならないという問題もある。   In addition, even the method shown in FIG. 2A cannot solve the problem of high utility costs in winter disclosed in Non-Patent Document 2. Furthermore, even when doing housework such as cooking, washing, cleaning, etc., where tap water can be used as it is in the summer, the water must be warmed to 20-40 ° C because the water temperature is low in the winter. There is also a problem.

さらに、温水化しない通常の水温の水道水を、浄水場から配水地へ、配水池から需要家へと送る浄水場→配水池→給水所→需要家の通常の水温の水道水を送るラインの水道管は、特に本管(配水管)に分岐された小管(給水管)の埋設深さはせいぜい地中2m前後であるために広範囲にわたって小管の凍結防止対策を行う必要があり、設備敷設時の高コスト化の要因ともなっている。   In addition, a water treatment plant that sends tap water with normal water temperature that is not warmed from the water treatment plant to the distribution area, and from the distribution reservoir to the customer → distribution reservoir → water supply station → a line that sends tap water at the normal water temperature of the customer For water pipes, the embedding depth of small pipes (water supply pipes) branched into main pipes (distribution pipes) is at most about 2 m in the ground, so it is necessary to take measures to prevent freezing of small pipes over a wide area. It is also a factor of higher costs.

また、図2(A)及び図2(B)で示した方法は、いずれも温水化しない通常の水道水は、前記の通り、例えば東京都庁付近では、年間変動は平成15年度には最低6.0℃から最高26.4℃まで20.4℃の変動幅があるように、安定温度の水道水を供給できていないという問題も解決できていない。   In addition, in the methods shown in FIGS. 2 (A) and 2 (B), normal tap water that is not warmed is, as described above, for example, near the Tokyo Metropolitan Government, the annual fluctuation is at least 6 in FY2003. The problem of not being able to supply tap water at a stable temperature has not been solved so that there is a fluctuation range of 20.4 ° C. from 0.0 ° C. to a maximum of 26.4 ° C.

そのため、本発明においては、現行の水道水ラインの他に温水用ライン敷設の必要がなく多大な設置費用がかからず、多くの地域に導入することが可能であり、さらに本発明の方法を導入した地域においては現行よりもCO削減、ごみ焼却排熱の利用及び工場で発生する排熱の回収を行うことができ、結果として地球温暖化及びヒートアイランド対策にも繋がり、水道水需要家が安全に光熱費が現行よりも安価となる夏季季節温度に水道水温度を安定化する方法を提供することを目的とする。 Therefore, in the present invention, it is not necessary to lay a hot water line in addition to the current tap water line, so that a large installation cost is not required, and it is possible to introduce the method of the present invention in many areas. reduce CO 2 emissions than the current in the introduction to the area, it is possible to perform the recovery of waste heat generated in the use and factory waste incineration waste heat, as a result also leads to global warming and heat island countermeasures, tap water consumers is The object is to provide a method for stabilizing the tap water temperature at the summer season temperature, where the utility cost is cheaper than the present.

前記のように、水道水温は冬期のように5℃前後と低すぎると前記需要家の光熱費が高額となる問題が発生し、50〜60℃と高すぎるとレジオネラ属菌とうの雑菌の生育を促してしまう。そのため、水道水温を安定化させる場合、現行の平均水道水温度(例えば東京都庁付近では前記の通り16.3℃)よりも高く、レジオネラ属菌や雑菌がよく生育する温度(35℃〜60℃)よりも低い温度がよい。特に、現行の夏場の水道水温(例えば東京都庁付近では26.4℃)は、レジオネラ属菌の生育の問題がないことはこれまでの夏場水道水の使用実績により確認されており、また水温も高いため需要化の光熱費も安価に抑えることができ、水道水温を安定化させるのに適温であることに着目したのが本発明の第1の要旨である。
第2の要旨は現行の水道水ラインに大きな変更を加えない点にある。
現行の浄水場−配水池−給水所−本管−支管に至る水道水ラインはインフラとして確立しており、これを変更することは許されない。
第3の要旨は水道水が循環するラインに熱交換器を介装することである。
例えば給水所から需要家の間の本管や支管のように水道水が循環しておらず、流れが停止したり極端に減少する部位に排熱源より受熱する熱交換部を介装しても排熱利用量が著しく低下してしまう。また、水道水の流れが停止若しくは極端な減少のない部位であれば、貫流ラインに熱交換器を介装することもできる。
上記課題を解決するため本発明においては、
浄水場−配水池−給水所−本管−支管に至る水道水ラインより水道水の循環する水道水ライン部位を設定し、該設定ラインに排熱源より受熱する熱交換部を介装して、季節変動する水道水を20〜35℃好ましくは夏季季節温度に対応する25〜30℃の温度に加温して水道水ラインに戻すことを特徴とする。
さらには、浄水場−配水池−給水所−本管−支管に至る水道水ラインより水道水の流れが停止若しくは極端な現象のない貫流水道水ライン部位を設定し、該設定ラインに排熱源より受熱する熱交換部を介装して、季節変動する水道水を20〜35℃の温度に加温して水道水ラインに戻すことを特徴とする。
As described above, if the tap water temperature is too low at around 5 ° C. as in the winter season, there is a problem that the utility cost of the consumer becomes high, and if it is too high at 50-60 ° C., the growth of Legionella spp. Will prompt you. Therefore, when stabilizing the tap water temperature, it is higher than the current average tap water temperature (for example, 16.3 ° C. as described above in the vicinity of the Tokyo Metropolitan Government Office), and the temperature at which Legionella and other bacteria grow well (35 ° C. to 60 ° C.). ) Lower temperature is better. In particular, the current summer tap water temperature (for example, 26.4 ° C in the vicinity of the Tokyo Metropolitan Government) has been confirmed by past use of tap water in the summer, and there is no problem with the growth of Legionella spp. It is the first gist of the present invention to pay attention to the fact that the utility cost can be suppressed at a low cost because it is high, and that it is suitable for stabilizing the tap water temperature.
The second gist is that no major changes are made to the current tap water line.
The tap water line from the current water treatment plant-distributing reservoir-water supply station-main pipe-branch pipe is established as infrastructure, and it is not allowed to change it.
The third gist is to install a heat exchanger in a line through which tap water circulates.
For example, tap water does not circulate like a main pipe or branch pipe between customers from a water supply station, and even if a heat exchange part that receives heat from an exhaust heat source is installed in a part where the flow stops or extremely decreases Exhaust heat utilization will be significantly reduced. Moreover, if the flow of tap water does not stop or extremely decrease, a heat exchanger can be installed in the once-through line.
In order to solve the above problems, in the present invention,
Set the tap water line part where the tap water circulates from the tap water line leading to the water purification plant-distribution pond-water supply station-main pipe-branch, and install the heat exchange part that receives heat from the exhaust heat source in the setting line, The seasonally changing tap water is heated to 20 to 35 ° C., preferably 25 to 30 ° C. corresponding to the summer seasonal temperature, and returned to the tap water line.
In addition, the tap water flow is stopped from the tap water line leading to the water purification plant-distribution pond-water supply station-mains-branch, or there is no extreme phenomenon. It is characterized in that the seasonally changing tap water is heated to a temperature of 20 to 35 ° C. and returned to the tap water line through a heat exchange part that receives heat.

設定するライン部位は、浄水場−配水池−給水所−本管−支管に至る水道水ライン部位であればどこでもよいが、一般に給水所よりも下流は需要家の水道水使用量によっては流量が安定せず且つ水道ラインは給水所−本管−支管に至る一方通行であるため、この間では熱交換部を介装してもその熱交換器を介装した部位で局部的な加熱や温度変動が生じる。又配水池上流側の浄水場−配水池の水道ラインでも同様である。したがって配水池−給水所間の水道ラインであれば循環ラインが既に設定されており、温度の一定化が可能であるとともに給水所−本管−支管に至るラインに温度の安定化が図れる。
また、浄水場−配水池−給水所−本管−支管に至る水道水ラインは一般に網状になっているため、前記給水所よりも下流及び配水池上流側の浄水場−配水池の水道水ラインにおいても、バルブやポンプ等の操作により水道水の流れの方向を変えることにより積極的に循環するライン又は水道水の流れが停止若しくは極端な現象のない貫流水道水ラインを設定することができるため、温度の安定化を図ることができる。
特に給水所よりも下流においては、非常に多くの本管から分岐する支管があるため、一部の支管のみを循環するライン又は水道水の流れが停止若しくは極端な現象のない貫流水道水ラインを設定し、該設定ラインに排熱源より受熱する熱交換部を介装することによって、一部の需要家へのみ温度安定化した水道水を供給することもできる。
The line part to be set may be anywhere as long as it is a tap water line part from the water purification plant, the distribution pond, the water supply station, the main pipe, and the branch pipe, but generally the downstream of the water supply station has a flow rate depending on the amount of tap water used by consumers. Because it is not stable and the water supply line is one-way from the water supply station to the main pipe to the branch pipe, even if a heat exchanger is interposed during this period, local heating and temperature fluctuations occur at the part where the heat exchanger is interposed Occurs. The same applies to the water supply line upstream of the water reservoir. Therefore, if it is a water supply line between a water reservoir and a water supply station, a circulation line has already been set, the temperature can be made constant, and the temperature from the water supply station to the main pipe to the branch pipe can be stabilized.
In addition, since the tap water line from the water purification plant-distribution pond-water supply station-mains-branch is generally meshed, the tap water line downstream of the water supply plant and upstream of the water distribution plant-distribution pond. However, it is possible to set a line that actively circulates by changing the direction of tap water flow by operating valves, pumps, etc., or a once-through tap water line that stops the flow of tap water or has no extreme phenomenon. The temperature can be stabilized.
In particular, downstream of the water supply station, there are so many branch pipes that branch off from the main pipe. Therefore, a line that circulates only some of the branch pipes or a one-way tap water line that stops the flow of tap water or has no extreme phenomenon. By setting and interposing a heat exchange section that receives heat from the exhaust heat source in the setting line, it is possible to supply tap water whose temperature is stabilized only to some consumers.

請求項4は本発明を有効に実施する装置に関する発明で、浄水場−配水池−給水所−本管−支管に至る水道水ラインより水道水の循環する水道水ライン部位を設定し、該設定ラインに設けた弁の上流側より排熱源より受熱する熱交換部に導入する水道水導入ラインと、前記弁の下流側に熱交換器で加温された加温水を水道水ラインに戻す戻しラインを設け、前記熱交換器及び弁の開閉度調整により水道水を20〜35℃好ましくは夏季季節温度に対応する25〜30℃の温度に制御して弁下流の水道水ラインに戻すことを特徴とする。   Claim 4 is an invention relating to an apparatus for effectively carrying out the present invention, and sets a tap water line part where tap water circulates from a tap water line leading to a water purification plant-distribution pond-water supply station-main pipe-branch. A tap water introduction line that is introduced into a heat exchange section that receives heat from an exhaust heat source from an upstream side of a valve provided in the line, and a return line that returns warm water heated by a heat exchanger on the downstream side of the valve to the tap water line The tap water is controlled to a temperature of 20 to 35 ° C., preferably 25 to 30 ° C. corresponding to the summer season temperature by adjusting the degree of opening and closing of the heat exchanger and the valve, and returned to the tap water line downstream of the valve. And

本発明によれば、加温した水を水道水ラインに戻すことを特徴とするため、現行の水道水ラインをそのまま転用することができ、他に温水用ラインを敷設する必要がなく、多大な設置費用がかからないため、多くの地域に導入することが可能である。
また、配水池−給水所管の水道ラインであれば循環ラインであるために、加温するための熱源としてごみ焼却排熱や工場排熱等の排熱が温度が高くても循環制御ポンプを利用して、20〜35℃好ましくは夏季季節温度に対応する25〜30℃の温度に加温制御することができる。これによりレジオネラ属菌の生育の問題がない点が大きな効果である。
また、加温する温度が20〜35℃好ましくは夏季季節温度に対応する25〜30℃であるため、通常大気や海水に廃棄していた低圧復水器の熱を利用することもできる。この熱源は通常約60℃の蒸気である為、例えば図2(B)に示したような高温水の供給には適さないが、本発明によれば、約60℃の蒸気を約60℃の水(復水)になる凝集熱を利用して、20〜35℃好ましくは夏季季節温度に対応する25〜30℃の温水を作り出すため、これらの廃棄していた熱を利用することができる。廃棄していたエネルギー(熱)は図6にイメージ図で示したように全体の約30〜40%と発電量に迫る量であり、再利用することは非常に効果的である。このようにこれまで棄てていたエネルギーの再利用も促進されるという大きな効果がある。
さらに、需要家は、20〜35℃好ましくは夏季季節温度に対応する25〜30℃の温度に安定化された水温の水道水を常に利用することができるため、温水を得るために必要な昇温幅は現行よりも小さくなり、光熱費の削減をすることができるとともに、需要家で昇温する際に発生するCO量も削減することができる。
したがって、本発明により、現行の水道水ラインの他に温水用ライン敷設の必要がなく多大な設置費用がかからないために、多くの地域に導入することが可能であり、さらに本発明の方法を導入した地域においては現行よりもCO削減、ごみ焼却排熱の利用及び工場で発生する排熱の回収を行うことができるために、地球温暖化及びヒートアイランド対策にも繋がり、水道水需要家が安全に光熱費が現行よりも安価となる夏季季節温度に水道水温度を安定化する方法を提供することができる。
又請求項4〜6の装置発明によれば弁を介してその上流側と下流側の水道ラインを分断して熱交換器を介装しているために熱交換器側の負荷が過大若しくは春〜秋のように加温温度との間で温度差が小さくても弁の開度制御と組み合わせて水道水を20〜35℃好ましくは夏季季節温度に対応する25〜30℃に維持できる。
この場合に前記熱交換器が廃棄物処理施設の廃熱源に接続されていること有効であるが、他の工場熱源を利用することも可能である。
According to the present invention, since the heated water is returned to the tap water line, the existing tap water line can be diverted as it is, and there is no need to lay a hot water line. Since there is no installation cost, it can be installed in many areas.
In addition, since it is a circulation line if it is a water supply line from a reservoir to a water supply pipe, a circulation control pump is used as a heat source for heating even if the waste heat such as waste incineration waste heat or factory waste heat is high. Then, the heating can be controlled to a temperature of 20 to 35 ° C., preferably 25 to 30 ° C. corresponding to the summer season temperature. This is a great effect because there is no problem of growth of Legionella spp.
Moreover, since the temperature to heat is 20-35 degreeC, Preferably it is 25-30 degreeC corresponding to a summer season temperature, The heat | fever of the low pressure condenser normally discarded to air | atmosphere or seawater can also be utilized. Since this heat source is usually steam at about 60 ° C., for example, it is not suitable for supplying high-temperature water as shown in FIG. 2B. However, according to the present invention, steam at about 60 ° C. is heated to about 60 ° C. By using the coagulation heat which becomes water (condensate), 20 to 35 ° C., preferably 25 to 30 ° C. corresponding to the summer season temperature is produced, so that the waste heat can be used. The energy (heat) that has been discarded is about 30 to 40% of the total as shown in the image diagram of FIG. 6, which is close to the amount of power generation, and it is very effective to reuse it. In this way, there is a great effect of promoting the reuse of energy that has been discarded.
Furthermore, since the consumer can always use tap water having a water temperature stabilized at a temperature of 25 to 30 ° C. corresponding to the temperature of 20 to 35 ° C., preferably corresponding to the summer season temperature, the rise required to obtain the hot water is obtained. The temperature range is smaller than the current one, so that the utility cost can be reduced and the amount of CO 2 generated when the temperature is raised by the consumer can also be reduced.
Therefore, according to the present invention, since there is no need for laying a hot water line in addition to the existing tap water line and it does not require a large installation cost, it can be introduced in many areas, and the method of the present invention is further introduced. In this area, CO 2 reduction, use of waste incineration waste heat, and recovery of waste heat generated in factories can be performed, leading to measures against global warming and heat islands. In addition, it is possible to provide a method for stabilizing the tap water temperature at the summer season temperature, where the utility cost is lower than the current one.
Further, according to the inventions of the fourth to sixth aspects, since the upstream and downstream water lines are divided through the valve and the heat exchanger is installed, the load on the heat exchanger side is excessive or spring. Even if the temperature difference between the heating temperature is small as in autumn, the tap water can be maintained at 20 to 35 ° C., preferably 25 to 30 ° C. corresponding to the summer season temperature, in combination with the valve opening control.
In this case, it is effective that the heat exchanger is connected to a waste heat source of a waste treatment facility, but other factory heat sources can also be used.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図3は、設定ライン部位を配水池−給水所間とした本発明の水道水ライン温度安定化方法のフロー図である。浄水場31で原水を浄水処理して得られた水道水は、配水池32へ送られる。配水池32へ送られた水道水は、配水池32へ貯留され、配水池32−給水所38間を水道水ライン主管37を介して循環する。配水池32−給水所38間を循環している水道水は、循環制御ポンプ341によって水道水ライン主管37より分岐している加温装置行きライン34を介して加温装置33へ送られる。加温装置33へ送られた水道水は、加温装置33で、ごみ焼却排熱、工場排熱等の排熱と熱交換されて夏季季節温度へ昇温される。前記夏季季節温度へ昇温された水道水は、水道水ライン主管37より分岐している加温装置戻しライン35を介して、水道水ライン主管37へ戻り配水池32−給水所38間を循環し、需要家の使用量に応じて給水所38より夏季季節温度の水道水として需要家へ送られる。需要家は、前記夏季季節温度へ昇温された水道水を浄水としてそのまま利用したり、需要家敷地内の水道メーター40以降に設けた温水発生装置39を用いて温水として利用する等使用目的に応じて適宜使用する。   FIG. 3 is a flowchart of the tap water line temperature stabilization method of the present invention in which the set line part is between the distribution reservoir and the water supply station. The tap water obtained by purifying the raw water at the water purification plant 31 is sent to the distribution reservoir 32. The tap water sent to the distribution reservoir 32 is stored in the distribution reservoir 32 and circulates between the distribution reservoir 32 and the water supply station 38 via the tap water line main pipe 37. The tap water circulating between the distribution reservoir 32 and the water supply station 38 is sent to the heating device 33 by the circulation control pump 341 via the heating device-bound line 34 branched from the tap water line main pipe 37. The tap water sent to the warming device 33 is heated by the warming device 33 to waste heat such as waste incineration exhaust heat and factory exhaust heat, and is heated to the summer seasonal temperature. The tap water heated to the summer season temperature returns to the tap water line main pipe 37 via the heating device return line 35 branched from the tap water line main pipe 37 and circulates between the distribution reservoir 32 and the water supply station 38. Then, depending on the usage amount of the consumer, it is sent from the water supply station 38 to the consumer as tap water having a summer season temperature. The consumer uses the tap water heated to the summer seasonal temperature as purified water as it is, or uses it as hot water using the hot water generator 39 provided after the water meter 40 in the customer premises. Use as appropriate.

また、水道水ライン主管37上であり、且つ加温装置行きライン34と加温装置戻しライン35の間に仕切弁36を設けた。通常は仕切弁36を閉止しておくことにより、水道水を全量加温装置33を通して加温することができる。補修や点検等により加温装置33が使用できない場合においても仕切弁36を開けて水道水を加温装置33をバイパスさせることにより、需要家へ水道水の供給を止めずに、加温装置33の補修や点検等を行うことができる。
また、仕切弁36の開度を調整することにより、加温装置33の通過量及びバイパス量を調整することができるため、仕切弁36を水道水の温度調整弁として使用することもできる。
Further, a gate valve 36 is provided on the tap water line main pipe 37 and between the heating device going line 34 and the heating device return line 35. Usually, the tap water can be heated through the warming device 33 by closing the gate valve 36. Even when the heating device 33 cannot be used due to repair or inspection, the heating device 33 is opened without stopping the supply of tap water to the customer by opening the gate valve 36 and bypassing the heating device 33 with tap water. Can be repaired and inspected.
Moreover, since the passage amount and bypass amount of the heating apparatus 33 can be adjusted by adjusting the opening degree of the gate valve 36, the gate valve 36 can also be used as a tap water temperature control valve.

図5はタービン排気蒸気と水道水を熱交換させることにより夏季季節温度の水道水を得ることのできる加温装置33周辺のフロー図である。水道水ライン主管37中の水道水は、加温装置行きライン34から加温装置33へ入り、加温装置33内でタービン排気蒸気と熱交換されて夏季季節温度に昇温され、加温装置戻しライン35を介して水道水ライン主管37へ戻る。一方、タービン61で発生した排気蒸気は、コンデンサ63の冷却量を圧力指示調節(PIC)62によって指示調整することで排気圧力を調整される。排気圧力を調整されたタービン排気蒸気は加温装置排熱入口ライン64より加温装置33へ入り、水道水と熱交換される。水道水と熱交換された排気蒸気は、復水として加温装置排熱出口ライン65を介して復水タンク66へ送られる。
また、温度指示調節(TIC)67の指示調節により、加温装置排熱入口ライン64上に設けられた温度調整弁68の開度、すなわち排気蒸気の加温装置への流入量を調整することで、加温装置戻しライン35の水温は、夏季季節温度に安定して保つことができる。仕切弁36を調整弁として、温度指示調節(TIC)67の指示調節により、仕切弁36の開度、すなわち加温装置をバイパスする水道水量を調整することで、加温装置戻しライン35の水温を夏季季節温度に安定して保つ構成とすることもできる。
また、液面指示調節(LIC)69の指示調節により、加温装置排熱出口ライン65上に設けられた液面調整弁70の開度を調整することで、加温装置内の排気蒸気側の液面を調整し、復水タンク66への蒸気流水を防止しており、さらに温度指示調節(TIC)71の指示調節により、加温装置行きライン34上に設けられた温度調整弁72の開度を調整することで、加温装置排熱出口ライン65中の復水温度を調整し、復水の過冷却を防止している。
この場合、水道水と熱交換する排熱源として、タービン排気蒸気を利用したが、排熱であれば何でもよい。また、加温装置33周辺のフローも図5で示したフローに限定されるものではない。
FIG. 5 is a flow diagram around the heating device 33 that can obtain tap water having a summer season temperature by exchanging heat between the turbine exhaust steam and tap water. The tap water in the tap water line main pipe 37 enters the heating device 33 from the line 34 for the heating device, is heat-exchanged with the turbine exhaust steam in the heating device 33, and is heated to the summer seasonal temperature. Return to the tap water line main pipe 37 via the return line 35. On the other hand, the exhaust steam generated in the turbine 61 is adjusted in the exhaust pressure by instructing and adjusting the cooling amount of the condenser 63 by the pressure instruction adjustment (PIC) 62. The turbine exhaust steam whose exhaust pressure has been adjusted enters the heating device 33 from the heating device exhaust heat inlet line 64 and is heat-exchanged with tap water. The exhaust steam heat-exchanged with tap water is sent to the condensate tank 66 through the heating device exhaust heat outlet line 65 as condensate.
Further, by adjusting the indication of the temperature indication adjustment (TIC) 67, the opening degree of the temperature adjustment valve 68 provided on the heating device exhaust heat inlet line 64, that is, the amount of exhaust steam flowing into the heating device is adjusted. Thus, the water temperature of the heating device return line 35 can be kept stable at the summer season temperature. By adjusting the opening of the gate valve 36, that is, the amount of tap water that bypasses the heater, by adjusting the indication of the temperature indicator (TIC) 67 using the gate valve 36 as an adjustment valve, the water temperature of the heater return line 35 is adjusted. Can be kept stable at the summer seasonal temperature.
Further, by adjusting the opening of the liquid level adjustment valve 70 provided on the heating device exhaust heat outlet line 65 by the indication adjustment of the liquid level indication adjustment (LIC) 69, the exhaust steam side in the heating device is adjusted. The liquid level is adjusted to prevent steam from flowing into the condensate tank 66. Further, by adjusting the temperature indication adjustment (TIC) 71, the temperature adjustment valve 72 provided on the heating device line 34 is adjusted. By adjusting the opening, the condensate temperature in the heating device exhaust heat outlet line 65 is adjusted to prevent overcooling of the condensate.
In this case, the turbine exhaust steam is used as an exhaust heat source for exchanging heat with tap water, but any exhaust heat may be used. Further, the flow around the heating device 33 is not limited to the flow shown in FIG.

前記の通り、本発明の方法を用いることにより、排熱を有効利用することができるため、ヒートアイランド対策として非常に有効である。   As described above, by using the method of the present invention, exhaust heat can be used effectively, which is very effective as a heat island countermeasure.

また、本発明の温度安定化方法を行う際に、新たに必要な設備は、加温装置33、加温装置行きライン34、加温装置戻しライン35、仕切弁36及び前記それぞれの付帯設備であり、例えば前記図2(A)及び(B)の方法では必要であった温水専用の配管が必要ない。そのため、前記図2(A)及び(B)の方法よりも温水専用の配管の設置費用が不要となる分、安価に設備を設置することができる。   In addition, when performing the temperature stabilization method of the present invention, newly required facilities are the heating device 33, the heating device line 34, the heating device return line 35, the gate valve 36, and the respective auxiliary facilities. Yes, for example, there is no need for hot water piping, which was necessary in the method of FIGS. 2 (A) and 2 (B). For this reason, it is possible to install the equipment at a lower cost because the installation cost of the pipe dedicated to hot water is not required as compared with the method of FIGS.

前記の背景技術の欄で説明したとおり、現行の東京都庁付近の平均水温は16.3℃であり、本発明の温度安定化方法を用いると年間通じて平均水温を夏季季節温度で安定させることができる。例えば夏季季節温度27℃に安定した水温を需要家が利用した場合、非特許文献2に開示されている方法と同様に、東京ガス株式会社製RF式24号風呂給湯器を使用し、200Lの浴槽にお風呂(40℃)を沸かし、世帯員全員が温水シャワー(40℃)を使用する場合、東京ガス株式会社のガス料金において、現行の水道水温では年間平均約98円/回であるのに対し、本発明の方法によって27℃に安定した水道水温では54円/回となり、お風呂を沸かすために使用するガス料金を54/98=55%へ削減することができ、お風呂を毎日沸かし、世帯員全員が温水シャワーを利用する需要家においては、(98−54)×365=16060円/年のガス料金節約となる。東京都全体で本発明を実施した場合、前記の通り東京都の世帯数は5371057世帯であるため、東京都全体で本発明を実施した場合、16060(円/世帯・年)×5371057(世帯)=863億円/年のガス料金節約となる。   As explained in the background section above, the average water temperature in the vicinity of the current Tokyo Metropolitan Government is 16.3 ° C., and the temperature stabilization method of the present invention stabilizes the average water temperature at the summer seasonal temperature throughout the year. Can do. For example, when a customer uses a water temperature that is stable at a summer seasonal temperature of 27 ° C., the RF type No. 24 bath water heater manufactured by Tokyo Gas Co., Ltd. is used similarly to the method disclosed in Non-Patent Document 2, and 200 L When a bath (40 ° C) is boiled in a bathtub and all household members use a hot water shower (40 ° C), the average water price for the current tap water is approximately 98 yen / time at the gas price of Tokyo Gas Co., Ltd. On the other hand, the tap water temperature stabilized at 27 ° C. is 54 yen / time by the method of the present invention, and the gas charge used to boil the bath can be reduced to 54/98 = 55%. In the consumer who uses the hot water shower, all the household members will save (98-54) x 365 = 16060 yen / year. When the present invention is implemented throughout Tokyo, the number of households in Tokyo is 5,371,057 as described above. Therefore, when the present invention is implemented throughout Tokyo, 16060 (yen / household / year) × 5371057 (household) = 86.3 billion yen / year.

さらに、現行よりも平均水温が高いため、需要家での温水発生に必要なエネルギーが削減され、需要家での温水発生に伴うCO発生量の削減することができ、地球温暖化対策としても有効である。例えば前記毎日お風呂を沸かし、世帯員全員が温水シャワーを利用する需要家においては、1日あたり、非特許文献2に開示された方法で計算したガス使用量を0.87mから0.48mへと、0.39m/日削減することができる。環境省によると、環境家計簿二酸化炭素排出係数(二酸化炭素換算)は2.2(都市ガス1mにつき2.2kg)であるため、前記需要家では、1日あたり0.39×2.2=0.858kgのCO排出削減をすることができる。前記の通り、東京都の世帯数は5371057世帯であるため、東京都全体で本発明を実施した場合、0.858(kg/日・世帯)×365(日/年)×5371057(世帯)=168万t/年のCO排出を削減することができる。
京都議定書による温室効果ガスの削減目標は基準年(1990年)の排出量12億3300万tの6%(7400万t/年)であるから、本発明を東京都全体に実施することにより、京都議定書の削減目標の2.27%(168万/7400万%)の温室効果ガスの削減を達成することができる。
In addition, since the average water temperature is higher than the current level, the energy required to generate hot water at the customer can be reduced, the amount of CO 2 generated by the generation of hot water at the customer can be reduced, and as a measure against global warming. It is valid. For example, in a consumer who makes a bath every day and all the household members use a hot water shower, the gas usage calculated by the method disclosed in Non-Patent Document 2 is 0.87 m 3 to 0.48 m per day. 3 can be reduced by 0.39 m 3 / day. According to the Ministry, for environmental household accounts carbon dioxide emission factors (carbon dioxide equivalent) is 2.2 (2.2 kg per city gas 1 m 3), wherein the customer, 0.39 per day × 2.2 = 0.858 kg of CO 2 emissions can be reduced. As described above, since the number of households in Tokyo is 5,371,057, when the present invention is implemented throughout Tokyo, 0.858 (kg / day / household) × 365 (day / year) × 5371057 (household) = CO 2 emissions of 1.68 million tons / year can be reduced.
The target for greenhouse gas reduction according to the Kyoto Protocol is 6% (74 million tons / year) of 1,233 million tons in the base year (1990). By implementing the present invention throughout Tokyo, 2.27% (168,000 / 74 million%) of greenhouse gas reduction target of Kyoto Protocol can be achieved.

図4は、設定ライン部位を配水池とした本発明の水道水ライン温度安定化方法のフロー図である。浄水場51で原水を浄水処理して得られた水道水は、配水池52へ送られる。配水池52の水道水は、循環制御ポンプ541によって加温装置行きライン54を介して加温装置53へ送られる。加温装置53へ送られた水道水は加温装置53で、ごみ焼却排熱、工場排熱等の排熱と熱交換されて夏季季節温度へ昇温される。前記夏季季節温度へ昇温された水道水は、加温装置戻しライン55を介して、再度配水池52へ戻り貯留され、配水池52−給水所58を循環して需要家の使用量に応じて給水所58より需要家へ送られる。需要家は、前記夏季季節温度へ昇温された水道水を浄水としてそのまま利用したり、需要家敷地内の水道メーター60以降に設けた温水発生装置59を用いて温水として利用する等使用目的に応じて適宜使用する。
また、補修や点検等により加温装置53が使用できない場合においては加温装置53への送水を止め、直接需要家へ送水することにより、需要家へ水道水の供給を止めずに、加温装置53の補修や点検等を行うことができる。
FIG. 4 is a flowchart of the tap water line temperature stabilization method of the present invention in which the set line part is a distribution reservoir. The tap water obtained by purifying the raw water at the water purification plant 51 is sent to the distribution reservoir 52. The tap water in the distributing reservoir 52 is sent to the heating device 53 by the circulation control pump 541 via the heating device-bound line 54. The tap water sent to the warming device 53 is heat-exchanged by the warming device 53 with waste heat such as waste incineration waste heat and factory waste heat, and the temperature is raised to the summer seasonal temperature. The tap water heated to the summer seasonal temperature is returned and stored again to the distribution reservoir 52 via the heating device return line 55, and circulates in the distribution reservoir 52-water supply station 58 according to the usage amount of the consumer. Then, it is sent from the water supply station 58 to the customer. For the purpose of use, the consumer uses the tap water heated to the summer seasonal temperature as purified water as it is, or uses it as hot water using the hot water generator 59 provided after the water meter 60 in the customer premises. Use as appropriate.
In addition, when the heating device 53 cannot be used due to repair or inspection, the water supply to the heating device 53 is stopped and the water is directly supplied to the customer, so that the supply of tap water to the customer is not stopped. The device 53 can be repaired or inspected.

また、温水発生装置53周辺は、実施例1と同様にタービン排気蒸気を使用した図5と同じフローとした。実施例1と同様に、排熱を有効利用することができるため、ヒートアイランド対策として非常に有効である。また、新たに必要な設備は、加温装置53、加温装置行きライン54、加温装置戻しライン55及び前記それぞれの付帯設備であり、例えば前記図2(A)及び(B)の方法では必要であった温水専用の配管が必要ない。そのため、前記図2(A)及び(B)の方法よりも温水専用の配管の設置費用が不要となる分、安価に設備を設置することができる。   Further, the flow around the hot water generator 53 is the same as that in FIG. 5 using the turbine exhaust steam as in the first embodiment. As in the first embodiment, the exhaust heat can be used effectively, which is very effective as a heat island countermeasure. Also, newly required facilities are a heating device 53, a heating device-bound line 54, a heating device return line 55, and the respective incidental facilities. For example, in the method of FIGS. 2A and 2B, There is no need for the dedicated hot water piping. For this reason, it is possible to install the equipment at a lower cost because the installation cost of the pipe dedicated to hot water is not required as compared with the method of FIGS.

需要家は、前記夏季季節温度へ昇温された水道水を、温水利用する場合は、需要家が保持している温水発生装置58で温水を発生させて利用し、水利用する場合はそのまま利用する。この際、実施例1と同じく、東京ガス株式会社製RF式24号風呂給湯器を使用し、200Lの浴槽にお風呂(40℃)を沸かし、世帯員全員が温水シャワー(40℃)を使用する場合、東京ガス株式会社のガス料金において、現行の水道水温では年間平均約98円/回であるのに対し、本発明の方法によって例えば27℃に安定した水道水温では54円/回となり、お風呂を沸かすために使用するガス料金を54/98=55%へ削減することができ、お風呂を毎日沸かし、世帯員全員が温水シャワーを利用する需要家においては、(98−54)×365=16060円/年のガス料金節約となり、実施例1と同じく東京都全体で本発明を実施した場合、863億円/年のガス料金節約となる。   When using the tap water heated to the summer seasonal temperature, the customer generates hot water using the hot water generator 58 held by the customer, and uses the water as it is when using the water. To do. At this time, as in Example 1, the RF type No. 24 bath water heater manufactured by Tokyo Gas Co., Ltd. was used, the bath (40 ° C) was boiled in a 200 L bathtub, and all household members used hot water showers (40 ° C). In this case, the gas price of Tokyo Gas Co., Ltd. is about 98 yen / time per year at the current tap water temperature, whereas it is 54 yen / time at a tap water temperature stabilized at 27 ° C. by the method of the present invention. The gas charge used to boil the bath can be reduced to 54/98 = 55%. For customers who boil the bath every day and all household members use hot water showers, (98-54) x 365 = 16060 yen / year. When the present invention is implemented throughout Tokyo as in the first embodiment, 88.3 billion yen / year is saved.

さらに、現行よりも平均水温が高いため、需要家での温水発生に必要なエネルギーが削減され、需要家での温水発生に伴うCO発生量の削減することができ、地球温暖化対策としても有効である。削減量は、実施例1と同じく東京都全体で本発明を実施した場合、168万t/年のCO排出を削減することができ、これは京都議定書による温室効果ガス削減目標の2.27%に相当する。 In addition, since the average water temperature is higher than the current level, the energy required to generate hot water at the customer can be reduced, the amount of CO 2 generated by the generation of hot water at the customer can be reduced, and as a measure against global warming. It is valid. When the present invention is implemented throughout Tokyo as in Example 1, the amount of reduction can be reduced to 16.68 million tons / year of CO 2 emissions, which is the greenhouse gas reduction target of 2.27 according to the Kyoto Protocol. %.

本発明によれば、現行の水道水ラインの他に温水用ライン敷設の必要がなく多大な設置費用がかからないために、多くの地域に導入することが可能であり、さらに本発明の方法を導入した地域においては現行よりもCO削減、ごみ焼却排熱の利用及び工場で発生する排熱の回収を行うことができるために、地球温暖化及びヒートアイランド対策にも繋がり、水道水需要家が安全に光熱費が現行よりも安価となる夏季季節温度に水道水温度を安定化する方法を提供することができる。 According to the present invention, in addition to the existing tap water line, there is no need for laying a hot water line and there is no great installation cost, so it can be introduced in many areas, and the method of the present invention is further introduced. In this area, CO 2 reduction, use of waste incineration waste heat, and recovery of waste heat generated in factories can be performed, leading to measures against global warming and heat islands. In addition, it is possible to provide a method for stabilizing the tap water temperature at the summer season temperature, where the utility cost is lower than the current one.

河川等の水源から取水してから、家庭、店舗、企業等の需要家へ水道水として送られるまでのフロー図である。It is a flow figure after taking water from water sources, such as a river, and being sent as tap water to consumers, such as a household, a store, and a company. 図2(A)は温水プールやレクレーション施設へ水道水を加温して供給するシステムのフロー図であり、図2(B)は焼却炉等の排熱を有効利用したものとして検討されるシステムのフロー図である。Fig. 2 (A) is a flow chart of a system for heating and supplying tap water to a hot water pool or a recreational facility. Fig. 2 (B) is a system that is considered as an effective use of exhaust heat from an incinerator or the like. FIG. 設定ライン部位を配水池−給水所間とした本発明の水道水ライン温度安定化方法のフロー図である。It is a flowchart of the tap water line temperature stabilization method of this invention which made the setting line site | part between a distribution reservoir and a water supply station. 設定ライン部位を配水池とした本発明の水道水ライン温度安定化方法のフロー図である。It is a flowchart of the tap water line temperature stabilization method of this invention which used the setting line site | part as a distribution reservoir. タービン排気蒸気と水道水を熱交換させることにより夏季季節温度の水道水を得ることのできる加温装置周辺のフロー図である。FIG. 5 is a flow diagram around a heating device that can obtain tap water having a summer season temperature by exchanging heat between turbine exhaust steam and tap water. 低圧復水器の熱のイメージ図である。It is an image figure of the heat | fever of a low pressure condenser.

符号の説明Explanation of symbols

31 浄水場
32 配水池
33 加温装置
34 加温装置行きライン
35 加温装置戻しライン
36 仕切弁
37 水道水ライン主管
38 給水所
39 温水発生装置
40 メーター
341 循環制御ポンプ
31 Water Purification Plant 32 Reservoir 33 Heating Device 34 Heating Device Line 35 Heating Device Return Line 36 Gate Valve 37 Tap Water Line Main Line 38 Water Station 39 Hot Water Generator 40 Meter 341 Circulation Control Pump

Claims (9)

浄水場−配水池−給水所−本管−支管に至る水道水ラインより水道水の循環する水道水ライン部位を設定し、該設定ラインに排熱源より受熱する熱交換部を介装して、季節変動する水道水を20〜35℃の温度に加温して水道水ラインに戻すことを特徴とする水道水ライン温度安定化方法。   Set the tap water line part where the tap water circulates from the tap water line leading to the water purification plant-distribution pond-water supply station-main pipe-branch, and install the heat exchange part that receives heat from the exhaust heat source in the setting line, A method for stabilizing the temperature of a tap water line, characterized in that the seasonally changing tap water is heated to a temperature of 20 to 35 ° C. and returned to the tap water line. 浄水場−配水池−給水所−本管−支管に至る水道水ラインより水道水の流れが停止若しくは極端な現象のない貫流水道水ライン部位を設定し、該設定ラインに排熱源より受熱する熱交換部を介装して、季節変動する水道水を20〜35℃の温度に加温して水道水ラインに戻すことを特徴とする水道水ライン温度安定化方法。   The tap water flow stops from the tap water line leading to the water purification plant, distribution pond, water supply station, main pipe, and branch pipe, or a flow through the tap water line where there is no extreme phenomenon is set, and the heat received from the exhaust heat source in the setting line A method for stabilizing the temperature of a tap water line, characterized by heating the tap water that varies seasonally to a temperature of 20 to 35 ° C. and returning it to the tap water line through an exchange unit. 前記加温温度が夏季季節温度に対応する25〜30℃であり、前記設定ライン部位が配水池−給水所間の水道ライン若しくは配水池であることを特徴とする請求項1又は2記載の水道水ライン温度安定化方法。   The water supply according to claim 1 or 2, wherein the heating temperature is 25 to 30 ° C corresponding to a summer season temperature, and the set line portion is a water supply line or a water supply reservoir between a water supply reservoir and a water supply station. Water line temperature stabilization method. 前記排熱が廃棄物処理施設の廃熱であることを特徴とする請求項1又は2記載の水道水ライン温度安定化方法。   The tap water line temperature stabilization method according to claim 1 or 2, wherein the waste heat is waste heat of a waste treatment facility. 浄水場−配水池−給水所−本管−支管に至る水道水ラインより水道水の循環する水道水ライン部位を設定し、該設定ラインに排熱源より受熱する熱交換部を介装して、季節変動する水道水を20〜35℃の温度に加温して水道水ラインに戻すように構成した水道水ライン温度安定化装置。   Set the tap water line part where the tap water circulates from the tap water line leading to the water purification plant-distribution pond-water supply station-main pipe-branch, and install the heat exchange part that receives heat from the exhaust heat source in the setting line, A tap water line temperature stabilization device configured to heat seasonally changing tap water to a temperature of 20 to 35 ° C. and return it to the tap water line. 浄水場−配水池−給水所−本管−支管に至る水道水ラインより水道水の流れが停止若しくは極端な現象のない水道水ライン部位を設定し、該設定ラインに排熱源より受熱する熱交換部を介装して、季節変動する水道水を20〜35℃の温度に加温して水道水ラインに戻すように構成した水道水ライン温度安定化装置。   Set up a tap water line where there is no stoppage or extreme phenomenon from the tap water line leading to the water purification plant-distribution pond-water supply station-mains-branch, and receive heat from the exhaust heat source in the setting line A tap water line temperature stabilization device configured to heat seasonally changing tap water to a temperature of 20 to 35 ° C. and return the tap water to the tap water line. 前記設定ラインに設けた弁の上流側より排熱源より受熱する熱交換部に導入する水道水導入ラインと、前記弁の下流側に熱交換器で加温された加温水を水道水ラインに戻す戻しラインを設けたことを特徴とする請求項5又は6記載の水道水ライン温度安定化装置。   The tap water introduction line introduced into the heat exchange section that receives heat from the exhaust heat source from the upstream side of the valve provided in the setting line, and the warm water heated by the heat exchanger on the downstream side of the valve is returned to the tap water line. The tap water line temperature stabilization device according to claim 5 or 6, wherein a return line is provided. 前記熱交換器及び弁の開閉度調整により水道水を20〜35℃の温度に制御して弁下流の水道水ラインに戻すことを特徴とする請求項7記載の水道水ライン温度安定化装置。   8. The tap water line temperature stabilizing device according to claim 7, wherein the tap water is controlled to a temperature of 20 to 35 [deg.] C. by adjusting the degree of opening and closing of the heat exchanger and the valve and returned to the tap water line downstream of the valve. 前記熱交換器が廃棄物処理施設の廃熱源に接続されていることを特徴とする請求項5又は6記載の水道水ライン温度安定化装置。   The tap water line temperature stabilization device according to claim 5 or 6, wherein the heat exchanger is connected to a waste heat source of a waste treatment facility.
JP2005334228A 2005-11-18 2005-11-18 Tap water line temperature stabilizing method Withdrawn JP2007138562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334228A JP2007138562A (en) 2005-11-18 2005-11-18 Tap water line temperature stabilizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334228A JP2007138562A (en) 2005-11-18 2005-11-18 Tap water line temperature stabilizing method

Publications (1)

Publication Number Publication Date
JP2007138562A true JP2007138562A (en) 2007-06-07

Family

ID=38201766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334228A Withdrawn JP2007138562A (en) 2005-11-18 2005-11-18 Tap water line temperature stabilizing method

Country Status (1)

Country Link
JP (1) JP2007138562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767211A (en) * 2012-04-28 2012-11-07 上海蓝翎管业科技有限公司 Energy-saving anti-explosion water pipe heating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767211A (en) * 2012-04-28 2012-11-07 上海蓝翎管业科技有限公司 Energy-saving anti-explosion water pipe heating system
CN102767211B (en) * 2012-04-28 2014-03-12 上海蓝翎管业科技有限公司 Energy-saving anti-explosion water pipe heating system

Similar Documents

Publication Publication Date Title
Culha et al. Heat exchanger applications in wastewater source heat pumps for buildings: A key review
Liu et al. Application of an exhaust heat recovery system for domestic hot water
CA2901700C (en) Systems and methods for recovering energy from wastewater
LT2010018A (en) Centralized heat and hot water supply system
KR101564761B1 (en) Cooling and heating system of water heat storage by difference of water temperature using integrated waterworks
JP5518247B1 (en) Circulating water utilization system
Deng et al. Shower heat exchanger: reuse of energy from heated drinking water for CO 2 reduction
JP2007138562A (en) Tap water line temperature stabilizing method
JP4437987B2 (en) Hot water circulation system
CN203443954U (en) Water quality safety monitoring system of tap water source heat pump
Muthuraman Reduction in power plant specific water consumption
RU2455573C2 (en) Centralised double-pipe heat supply system of open type
KR100864068B1 (en) Hybrid heat pump using reusing water and rainwater
KR102043892B1 (en) Heating water supply structure of district heating system
KR100699916B1 (en) Control system of bath or heating for improvement of thermal efficiency
Weimar et al. Reducing water costs in building HVAC systems
EP2513566A2 (en) Split system for heating and storing water for solar heating plants, and relative method to control operation of the system
CN204227403U (en) A kind of boiler blowdown water comprehensive utilization device
KR102328622B1 (en) Water heat system for continuous operation using raw water and water storage tank
EA008363B1 (en) System for utilizing of waste heat combined with a utility and drinking water supply system
KR100566344B1 (en) Water supplying system for public bath utilizing heat of waste water
RU2484379C1 (en) Self-contained centralised heat supply closed water system
RU2416055C1 (en) Procedure for heating specialised objects - swimming pools, baths, dry cleaners, saunas, drying rooms - in inter-heating season
Chernykov et al. Hot water supply systems of open and closed types
Porter Beneficial Use of Waste Heat in Municipal Water Supply

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Effective date: 20080717

Free format text: JAPANESE INTERMEDIATE CODE: A761