JP2007135274A - Current abnormality detection circuit and current value adjustment method at abnormality detection - Google Patents

Current abnormality detection circuit and current value adjustment method at abnormality detection Download PDF

Info

Publication number
JP2007135274A
JP2007135274A JP2005323915A JP2005323915A JP2007135274A JP 2007135274 A JP2007135274 A JP 2007135274A JP 2005323915 A JP2005323915 A JP 2005323915A JP 2005323915 A JP2005323915 A JP 2005323915A JP 2007135274 A JP2007135274 A JP 2007135274A
Authority
JP
Japan
Prior art keywords
circuit
current
voltage
bias
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005323915A
Other languages
Japanese (ja)
Inventor
Seiji Takahashi
成治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2005323915A priority Critical patent/JP2007135274A/en
Publication of JP2007135274A publication Critical patent/JP2007135274A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current abnormality detection circuit that can normally detect the abnormalities of current, even if there is variations in the manufacturing of a potential control circuit, and to provide its current value adjustment method at abnormality detection. <P>SOLUTION: Influences, generated by an offset voltage ΔV and a second abnormality threshold voltage Vfc, with respect to a "fuse abnormality" to which high accuracy is required in its detection, and by the variation of a comparator circuit 32 can be eliminated at a time, while suppressing the deterioration of the detection accuracy of an "overcurrent abnormality" by the adjustment work applied to one place, such that a first abnormality threshold voltage Voc is increased with the same amount by the same amount of the second abnormality threshold voltage Vfc by adjusting a bias voltage Vb of a bias resistor 42 arranged downstream of a voltage divide circuit 40. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電流異常検出回路及びその異常検出時電流値調整方法に関する。   The present invention relates to a current abnormality detection circuit and a current value adjusting method at the time of abnormality detection.

従来、電源と負荷とを接続する電力供給ラインに、例えばパワーMOSFETなどの大電力用半導体スイッチを介設し、この半導体スイッチをオンオフさせることにより負荷への電力供給を制御するようにした電力供給制御装置が提供されている。このような電力供給制御装置では、上記電力供給ラインに過電流が流れると上記半導体スイッチの制御端子の電位を制御して当該半導体スイッチをオフにして通電を遮断することにより、上記半導体スイッチを保護する自己保護機能を有するものが知られている。   Conventionally, a power supply line connecting a power source and a load is provided with a high-power semiconductor switch such as a power MOSFET, and the power supply to the load is controlled by turning this semiconductor switch on and off. A control device is provided. In such a power supply control device, when an overcurrent flows in the power supply line, the semiconductor switch is protected by controlling the potential of the control terminal of the semiconductor switch to turn off the semiconductor switch and cut off the energization. Those having a self-protecting function are known.

下記特許文献1では、パワーMOSFETの電流量に応じたセンス電流を流すセンスFETを設けて、このセンスFETに流れるセンス電流を電位制御回路を介して電流検出抵抗に流し、この電流検出抵抗での電圧降下を検出して、この電圧降下が所定の閾値以上になると過電流(電流の異常)と判定するようになっている。具体的には、パワーMOSFET及びセンスFETのドレインを電源側に共通接続する一方で、両者のソース電位を例えばボルテージフォロア接続がされたオペアンプを有する電位制御回路によって同電位に保持する構成になっている。これにより、パワーMOSFETに流れる負荷電流に対して安定した一定比率(パワーMOSFETとセンスFETのセンス比)のセンス電流をセンスFETに流すことができる。
特開2004−236405公報
In the following Patent Document 1, a sense FET that flows a sense current corresponding to the amount of current of a power MOSFET is provided, and the sense current flowing through the sense FET is passed through a current detection resistor via a potential control circuit. A voltage drop is detected, and when this voltage drop exceeds a predetermined threshold value, an overcurrent (current abnormality) is determined. Specifically, the drains of the power MOSFET and the sense FET are commonly connected to the power supply side, while the source potential of both is held at the same potential by, for example, a potential control circuit having an operational amplifier having a voltage follower connection. Yes. As a result, a sense current having a stable constant ratio (the sense ratio between the power MOSFET and the sense FET) can flow to the sense FET with respect to the load current flowing through the power MOSFET.
JP 2004-236405 A

ところが、上記電位制御回路を構成するオペアンプは、製造上のばらつきに起因してオフセット電圧にばらつきがあるため、パワーMOSFETとセンスFETとのソース電位が同電位に保持されないことがある。その結果、パワーMOSFETに流れる負荷電流に対して、予め想定した上記一定比率とは異なる比率のセンス電流がセンスFETに流れることになる。そうすると、上記一定比率を前提として定めた上記閾値との比較によっては、負荷電流が本来電流異常と判定したいレベルとは異なるレベルで電流異常と判定されることになり、正確な電流異常を検出できないという問題があった。   However, the operational amplifiers that make up the potential control circuit have variations in offset voltage due to manufacturing variations, so the source potentials of the power MOSFET and the sense FET may not be held at the same potential. As a result, a sense current having a ratio different from the predetermined ratio assumed in advance with respect to the load current flowing in the power MOSFET flows in the sense FET. Then, depending on the comparison with the threshold value determined on the assumption of the constant ratio, the load current is determined to be current abnormality at a level different from the level that is originally determined to be current abnormality, and an accurate current abnormality cannot be detected. There was a problem.

本発明は上記のような事情に基づいて完成されたものであって、その目的は、電位制御回路に製造ばらつきがあっても正常に電流の異常を検出することが可能な電流異常検出回路及びその異常検出時電流値調整方法を提供するところにある。   The present invention has been completed based on the above situation, and an object of the present invention is to provide a current abnormality detection circuit capable of normally detecting a current abnormality even if there is a manufacturing variation in the potential control circuit. The current value adjustment method at the time of detecting the abnormality is provided.

上記の目的を達成するための手段として、請求項1の発明に係る電流異常検出回路は、電源から負荷への電力供給ラインに流れる電流の異常を検出する電流異常検出回路であって、前記電力供給ライン中に設けられる抵抗性の第1回路素子と、一端側が前記第1回路素子の前記電源側と共通接続されて前記電源からの電流が流れる抵抗性の第2回路素子と、前記第1回路素子及び前記第2回路素子のうちそれらの共通接続点とは反対側の各電位を同電位または所定の電位差に保持することで前記第2回路素子に流れる電流を前記第1回路素子に流れる電流に対して所定の比例関係とし、前記第2回路素子に流れる電流を出力するための電位制御回路と、前記電位制御回路から出力された電流を電圧に変換する電流電圧変換回路と、この電流電圧変換回路の出力電圧と閾値電圧との比較に基づいて電流異常信号を出力する比較回路と、バイアス電圧発生回路を有すると共にそのバイアス電圧発生回路が発生するバイアス電圧に連動して変化する電圧を前記閾値電圧として出力する閾値電圧発生回路と、前記バイアス電圧発生回路が発生する前記バイアス電圧を調整可能とするバイアス電圧調整回路とを備える。   As means for achieving the above object, a current abnormality detection circuit according to the invention of claim 1 is a current abnormality detection circuit for detecting an abnormality of a current flowing in a power supply line from a power source to a load, wherein the power A resistive first circuit element provided in a supply line; a resistive second circuit element in which one end side is commonly connected to the power supply side of the first circuit element and a current from the power supply flows; and the first A current flowing through the second circuit element flows to the first circuit element by holding each potential of the circuit element and the second circuit element opposite to the common connection point at the same potential or a predetermined potential difference. A potential control circuit for outputting a current flowing through the second circuit element in a predetermined proportional relationship with respect to the current; a current-voltage conversion circuit for converting the current output from the potential control circuit into a voltage; and the current Electric A comparison circuit that outputs a current abnormality signal based on a comparison between the output voltage of the conversion circuit and the threshold voltage, and a voltage that changes in conjunction with the bias voltage generated by the bias voltage generation circuit and the bias voltage generation circuit. A threshold voltage generation circuit that outputs the threshold voltage; and a bias voltage adjustment circuit that adjusts the bias voltage generated by the bias voltage generation circuit.

請求項2の発明に係る電流異常検出回路は、電源から負荷への電力供給ラインに流れる電流の異常を検出する電流異常検出回路であって、前記電力供給ライン中に設けられる抵抗性の第1回路素子と、一端側が前記第1回路素子の前記電源側と共通接続されて前記電源からの電流が流れる抵抗性の第2回路素子と、前記第1回路素子及び前記第2回路素子のうちそれらの共通接続点とは反対側の各電位を同電位または所定の電位差に保持することで前記第2回路素子に流れる電流を前記第1回路素子に流れる電流に対して所定の比例関係とし、前記第2回路素子に流れる電流を出力するための電位制御回路と、前記電位制御回路から出力された電流を電圧に変換する電流電圧変換回路と、この電流電圧変換回路の出力電圧と閾値電圧との比較に基づいて電流異常信号を出力する比較回路と、バイアス電圧発生回路を有すると共にそのバイアス電圧発生回路が発生するバイアス電圧に連動して変化する電圧を前記閾値電圧として出力する閾値電圧発生回路と、前記バイアス電圧発生回路が発生する前記バイアス電圧が調整された(前記バイアス電圧を変化させるべく調整された)バイアス電圧調整回路とを備える。   A current abnormality detection circuit according to a second aspect of the present invention is a current abnormality detection circuit that detects an abnormality of a current flowing in a power supply line from a power source to a load, and is a first resistive element provided in the power supply line. A circuit element, a resistive second circuit element in which one end side is commonly connected to the power supply side of the first circuit element and a current from the power supply flows, and among the first circuit element and the second circuit element By maintaining each potential on the side opposite to the common connection point at the same potential or a predetermined potential difference, the current flowing through the second circuit element has a predetermined proportional relationship with the current flowing through the first circuit element, A potential control circuit for outputting a current flowing through the second circuit element; a current-voltage conversion circuit for converting the current output from the potential control circuit into a voltage; and an output voltage and a threshold voltage of the current-voltage conversion circuit. Comparison A comparator circuit that outputs a current abnormality signal based on the threshold voltage generator circuit that has a bias voltage generator circuit and outputs a voltage that changes in conjunction with the bias voltage generated by the bias voltage generator circuit as the threshold voltage; and A bias voltage adjusting circuit in which the bias voltage generated by the bias voltage generating circuit is adjusted (adjusted to change the bias voltage).

請求項3の発明は、請求項1又は請求項2に記載の電流異常検出回路において、前記第1回路素子は、オンオフ制御されて前記負荷への電力供給を制御するためのパワーFETであって、前記第2回路素子は、前記パワーFETの電流量に応じたセンス電流が流れるセンスFETである。   According to a third aspect of the present invention, in the current abnormality detection circuit according to the first or second aspect, the first circuit element is a power FET that is on / off controlled to control power supply to the load. The second circuit element is a sense FET through which a sense current corresponding to the current amount of the power FET flows.

請求項4の発明は、請求項1から請求項3のいずれかに記載の電流異常検出回路において、前記閾値電圧発生回路は、互いに異なる複数の前記閾値電圧を出力し、前記比較回路は、前記電流電圧変換回路の出力電圧と、前記複数の閾値電圧それぞれとの比較に基づいて前記各閾値電圧に応じた電流異常信号を出力する構成である。   According to a fourth aspect of the present invention, in the current abnormality detection circuit according to any one of the first to third aspects, the threshold voltage generation circuit outputs a plurality of different threshold voltages, and the comparison circuit In this configuration, an abnormal current signal corresponding to each threshold voltage is output based on a comparison between the output voltage of the current-voltage conversion circuit and each of the plurality of threshold voltages.

請求項5の発明は、請求項4に記載の電流異常検出回路において、前記閾値電圧発生回路は、基準電圧を分圧する分圧回路を有して複数の分圧電圧を前記複数の閾値電圧として出力し、前記バイアス電圧発生回路は、前記分圧回路の下流側に直列接続されたバイアス抵抗と、定電圧回路及び電流生成抵抗を有してこれらに応じた定電流を前記分圧回路と前記バイアス抵抗との接続点で前記分圧回路に流れる電流に合流させて当該バイアス抵抗に流す定電流出力回路とを備えて構成されている。   According to a fifth aspect of the present invention, in the current abnormality detection circuit according to the fourth aspect, the threshold voltage generation circuit includes a voltage dividing circuit that divides a reference voltage, and a plurality of divided voltages are used as the plurality of threshold voltages. The bias voltage generation circuit outputs a bias resistor connected in series downstream of the voltage dividing circuit, a constant voltage circuit, and a current generating resistor, and outputs a constant current corresponding to the bias voltage and the voltage dividing circuit. And a constant current output circuit for causing the current flowing in the voltage dividing circuit to join the current flowing through the bias resistor at a connection point with the bias resistor.

請求項6の発明は、請求項5に記載の電流異常検出回路において、前記バイアス電圧調整回路は、前記電流生成抵抗の抵抗値が調整可能とされている。   According to a sixth aspect of the present invention, in the current abnormality detection circuit according to the fifth aspect, the bias voltage adjusting circuit is capable of adjusting a resistance value of the current generating resistor.

請求項7の発明は、請求項5に記載の電流異常検出回路において、前記バイアス電圧調整回路は、前記バイアス抵抗の抵抗値が調整可能とされている。   According to a seventh aspect of the present invention, in the current abnormality detection circuit according to the fifth aspect, the bias voltage adjustment circuit is capable of adjusting a resistance value of the bias resistor.

請求項8の発明は、請求項4から請求項7のいずれかに記載の電流異常検出回路において、前記第1回路素子は、オンオフ制御されて前記負荷への電力供給を制御するためのパワーFETであって、前記第2回路素子は、前記パワーFETの電流量に応じたセンス電流が流れるセンスFETであって、前記基準電圧は、前記パワーFETのソース電位である。   According to an eighth aspect of the present invention, in the current abnormality detection circuit according to any one of the fourth to seventh aspects, the first circuit element is a power FET for controlling on / off control to supply power to the load. The second circuit element is a sense FET through which a sense current corresponding to the current amount of the power FET flows, and the reference voltage is a source potential of the power FET.

請求項9の発明は、請求項1から請求項8のいずれかに記載の電流異常検出回路において、前記電流電圧変換回路は、抵抗である。   According to a ninth aspect of the present invention, in the current abnormality detection circuit according to any one of the first to eighth aspects, the current-voltage conversion circuit is a resistor.

請求項10の発明は、請求項1から請求項9のいずれかに記載の電流異常検出回路において、前記第1回路素子、前記第2回路素子、前記電位制御回路、前記比較回路、前記閾値電圧発生回路及び前記バイアス電圧調整回路が、ワンチップ化された、或いは、複数のチップで構成されてワンパッケージ内に収容した半導体素子とされ、前記半導体素子は前記電位制御回路の電流出力側に連なる外部端子が設けられ、前記電流電圧変換回路は前記半導体素子の外部において前記外部端子に接続される。   A tenth aspect of the present invention is the current abnormality detection circuit according to any one of the first to ninth aspects, wherein the first circuit element, the second circuit element, the potential control circuit, the comparison circuit, and the threshold voltage. The generation circuit and the bias voltage adjustment circuit are formed as a single chip or as a semiconductor element configured by a plurality of chips and accommodated in one package, and the semiconductor element is connected to the current output side of the potential control circuit. An external terminal is provided, and the current-voltage conversion circuit is connected to the external terminal outside the semiconductor element.

請求項11の発明に係る異常検出時電流値調整方法は、電源から負荷への電力供給ラインに流れる電流の異常を検出する電流異常検出回路について、前記電流の異常が検出されたときに前記負荷に流れる電流値を調整するための異常検出時電流値調整方法であって、前記電流異常検出回路は、前記電力供給ライン中に設けられる抵抗性の第1回路素子と、一端側が前記第1回路素子の前記電源側と共通接続されて前記電源からの電流が流れる抵抗性の第2回路素子と、前記第1回路素子及び前記第2回路素子のうちそれらの共通接続点とは反対側の各電位を同電位または所定の電位差に保持することで前記第2回路素子に流れる電流を前記第1回路素子に流れる電流に対して所定の比例関係とし、前記第2回路素子に流れる電流を出力するための電位制御回路と、前記電位制御回路から出力された電流を電圧に変換する電流電圧変換回路と、この電流電圧変換回路の出力電圧と互いに異なる複数の閾値電圧それぞれとの比較に基づいて前記各閾値電圧に応じた電流異常信号を出力する比較回路と、バイアス電圧発生回路を有すると共にそのバイアス電圧発生回路が発生するバイアス電圧に連動して変化する電圧を前記複数の閾値電圧として出力する閾値電圧発生回路と、前記バイアス電圧発生回路が発生する前記バイアス電圧を調整可能とするバイアス電圧調整回路とを備え、前記閾値電圧発生回路は、基準電圧を分圧する分圧回路を有して複数の分圧電圧を前記複数の閾値電圧として出力し、前記バイアス電圧発生回路は、前記分圧回路の下流側に直列接続されたバイアス抵抗と、定電圧回路及び電流生成抵抗を有してこれらに応じた定電流を前記分圧回路と前記バイアス抵抗との接続点で前記分圧回路に流れる電流に合流させて当該バイアス抵抗に流す定電流出力回路とを有する構成とされ、前記複数の閾値電圧のうちの1つの閾値電圧によって検出されるべき本来の異常検出時電流を前記電源から前記負荷に流しつつ、前記1つの閾値電圧に対応する電流異常信号が前記比較回路から出力されるように、バイアス電圧調整回路でバイアス電圧を調整する。   An abnormality detection current value adjusting method according to an invention of claim 11 is a current abnormality detection circuit for detecting an abnormality of a current flowing in a power supply line from a power source to a load, and the load is detected when the current abnormality is detected. An abnormality detection current value adjusting method for adjusting a current value flowing in the power supply circuit, wherein the current abnormality detection circuit includes a resistive first circuit element provided in the power supply line and one end side of the first circuit. A resistive second circuit element that is commonly connected to the power supply side of the element and through which a current from the power supply flows, and each of the first circuit element and the second circuit element on the opposite side of the common connection point By holding the potential at the same potential or a predetermined potential difference, the current flowing through the second circuit element is set to have a predetermined proportional relationship with the current flowing through the first circuit element, and the current flowing through the second circuit element is output. The Each of the potential control circuit, the current-voltage conversion circuit that converts the current output from the potential control circuit into a voltage, and a plurality of threshold voltages different from the output voltage of the current-voltage conversion circuit. A threshold voltage that has a comparison circuit that outputs a current abnormality signal corresponding to the threshold voltage and a bias voltage generation circuit, and outputs a voltage that changes in conjunction with the bias voltage generated by the bias voltage generation circuit as the plurality of threshold voltages And a bias voltage adjustment circuit capable of adjusting the bias voltage generated by the bias voltage generation circuit, and the threshold voltage generation circuit includes a voltage dividing circuit that divides a reference voltage and includes a plurality of voltage dividing circuits. A bias voltage is output as the plurality of threshold voltages, and the bias voltage generation circuit includes a bias resistor connected in series downstream of the voltage dividing circuit. A constant current output having a constant voltage circuit and a current generating resistor, and a constant current corresponding to the current generating resistor is combined with the current flowing through the voltage dividing circuit at a connection point between the voltage dividing circuit and the bias resistor, and flows through the bias resistor. A current corresponding to the one threshold voltage while passing an original abnormality detection current to be detected by one threshold voltage of the plurality of threshold voltages from the power source to the load. The bias voltage is adjusted by the bias voltage adjustment circuit so that an abnormal signal is output from the comparison circuit.

請求項12の発明に係る異常検出時電流値調整方法は、電源から負荷への電力供給ラインに流れる電流の異常を検出する電流異常検出回路について、前記電流の異常が検出されたときに前記負荷に流れる電流値を調整するための異常検出時電流値調整方法であって、前記電流異常検出回路は、前記電力供給ライン中に設けられるパワーFET、及び、前記パワーFETの電流量に応じたセンス電流が流れるセンスFETを備えるパワーチップと、前記パワーFET及び前記センスFETの各ソース電位を同電位または所定の電位差に保持することで前記センスFETに流れる電流を前記パワーFETに流れる電流に対して所定の比例関係とし、前記センスFETに流れる電流を出力するための電位制御回路と、前記電位制御回路から出力されたセンス電流を電圧に変換する電流電圧変換回路と、この電流電圧変換回路の出力電圧と互いに異なる複数の閾値電圧それぞれとの比較に基づいて前記各閾値電圧に応じた電流異常信号を出力する比較回路と、バイアス電圧発生回路を有すると共にそのバイアス電圧発生回路が発生するバイアス電圧に連動して変化する電圧を前記複数の閾値電圧として出力する閾値電圧発生回路と、前記バイアス電圧発生回路が発生する前記バイアス電圧を調整可能とするバイアス電圧調整回路とを備え、前記閾値電圧発生回路は、基準電圧を分圧する分圧回路を有して複数の分圧電圧を前記複数の閾値電圧として出力し、前記バイアス電圧発生回路は、前記分圧回路の下流側に直列接続されたバイアス抵抗と、定電圧回路及び電流生成抵抗を有してこれらに応じた定電流を前記分圧回路と前記バイアス抵抗との接続点で前記分圧回路に流れる電流に合流させて当該バイアス抵抗に流す定電流出力回路とを有する構成とされ、前記パワーチップの組み付け前に、前記センスFETのオン抵抗と同等の抵抗値の仮抵抗を前記電源と前記電位制御回路のセンスFET用入力との間に接続し、前記電位制御回路のパワーFET用入力に、前記複数の閾値電圧のうちの1つの閾値電圧によって検出されるべき本来の異常検出時電流を前記パワーFETに流したときのソース電圧相当の電圧を与えつつ、前記1つの閾値電圧に対応する電流異常信号が前記比較回路から出力されるように前記バイアス電圧調整回路でバイアス電圧を調整する。   An abnormality detection current value adjustment method according to a twelfth aspect of the present invention relates to a current abnormality detection circuit that detects an abnormality of a current flowing in a power supply line from a power source to a load, and the load is detected when the current abnormality is detected. An abnormality detection current value adjustment method for adjusting a current value flowing in the power supply circuit, wherein the current abnormality detection circuit includes a power FET provided in the power supply line, and a sense corresponding to a current amount of the power FET. A power chip including a sense FET through which a current flows, and a current flowing through the sense FET with respect to a current flowing through the power FET by maintaining each source potential of the power FET and the sense FET at the same potential or a predetermined potential difference A potential control circuit for outputting a current flowing through the sense FET in a predetermined proportional relationship and output from the potential control circuit. A current-voltage conversion circuit that converts a sense current into a voltage, and a comparison circuit that outputs a current abnormality signal corresponding to each threshold voltage based on a comparison between each of the plurality of threshold voltages different from the output voltage of the current-voltage conversion circuit A threshold voltage generation circuit that has a bias voltage generation circuit and outputs, as the plurality of threshold voltages, a voltage that changes in conjunction with a bias voltage generated by the bias voltage generation circuit, and the bias voltage generation circuit generates the bias voltage generation circuit. A bias voltage adjustment circuit capable of adjusting a bias voltage, and the threshold voltage generation circuit includes a voltage dividing circuit that divides a reference voltage, and outputs a plurality of divided voltages as the plurality of threshold voltages. The bias voltage generation circuit has a bias resistor, a constant voltage circuit, and a current generation resistor connected in series downstream of the voltage dividing circuit. And a constant current output circuit for combining the constant current corresponding to the current flowing through the voltage dividing circuit at a connection point between the voltage dividing circuit and the bias resistor to flow through the bias resistor, and assembling the power chip Before, a temporary resistance having a resistance value equivalent to the ON resistance of the sense FET is connected between the power source and the sense FET input of the potential control circuit, and the plurality of power FET inputs of the potential control circuit are connected to the plurality of power FET inputs. Current abnormality signal corresponding to the one threshold voltage while giving a voltage equivalent to the source voltage when the current at the time of detecting an abnormality that should be detected by one of the threshold voltages is supplied to the power FET The bias voltage is adjusted by the bias voltage adjustment circuit so that is output from the comparison circuit.

請求項13の発明は、請求項11または請求項12に記載の異常検出時電流値調整方法において、前記複数の閾値電圧の中から、それらに対応する異常検出時電流が最も小さい閾値電圧を、前記1つの閾値電圧とする。   A thirteenth aspect of the invention is the abnormality detection current value adjustment method according to the eleventh or twelfth aspect, wherein among the plurality of threshold voltages, a threshold voltage having a smallest abnormality detection current corresponding thereto is selected. The one threshold voltage is used.

請求項14の発明は、請求項11から請求項13のいずれかに記載の異常検出時電流値調整方法において、前記電流生成抵抗の抵抗値を調整可能することで前記バイアス電圧を調整する。   In accordance with a fourteenth aspect of the present invention, in the abnormality detection current value adjusting method according to any one of the eleventh to thirteenth aspects, the bias voltage is adjusted by adjusting a resistance value of the current generating resistor.

請求項15の発明は、請求項11から請求項13のいずれかに記載の異常検出時電流値調整方法において、前記バイアス抵抗の抵抗値を調整することで前記バイアス電圧を調整する。   According to a fifteenth aspect of the present invention, in the abnormality detection current value adjusting method according to any one of the eleventh to thirteenth aspects, the bias voltage is adjusted by adjusting a resistance value of the bias resistor.

<請求項1,2の発明>
本構成によれば、電位制御回路の製造ばらつきによって第1回路素子及び第2回路素子のうち共通接続点とは反対側の各電位の電位関係にばらつきがある場合であっても、バイアス電圧調整回路によってバイアス電圧を調整し適切な閾値電圧とすることで、所望の電流レベルで電流の異常を検出することができる。
<Invention of Claims 1 and 2>
According to this configuration, even if the potential relationship of each potential on the side opposite to the common connection point of the first circuit element and the second circuit element varies due to manufacturing variations of the potential control circuit, the bias voltage adjustment is performed. By adjusting the bias voltage by the circuit to an appropriate threshold voltage, it is possible to detect a current abnormality at a desired current level.

<請求項3の発明>
本構成は、パワーFETの電流量に応じたセンス電流が流れるセンスFETを備えるセンス方式の電流異常検出回路であり、この構成においても本発明の効果を得ることができる。
<Invention of Claim 3>
This configuration is a sense-type current abnormality detection circuit including a sense FET in which a sense current according to the amount of current of the power FET flows. The effect of the present invention can also be obtained in this configuration.

<請求項4の発明>
本構成によれば、複数レベルの電流の異常を検出することができる。そして、バイアス電圧を調整することで各閾値電圧を調整することが可能となる。特に、個別の調整可能な複数のバイアス電圧を、複数の閾値電圧それぞれに対応して発生させる構成とすれば、各バイアス電圧を調整することで各閾値電圧をより適切な値に調整できる。
<Invention of Claim 4>
According to this configuration, it is possible to detect an abnormality in a plurality of levels of current. Each threshold voltage can be adjusted by adjusting the bias voltage. In particular, when a plurality of individually adjustable bias voltages are generated corresponding to each of the plurality of threshold voltages, each threshold voltage can be adjusted to a more appropriate value by adjusting each bias voltage.

<請求項5の発明>
本構成によれば、例えば複数の閾値電圧のうちの1つの閾値電圧によって検出されるべき本来の異常検出時電流を電流異常検出回路に流したときに、上記1つの閾値電圧に対応する電流異常信号が出力されるように、バイアス電圧調整回路でバイアス電圧を調整する。このとき、上記1つの閾値電圧以外の他の閾値電圧も変化するが、各閾値電圧間の電位差は変化しない。つまり、複数の閾値電圧それぞれがバイアス電圧の調整分だけ増減される。従って、電位制御回路のばらつきによる複数の異常検出時電流のばらつきを1箇所の調整で行うことができる。
<Invention of Claim 5>
According to this configuration, for example, when an original abnormality detection current to be detected by one threshold voltage among a plurality of threshold voltages is passed through the current abnormality detection circuit, the current abnormality corresponding to the one threshold voltage is detected. The bias voltage is adjusted by a bias voltage adjustment circuit so that a signal is output. At this time, other threshold voltages other than the one threshold voltage also change, but the potential difference between the threshold voltages does not change. That is, each of the plurality of threshold voltages is increased or decreased by the adjustment amount of the bias voltage. Therefore, a plurality of abnormality detection current variations due to potential control circuit variations can be performed by adjusting one point.

<請求項6,7,14,15の発明>
バイアス電圧を調整する構成としては、電流生成抵抗の抵抗値を調整可能とされた構成と、バイアス抵抗の抵抗値が調整可能とされた構成とが考えられる。なお、後者の構成では、上流側の分圧回路の抵抗値に対してバイアス抵抗の抵抗値を小さくすることで、バイアス抵抗の抵抗値を調整しても、複数の閾値電圧を変化させつつ、それら各閾値電圧間の電位差を変えないような作用を実質的に得ることができる。
<Inventions of Claims 6, 7, 14, 15>
As a configuration for adjusting the bias voltage, a configuration in which the resistance value of the current generating resistor can be adjusted and a configuration in which the resistance value of the bias resistor can be adjusted are conceivable. In the latter configuration, by reducing the resistance value of the bias resistor with respect to the resistance value of the upstream voltage dividing circuit, even if the resistance value of the bias resistor is adjusted, a plurality of threshold voltages are changed, An action that does not change the potential difference between the respective threshold voltages can be substantially obtained.

<請求項8の発明>
本構成によれば、ソース端子の電位の増減に応じて増減するように閾値電流を設定できるため、一定レベルの閾値を設定するような構成と比較して、負荷の短絡等が生じた場合に、電源電圧の大小にかかわらず電流電圧変換回路の出力電圧が即座に閾値電圧に達することとなり、電流の異常を迅速に検出できる。
<Invention of Claim 8>
According to this configuration, the threshold current can be set to increase / decrease in accordance with the increase / decrease of the potential of the source terminal, so when a short circuit of the load or the like occurs compared to a configuration in which a certain level of threshold is set. Regardless of the magnitude of the power supply voltage, the output voltage of the current-voltage conversion circuit immediately reaches the threshold voltage, and current abnormality can be detected quickly.

<請求項9の発明>
本構成によれば、電流電圧変換回路は抵抗である。
<Invention of Claim 9>
According to this configuration, the current-voltage conversion circuit is a resistor.

<請求項10の発明>
本構成によれば、閾値設定用の抵抗を半導体素子内に設けるのではなく、半導体素子の外部に設けることができるので、製造過程に起因する抵抗値のばらつき、温度特性によるばらつきを抑えて閾値電流を精度高く設定でき、その結果、異常検出を高精度に行うことができる。また、半導体素子の構成にあまり依存することなく閾値電流を自由に設定できるため、異常検出を行う上での自由度が大きくなる。
<Invention of Claim 10>
According to this configuration, the threshold setting resistor can be provided outside the semiconductor element instead of being provided in the semiconductor element. Therefore, it is possible to suppress the variation in resistance value due to the manufacturing process and the variation due to the temperature characteristic, thereby reducing the threshold value. The current can be set with high accuracy, and as a result, abnormality detection can be performed with high accuracy. In addition, since the threshold current can be set freely without depending on the configuration of the semiconductor element, the degree of freedom in performing abnormality detection increases.

<請求項11,12の発明>
電流異常検出回路について、各閾値電圧によって電流の異常が検出されたときの異常検出時電流値が、本来検出したい値になるように調整するための方法(異常検出時電流値調整方法)としては次の方法がある。第1回路素子(パワーFET)及び第2回路素子(センスFET)が既に組み込まれた状態であれば、ある1つの閾値電圧によって検出されるべき本来の異常検出時電流を第1回路素子に流しつつ、上記1つの閾値電圧に対応する電流異常信号が比較回路から出力されるように、バイアス電圧調整回路でバイアス電圧を調整すればよい。
これに対して、第1回路素子(パワーFET)及び第2回路素子(センスFET)の組み込み前であれば、まず、センスFETのオン抵抗と同等の抵抗値の仮抵抗を電源と電位制御回路のセンスFET用入力との間に接続する。そして、電位制御回路のパワーFET用入力に、上記1つの閾値電圧によって検出されるべき本来の異常検出時電流を前記パワーFETに流したならば発生するであろうソース電圧と同等の電圧を与える。そして、この状態で、上記1つの閾値電圧に対応する電流異常信号が比較回路から出力されるようにバイアス電圧調整回路でバイアス電圧を調整する。
<Invention of Claims 11 and 12>
Regarding the current abnormality detection circuit, as a method for adjusting the current value at the time of abnormality detection when a current abnormality is detected by each threshold voltage to a value to be originally detected (current value adjustment method at the time of abnormality detection) There are the following methods. If the first circuit element (power FET) and the second circuit element (sense FET) are already incorporated, an original abnormality detection current that should be detected by a certain threshold voltage is supplied to the first circuit element. On the other hand, the bias voltage may be adjusted by the bias voltage adjustment circuit so that the current abnormality signal corresponding to the one threshold voltage is output from the comparison circuit.
On the other hand, if the first circuit element (power FET) and the second circuit element (sense FET) are not assembled, first, a temporary resistance having a resistance value equivalent to the ON resistance of the sense FET is connected to the power source and the potential control circuit. Connected to the sense FET input. Then, a voltage equivalent to the source voltage that would be generated if an original abnormality detection current to be detected by the one threshold voltage is supplied to the power FET is applied to the power FET input of the potential control circuit. . In this state, the bias voltage adjustment circuit adjusts the bias voltage so that the current abnormality signal corresponding to the one threshold voltage is output from the comparison circuit.

<請求項13の発明>
電位制御回路の製造ばらつきによる異常検出時電流のばらつきは、その異常検出時電流が小さいほど電流の異常検出精度に大きく影響する。逆に、異常検出時電流が大きいほどその影響は小さい。本構成では、バイアス電圧を調整することにより各閾値電圧は同じ値(バイアス電圧の調整量)だけ増減する。従って、異常検出時電流が小さい閾値電圧を基準にバイアス電圧を調整することで、複数の閾値電圧に対して全体として電位制御回路等の製造ばらつきによる影響を抑制できる。
<Invention of Claim 13>
Variations in current at the time of abnormality detection due to manufacturing variations in the potential control circuit greatly affect current abnormality detection accuracy as the current at the time of abnormality detection decreases. Conversely, the larger the abnormality detection current, the smaller the effect. In this configuration, each threshold voltage is increased or decreased by the same value (bias voltage adjustment amount) by adjusting the bias voltage. Therefore, by adjusting the bias voltage with reference to a threshold voltage with a small current at the time of abnormality detection, the influence of manufacturing variations of the potential control circuit or the like can be suppressed as a whole with respect to a plurality of threshold voltages.

<実施形態1>
本発明の実施形態1を図1〜図6を参照しつつ説明する。
[電力供給制御装置の全体構成]
本実施形態に係る電流異常検出回路は、電力供給制御装置10を構成するものとされ、その全体構成のブロック図が図1に示されている。この電力供給制御装置10は図示しない車両に搭載され、負荷11として例えば車両用のランプ、クーリングファン用モータやデフォッガー用ヒータなどの駆動制御をするために使用される。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS.
[Entire configuration of power supply control device]
The current abnormality detection circuit according to the present embodiment constitutes the power supply control device 10, and a block diagram of the overall configuration is shown in FIG. The power supply control device 10 is mounted on a vehicle (not shown) and is used as a load 11 to control driving of a vehicle lamp, a cooling fan motor, a defogger heater, and the like.

具体的には、電力供給制御装置10は、車両用電源(以下、単に「電源12」)から負荷11への電力供給ライン13中に設けられるパワーMOSFET14(本発明の「第1回路素子、パワーFET」に相当)を備えている。そして、電力供給制御装置10は、パワーMOSFET14のゲートに定電圧信号、或いは、PWM(Pulse Width Modulation。パルス幅変調)制御信号などの制御信号S1を与えてオンオフ動作させることで、そのパワーMOSFET14の出力側に連なる電源12から負荷11への電力供給を制御するように構成されている。なお、本実施形態では、この電力供給制御装置10は、入力端子P1が外部の操作スイッチ15に接続される構成をなし、この操作スイッチ15がオンとなることで動作するようになっている。   Specifically, the power supply control device 10 includes a power MOSFET 14 (“first circuit element, power” of the present invention) provided in a power supply line 13 from a vehicle power supply (hereinafter simply “power supply 12”) to the load 11. FET ”). Then, the power supply control device 10 applies a control signal S1 such as a constant voltage signal or a PWM (Pulse Width Modulation) control signal to the gate of the power MOSFET 14 so as to perform an on / off operation. It is configured to control power supply from the power supply 12 connected to the output side to the load 11. In the present embodiment, the power supply control device 10 is configured such that the input terminal P1 is connected to an external operation switch 15, and operates when the operation switch 15 is turned on.

電力供給制御装置10は、図1に示すように、上記入力端子P1と、電源12に接続される電源(Vcc)端子P2及びタブ端子P3と、負荷11に接続される負荷接続端子P4と、外付け抵抗16(本発明の「電流電圧変換回路」に相当)を介してグランド(GND)に接続される外部端子P5と、グランド(GND)に直接接続されるグランド端子P6と、ダイアグ出力端子P7とが設けられた半導体素子17(半導体ディバイス)として構成されている。本実施形態では、パワーMOSFET14、後述するセンスMOSFET18(本発明の「第2回路素子、センスFET」に相当)及び温度センサ19がパワーチップ20としてワンチップ化され、それ以外の回路が搭載された制御チップ21に組み付けられて構成されている。   As shown in FIG. 1, the power supply control device 10 includes the input terminal P1, a power supply (Vcc) terminal P2 and a tab terminal P3 connected to the power supply 12, a load connection terminal P4 connected to the load 11, An external terminal P5 connected to the ground (GND) via an external resistor 16 (corresponding to the “current-voltage conversion circuit” of the present invention), a ground terminal P6 directly connected to the ground (GND), and a diagnostic output terminal The semiconductor element 17 (semiconductor device) provided with P7 is configured. In this embodiment, the power MOSFET 14, a sense MOSFET 18 (corresponding to the “second circuit element, sense FET” of the present invention) and a temperature sensor 19 described later are integrated into a single chip as the power chip 20, and other circuits are mounted. The control chip 21 is assembled and configured.

図1に示すように、電力供給制御装置10は、制御信号S1が入力端子P1に接続された入力インターフェース22に入力され、この制御信号S1が保護用論理回路23と内部グランド生成回路27とに与えられるようになっている。内部グランド生成回路27は、電源12に接続されるとともに抵抗29を介してグランド端子P6に接続されており、制御信号S1を受けることで通電する。そして、内部グランド生成回路27は、電源電圧(Vcc)から所定の一定電圧分だけ下がった内部グランド(GND2)を生成し、電源電圧(Vcc)と内部グランド(GND2)との間の定電圧が保護用論理回路23に供給される。保護用論理回路23にはチャージポンプ・ゲートドライバ24が接続されており、更に、過電流検知回路25、過温度検知回路26も接続されている。なお、抵抗29の上流にはカソードが電源端子P2に接続されアノードが抵抗29に接続されたダイオード36が設けられている。   As shown in FIG. 1, in the power supply control device 10, the control signal S1 is input to the input interface 22 connected to the input terminal P1, and the control signal S1 is sent to the protection logic circuit 23 and the internal ground generation circuit 27. It has come to be given. The internal ground generation circuit 27 is connected to the power supply 12 and is connected to the ground terminal P6 via the resistor 29, and is energized by receiving the control signal S1. The internal ground generation circuit 27 generates an internal ground (GND2) that is lower than the power supply voltage (Vcc) by a predetermined constant voltage, and a constant voltage between the power supply voltage (Vcc) and the internal ground (GND2) is generated. This is supplied to the protection logic circuit 23. A charge pump / gate driver 24 is connected to the protection logic circuit 23, and an overcurrent detection circuit 25 and an overtemperature detection circuit 26 are also connected. A diode 36 having a cathode connected to the power supply terminal P 2 and an anode connected to the resistor 29 is provided upstream of the resistor 29.

チャージポンプ・ゲートドライバ24は、保護用論理回路23の起動により、正常時には昇圧した電圧をパワーMOSFET14及びセンスMOSFET18の各ゲート−ソース間に与えてオンして通電状態にさせるように動作する。これにより、電源12から負荷11への電力供給が行われる。一方、チャージポンプ・ゲートドライバ24は、保護用論理回路23が後述する第1異常信号OC、第2異常信号FC或いは第3異常信号OTを受けた異常検出時には、保護用論理回路23の演算結果によりパワーMOSFET14及びセンスMOSFET18の各ゲート−ソース間の電荷を放電し、遮断させるように動作する。これにより、電源12から負荷11への電力供給が停止される。   The charge pump / gate driver 24 operates to apply a boosted voltage between the gate and source of the power MOSFET 14 and the sense MOSFET 18 and to turn on the energized state when the protection logic circuit 23 is activated. As a result, power is supplied from the power supply 12 to the load 11. On the other hand, the charge pump / gate driver 24 calculates the operation result of the protection logic circuit 23 when the protection logic circuit 23 detects an abnormality that receives a first abnormality signal OC, a second abnormality signal FC, or a third abnormality signal OT, which will be described later. Thus, the operation is performed so that the electric charges between the gate and the source of the power MOSFET 14 and the sense MOSFET 18 are discharged and cut off. Thereby, the power supply from the power supply 12 to the load 11 is stopped.

パワーチップ20は、ドレインが共通接続されてタブ端子P3に接続される複数のMOSFETが配列され、ほとんどのMOSFET群のソースが共通接続されて過電流検知回路25のパワーFET用入力25a及び負荷接続端子P4に接続されるパワーMOSFET14を構成し、一部のMOSFET群のソースが共通接続されて過電流検知回路25のセンスFET用入力25bに接続されるセンスMOSFET18を構成している。なお、パワーMOSFET14を構成するMOSFET群の数と、センスMOSFET18を構成するMOSFET群の数との比が概ねセンス比kである。また、図1でパワーMOSFET14とセンスMOSFET18とのドレインが共通接続される接続点Aが本発明でいう「共通接続点」に相当する。   In the power chip 20, a plurality of MOSFETs having drains connected in common and connected to the tab terminal P3 are arranged, and the sources of most MOSFET groups are connected in common, and the power FET input 25a of the overcurrent detection circuit 25 and the load connection are connected. The power MOSFET 14 connected to the terminal P4 is configured, and the sense MOSFET 18 connected to the sense FET input 25b of the overcurrent detection circuit 25 is configured by commonly connecting the sources of some MOSFET groups. The ratio of the number of MOSFET groups constituting the power MOSFET 14 and the number of MOSFET groups constituting the sense MOSFET 18 is approximately the sense ratio k. In FIG. 1, the connection point A where the drains of the power MOSFET 14 and the sense MOSFET 18 are connected in common corresponds to the “common connection point” in the present invention.

また、過電流検知回路25は、閾値電圧発生回路28からの第1異常用閾値電圧Vocと、第2異常用閾値電圧Vfcとを受ける。この閾値電圧発生回路28は、パワーMOSFET14のソース(負荷接続端子P4)とグランド端子P6との間に接続されている。   The overcurrent detection circuit 25 receives the first abnormality threshold voltage Voc and the second abnormality threshold voltage Vfc from the threshold voltage generation circuit 28. The threshold voltage generation circuit 28 is connected between the source (load connection terminal P4) of the power MOSFET 14 and the ground terminal P6.

過温度検知回路26は、パワーチップ20に設けられた温度センサ19から当該パワーチップ20の温度に応じた温度信号をS2を受ける。そして、過温度検知回路26は、所定の異常温度を示す温度信号S2を受けたときに温度異常を検出して第3異常信号OTを保護用論理回路23に与える。ダイアグ出力回路34は、例えば保護用論理回路23が第1異常信号OCあるいは第2異常信号FCを受けた異常検出時にダイアグ出力端子P7を介して異常検出信号を出力する。   The over-temperature detection circuit 26 receives a temperature signal S <b> 2 corresponding to the temperature of the power chip 20 from the temperature sensor 19 provided in the power chip 20. The overtemperature detection circuit 26 detects a temperature abnormality when receiving a temperature signal S2 indicating a predetermined abnormal temperature, and supplies the third abnormality signal OT to the protection logic circuit 23. The diagnosis output circuit 34 outputs an abnormality detection signal via the diagnosis output terminal P7, for example, when the protection logic circuit 23 detects an abnormality when it receives the first abnormality signal OC or the second abnormality signal FC.

[過電流検知回路及び閾値電圧発生回路の具体的構成]
図2は、電力供給制御装置10のうち過電流検知回路25及び閾値電圧発生回路28を拡大して示す回路図である。なお、同図では、過電流検知回路25及び閾値電圧発生回路28以外の構成については一部省略されている。
[Specific Configuration of Overcurrent Detection Circuit and Threshold Voltage Generation Circuit]
FIG. 2 is an enlarged circuit diagram showing the overcurrent detection circuit 25 and the threshold voltage generation circuit 28 in the power supply control device 10. In the figure, parts other than the overcurrent detection circuit 25 and the threshold voltage generation circuit 28 are partially omitted.

(1)過電流検知回路
過電流検知回路25は、パワーMOSFET14とセンスMOSFET18とのソース電位(本発明の「共通接続点とは反対側の各電位」に相当)を同電位に保持するための電位制御回路30と、複数(本実施形態では2つ)の比較回路31,32(本実施形態では、ヒステリシスコンパレータ)とを備えている。
(1) Overcurrent detection circuit The overcurrent detection circuit 25 is for holding the source potentials of the power MOSFET 14 and the sense MOSFET 18 (corresponding to “the potentials on the side opposite to the common connection point” of the present invention) at the same potential. A potential control circuit 30 and a plurality of (two in this embodiment) comparison circuits 31 and 32 (in this embodiment, a hysteresis comparator) are provided.

電位制御回路30は、パワーFET用入力25a(パワーMOSFET14のソース)とセンスFET用入力25b(センスMOSFET18のソース)とが1対の入力端子それぞれに接続されるオペアンプ33、センスFET用入力25bと外部端子P5との間に接続され制御端子にオペアンプ33の出力が与えられるスイッチ素子としてのFET35を備えている。より具体的には、パワーFET用入力25aは、オペアンプ33の逆相入力に接続され、センスFET用入力25bは、オペアンプ33の正相入力に接続されている。このオペアンプ33の差動出力は、FET35のゲート−ドレイン間を介して、正相入力にフィードバックされている。   The potential control circuit 30 includes an operational amplifier 33 in which a power FET input 25a (source of the power MOSFET 14) and a sense FET input 25b (source of the sense MOSFET 18) are connected to a pair of input terminals, a sense FET input 25b, An FET 35 is provided as a switch element connected between the external terminal P5 and the output of the operational amplifier 33 to the control terminal. More specifically, the power FET input 25 a is connected to the negative phase input of the operational amplifier 33, and the sense FET input 25 b is connected to the positive phase input of the operational amplifier 33. The differential output of the operational amplifier 33 is fed back to the positive phase input via the gate and drain of the FET 35.

このようにオペアンプ33の差動出力をフィードバックすることによって、オペアンプ33の正相入力の電位と逆相入力の電位とがほとんど同じになるイマジナリーショート状態となる。このため、パワーMOSFET14及びセンスMOSFET18のドレイン同士、ソース同士が互いに同電位となり、パワーMOSFET14に流れる電流IL(負荷電流)に対して安定した一定比率(上記センス比k)のセンス電流Is(本発明の「第2回路素子に流れる電流」に相当)をセンスMOSFET18に流すことができる。しかし、実際には、オペアンプ33は、その製造ばらつき等の起因して入力端子間のオフセット電圧ΔVがばらつき電流の異常検出の精度に影響を与える。   By feeding back the differential output of the operational amplifier 33 in this manner, an imaginary short state is achieved in which the positive-phase input potential and the negative-phase input potential of the operational amplifier 33 are almost the same. Therefore, the drains and sources of the power MOSFET 14 and the sense MOSFET 18 have the same potential, and the sense current Is (the sense ratio k) is stable with respect to the current IL (load current) flowing through the power MOSFET 14 (the present invention). (Corresponding to “current flowing through the second circuit element”) can be passed through the sense MOSFET 18. However, in practice, in the operational amplifier 33, the offset voltage ΔV between the input terminals affects the accuracy of the abnormality detection of the variation current due to manufacturing variations and the like.

電位制御回路30からのセンス電流Isは外部端子P5を介して外付け抵抗16に流れ、このセンス電流Isに応じて外部端子P5の端子電圧Vo(本発明の「電流電圧変換回路の出力電圧」に相当)が変化する。そして、この端子電圧Voが、上記比較回路31の一方の入力端子に与えられると共に、比較回路32の一方の入力端子に与えられる。   The sense current Is from the potential control circuit 30 flows to the external resistor 16 via the external terminal P5, and the terminal voltage Vo (the “output voltage of the current-voltage conversion circuit” of the present invention) of the external terminal P5 according to the sense current Is. Is equivalent). The terminal voltage Vo is applied to one input terminal of the comparison circuit 31 and also applied to one input terminal of the comparison circuit 32.

比較回路31は、他方の入力端子に閾値電圧発生回路28からの第1異常用閾値電圧Vocを受けて、この第1異常用閾値電圧Vocを端子電圧Voが超えたときに第1異常信号OC(本発明の「電流異常信号」に相当)を保護用論理回路23に出力する。なお、この比較回路31は、例えば負荷11が短絡するなどして所定値以上の大電流(過電流異常電流ILoc 本来の異常検出時電流)が負荷11に流れる「過電流異常」時に第1異常信号OCを出力させるためのものである。   The comparison circuit 31 receives the first abnormality threshold voltage Voc from the threshold voltage generation circuit 28 at the other input terminal, and the first abnormality signal OC when the terminal voltage Vo exceeds the first abnormality threshold voltage Voc. (Corresponding to the “current abnormality signal” of the present invention) is output to the protection logic circuit 23. Note that the comparison circuit 31 has a first abnormality at the time of “overcurrent abnormality” when a large current (overcurrent abnormality current ILoc original current at the time of abnormality detection) flows to the load 11 due to, for example, a short circuit of the load 11. This is for outputting the signal OC.

比較回路32は、他方の入力端子に閾値電圧発生回路28からの第2異常用閾値電圧Vfc(<Voc)を受けて、この第2異常用閾値電圧Vfcを端子電圧Voが超えたときに第2異常信号FC(本発明の「電流異常信号」に相当)を保護用論理回路23に出力する。なお、この比較回路32は、上記「過電流異常」時の電流よりは小さい電流であるが、定格電流よりも大きくこのまま流し続けると、例えば負荷11に連なる配線が発煙するなどの問題が生じ得る程度の電流(ヒューズ異常電流ILfc 本来の異常検出時電流)が流れる「ヒューズ異常」時に第2異常信号FCを出力するためのものである。   The comparison circuit 32 receives the second abnormality threshold voltage Vfc (<Voc) from the threshold voltage generation circuit 28 at the other input terminal, and the second abnormality threshold voltage Vfc is exceeded when the terminal voltage Vo exceeds the second abnormality threshold voltage Vfc. 2 The abnormal signal FC (corresponding to the “current abnormal signal” of the present invention) is output to the protection logic circuit 23. The comparison circuit 32 is a current smaller than the current at the time of the “overcurrent abnormality”. However, if the current is kept larger than the rated current as it is, a problem may occur such as, for example, wiring connected to the load 11 smokes. This is for outputting the second abnormality signal FC at the time of “fuse abnormality” in which a current of a certain level (current during abnormality detection of the fuse abnormality ILfc) flows.

なお、保護用論理回路23は、第1異常信号OCを受けたときは、例えば即時的または短時間待った後にパワーMOSFET14を遮断させるようにチャージポンプ・ゲートドライバ24を制御する。このときの遮断動作は、例えば電力供給制御装置10に制御信号S1が再入力されない限り遮断状態を維持する自己復帰不能な遮断動作である。なお、このときの遮断動作は、第1異常信号OCを受けなくなったことを条件に自己復帰可能なものであっても勿論よい。   When receiving the first abnormality signal OC, the protection logic circuit 23 controls the charge pump / gate driver 24 so as to shut off the power MOSFET 14 immediately or after waiting for a short time, for example. The shut-off operation at this time is a shut-off operation that is not self-recoverable and maintains the shut-off state unless the control signal S1 is input again to the power supply control device 10, for example. Of course, the shut-off operation at this time may be self-recoverable on condition that the first abnormal signal OC is not received.

また、保護用論理回路23は、第2異常信号FCを受けたときは、第1異常信号OCを受けたときよりも長い時間(このときの電流を流し続けて配線の発煙が生じる時間よりも短い時間)待った後に自己復帰不能な遮断動作を行う。なお、このときの遮断動作は、第2異常信号FCを受けなくなったことを条件に自己復帰可能なものであっても勿論よい。更に、保護用論理回路23は、第3異常信号OTを受けたときには、パワーMOSFET14を一時的に遮断させ、第3異常信号OTを受けなくなった(パワーチップ20の温度が所定の異常温度を下回った)ことを条件にパワーMOSFET14を通電状態に復帰させる自己復帰可能な遮断動作を行う。   Further, when the protection logic circuit 23 receives the second abnormality signal FC, the protection logic circuit 23 has a longer time than the time when the first abnormality signal OC is received (the time when the current continues to flow and the generation of wiring smoke occurs). After waiting for a short time, perform a shut-off operation that cannot be restored. Of course, the shut-off operation at this time may be self-recoverable on condition that the second abnormal signal FC is not received. Further, when receiving the third abnormal signal OT, the protection logic circuit 23 temporarily shuts off the power MOSFET 14 and no longer receives the third abnormal signal OT (the temperature of the power chip 20 falls below a predetermined abnormal temperature). On the condition that the power MOSFET 14 is returned to the energized state, a self-recoverable shut-off operation is performed.

(2)閾値電圧発生回路
閾値電圧発生回路28は、図2に示すように、パワーMOSFET14のソースとグランド端子P6との間に、分圧回路40とバイアス抵抗42とが直列接続されている。分圧回路40は、複数の抵抗(本実施形態では3つの抵抗40a,40b,40c)を直列接続して構成されており、抵抗40aと抵抗40bとの接続点Bの分圧電圧が上記第1異常用閾値電圧Vocとして出力され、抵抗40bと抵抗40cとの接続点Cの分圧電圧が上記第2異常用閾値電圧Vfcとして出力される。従って、パワーMOSFET14のソース電圧Vsが本発明の「基準電圧」に相当する。
(2) Threshold Voltage Generation Circuit As shown in FIG. 2, in the threshold voltage generation circuit 28, a voltage dividing circuit 40 and a bias resistor 42 are connected in series between the source of the power MOSFET 14 and the ground terminal P6. The voltage dividing circuit 40 is configured by connecting a plurality of resistors (in this embodiment, three resistors 40a, 40b, and 40c) in series, and the divided voltage at the connection point B between the resistors 40a and 40b is the first voltage. The first abnormal threshold voltage Voc is output, and the divided voltage at the connection point C between the resistors 40b and 40c is output as the second abnormal threshold voltage Vfc. Therefore, the source voltage Vs of the power MOSFET 14 corresponds to the “reference voltage” of the present invention.

バイアス抵抗42は、分圧回路40の下流側に配されている。また、バイアス抵抗42は、定電流出力回路46と共にバイアス電圧発生回路41を構成する。定電流出力回路46は、調整用抵抗45(本発明の「電流生成抵抗、バイアス電圧調整回路」に相当)を備えて、この調整用抵抗45の抵抗値に応じた定電流Ihをバイアス抵抗42と分圧回路40との接続点Dからバイアス抵抗42に流す。   The bias resistor 42 is disposed on the downstream side of the voltage dividing circuit 40. The bias resistor 42 constitutes a bias voltage generating circuit 41 together with the constant current output circuit 46. The constant current output circuit 46 includes an adjusting resistor 45 (corresponding to the “current generating resistor and bias voltage adjusting circuit” of the present invention), and a constant current Ih corresponding to the resistance value of the adjusting resistor 45 is supplied to the bias resistor 42. From the connection point D of the voltage dividing circuit 40 to the bias resistor 42.

具体的には、定電流出力回路46は、互いのソースが電源端子P2に共通接続される1対のMOSトランジスタ43,44によって構成されたカレントミラー回路47を有する。また、ゲートとドレインとが短絡接続されたMOSトランジスタ43のドレインには、上述した内部グランド生成回路27(本発明の「定電圧回路」に相当)との間に上記調整用抵抗45が接続され、この調整用抵抗45の抵抗値に応じた定電流Ihが生成される。MOSトランジスタ44のドレインは上記接続点Dに接続されている。   Specifically, the constant current output circuit 46 includes a current mirror circuit 47 configured by a pair of MOS transistors 43 and 44 whose sources are commonly connected to the power supply terminal P2. The adjustment resistor 45 is connected to the drain of the MOS transistor 43 whose gate and drain are short-circuited to the internal ground generation circuit 27 (corresponding to the “constant voltage circuit” of the present invention). A constant current Ih corresponding to the resistance value of the adjustment resistor 45 is generated. The drain of the MOS transistor 44 is connected to the connection point D.

[異常検出時電流値の調整方法]
上述したように、保護用論理回路23は「過電流異常」時と「ヒューズ異常」時とに応じた遮断動作を行う。従って、パワーMOSFET14及び負荷11に流れる負荷電流ILを正確に検出して、「過電流異常」として検出すべき過電流異常電流ILocが負荷11等に流れたときに比較回路31から第1異常信号OCが出力され、「ヒューズ異常」として検出すべきヒューズ異常電流ILfcが負荷11等に流れたときに比較回路32から第2異常信号FCが出力されるようにする必要がある。
[How to adjust the current value when an abnormality is detected]
As described above, the protection logic circuit 23 performs a shut-off operation according to “overcurrent abnormality” and “fuse abnormality”. Accordingly, the load current IL flowing through the power MOSFET 14 and the load 11 is accurately detected, and the first abnormal signal is output from the comparison circuit 31 when the overcurrent abnormal current ILoc to be detected as “overcurrent abnormality” flows to the load 11 or the like. It is necessary to output the second abnormality signal FC from the comparison circuit 32 when the OC is output and the fuse abnormality current ILfc to be detected as “fuse abnormality” flows to the load 11 or the like.

勿論、電力供給制御装置10はこれらを加味して設計されるわけであるが、実際には製造ばらつきによって電位制御回路30からのセンス電流Isと負荷電流ILとの比例関係が設計上の比例関係に対してばらつく。つまり、負荷電流ILに対するセンス電流Isの値がばらつくため、上記過電流異常電流ILocやヒューズ異常電流ILfcからずれた負荷電流ILが負荷11等に流れたときに「過電流異常」「ヒューズ異常」が検出されてしまう。   Of course, the power supply control device 10 is designed in consideration of these, but actually, the proportional relationship between the sense current Is from the potential control circuit 30 and the load current IL is proportional to the design due to manufacturing variations. Vary. That is, since the value of the sense current Is with respect to the load current IL varies, when the load current IL deviated from the overcurrent abnormal current ILoc or the fuse abnormal current ILfc flows to the load 11 or the like, the “overcurrent abnormality” or “fuse abnormality” Will be detected.

この異常検出時電流値のばらつきの要因としては次のものが挙げられる。なお、これらの要因により電力供給制御装置10全体として設計値に対して±50〜60%(いわゆる倍半分)ばらつく。
a.パワーMOSFET14とセンスMOSFET18とのセンス比kのばらつき
b.電位制御回路30のオペアンプ33のオフセット電圧ΔVのばらつき
c.電流電圧変換回路としての外付け抵抗16のばらつき
d.閾値電圧発生回路28で生成される閾値電圧(第1異常用閾値電圧Voc、第2異常用閾値電圧Vfc)のばらつき
e.比較回路31,32が備える1対のスイッチ素子のばらつき
このうち、「c.外付け抵抗16のばらつき」については、本実施形態では、外付け抵抗16は、半導体素子17の外部に設ける構成であるからこれによる製造ばらつきは抑制できる。これにより、電力供給制御装置10全体としてのばらつきを設計値に対して±30%程度に抑えることができる。
The following can be cited as causes of the variation in the current value at the time of abnormality detection. Note that, due to these factors, the power supply control device 10 as a whole varies by ± 50 to 60% (so-called half) with respect to the design value.
a. Variation in sense ratio k between power MOSFET 14 and sense MOSFET 18 b. Variation in offset voltage ΔV of operational amplifier 33 of potential control circuit 30 c. Variation of external resistor 16 as current-voltage conversion circuit d. Variation in threshold voltages (first abnormality threshold voltage Voc, second abnormality threshold voltage Vfc) generated by the threshold voltage generation circuit 28 e. Among the variations of the pair of switch elements included in the comparison circuits 31 and 32, among these, “c. Variation of the external resistor 16” is a configuration in which the external resistor 16 is provided outside the semiconductor element 17 in the present embodiment. Therefore, manufacturing variations due to this can be suppressed. Thereby, the dispersion | variation as the whole electric power supply control apparatus 10 can be suppressed to about +/- 30% with respect to a design value.

また、「d.閾値電圧発生回路28で生成される閾値電圧のばらつき」については、本実施形態では、これらを生成するための分圧回路40が半導体素子17の内部に設けられている。従って、製造段階において抵抗40a〜40cの抵抗値は同方向(増加方向或いは減少方向)にばらつくため第1異常用閾値電圧Vocと第2異常用閾値電圧Vfcとの比率のばらつきは抑制される。   As for “d. Variation in threshold voltage generated by the threshold voltage generation circuit 28”, in the present embodiment, a voltage dividing circuit 40 for generating these is provided in the semiconductor element 17. Accordingly, since the resistance values of the resistors 40a to 40c vary in the same direction (increase direction or decrease direction) in the manufacturing stage, variation in the ratio between the first abnormality threshold voltage Voc and the second abnormality threshold voltage Vfc is suppressed.

一方、「b.オペアンプ33のオフセット電圧ΔVのばらつき」は、異常検出時電流値のばらつきに大きな影響を与え得る。オペアンプ33のオフセット電圧ΔVのばらつきは、通常数mV程度、製造条件によっては10〜15mV程度になることがある。ここで、オフセット電圧ΔVのばらつきがセンス電流Isに与える影響については次の式で表される。

Figure 2007135274
On the other hand, “b. Variation in offset voltage ΔV of operational amplifier 33” can greatly affect variation in current value at the time of abnormality detection. The variation of the offset voltage ΔV of the operational amplifier 33 is usually about several mV, and may be about 10 to 15 mV depending on manufacturing conditions. Here, the influence of the variation in the offset voltage ΔV on the sense current Is is expressed by the following equation.
Figure 2007135274

k:センス比
IL:負荷電流
Ron:パワーMOSFET14のオン抵抗値
つまり、上記式の第2項がオフセット電圧ΔVのばらつきによる誤差を意味する。これをグラフに現したのが図3である。
k: Sense ratio IL: Load current Ron: On-resistance value of the power MOSFET 14 In other words, the second term of the above equation means an error due to variations in the offset voltage ΔV. This is shown in the graph of FIG.

(1)オペアンプのオフセット電圧を調整する方法
上記要因による異常検出時電流値のばらつきを調整(トリミング)する方法としては、上記各回路25,28等を半導体素子17に搭載した後(ICのパッケージ化の前)にオペアンプ33のオフセット電圧ΔVを調整する方法が考えられる。つまり、オペアンプ33を、パワーMOSFET14とセンスMOSFET18のソース電位が同電位になるよう調整するのである。図4は、オペアンプ33のオフセット電圧ΔVを調整した場合における閾値電圧と負荷電流ILとの関係グラフである。同図中の符号Rxは外付け抵抗16の抵抗値である。
(1) Method of adjusting offset voltage of operational amplifier As a method of adjusting (trimming) variation in current value at the time of abnormality detection due to the above factors, after mounting each of the circuits 25, 28, etc. on the semiconductor element 17 (IC package) It is conceivable to adjust the offset voltage ΔV of the operational amplifier 33 before the conversion. That is, the operational amplifier 33 is adjusted so that the source potentials of the power MOSFET 14 and the sense MOSFET 18 are the same. FIG. 4 is a graph showing the relationship between the threshold voltage and the load current IL when the offset voltage ΔV of the operational amplifier 33 is adjusted. The symbol Rx in the figure is the resistance value of the external resistor 16.

この図4に示すように、オペアンプ33のオフセット電圧ΔVを調整することで、オペアンプ33のオフセット電圧ΔVのばらつきによる影響は排除できる。しかし、「d.閾値電圧発生回路28で生成される閾値電圧のばらつき」及び「e.比較回路31,32のばらつき」による影響を抑えることはできない。つまり、これらの要因によって第1異常用閾値電圧Voc、第2異常用閾値電圧Vfcのばらつきによる影響が残る。そして、この閾値電圧のばらつきによる影響を排除するためには、更に各比較回路31,32が有する1対のスイッチのバランス(1対の入力端子間電圧)を調整する必要がある。従って、この方法では、オペアンプ33、各比較回路31,32を調整する必要がある。   As shown in FIG. 4, by adjusting the offset voltage ΔV of the operational amplifier 33, the influence due to the variation in the offset voltage ΔV of the operational amplifier 33 can be eliminated. However, the influence of “d. Variation in threshold voltage generated by threshold voltage generation circuit 28” and “e. Variation in comparison circuits 31 and 32” cannot be suppressed. That is, due to these factors, the influence of variations in the first abnormality threshold voltage Voc and the second abnormality threshold voltage Vfc remains. In order to eliminate the influence of the variation in threshold voltage, it is necessary to further adjust the balance (a pair of input terminal voltages) of the pair of switches included in each of the comparison circuits 31 and 32. Therefore, in this method, it is necessary to adjust the operational amplifier 33 and the comparison circuits 31 and 32.

なお、オペアンプ33の調整を行わずに、比較回路31,32のみ調整する方法を採用した場合には、オペアンプ33のオフセット電圧ΔVのばらつきに応じて比較回路31,32をそれぞれ調整する必要が生じる。   When the method of adjusting only the comparison circuits 31 and 32 without adopting the adjustment of the operational amplifier 33 is adopted, it is necessary to adjust the comparison circuits 31 and 32 according to the variation of the offset voltage ΔV of the operational amplifier 33, respectively. .

(2)分圧回路の基準電圧を調整する方法
例えば、分圧回路40とパワーMOSFET14のソースとの間の抵抗値を調整することで分圧回路40の基準電圧を調整して第1異常用閾値電圧Voc及び第2異常用閾値電圧Vfcを調整する方法がある。図5に示すように、オペアンプ33のオフセット電圧ΔVのばらつきによりセンス電流Is−負荷電流ILの関係直線が設計上の線L1(同図で実線)からL2(同図で点線)にずれた場合、例えば「ヒューズ異常」時の負荷電流ILをヒューズ異常電流ILfcとするように基準電圧を調整する。これにより、第2異常用閾値電圧Vfcは「Vfc’」に変更される。
(2) Method for adjusting the reference voltage of the voltage dividing circuit For example, by adjusting the resistance value between the voltage dividing circuit 40 and the source of the power MOSFET 14, the reference voltage of the voltage dividing circuit 40 is adjusted to be used for the first abnormality. There is a method of adjusting the threshold voltage Voc and the second abnormality threshold voltage Vfc. As shown in FIG. 5, when the relationship line of the sense current Is-load current IL is shifted from the designed line L1 (solid line in the figure) to L2 (dotted line in the figure) due to variations in the offset voltage ΔV of the operational amplifier 33. For example, the reference voltage is adjusted so that the load current IL at the time of “fuse abnormality” becomes the fuse abnormality current ILfc. As a result, the second abnormality threshold voltage Vfc is changed to “Vfc ′”.

しかし、第1異常用閾値電圧Vocは、これに第2異常用閾値電圧Vfcの変更前後の比(Vfc’/Vfc)を乗じた値(Voc’)となって大きくずれてしまう。ここで、オペアンプ33のオフセット電圧ΔVのばらつきは、「過電流異常」時のように比較的に大きな過電流異常電流ILocが流れる(パワーMOSFET14のドレインーソース間電圧Vdsが大きい)ときに比べて、「ヒューズ異常時」のように比較的に小さいヒューズ異常電流ILfcが流れる(パワーMOSFET14のドレインーソース間電圧Vdsが小さい)ときの方が検出精度に与える影響が大きい。具体的には、例えばオフセット電圧ΔVのばらつきが15mVであった場合、パワーMOSFET14のドレインーソース間電圧Vdsが1V(パワーMOSFET14のオン抵抗3mΩ、供給電流333A)であるときには、オフセット電圧ΔVのばらつきによるセンス電流Isのばらつきは1.5%となる。これに対して、パワーMOSFET14のドレインーソース間電圧Vdsが30mV(パワーMOSFET14のオン抵抗3mΩ、供給電流10A)であるときには、オフセット電圧ΔVのばらつきによるセンス電流Isのばらつきは33%となる。「ヒューズ異常」の検出は、上述したように配線等を発煙から保護するヒューズ機能として利用されるため、極めて高い精度で検出する必要がある。   However, the first abnormality threshold voltage Voc is greatly shifted to a value (Voc ′) obtained by multiplying the first abnormality threshold voltage Voc by a ratio (Vfc ′ / Vfc) before and after the change of the second abnormality threshold voltage Vfc. Here, the variation of the offset voltage ΔV of the operational amplifier 33 is larger than that when a relatively large overcurrent abnormal current ILoc flows (the drain-source voltage Vds of the power MOSFET 14 is large) as in the case of “overcurrent abnormality”. When a relatively small fuse abnormality current ILfc flows (when the drain-source voltage Vds of the power MOSFET 14 is small) as in “when the fuse is abnormal”, the influence on the detection accuracy is greater. Specifically, for example, when the variation of the offset voltage ΔV is 15 mV, when the drain-source voltage Vds of the power MOSFET 14 is 1 V (the on-resistance of the power MOSFET 14 is 3 mΩ, the supply current 333 A), the variation of the offset voltage ΔV. The variation in the sense current Is due to is 1.5%. On the other hand, when the drain-source voltage Vds of the power MOSFET 14 is 30 mV (the on-resistance 3 mΩ of the power MOSFET 14 and the supply current 10 A), the variation in the sense current Is due to the variation in the offset voltage ΔV is 33%. Since the detection of “fuse abnormality” is used as a fuse function for protecting wiring and the like from smoke as described above, it is necessary to detect it with extremely high accuracy.

従って、第1異常用閾値電圧Vocを変更することは好ましくない。しかしながら、この基準電圧を調整する方法では、第2異常用閾値電圧を「Vfc」から「Vfc’」に補正した場合、その補正量よりも大きく第1異常用閾値電圧Vocが変更されてしまい却って「過電流異常」の検出精度を低下させる結果となる。   Therefore, it is not preferable to change the first abnormality threshold voltage Voc. However, in this method of adjusting the reference voltage, when the second abnormality threshold voltage is corrected from “Vfc” to “Vfc ′”, the first abnormality threshold voltage Voc is changed larger than the correction amount. As a result, the detection accuracy of the “overcurrent abnormality” is lowered.

なお、これ以外に外付け抵抗16の抵抗値を調整する方法する方法があるが、この方法も、上記基準電圧を調整する方法と同様の問題が生じる。   In addition to this, there is a method of adjusting the resistance value of the external resistor 16, but this method also has the same problem as the method of adjusting the reference voltage.

(3)バイアス電圧を調整する方法
本実施形態では、バイアス電圧発生回路41の調整用抵抗45の抵抗値を調整することによりバイアス抵抗42に印加されるバイアス電圧Vbを調整する方法が採用されている。バイアス電圧発生回路41は、調整用抵抗45の抵抗値の調整によるバイアス電圧Vbの変化に応じて複数の閾値電圧を変化させつつ、それら各閾値電圧間の電位差を変えないようにする。つまり、このバイアス電圧Vbを調整することにより、図6に示すように、第1異常用閾値電圧Vocと第2異常用閾値電圧Vfcとを同量だけ底上げするのである(同図ではVoc”、Vfc”)。
(3) Method of Adjusting Bias Voltage In this embodiment, a method of adjusting the bias voltage Vb applied to the bias resistor 42 by adjusting the resistance value of the adjusting resistor 45 of the bias voltage generating circuit 41 is adopted. Yes. The bias voltage generation circuit 41 changes a plurality of threshold voltages in accordance with changes in the bias voltage Vb due to adjustment of the resistance value of the adjustment resistor 45, and does not change the potential difference between these threshold voltages. That is, by adjusting the bias voltage Vb, as shown in FIG. 6, the first abnormality threshold voltage Voc and the second abnormality threshold voltage Vfc are raised by the same amount (in the figure, Voc ”, Vfc ").

これにより、オペアンプ33のオフセット電圧ΔVのばらつきによる影響が大きい「ヒューズ異常」については、オフセット電圧ΔV、第2異常用閾値電圧Vfc及び比較回路32のばらつきを一度に調整することができる。一方、「過電流異常」については、オフセット電圧ΔVによるばらつきは調整され、第1異常用閾値電圧Voc及び比較回路31のばらつきが残る。しかし、「過電流異常」では、第1異常用閾値電圧Voc自体が大きな値であるから第1異常用閾値電圧Voc及び比較回路31のばらつきによる影響は小さい。   As a result, with respect to “fuse abnormality” that is largely affected by variations in the offset voltage ΔV of the operational amplifier 33, variations in the offset voltage ΔV, the second abnormality threshold voltage Vfc, and the comparison circuit 32 can be adjusted at a time. On the other hand, for the “overcurrent abnormality”, the variation due to the offset voltage ΔV is adjusted, and the variation in the first abnormality threshold voltage Voc and the comparison circuit 31 remains. However, in the “overcurrent abnormality”, since the first abnormality threshold voltage Voc itself is a large value, the influence due to variations in the first abnormality threshold voltage Voc and the comparison circuit 31 is small.

バイアス電圧Vbの具体的な調整方法は、次の通りである。調整用抵抗45は、例えば、図7に示すように、1つの基準抵抗R1に、両端を例えばポリシリコンで短絡したトリミングパッドTPを有する複数のトリミング抵抗(同図ではR2,R3,R4)を直列接続した構成であり、必要に応じて各トリミング抵抗R2〜R4の両端に連なるトリミングパッドTPに所定の電圧を印加して短絡接続を開放させる(同図ではトリミング抵抗R2のみ短絡接続が開放されている)ことで全体としての抵抗値が調整可能とされている。図2に示すように、パワーMOSFET14に上記ヒューズ異常電流ILfcを流した状態で、比較回路32から第2異常信号FCが出力されるように調整用抵抗45の抵抗値を調整するのである。   A specific method for adjusting the bias voltage Vb is as follows. For example, as shown in FIG. 7, the adjustment resistor 45 includes a plurality of trimming resistors (R2, R3, and R4 in the figure) having a trimming pad TP whose both ends are short-circuited with polysilicon, for example, to one reference resistor R1. In this configuration, a short-circuit connection is opened by applying a predetermined voltage to the trimming pads TP connected to both ends of each trimming resistor R2 to R4 as necessary (in the figure, only the trimming resistor R2 is opened). The resistance value as a whole can be adjusted. As shown in FIG. 2, the resistance value of the adjustment resistor 45 is adjusted so that the second abnormal signal FC is output from the comparison circuit 32 in the state where the fuse abnormal current ILfc flows through the power MOSFET 14.

以上により、本実施形態によれば、分圧回路40の下流側に配したバイアス抵抗42のバイアス電圧Vbを調整して、第1異常用閾値電圧Vocを第2異常用閾値電圧Vfcと同じ量だけ底上げするという1箇所に対する調整作業で「過電流異常」についてオフセット電圧ΔVのばらつきによる影響を排除しつつ、高い検出精度が求められる「ヒューズ異常」についてオフセット電圧ΔV、第2異常用閾値電圧Vfc及び比較回路32のばらつきによる影響を一度に排除できる。   As described above, according to the present embodiment, the bias voltage Vb of the bias resistor 42 arranged on the downstream side of the voltage dividing circuit 40 is adjusted, and the first abnormality threshold voltage Voc is equal to the second abnormality threshold voltage Vfc. In the adjustment work for one place, which is raised only by the level of the offset voltage ΔV and the second abnormality threshold voltage Vfc for the “fuse abnormality” that requires high detection accuracy while eliminating the influence of the variation of the offset voltage ΔV on the “overcurrent abnormality”. In addition, the influence of the variation of the comparison circuit 32 can be eliminated at a time.

なお、本実施形態では、第1異常用閾値電圧Vocを第2異常用閾値電圧Vfcを生成する元となる基準電圧がパワーMOSFET14のソース電圧Vsになっており、第1異常用閾値電圧Voc、第2異常用閾値電圧Vfcが電源電圧Vccに応じた値となる。従って、電源電圧Vccの大小にかかわらず、電力供給制御装置10の起動時において「過電流異常」「ヒューズ異常」を早期に検出することができる。   In the present embodiment, the reference voltage for generating the first abnormality threshold voltage Voc and the second abnormality threshold voltage Vfc is the source voltage Vs of the power MOSFET 14, and the first abnormality threshold voltage Voc, The second abnormality threshold voltage Vfc is a value corresponding to the power supply voltage Vcc. Therefore, regardless of the magnitude of the power supply voltage Vcc, the “overcurrent abnormality” and the “fuse abnormality” can be detected at an early stage when the power supply control device 10 is activated.

<実施形態2>
図8は実施形態2を示す。上記実施形態1では、制御チップ21にパワーチップ20を組み込んだ後に、バイアス電圧Vbの調整作業を行う構成であった。これに対して、本実施形態では、パワーチップ20を組み込む前の制御チップ21のみの状態でバイアス電圧Vbを調整可能とするものである。
<Embodiment 2>
FIG. 8 shows a second embodiment. In the first embodiment, the adjustment operation of the bias voltage Vb is performed after the power chip 20 is incorporated in the control chip 21. On the other hand, in the present embodiment, the bias voltage Vb can be adjusted with only the control chip 21 before the power chip 20 is incorporated.

本実施形態の制御チップ21は、電位制御回路30のセンスFET用入力25bとタブ端子P3との間に仮抵抗50が接続されている。この仮抵抗50はセンスMOSFET18のオン抵抗(=Ron×k)相当の抵抗値を有する。そして、パワーFET用入力25aが連なる負荷接続端子P4とタブ端子P3との間に電圧Vdsを印加する。この電圧Vdsは、パワーMOSFET14にヒューズ異常電流ILfcを流したときのドレインーソース間電圧に相当する。そして、この状態で、比較回路32から第2異常信号FCが出力されるように調整用抵抗45の抵抗値を調整するのである。なお、この調整作業においては、上記仮抵抗50及び外付け抵抗16(仮の外付け抵抗)は制御チップ21に一時的に仮接続され、調整作業後に仮抵抗50及び外付け抵抗16(仮の外付け抵抗)は除かれ、制御チップ21に対してパワーチップ20をワイヤーボンドで本接続すると共に、外付け抵抗16を外部端子P5に本接続する。   In the control chip 21 of the present embodiment, a temporary resistor 50 is connected between the sense FET input 25b of the potential control circuit 30 and the tab terminal P3. The provisional resistor 50 has a resistance value corresponding to the on-resistance (= Ron × k) of the sense MOSFET 18. Then, the voltage Vds is applied between the load connection terminal P4 and the tab terminal P3 connected to the power FET input 25a. This voltage Vds corresponds to a drain-source voltage when a fuse abnormal current ILfc is passed through the power MOSFET 14. In this state, the resistance value of the adjustment resistor 45 is adjusted so that the second abnormality signal FC is output from the comparison circuit 32. In this adjustment operation, the temporary resistor 50 and the external resistor 16 (temporary external resistor) are temporarily connected to the control chip 21. After the adjustment operation, the temporary resistor 50 and the external resistor 16 (temporary resistor) are temporarily connected. The external resistor is removed, and the power chip 20 is permanently connected to the control chip 21 by wire bonding, and the external resistor 16 is permanently connected to the external terminal P5.

このような方法であれば、パワーチップ20を組み込む前の制御チップ21のみの状態でバイアス電圧Vbを調整することができる。   With such a method, the bias voltage Vb can be adjusted only in the control chip 21 before the power chip 20 is incorporated.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、センスMOSFET18を備えたセンスMOS方式によって負荷電流ILを検出する構成に対して本発明を適用した例を説明したが、これに限らず、図9に示す構成であっても本発明を適用することにより同様の効果を得ることができる。つまり、上記図2の構成に対して、電源12とパワーMOSFET14のドレインとの間にシャント抵抗61を設けると共に、オペアンプ33の一方の入力端子をシャント抵抗61(本発明の「第1回路素子」に相当)とパワーMOSFET14のドレインとの接続点に接続し、センスMOSFET18の代わりにシャント抵抗62(本発明の「第2回路素子」に相当)を接続したシャント抵抗方式の構成である。外付け抵抗16には、パワーMOSFET14に流れる負荷電流ILに対してシャント抵抗61,62の抵抗比に応じた電流が流れる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above embodiment, the example in which the present invention is applied to the configuration in which the load current IL is detected by the sense MOS method including the sense MOSFET 18 has been described. However, the configuration is not limited to this, and the configuration illustrated in FIG. However, the same effect can be obtained by applying the present invention. In other words, in contrast to the configuration of FIG. 2, the shunt resistor 61 is provided between the power supply 12 and the drain of the power MOSFET 14, and one input terminal of the operational amplifier 33 is connected to the shunt resistor 61 (the “first circuit element” of the present invention). And a shunt resistor 62 (corresponding to the “second circuit element” of the present invention) instead of the sense MOSFET 18 is connected to the connection point between the power MOSFET 14 and the drain of the power MOSFET 14. A current corresponding to the resistance ratio of the shunt resistors 61 and 62 flows to the external resistor 16 with respect to the load current IL flowing through the power MOSFET 14.

(2)上記実施形態で電位制御回路としては、オペアンプ33を有する電位制御回路30であったが、これに限らず、1対のスイッチ素子を組み合わせてなるレベルシフト回路によってパワーMOSFET14とセンスMOSFET18とのソース電位を同電位する構成であってもよい。例えばNch型FETのドレインを定電流回路に接続し、そのゲートをパワーMOSFET14のソースに接続し、そのソースをPch型FETのゲートに接続し、このPch型FETのソースをセンスMOSFET18のソースに接続しこのドレインを外付け抵抗16側に接続する構成である。なお、pnp型トランジスタとnpn型との組み合わせであってもよい。   (2) In the above embodiment, the potential control circuit is the potential control circuit 30 having the operational amplifier 33. However, the potential control circuit is not limited to this, and the power MOSFET 14 and the sense MOSFET 18 are controlled by a level shift circuit formed by combining a pair of switch elements. The source potential may be the same. For example, the drain of the Nch type FET is connected to a constant current circuit, the gate is connected to the source of the power MOSFET 14, the source is connected to the gate of the Pch type FET, and the source of the Pch type FET is connected to the source of the sense MOSFET 18. This drain is connected to the external resistor 16 side. A combination of a pnp transistor and an npn transistor may be used.

(3)上記実施形態では、電流電圧変換回路として外付け抵抗16としたが、これに限らず、コンデンサと抵抗とを並列接続したRC並列回路であってもよい。さらにこのRC並列回路のコンデンサに別の抵抗を直列接続した回路であってもよい。   (3) In the above embodiment, the external resistor 16 is used as the current-voltage conversion circuit. However, the present invention is not limited to this, and an RC parallel circuit in which a capacitor and a resistor are connected in parallel may be used. Furthermore, a circuit in which another resistor is connected in series to the capacitor of the RC parallel circuit may be used.

(4)上記実施形態では、複数の閾値電圧を有する構成としたが、これに限らず1つの閾値電圧によって1つの電流異常を検出する構成であってもよい。このような構成であっても、バイアス電圧を調整することにより上記各ばらつき要因による影響を排除できる。   (4) In the above embodiment, the configuration has a plurality of threshold voltages. However, the configuration is not limited to this, and a configuration in which one current abnormality is detected by one threshold voltage may be used. Even in such a configuration, the influence of each variation factor can be eliminated by adjusting the bias voltage.

(5)また、上記実施形態に対して、バイアス抵抗42の代わりに調整抵抗を設けて、この抵抗値を調整する構成であっても上記実施形態1ほどではないが、ある程度製造ばらつきによる影響を排除できる(上記「分圧回路の基準電圧を調整する方法」参照)。また、バイアス抵抗42の変わりにスイッチ素子(FETやバイポーラトランジスタ)を設けて分圧回路40に流れる電流を調整する方法であってもよい。   (5) In contrast to the above-described embodiment, an adjustment resistor is provided instead of the bias resistor 42 to adjust the resistance value. (Refer to “Method for adjusting the reference voltage of the voltage dividing circuit” above.) Further, a method of adjusting a current flowing in the voltage dividing circuit 40 by providing a switching element (FET or bipolar transistor) instead of the bias resistor 42 may be used.

(6)上記実施形態では、基準電圧をパワーMOSFET14のソース電圧Vsとしたが、これに限らず、チェナーダイオードやFETによって構成された定電圧回路からの定電圧であってもよい。   (6) In the above-described embodiment, the reference voltage is the source voltage Vs of the power MOSFET 14, but the reference voltage is not limited to this, and may be a constant voltage from a constant voltage circuit constituted by a Zener diode or FET.

本発明の実施形態1に係る電力供給制御装置の全体構成を示すブロック図The block diagram which shows the whole structure of the power supply control apparatus which concerns on Embodiment 1 of this invention. 過電流検知回路及び閾値電圧発生回路を拡大して示す回路図Circuit diagram showing enlarged overcurrent detection circuit and threshold voltage generation circuit オペアンプのオフセット電圧のばらつきによる影響を示したセンス電流ー負荷電流の関係グラフSense current vs. load current graph showing the effect of op amp offset voltage variation オペアンプのオフセット電圧を調整した場合における閾値電圧と負荷電流との関係グラフGraph of relationship between threshold voltage and load current when adjusting offset voltage of operational amplifier 分圧回路の基準電圧を調整した場合における閾値電圧と負荷電流との関係グラフGraph of relationship between threshold voltage and load current when adjusting reference voltage of voltage divider circuit バイアス電圧を調整した場合における閾値電圧と負荷電流との関係グラフRelationship graph between threshold voltage and load current when bias voltage is adjusted 調整用抵抗の構成を示した模式図Schematic diagram showing the configuration of the adjustment resistor 実施形態2の過電流検知回路及び閾値電圧発生回路を拡大して示す回路図The circuit diagram which expands and shows the overcurrent detection circuit and threshold voltage generation circuit of Embodiment 2 変形例のシャント抵抗方式の回路図Circuit diagram of the modified shunt resistor method

符号の説明Explanation of symbols

10…電力供給制御装置(電流異常検出回路)
11…負荷
12…電源
13…電力供給ライン
14…パワーMOSFET(第1回路素子、パワーFET)
16…外付け抵抗(電流電圧変換回路)
17…半導体素子
18…センスMOSFET(第2回路素子、センスFET)
25a…パワーFET用入力
25b…センスFET用入力
27…内部グランド生成回路(定電圧回路)
28…閾値電圧発生回路
30…電位制御回路
31,32…比較回路
40…分圧回路
41…バイアス電圧発生回路
42…バイアス抵抗
45…調整用抵抗(電流生成抵抗、バイアス電圧調整回路)
46…定電流出力回路
47…カレントミラー回路
ILoc…過電流異常電流(本来の異常検出時電流)
ILfc…ヒューズ異常電流(本来の異常検出時電流)
Is…センス電流
Ih…定電流
P5…外部端子
OC…第1異常信号(電流異常信号)
FC…第2異常信号(電流異常信号)
Vb…バイアス電圧
Vo…端子電圧(電流電圧変換回路の出力電圧)
Voc…第1異常用閾値電圧
Vfc…第2異常用閾値電圧
Vs…ソース電圧(基準電圧)
10. Power supply control device (current abnormality detection circuit)
DESCRIPTION OF SYMBOLS 11 ... Load 12 ... Power supply 13 ... Power supply line 14 ... Power MOSFET (1st circuit element, power FET)
16 ... External resistor (current-voltage conversion circuit)
17 ... Semiconductor element 18 ... Sense MOSFET (second circuit element, sense FET)
25a ... Input for power FET 25b ... Input for sense FET 27 ... Internal ground generation circuit (constant voltage circuit)
DESCRIPTION OF SYMBOLS 28 ... Threshold voltage generation circuit 30 ... Potential control circuit 31, 32 ... Comparison circuit 40 ... Voltage division circuit 41 ... Bias voltage generation circuit 42 ... Bias resistance 45 ... Adjustment resistance (Current generation resistance, bias voltage adjustment circuit)
46 ... Constant current output circuit 47 ... Current mirror circuit ILoc ... Overcurrent abnormal current (original current at the time of abnormality detection)
ILfc… Fuse abnormal current (original current when abnormality is detected)
Is ... sense current Ih ... constant current P5 ... external terminal OC ... first abnormal signal (current abnormal signal)
FC ... Second abnormal signal (current abnormal signal)
Vb: Bias voltage Vo: Terminal voltage (output voltage of current-voltage conversion circuit)
Voc: first abnormality threshold voltage Vfc: second abnormality threshold voltage Vs: source voltage (reference voltage)

Claims (15)

電源から負荷への電力供給ラインに流れる電流の異常を検出する電流異常検出回路であって、
前記電力供給ライン中に設けられる抵抗性の第1回路素子と、
一端側が前記第1回路素子の前記電源側と共通接続されて前記電源からの電流が流れる抵抗性の第2回路素子と、
前記第1回路素子及び前記第2回路素子のうちそれらの共通接続点とは反対側の各電位を同電位または所定の電位差に保持することで前記第2回路素子に流れる電流を前記第1回路素子に流れる電流に対して所定の比例関係とし、前記第2回路素子に流れる電流を出力するための電位制御回路と、
前記電位制御回路から出力された電流を電圧に変換する電流電圧変換回路と、
この電流電圧変換回路の出力電圧と閾値電圧との比較に基づいて電流異常信号を出力する比較回路と、
バイアス電圧発生回路を有すると共にそのバイアス電圧発生回路が発生するバイアス電圧に連動して変化する電圧を前記閾値電圧として出力する閾値電圧発生回路と、
前記バイアス電圧発生回路が発生する前記バイアス電圧を調整可能とするバイアス電圧調整回路とを備える電流異常検出回路。
A current abnormality detection circuit for detecting an abnormality of a current flowing in a power supply line from a power supply to a load,
A resistive first circuit element provided in the power supply line;
A resistive second circuit element having one end side commonly connected to the power supply side of the first circuit element and through which a current from the power supply flows;
A current flowing through the second circuit element is maintained in the first circuit element by holding each of the first circuit element and the second circuit element opposite to the common connection point at the same potential or a predetermined potential difference. A potential control circuit for outputting a current flowing through the second circuit element, having a predetermined proportional relationship with respect to a current flowing through the element;
A current-voltage conversion circuit that converts the current output from the potential control circuit into a voltage;
A comparison circuit that outputs a current abnormality signal based on a comparison between the output voltage of the current-voltage conversion circuit and a threshold voltage;
A threshold voltage generation circuit having a bias voltage generation circuit and outputting a voltage that changes in conjunction with the bias voltage generated by the bias voltage generation circuit as the threshold voltage;
A current abnormality detection circuit comprising: a bias voltage adjustment circuit capable of adjusting the bias voltage generated by the bias voltage generation circuit.
電源から負荷への電力供給ラインに流れる電流の異常を検出する電流異常検出回路であって、
前記電力供給ライン中に設けられる抵抗性の第1回路素子と、
一端側が前記第1回路素子の前記電源側と共通接続されて前記電源からの電流が流れる抵抗性の第2回路素子と、
前記第1回路素子及び前記第2回路素子のうちそれらの共通接続点とは反対側の各電位を同電位または所定の電位差に保持することで前記第2回路素子に流れる電流を前記第1回路素子に流れる電流に対して所定の比例関係とし、前記第2回路素子に流れる電流を出力するための電位制御回路と、
前記電位制御回路から出力された電流を電圧に変換する電流電圧変換回路と、
この電流電圧変換回路の出力電圧と閾値電圧との比較に基づいて電流異常信号を出力する比較回路と、
バイアス電圧発生回路を有すると共にそのバイアス電圧発生回路が発生するバイアス電圧に連動して変化する電圧を前記閾値電圧として出力する閾値電圧発生回路と、
前記バイアス電圧発生回路が発生する前記バイアス電圧が調整されたバイアス電圧調整回路とを備える電流異常検出回路。
A current abnormality detection circuit for detecting an abnormality of a current flowing in a power supply line from a power supply to a load,
A resistive first circuit element provided in the power supply line;
A resistive second circuit element having one end side commonly connected to the power supply side of the first circuit element and through which a current from the power supply flows;
A current flowing through the second circuit element is maintained in the first circuit element by holding each of the first circuit element and the second circuit element opposite to the common connection point at the same potential or a predetermined potential difference. A potential control circuit for outputting a current flowing through the second circuit element, having a predetermined proportional relationship with respect to a current flowing through the element;
A current-voltage conversion circuit that converts the current output from the potential control circuit into a voltage;
A comparison circuit that outputs a current abnormality signal based on a comparison between the output voltage of the current-voltage conversion circuit and a threshold voltage;
A threshold voltage generation circuit having a bias voltage generation circuit and outputting a voltage that changes in conjunction with the bias voltage generated by the bias voltage generation circuit as the threshold voltage;
A current abnormality detection circuit comprising: a bias voltage adjustment circuit in which the bias voltage generated by the bias voltage generation circuit is adjusted.
前記第1回路素子は、オンオフ制御されて前記負荷への電力供給を制御するためのパワーFETであって、
前記第2回路素子は、前記パワーFETの電流量に応じたセンス電流が流れるセンスFETである請求項1又は請求項2に記載の電流異常検出回路。
The first circuit element is a power FET that is on / off controlled to control power supply to the load,
3. The current abnormality detection circuit according to claim 1, wherein the second circuit element is a sense FET through which a sense current corresponding to a current amount of the power FET flows. 4.
前記閾値電圧発生回路は、互いに異なる複数の前記閾値電圧を出力し、
前記比較回路は、前記電流電圧変換回路の出力電圧と、前記複数の閾値電圧それぞれとの比較に基づいて前記各閾値電圧に応じた電流異常信号を出力する構成である請求項1から請求項3のいずれかに記載の電流異常検出回路。
The threshold voltage generation circuit outputs a plurality of different threshold voltages,
The said comparison circuit is a structure which outputs the current abnormal signal according to each said threshold voltage based on the comparison with the output voltage of the said current-voltage conversion circuit, and each of these threshold voltage. The current abnormality detection circuit according to any one of the above.
前記閾値電圧発生回路は、基準電圧を分圧する分圧回路を有して複数の分圧電圧を前記複数の閾値電圧として出力し、
前記バイアス電圧発生回路は、前記分圧回路の下流側に直列接続されたバイアス抵抗と、定電圧回路及び電流生成抵抗を有してこれらに応じた定電流を前記分圧回路と前記バイアス抵抗との接続点で前記分圧回路に流れる電流に合流させて当該バイアス抵抗に流す定電流出力回路とを備えて構成されている請求項4に記載の電流異常検出回路。
The threshold voltage generation circuit has a voltage dividing circuit for dividing a reference voltage, and outputs a plurality of divided voltages as the plurality of threshold voltages,
The bias voltage generation circuit includes a bias resistor connected in series on the downstream side of the voltage dividing circuit, a constant voltage circuit, and a current generating resistor, and outputs a constant current corresponding to the bias voltage generating circuit and the bias resistor. The current abnormality detection circuit according to claim 4, further comprising: a constant current output circuit that joins a current flowing through the voltage dividing circuit at a connection point and flows through the bias resistor.
前記バイアス電圧調整回路は、前記電流生成抵抗の抵抗値が調整可能とされている請求項5に記載の電流異常検出回路。 The current abnormality detection circuit according to claim 5, wherein the bias voltage adjustment circuit is capable of adjusting a resistance value of the current generation resistor. 前記バイアス電圧調整回路は、前記バイアス抵抗の抵抗値が調整可能とされている請求項5に記載の電流異常検出回路。 The current abnormality detection circuit according to claim 5, wherein the bias voltage adjustment circuit is capable of adjusting a resistance value of the bias resistor. 前記第1回路素子は、オンオフ制御されて前記負荷への電力供給を制御するためのパワーFETであって、
前記第2回路素子は、前記パワーFETの電流量に応じたセンス電流が流れるセンスFETであって、
前記基準電圧は、前記パワーFETのソース電位である請求項4から請求項7のいずれかに記載の電流異常検出回路。
The first circuit element is a power FET that is on / off controlled to control power supply to the load,
The second circuit element is a sense FET in which a sense current corresponding to a current amount of the power FET flows,
The current abnormality detection circuit according to claim 4, wherein the reference voltage is a source potential of the power FET.
前記電流電圧変換回路は、抵抗である請求項1から請求項8のいずれかに記載の電流異常検出回路。 The current abnormality detection circuit according to claim 1, wherein the current-voltage conversion circuit is a resistor. 前記第1回路素子、前記第2回路素子、前記電位制御回路、前記比較回路、前記閾値電圧発生回路及び前記バイアス電圧調整回路を、ワンチップ化された、或いは、複数のチップで構成されてワンパッケージ内に収容した半導体素子とされ、
前記半導体素子は前記電位制御回路の電流出力側に連なる外部端子が設けられ、前記電流電圧変換回路は前記半導体素子の外部において前記外部端子に接続される請求項1から請求項9のいずれかに記載の電流異常検出回路。
The first circuit element, the second circuit element, the potential control circuit, the comparison circuit, the threshold voltage generation circuit, and the bias voltage adjustment circuit may be formed into a single chip or a plurality of chips. It is a semiconductor element housed in a package,
10. The semiconductor device according to claim 1, wherein an external terminal connected to a current output side of the potential control circuit is provided, and the current-voltage conversion circuit is connected to the external terminal outside the semiconductor element. The current abnormality detection circuit described.
電源から負荷への電力供給ラインに流れる電流の異常を検出する電流異常検出回路について、前記電流の異常が検出されたときに前記負荷に流れる電流値を調整するための異常検出時電流値調整方法であって、
前記電流異常検出回路は、
前記電力供給ライン中に設けられる抵抗性の第1回路素子と、
一端側が前記第1回路素子の前記電源側と共通接続されて前記電源からの電流が流れる抵抗性の第2回路素子と、
前記第1回路素子及び前記第2回路素子のうちそれらの共通接続点とは反対側の各電位を同電位または所定の電位差に保持することで前記第2回路素子に流れる電流を前記第1回路素子に流れる電流に対して所定の比例関係とし、前記第2回路素子に流れる電流を出力するための電位制御回路と、
前記電位制御回路から出力された電流を電圧に変換する電流電圧変換回路と、
この電流電圧変換回路の出力電圧と互いに異なる複数の閾値電圧それぞれとの比較に基づいて前記各閾値電圧に応じた電流異常信号を出力する比較回路と、
バイアス電圧発生回路を有すると共にそのバイアス電圧発生回路が発生するバイアス電圧に連動して変化する電圧を前記複数の閾値電圧として出力する閾値電圧発生回路と、
前記バイアス電圧発生回路が発生する前記バイアス電圧を調整可能とするバイアス電圧調整回路とを備え、
前記閾値電圧発生回路は、基準電圧を分圧する分圧回路を有して複数の分圧電圧を前記複数の閾値電圧として出力し、
前記バイアス電圧発生回路は、前記分圧回路の下流側に直列接続されたバイアス抵抗と、定電圧回路及び電流生成抵抗を有してこれらに応じた定電流を前記分圧回路と前記バイアス抵抗との接続点で前記分圧回路に流れる電流に合流させて当該バイアス抵抗に流す定電流出力回路とを有する構成とされ、
前記複数の閾値電圧のうちの1つの閾値電圧によって検出されるべき本来の異常検出時電流を前記電源から前記負荷に流しつつ、前記1つの閾値電圧に対応する電流異常信号が前記比較回路から出力されるように、バイアス電圧調整回路でバイアス電圧を調整する異常検出時電流値調整方法。
An abnormality detection current value adjustment method for adjusting an electric current value flowing through the load when the electric current abnormality is detected with respect to an electric current abnormality detection circuit for detecting an abnormality of an electric current flowing through a power supply line from a power source to a load Because
The current abnormality detection circuit is
A resistive first circuit element provided in the power supply line;
A resistive second circuit element having one end side commonly connected to the power supply side of the first circuit element and through which a current from the power supply flows;
A current flowing through the second circuit element is maintained in the first circuit element by holding each of the first circuit element and the second circuit element opposite to the common connection point at the same potential or a predetermined potential difference. A potential control circuit for outputting a current flowing through the second circuit element, having a predetermined proportional relationship with respect to a current flowing through the element;
A current-voltage conversion circuit that converts the current output from the potential control circuit into a voltage;
A comparison circuit that outputs a current abnormality signal corresponding to each threshold voltage based on a comparison between the output voltage of the current-voltage conversion circuit and each of a plurality of different threshold voltages;
A threshold voltage generation circuit that has a bias voltage generation circuit and outputs voltages that change in conjunction with the bias voltage generated by the bias voltage generation circuit as the plurality of threshold voltages;
A bias voltage adjustment circuit capable of adjusting the bias voltage generated by the bias voltage generation circuit,
The threshold voltage generation circuit has a voltage dividing circuit for dividing a reference voltage, and outputs a plurality of divided voltages as the plurality of threshold voltages,
The bias voltage generation circuit includes a bias resistor connected in series on the downstream side of the voltage dividing circuit, a constant voltage circuit, and a current generating resistor, and outputs a constant current corresponding to the bias voltage generating circuit and the bias resistor. A constant current output circuit that flows into the bias resistor by merging with the current flowing through the voltage dividing circuit at the connection point of
A current abnormality signal corresponding to the one threshold voltage is output from the comparison circuit while flowing an original abnormality detection current to be detected by one threshold voltage of the plurality of threshold voltages from the power source to the load. An abnormality detection current value adjustment method for adjusting a bias voltage with a bias voltage adjustment circuit.
電源から負荷への電力供給ラインに流れる電流の異常を検出する電流異常検出回路について、前記電流の異常が検出されたときに前記負荷に流れる電流値を調整するための異常検出時電流値調整方法であって、
前記電流異常検出回路は、
前記電力供給ライン中に設けられるパワーFET、及び、前記パワーFETの電流量に応じたセンス電流が流れるセンスFETを備えるパワーチップと、
前記パワーFET及び前記センスFETの各ソース電位を同電位または所定の電位差に保持することで前記センスFETに流れる電流を前記パワーFETに流れる電流に対して所定の比例関係とし、前記センスFETに流れる電流を出力するための電位制御回路と、
前記電位制御回路から出力されたセンス電流を電圧に変換する電流電圧変換回路と、
この電流電圧変換回路の出力電圧と互いに異なる複数の閾値電圧それぞれとの比較に基づいて前記各閾値電圧に応じた電流異常信号を出力する比較回路と、
バイアス電圧発生回路を有すると共にそのバイアス電圧発生回路が発生するバイアス電圧に連動して変化する電圧を前記複数の閾値電圧として出力する閾値電圧発生回路と、
前記バイアス電圧発生回路が発生する前記バイアス電圧を調整可能とするバイアス電圧調整回路とを備え、
前記閾値電圧発生回路は、基準電圧を分圧する分圧回路を有して複数の分圧電圧を前記複数の閾値電圧として出力し、
前記バイアス電圧発生回路は、前記分圧回路の下流側に直列接続されたバイアス抵抗と、定電圧回路及び電流生成抵抗を有してこれらに応じた定電流を前記分圧回路と前記バイアス抵抗との接続点で前記分圧回路に流れる電流に合流させて当該バイアス抵抗に流す定電流出力回路とを有する構成とされ、
前記パワーチップの組み付け前に、前記センスFETのオン抵抗と同等の抵抗値の仮抵抗を前記電源と前記電位制御回路のセンスFET用入力との間に接続し、
前記電位制御回路のパワーFET用入力に、前記複数の閾値電圧のうちの1つの閾値電圧によって検出されるべき本来の異常検出時電流を前記パワーFETに流したときのソース電圧相当の電圧を与えつつ、前記1つの閾値電圧に対応する電流異常信号が前記比較回路から出力されるように前記バイアス電圧調整回路でバイアス電圧を調整する異常検出時電流値調整方法。
An abnormality detection current value adjustment method for adjusting an electric current value flowing through the load when the electric current abnormality is detected with respect to an electric current abnormality detection circuit for detecting an abnormality of an electric current flowing through a power supply line from a power source to a load Because
The current abnormality detection circuit is
A power chip including a power FET provided in the power supply line, and a sense FET in which a sense current according to a current amount of the power FET flows;
By holding the source potentials of the power FET and the sense FET at the same potential or a predetermined potential difference, the current flowing through the sense FET has a predetermined proportional relationship with the current flowing through the power FET, and flows through the sense FET. A potential control circuit for outputting a current;
A current-voltage conversion circuit that converts the sense current output from the potential control circuit into a voltage;
A comparison circuit that outputs a current abnormality signal corresponding to each threshold voltage based on a comparison between the output voltage of the current-voltage conversion circuit and each of a plurality of different threshold voltages;
A threshold voltage generation circuit that has a bias voltage generation circuit and outputs voltages that change in conjunction with the bias voltage generated by the bias voltage generation circuit as the plurality of threshold voltages;
A bias voltage adjustment circuit capable of adjusting the bias voltage generated by the bias voltage generation circuit,
The threshold voltage generation circuit has a voltage dividing circuit for dividing a reference voltage, and outputs a plurality of divided voltages as the plurality of threshold voltages,
The bias voltage generation circuit includes a bias resistor connected in series on the downstream side of the voltage dividing circuit, a constant voltage circuit, and a current generating resistor, and outputs a constant current corresponding to the bias voltage generating circuit and the bias resistor. A constant current output circuit that flows into the bias resistor by merging with the current flowing through the voltage dividing circuit at the connection point of
Before assembling the power chip, a temporary resistor having a resistance value equivalent to the on-resistance of the sense FET is connected between the power source and the sense FET input of the potential control circuit,
A voltage corresponding to a source voltage when an original abnormality detection current to be detected by one threshold voltage of the plurality of threshold voltages is supplied to the power FET is applied to the power FET input of the potential control circuit. On the other hand, the abnormality detection current value adjustment method of adjusting a bias voltage by the bias voltage adjustment circuit so that a current abnormality signal corresponding to the one threshold voltage is output from the comparison circuit.
前記複数の閾値電圧の中から、それらに対応する異常検出時電流が最も小さい閾値電圧を、前記1つの閾値電圧とする請求項11または請求項12に記載の異常検出時電流値調整方法。 The abnormality detection time current value adjustment method according to claim 11 or 12, wherein a threshold voltage having the smallest abnormality detection current corresponding to the plurality of threshold voltages is set as the one threshold voltage. 前記電流生成抵抗の抵抗値を調整可能することで前記バイアス電圧を調整する請求項11から請求項13のいずれかに記載の異常検出時電流値調整方法。 The method of adjusting an abnormality detection current value according to claim 11, wherein the bias voltage is adjusted by adjusting a resistance value of the current generating resistor. 前記バイアス抵抗の抵抗値を調整することで前記バイアス電圧を調整する請求項11から請求項13のいずれかに記載の異常検出時電流値調整方法。 The method for adjusting a current value during abnormality detection according to any one of claims 11 to 13, wherein the bias voltage is adjusted by adjusting a resistance value of the bias resistor.
JP2005323915A 2005-11-08 2005-11-08 Current abnormality detection circuit and current value adjustment method at abnormality detection Pending JP2007135274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323915A JP2007135274A (en) 2005-11-08 2005-11-08 Current abnormality detection circuit and current value adjustment method at abnormality detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323915A JP2007135274A (en) 2005-11-08 2005-11-08 Current abnormality detection circuit and current value adjustment method at abnormality detection

Publications (1)

Publication Number Publication Date
JP2007135274A true JP2007135274A (en) 2007-05-31

Family

ID=38156496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323915A Pending JP2007135274A (en) 2005-11-08 2005-11-08 Current abnormality detection circuit and current value adjustment method at abnormality detection

Country Status (1)

Country Link
JP (1) JP2007135274A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148063A1 (en) * 2008-06-04 2009-12-10 矢崎総業株式会社 Overcurrent protective device for load circuit
EP2296274A1 (en) * 2008-06-05 2011-03-16 Yazaki Corporation Load circuit overcurrent protection device
JP2017182799A (en) * 2016-03-25 2017-10-05 古河電気工業株式会社 Power supply device
JP2019168892A (en) * 2018-03-23 2019-10-03 富士電機株式会社 Operational amplification circuit and current detector using same
JP2020048035A (en) * 2018-09-18 2020-03-26 株式会社デンソー Circuit abnormality detection device
JP2020048036A (en) * 2018-09-18 2020-03-26 株式会社デンソー Circuit abnormality detection device
JP2020096316A (en) * 2018-12-14 2020-06-18 ローム株式会社 Switch device
CN113341779A (en) * 2020-03-02 2021-09-03 纬湃科技投资(中国)有限公司 Light-mixed whole vehicle system and ground deviation detection device thereof
CN113765483A (en) * 2020-06-01 2021-12-07 株式会社村田制作所 Control circuit
US12068743B2 (en) 2022-02-21 2024-08-20 Fuji Electric Co., Ltd. Semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148063A1 (en) * 2008-06-04 2009-12-10 矢崎総業株式会社 Overcurrent protective device for load circuit
JP2009296263A (en) * 2008-06-04 2009-12-17 Yazaki Corp Overcurrent protective device for load circuit
CN102057573A (en) * 2008-06-04 2011-05-11 矢崎总业株式会社 Overcurrent protective device for load circuit
US8295021B2 (en) 2008-06-04 2012-10-23 Yazaki Corporation Overcurrent protection apparatus for load circuit
EP2293442A4 (en) * 2008-06-04 2015-03-11 Yazaki Corp Overcurrent protective device for load circuit
EP2296274A1 (en) * 2008-06-05 2011-03-16 Yazaki Corporation Load circuit overcurrent protection device
EP2296274A4 (en) * 2008-06-05 2014-02-26 Yazaki Corp Load circuit overcurrent protection device
JP2017182799A (en) * 2016-03-25 2017-10-05 古河電気工業株式会社 Power supply device
JP2019168892A (en) * 2018-03-23 2019-10-03 富士電機株式会社 Operational amplification circuit and current detector using same
US10771027B2 (en) 2018-03-23 2020-09-08 Fuji Electric Co., Ltd. Operational amplifier circuit and current detection device using the same
JP7106916B2 (en) 2018-03-23 2022-07-27 富士電機株式会社 Operational amplifier circuit and current detection device using the same
JP2020048035A (en) * 2018-09-18 2020-03-26 株式会社デンソー Circuit abnormality detection device
JP2020048036A (en) * 2018-09-18 2020-03-26 株式会社デンソー Circuit abnormality detection device
JP2020096316A (en) * 2018-12-14 2020-06-18 ローム株式会社 Switch device
JP7257137B2 (en) 2018-12-14 2023-04-13 ローム株式会社 switch device
CN113341779A (en) * 2020-03-02 2021-09-03 纬湃科技投资(中国)有限公司 Light-mixed whole vehicle system and ground deviation detection device thereof
CN113341779B (en) * 2020-03-02 2023-06-16 纬湃科技投资(中国)有限公司 Light-mixing whole vehicle system and ground offset detection device thereof
CN113765483A (en) * 2020-06-01 2021-12-07 株式会社村田制作所 Control circuit
US12068743B2 (en) 2022-02-21 2024-08-20 Fuji Electric Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP2007135274A (en) Current abnormality detection circuit and current value adjustment method at abnormality detection
JP4589966B2 (en) Power supply control device and semiconductor device
US8766671B2 (en) Load driving apparatus
JP4504222B2 (en) Overcurrent detection device
EP2955825B1 (en) Gate driving circuit
JP4688693B2 (en) Power supply control device
US10193323B2 (en) Semiconductor device
EP2296274B1 (en) Load circuit overcurrent protection device
JP5168413B2 (en) Driving device for driving voltage-driven element
CN112882525B (en) Semiconductor integrated circuit for voltage regulator and in-vehicle electronic apparatus
TW200941878A (en) Voltage regulator
JP4755197B2 (en) Power supply control device
JP4245567B2 (en) Overcurrent detection device
US20080030174A1 (en) Load driving circuit and protection method
JPWO2007139108A1 (en) Power supply control device
TWI684767B (en) Current detection circuit
JP7271933B2 (en) Insulated gate device driver
JP2000252804A (en) Overcurrent detection circuit and semiconductor integrated circuit incorporating the same
JP5793979B2 (en) Semiconductor integrated circuit for regulator
JP5136144B2 (en) Load current supply circuit
CN112313517A (en) Current detection device
JP6658269B2 (en) Overcurrent detection circuit
JP3959924B2 (en) Load drive circuit
US20070290761A1 (en) Signal amplifier circuit
JP5003105B2 (en) Current limit circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20070427

Free format text: JAPANESE INTERMEDIATE CODE: A7424