JP2007134442A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2007134442A
JP2007134442A JP2005324852A JP2005324852A JP2007134442A JP 2007134442 A JP2007134442 A JP 2007134442A JP 2005324852 A JP2005324852 A JP 2005324852A JP 2005324852 A JP2005324852 A JP 2005324852A JP 2007134442 A JP2007134442 A JP 2007134442A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor device
unit
voltage
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005324852A
Other languages
Japanese (ja)
Inventor
Hideyuki Tajima
英幸 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2005324852A priority Critical patent/JP2007134442A/en
Publication of JP2007134442A publication Critical patent/JP2007134442A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To change a set temperature of a semiconductor device, and to accurately control the temperature of the semiconductor device. <P>SOLUTION: On a semiconductor substrate 17, a temperature detector 11, control unit 12, temperature set 13, output 14, heater 15, and semiconductor circuit 16, are formed. The temperature detector 11 outputs a temperature detection signal corresponding to the temperature of the semiconductor substrate 17 to the control unit 12. The temperature set 13 creates a temperature setting signal which is a reference voltage for setting the temperature of the semiconductor substrate 17, and then outputs it to the control unit 12. The control unit 12 calculates a differential signal between the temperature detection signal and the temperature setting signal, and then controls the heater 15 so that the differential signal may become small. The heater 15 heats the semiconductor substrate 17, based on the output from the control unit 12. The semiconductor circuit 16 is heated to the set temperature and is kept at the constant temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体装置に係り、特に、半導体装置自体の温度を一定に保つように制御する半導体装置に係る。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device that controls the temperature of the semiconductor device itself to be kept constant.

通常、パッケージに封止された半導体装置(半導体チップ)の高温試験を行うためには、恒温槽、サーモストリーマ等の発熱機器を使用する必要がある。しかし、発熱機器を用いると大掛りとなるので、発熱機器等を使用することなく高温試験を行う方法として、半導体装置自体に発熱体を設け、発熱体を発熱させることで半導体装置の温度を上昇させて高温試験を行う方法が知られている(特許文献1参照)。   Usually, in order to perform a high temperature test of a semiconductor device (semiconductor chip) sealed in a package, it is necessary to use a heat generating device such as a thermostatic bath or a thermostreamer. However, using a heat-generating device is a big problem, so as a method for performing a high-temperature test without using a heat-generating device, etc., the semiconductor device itself is provided with a heating element and the heating element is heated to raise the temperature of the semiconductor device. A method of performing a high temperature test is known (see Patent Document 1).

特許文献1に記載の半導体装置は、図4に示すように温度検出部103、制御部104、発熱部105を備える。温度検出部103は、トランジスタTr101と抵抗R101、R102、R103とからなるブリッジ回路によって温度変化を検出し、その電圧あるいは電流の変化をブリッジ信号として出力する。制御部104は、負荷抵抗がそれぞれR104、R105であるトランジスタTr102、Tr103で構成される差動増幅器を含み、差動増幅器によってブリッジ信号を増幅し、電圧電流変換を行うトランジスタTr104のベースに供給するバイアス電圧を変化させる。これによって、トランジスタTr104のコレクタ電流、すなわち発熱部105に流れる電流がブリッジ信号に比例して変化する。発熱部105の発熱抵抗HRは、流れる電流によって全長にわたって発熱し、電流量に応じた発熱量で半導体装置を加熱する。   The semiconductor device described in Patent Document 1 includes a temperature detection unit 103, a control unit 104, and a heat generation unit 105 as shown in FIG. The temperature detector 103 detects a temperature change by a bridge circuit including the transistor Tr101 and the resistors R101, R102, and R103, and outputs the voltage or current change as a bridge signal. The control unit 104 includes a differential amplifier composed of transistors Tr102 and Tr103 having load resistances R104 and R105, respectively, amplifies the bridge signal by the differential amplifier, and supplies the amplified signal to the base of the transistor Tr104 that performs voltage-current conversion. Change the bias voltage. As a result, the collector current of the transistor Tr104, that is, the current flowing through the heat generating portion 105 changes in proportion to the bridge signal. The heat generating resistor HR of the heat generating unit 105 generates heat over the entire length by the flowing current, and heats the semiconductor device with a heat generation amount corresponding to the current amount.

また、半導体装置の温度を精度よく検出する方法として、特許文献2に開示されるような技術が知られている。特許文献2に開示される半導体装置は、図5に示すように、カレントミラー回路203と差動増幅回路202を含む温度検出回路201を備える。カレントミラー回路203は、トランジスタTr201、Tr202、Tr203、電流源IAによってカレントミラーを構成し、ダイオードD201、D202にそれぞれ電流N*I1、I1を流す。差動増幅回路202は、ダイオードD201、D202にそれぞれ発生する電圧V1、V2の電圧差ΔVを差動増幅回路202によって増幅する。差動増幅回路202の出力電圧V3には電圧差ΔVすなわち温度に対応する電圧が得られる。さらに、コンパレータ204は、電圧V3と基準電圧回路205の出力電圧とを比較している。   As a method for accurately detecting the temperature of a semiconductor device, a technique disclosed in Patent Document 2 is known. The semiconductor device disclosed in Patent Document 2 includes a temperature detection circuit 201 including a current mirror circuit 203 and a differential amplifier circuit 202, as shown in FIG. In the current mirror circuit 203, transistors Tr201, Tr202, Tr203, and a current source IA form a current mirror, and currents N * I1, I1 flow through the diodes D201, D202, respectively. The differential amplifier circuit 202 amplifies the voltage difference ΔV between the voltages V1 and V2 generated in the diodes D201 and D202 by the differential amplifier circuit 202, respectively. A voltage difference ΔV, that is, a voltage corresponding to the temperature is obtained as the output voltage V3 of the differential amplifier circuit 202. Further, the comparator 204 compares the voltage V3 with the output voltage of the reference voltage circuit 205.

特開昭62−156850号公報Japanese Patent Laid-Open No. 62-156850 特開2000−213992号公報JP 2000-213992 A

特許文献1に記載の半導体装置において、制御部104は、電源電圧Vddを抵抗R101(抵抗値R1)と抵抗R102(抵抗値R2)によって分圧した式(1)の電圧V1と、電源電圧Vddから温度に応じたトランジスタTr101の電圧Vtr1(T)を引いた式(2)の電圧V2との差電圧V2−V1を増幅する。そして、トランジスタTr104のベースに式(3)に示すバイアス電圧V4を供給することにより発熱部105を制御している。

Figure 2007134442

Figure 2007134442

Figure 2007134442
ただし、Vddは、電源電圧、Aは、差動増幅回路の増幅率である。 In the semiconductor device described in Patent Document 1, the control unit 104 includes the voltage V1 of the formula (1) obtained by dividing the power supply voltage Vdd by the resistor R101 (resistance value R1) and the resistor R102 (resistance value R2), and the power supply voltage Vdd. A voltage difference V2-V1 from the voltage V2 of the equation (2) obtained by subtracting the voltage Vtr1 (T) of the transistor Tr101 corresponding to the temperature from is amplified. Then, the heating unit 105 is controlled by supplying the bias voltage V4 shown in Expression (3) to the base of the transistor Tr104.
Figure 2007134442

Figure 2007134442

Figure 2007134442
However, Vdd is a power supply voltage and A is an amplification factor of the differential amplifier circuit.

式(3)から明らかなように、バイアス電圧V4は、増幅率Aおよび抵抗値R1、R2の誤差、温度Tに対する電圧Vtr1の非線形性変化の影響を受けてしまう。したがって、発熱部105の正確な制御ができず、半導体基板の温度を一定に保つことが困難である。また、半導体基板の温度を検知する機能および半導体基板の温度を任意の温度に設定する機能がないため、半導体基板自体の温度を知ることができず、かつ半導体基板の温度を自由に設定することができない。   As is apparent from the equation (3), the bias voltage V4 is affected by the amplification factor A, the errors in the resistance values R1 and R2, and the nonlinear change in the voltage Vtr1 with respect to the temperature T. Therefore, it is difficult to accurately control the heat generating portion 105, and it is difficult to keep the temperature of the semiconductor substrate constant. In addition, since there is no function to detect the temperature of the semiconductor substrate and the function to set the temperature of the semiconductor substrate to an arbitrary temperature, the temperature of the semiconductor substrate itself cannot be known and the temperature of the semiconductor substrate can be set freely. I can't.

一方、特許文献2の半導体装置は、精度良く温度検出ができる装置を開示しているに過ぎず、発熱部および半導体装置の温度を任意の温度に設定する機能を有していない。また、半導体装置の温度を検知する機能もないため、半導体装置自体の温度を知ることができない。   On the other hand, the semiconductor device disclosed in Patent Document 2 merely discloses a device capable of accurately detecting the temperature, and does not have a function of setting the temperatures of the heat generating portion and the semiconductor device to arbitrary temperatures. Further, since there is no function for detecting the temperature of the semiconductor device, the temperature of the semiconductor device itself cannot be known.

本発明の1つのアスペクトに係る半導体装置は、半導体基板に所要の回路を形成してなる半導体装置であって、半導体装置を加熱する発熱部と、半導体装置の温度に対応する温度検出信号を出力する温度検出部と、半導体装置の温度設定信号を生成する温度設定部と、温度検出信号と温度設定信号との差信号を求め、この差信号が小さくなるように発熱部を制御する制御部と、を備える。   A semiconductor device according to one aspect of the present invention is a semiconductor device in which a required circuit is formed on a semiconductor substrate, and outputs a heat generating part for heating the semiconductor device and a temperature detection signal corresponding to the temperature of the semiconductor device. A temperature detection unit that generates a temperature setting signal of the semiconductor device, a control unit that obtains a difference signal between the temperature detection signal and the temperature setting signal, and controls the heat generating unit so that the difference signal is reduced; .

本発明によれば、温度設定部を設けて半導体装置温度と設定温度との温度差に比例する電圧により発熱部を制御することで、半導体装置の設定温度を変えられるようにすると共に半導体装置の温度を正確に制御することができる。   According to the present invention, the temperature setting unit is provided and the heating unit is controlled by a voltage proportional to the temperature difference between the semiconductor device temperature and the set temperature, so that the set temperature of the semiconductor device can be changed and the semiconductor device The temperature can be accurately controlled.

本発明の実施形態に係る半導体装置は、半導体基板(図1の17)上に、温度検出部(図1の11)、制御部(図1の12)、温度設定部(図1の13)、発熱部(図1の15)、半導体回路(図1の16)を備える。温度検出部は、半導体基板の温度に対応する温度検出信号を制御部に出力する。温度設定部は、半導体基板の温度設定のための基準電圧となる温度設定信号を生成して制御部に出力する。制御部は、温度検出信号と温度設定信号との差信号を求め、この差信号が小さくなるように発熱部を制御する。発熱部は、制御部の出力に基づいて半導体基板を加熱する。半導体回路は、設定された温度に加熱されて一定温度に保たれる。   A semiconductor device according to an embodiment of the present invention includes a temperature detection unit (11 in FIG. 1), a control unit (12 in FIG. 1), and a temperature setting unit (13 in FIG. 1) on a semiconductor substrate (17 in FIG. 1). And a heating part (15 in FIG. 1) and a semiconductor circuit (16 in FIG. 1). The temperature detection unit outputs a temperature detection signal corresponding to the temperature of the semiconductor substrate to the control unit. The temperature setting unit generates a temperature setting signal serving as a reference voltage for setting the temperature of the semiconductor substrate and outputs the temperature setting signal to the control unit. A control part calculates | requires the difference signal of a temperature detection signal and a temperature setting signal, and controls a heat generating part so that this difference signal may become small. The heat generating unit heats the semiconductor substrate based on the output of the control unit. The semiconductor circuit is heated to a set temperature and maintained at a constant temperature.

このように構成される半導体装置は、恒温槽やサーモストリーマ等の発熱機器等を使用することなく、半導体装置単体で温度上昇を行って、かつ温度を設定することを可能とする。また、その設定温度に半導体装置の温度を保持することができる。したがって、外部環境の温度が変化しても、半導体装置の温度を一定に保つことで半導体回路は、温度特性に依存しない回路特性を得ることができる。   The semiconductor device configured as described above can increase the temperature and set the temperature of the semiconductor device alone without using a heating device such as a thermostatic bath or a thermostreamer. Further, the temperature of the semiconductor device can be held at the set temperature. Therefore, even if the temperature of the external environment changes, the semiconductor circuit can obtain circuit characteristics independent of temperature characteristics by keeping the temperature of the semiconductor device constant.

図1は、本発明の第1の実施例に係る半導体チップにおける配置図である。半導体チップは、半導体基板17上に、温度検出部11、制御部12、温度設定部13、出力部14、発熱部15、半導体回路16を備える。半導体回路16は、高温試験の対象とされる回路であって、その周囲に温度検出部11、制御部12、温度設定部13、出力部14、発熱部15が配置される。温度検出部11は、半導体基板17すなわち半導体基板17上の半導体回路16の温度を検出する。制御部12は、検出された温度と温度設定部13で設定された温度とを比較し、その差が無くなるように発熱部15に対して発熱するように、あるいは発熱を停止するように制御する。また、出力部14は、設定された温度に対応する信号を半導体チップの外部に出力する。   FIG. 1 is a layout view of a semiconductor chip according to a first embodiment of the present invention. The semiconductor chip includes a temperature detection unit 11, a control unit 12, a temperature setting unit 13, an output unit 14, a heat generation unit 15, and a semiconductor circuit 16 on a semiconductor substrate 17. The semiconductor circuit 16 is a circuit to be subjected to a high temperature test, and a temperature detection unit 11, a control unit 12, a temperature setting unit 13, an output unit 14, and a heat generation unit 15 are disposed around the semiconductor circuit 16. The temperature detector 11 detects the temperature of the semiconductor substrate 17, that is, the semiconductor circuit 16 on the semiconductor substrate 17. The control unit 12 compares the detected temperature with the temperature set by the temperature setting unit 13, and controls the heat generation unit 15 to generate heat or stop the heat generation so that the difference is eliminated. . The output unit 14 outputs a signal corresponding to the set temperature to the outside of the semiconductor chip.

次に、主要部の詳細について説明する。図2は、温度検出部11、制御部12、温度設定部13、出力部14、および発熱部15の回路図である。温度検出部11は、ダイオードD1、D2、電流源I1、I2、抵抗R1、R2、R3、R4、演算増幅器OP1を備える。ダイオードD1のカソードは接地され、アノードは電流源I1および抵抗R1の一端に接続される。ダイオードD2のカソードは接地され、アノードは電流源I2および抵抗R3の一端に接続される。抵抗R1の他端および抵抗R2の一端は、演算増幅器OP1の反転入力端子に接続される。また、抵抗R3の他端および抵抗R4の一端は、演算増幅器OP1の非反転入力端子に接続される。抵抗R4の他端は、接地される。また、演算増幅器OP1の出力端子は、抵抗R2の他端に接続されると共に、温度検出部11の出力として制御部12内の演算増幅器OP2の反転入力端子に接続される。なお、電流源I1、I2は、半導体チップの外部に設けられ、端子を介して温度検出部11に電流を供給するような構成としてもよい。   Next, details of the main part will be described. FIG. 2 is a circuit diagram of the temperature detection unit 11, the control unit 12, the temperature setting unit 13, the output unit 14, and the heat generation unit 15. The temperature detection unit 11 includes diodes D1 and D2, current sources I1 and I2, resistors R1, R2, R3, and R4, and an operational amplifier OP1. The cathode of the diode D1 is grounded, and the anode is connected to one end of the current source I1 and the resistor R1. The cathode of the diode D2 is grounded, and the anode is connected to one end of the current source I2 and the resistor R3. The other end of the resistor R1 and one end of the resistor R2 are connected to the inverting input terminal of the operational amplifier OP1. The other end of the resistor R3 and one end of the resistor R4 are connected to the non-inverting input terminal of the operational amplifier OP1. The other end of the resistor R4 is grounded. The output terminal of the operational amplifier OP1 is connected to the other end of the resistor R2, and is connected to the inverting input terminal of the operational amplifier OP2 in the control unit 12 as an output of the temperature detection unit 11. Note that the current sources I1 and I2 may be configured to be provided outside the semiconductor chip and to supply current to the temperature detection unit 11 via a terminal.

温度検出部11は、電流源I1、I2のそれぞれの電流によってダイオードD1、D2のそれぞれに発生する電圧を用いて半導体装置の温度をセンシングし、温度を電圧VF1、VF2に変換する。そして、後段の抵抗R1、R2、R3、R4および演算増幅器OP1で構成される減算回路によって、温度から変換される2つのダイオード電圧VF1、VF2の差分を取って、半導体装置の温度に依存した電圧Vtを出力する。   The temperature detector 11 senses the temperature of the semiconductor device using the voltages generated in the diodes D1 and D2 by the currents of the current sources I1 and I2, and converts the temperature into voltages VF1 and VF2. Then, the subtractor circuit constituted by the subsequent resistors R1, R2, R3, R4 and the operational amplifier OP1 takes the difference between the two diode voltages VF1, VF2 converted from the temperature, and the voltage depending on the temperature of the semiconductor device Vt is output.

温度設定部13は、パッケージに設けられる入力端子20からなり、外部の基準電圧源21により設定温度に対応した電圧Vbを入力端子20を通して制御部12へと入力する。制御部12は、演算増幅器OP2によって構成され、半導体装置の温度に対応した電圧Vtと外部から与える設定温度に対応した電圧Vbとの差分を増幅し、電圧Verrを出力する。出力部14は、パッケージに設けられる出力端子22からなり、電圧Verrをパッケージ外部に設けられる電圧計23へ出力する。   The temperature setting unit 13 includes an input terminal 20 provided in the package, and inputs a voltage Vb corresponding to the set temperature from the external reference voltage source 21 to the control unit 12 through the input terminal 20. The control unit 12 includes an operational amplifier OP2, amplifies the difference between the voltage Vt corresponding to the temperature of the semiconductor device and the voltage Vb corresponding to the set temperature given from the outside, and outputs the voltage Verr. The output unit 14 includes an output terminal 22 provided in the package, and outputs a voltage Verr to a voltmeter 23 provided outside the package.

発熱部15は、ソースを電源Vddに接続しゲートとドレインを接続したPchMOSトランジスタP1、P2、・・PMと、PchMOSトランジスタP1、P2、・・PMのそれぞれのドレインにそれぞれドレインを接続しソースを接地し、ゲートを共通に演算増幅器OP2の出力に接続するNchMOSトランジスタN1、N2・・NMとから構成される。発熱部15は、電圧Verrの大きさに応じてこれらのトランジスタに電流を流すことで発熱する。   The heat generating part 15 has a source connected to the drain of each of the PchMOS transistors P1, P2,... PM and a PchMOS transistor P1, P2,. NchMOS transistors N1, N2,... NM that are grounded and have gates commonly connected to the output of the operational amplifier OP2. The heat generating unit 15 generates heat by passing a current through these transistors according to the magnitude of the voltage Verr.

次に、図2の回路動作を詳細に説明する。温度検出部11は、式(4)に示される、温度変化に比例するダイオードの順方向降下電圧VFの特性を利用して、ダイオードD1、D2によって半導体装置の温度を検知し、半導体装置温度を電圧VF1、VF2に変換する。

Figure 2007134442
ただし、kはボルツマン定数(=1.38×10−23)[J/K]、Tは温度[K]、qは電荷量(=1.62×10−19)[C]、Iはダイオードに流れる電流、Isは飽和電流である。 Next, the circuit operation of FIG. 2 will be described in detail. The temperature detection unit 11 detects the temperature of the semiconductor device by the diodes D1 and D2 using the characteristic of the forward drop voltage VF of the diode proportional to the temperature change shown in the equation (4), and determines the temperature of the semiconductor device. Conversion to voltages VF1 and VF2.
Figure 2007134442
Where k is Boltzmann's constant (= 1.38 × 10 −23 ) [J / K], T is temperature [K], q is the amount of charge (= 1.62 × 10 −19 ) [C], and I is a diode. Current Is flowing through, Is is a saturation current.

さらに、抵抗R1、R2、R3、R4および演算増幅器OPから構成される減算回路を用いて電圧VF1、VF2を減算して、電圧VF1と電圧VF2の差分の電圧ΔVFを取り出す。この時、演算増幅器OP1の出力電圧Vtは、式(5)で表される。

Figure 2007134442
ただし、Tcは半導体装置温度[K]、N×IcはダイオードD2に流す電流、Icは、ダイオードD1に流す電流である。 Further, the voltage VF1 and VF2 are subtracted by using a subtraction circuit including resistors R1, R2, R3, and R4 and an operational amplifier OP, and a voltage ΔVF that is a difference between the voltage VF1 and the voltage VF2 is extracted. At this time, the output voltage Vt of the operational amplifier OP1 is expressed by Expression (5).
Figure 2007134442
Here, Tc is the semiconductor device temperature [K], N × Ic is a current flowing through the diode D2, and Ic is a current flowing through the diode D1.

電圧Vtは、式(5)に示すように、物理定数k、q、定数Nおよび半導体装置温度Tcのみで表される。したがって、温度検出部11は、電圧VF1、VF2の差分をとることで、デバイスのバラツキ等のデバイス特性に依存しない半導体装置温度と定数で決まる電圧に半導体装置の温度を変換する。ただし、電流源I1、I2が流す電流Ic、N×Icが一部減算回路に流れ込んで、ダイオードD1、D2に流れる電流が変化して、電圧VF1、VF2に誤差が生じてしまうため、誤差が許容誤差内に収まるように減算回路の入力インピーダンスを高くする必要がある。   The voltage Vt is represented only by physical constants k and q, a constant N, and the semiconductor device temperature Tc, as shown in Expression (5). Therefore, the temperature detection unit 11 takes the difference between the voltages VF1 and VF2 to convert the temperature of the semiconductor device into a voltage determined by the semiconductor device temperature and a constant that does not depend on device characteristics such as device variations. However, since the currents Ic and N × Ic flowing from the current sources I1 and I2 partially flow into the subtraction circuit, the current flowing through the diodes D1 and D2 changes, and errors occur in the voltages VF1 and VF2. It is necessary to increase the input impedance of the subtraction circuit so as to be within the allowable error.

温度設定部13は、半導体装置の温度設定を行う。半導体装置の温度は、式(5)の電圧で表されることから、式(5)のTcを設定温度Tsに置き換えた電圧が設定温度に相当する電圧となる。したがって、制御部12で半導体装置温度と設定温度との比較を行うため、外部の基準電圧源21より設定温度に相当する式(6)で示される電圧Vbを入力端子20を介して制御部12の演算増幅器OP2の入力端へ与える。

Figure 2007134442
The temperature setting unit 13 sets the temperature of the semiconductor device. Since the temperature of the semiconductor device is represented by the voltage of Expression (5), the voltage obtained by replacing Tc in Expression (5) with the set temperature Ts is a voltage corresponding to the set temperature. Therefore, in order to compare the semiconductor device temperature with the set temperature in the control unit 12, the voltage Vb represented by the expression (6) corresponding to the set temperature is supplied from the external reference voltage source 21 via the input terminal 20. To the input terminal of the operational amplifier OP2.
Figure 2007134442

制御部12は、演算増幅器OP2から構成される差動増幅回路によって半導体装置の温度に対応する電圧Vtと設定温度に対応する電圧Vbとを減算して増幅し、半導体装置温度と設定温度との温度差に依存した電圧を出力する。すなわち、演算増幅器OP2の出力には、半導体装置温度に対応した電圧Vtと設定温度に対応した電圧Vbとの減算・増幅結果である、半導体装置温度と設定温度との温度差に依存した式(7)で示される電圧Verrが出力される。

Figure 2007134442
ただし、Aは演算増幅器OP2の増幅率である。 The control unit 12 subtracts and amplifies the voltage Vt corresponding to the temperature of the semiconductor device and the voltage Vb corresponding to the set temperature by a differential amplifier circuit composed of the operational amplifier OP2, and calculates the difference between the semiconductor device temperature and the set temperature. Outputs voltage depending on temperature difference. That is, the output of the operational amplifier OP2 includes an equation (dependent on the temperature difference between the semiconductor device temperature and the set temperature, which is a subtraction / amplification result of the voltage Vt corresponding to the semiconductor device temperature and the voltage Vb corresponding to the set temperature ( The voltage Verr indicated by 7) is output.
Figure 2007134442
However, A is an amplification factor of the operational amplifier OP2.

出力部14は、半導体装置温度と設定温度との温度差に依存した電圧Verrをパッケージ外部へと出力する。すなわち、出力部14によって半導体装置の温度と設定温度との温度差情報が出力可能となる。ここでは、パッケージに出力端子22を設け、半導体装置温度と設定温度との温度差に依存した電圧Verrを出力端子22において電圧計23で測定することで、式(7)をTcについて求めた式(8)よって、半導体装置の温度を検知可能となっている。

Figure 2007134442
The output unit 14 outputs the voltage Verr depending on the temperature difference between the semiconductor device temperature and the set temperature to the outside of the package. That is, the output unit 14 can output temperature difference information between the temperature of the semiconductor device and the set temperature. Here, the output terminal 22 is provided in the package, and the voltage Verr depending on the temperature difference between the semiconductor device temperature and the set temperature is measured with the voltmeter 23 at the output terminal 22 to obtain the equation (7) for Tc. (8) Therefore, the temperature of the semiconductor device can be detected.
Figure 2007134442

なお、他の応用例として、電圧計23の代わりにLED等を設けて、半導体装置の温度と設定温度との温度差がある許容範囲内に入れば発光して通知を行う方法がある。また、出力部14に出力端子22を設けずに無線用の変調回路を設けて、半導体装置の温度と設定温度との温度差情報をもつ電圧Verrの信号を無線信号によって外部に伝達し、外部で信号Verrを読み取り半導体装置の温度を検知する方法などもある。   As another application example, there is a method in which an LED or the like is provided in place of the voltmeter 23 and the light is emitted and notified if the temperature difference between the temperature of the semiconductor device and the set temperature falls within a certain allowable range. Further, a wireless modulation circuit is provided in the output unit 14 without providing the output terminal 22, and a signal of the voltage Verr having temperature difference information between the temperature of the semiconductor device and the set temperature is transmitted to the outside by a wireless signal, There is also a method of reading the signal Verr and detecting the temperature of the semiconductor device.

発熱部15は、半導体装置の温度と設定温度との温度差に依存した電圧Verrの大きさに応じて回路内の抵抗成分に電流を流し、発熱するもしくは発熱動作を停止するように動作する。発熱および発熱停止することで半導体装置温度の上昇、保持を行う。本実施例では、複数のトランジスタN1〜NM、P1〜PMを並列に用いて構成する。トランジスタの数は、設定温度まで上昇させるのに必要な電流量、およびトランジスタの信頼性の点から、トランジスタ1個に流せる電流量により決まる。発熱部15は、制御信号である電圧VerrがトランジスタN1〜NMの閾値以上、すなわちVerr≧Vth(Vth:閾値)となると、オンし、発熱部全体に電圧Verrの大きさに応じた、式(9)で示される発熱回路内電流Idを流す。

Figure 2007134442
ただし、Mは、トランジスタの数、μは移動度、Coxは酸化膜容量、Wはゲート幅、Lはゲート長、Vthは閾値である。 The heat generating unit 15 operates so that a current flows through a resistance component in the circuit according to the magnitude of the voltage Verr depending on the temperature difference between the temperature of the semiconductor device and a set temperature, and heat is generated or the heat generation operation is stopped. The temperature of the semiconductor device is raised and maintained by heat generation and heat generation stop. In this embodiment, a plurality of transistors N1 to NM and P1 to PM are used in parallel. The number of transistors is determined by the amount of current necessary for raising the temperature to the set temperature and the amount of current that can be passed through one transistor from the viewpoint of transistor reliability. When the voltage Verr, which is a control signal, is equal to or higher than the threshold value of the transistors N1 to NM, that is, Verr ≧ Vth (Vth: threshold value), the heat generating unit 15 is turned on. A current Id in the heating circuit shown in 9) is supplied.
Figure 2007134442
However, M is the number of transistors, μ is mobility, Cox is oxide film capacitance, W is gate width, L is gate length, and Vth is a threshold value.

発熱回路内電流Idがトランジスタ(抵抗成分)に流れることで、トランジスタが発熱し、熱量と温度変化との式(10)に示される関係式に応じた温度上昇が起こり、半導体装置の温度を上昇させる。

Figure 2007134442
ただし、ΔTは、温度変化[℃]、Lは発熱部からの距離、λは熱伝導率[W/mK]、Sは発熱部の表面積[m]、Qは発熱量[W]、Cは熱容量[J/℃]、tは経過時間、Vddは電源電圧である。 When the current Id in the heating circuit flows to the transistor (resistance component), the transistor generates heat, and the temperature rises according to the relational expression shown in the equation (10) between the amount of heat and the temperature change, and the temperature of the semiconductor device rises. Let
Figure 2007134442
Where ΔT is the temperature change [° C.], L is the distance from the heat generating part, λ is the thermal conductivity [W / mK], S is the surface area [m 2 ] of the heat generating part, Q is the heat generation amount [W], C Is the heat capacity [J / ° C.], t is the elapsed time, and Vdd is the power supply voltage.

逆に、Verr<Vthとなると、発熱動作を停止する。発熱部15は、半導体装置の温度が設定温度より下回ると、つまり電圧Verrが大きくなると電流を多く流して発熱し、半導体装置の温度を上昇させて半導体装置の温度と設定温度との温度差を縮めるように動作をする。このようにして、半導体装置の温度を上昇させ、一定温度に保持させることが可能となる。なお、発熱回路内電流Idは、Pchトランジスタを抵抗素子に変えた回路、バイポーラトランジスタを用いた回路でも構成可能であり、抵抗成分を有し、電圧Verrにより電流制御可能な回路であればよい。   Conversely, when Verr <Vth, the heat generation operation is stopped. When the temperature of the semiconductor device is lower than the set temperature, that is, when the voltage Verr is increased, the heat generating unit 15 generates heat by causing a large amount of current to flow, and raises the temperature of the semiconductor device so that the temperature difference between the semiconductor device temperature and the set temperature is Operates to shrink. In this way, the temperature of the semiconductor device can be raised and kept at a constant temperature. The heat generating circuit current Id can be configured by a circuit in which a Pch transistor is replaced with a resistance element or a circuit using a bipolar transistor, and may be a circuit having a resistance component and capable of current control by the voltage Verr.

以上の説明のように、温度検出部11では、ダイオードD1、D2の差電圧をとることで、半導体装置の温度を物理定数k、q、定数Nのみで決まる電圧Vt(式(5)参照)に変換する。後段の制御部12は、この半導体装置の温度に相当する電圧Vtと温度設定部11より与えられた設定温度に相当する電圧Vbとの差分をとり、半導体装置の温度と設定温度との差分に比例した電圧Verrを出力する。制御部12は、この半導体装置の温度と設定温度との差分に比例した電圧Verrがほぼ0、つまり半導体装置の温度と設定温度との温度差がなくなるように発熱部15の発熱量を調整するように制御する。   As described above, the temperature detection unit 11 takes the voltage difference between the diodes D1 and D2 to thereby determine the temperature V of the semiconductor device based on only the physical constants k and q and the constant N (see Expression (5)). Convert to The control unit 12 at the subsequent stage takes the difference between the voltage Vt corresponding to the temperature of the semiconductor device and the voltage Vb corresponding to the set temperature given by the temperature setting unit 11 and takes the difference between the temperature of the semiconductor device and the set temperature. A proportional voltage Verr is output. The control unit 12 adjusts the amount of heat generated by the heat generating unit 15 so that the voltage Verr proportional to the difference between the temperature of the semiconductor device and the set temperature is substantially 0, that is, the temperature difference between the temperature of the semiconductor device and the set temperature is eliminated. To control.

本実施例の半導体装置は、以上のように動作することで、発熱部15を正確に制御することが可能となり、半導体装置の温度を一定の温度に保つことができる。また、設定温度は、設定したい温度に相当する電圧Vbを式(6)から算出して、電圧Vbを変えることで自由に変えることができる。さらに、電圧Verrを、出力端子を通して出力することで、式(8)から内部温度を検知可能である。   By operating as described above, the semiconductor device according to the present embodiment can accurately control the heat generating portion 15 and can maintain the temperature of the semiconductor device at a constant temperature. The set temperature can be freely changed by calculating the voltage Vb corresponding to the temperature to be set from the equation (6) and changing the voltage Vb. Furthermore, the internal temperature can be detected from the equation (8) by outputting the voltage Verr through the output terminal.

図3は、本発明の第2の実施例に係る半導体チップにおける配置図である。半導体チップは、半導体基板17a上に、温度検出部11a、11b、11c、11d、制御部12a、12b、12c、12d、温度設定部13a、13b、13c、13d、出力部14a、14b、14c、14d、発熱部15a、15b、15c、15d、半導体回路16を備える。半導体回路16は、高温試験の対象とされる回路であって、その4辺の外側には、それぞれ温度検出部11a、制御部12a、温度設定部13a、出力部14a、発熱部15aと、温度検出部11b、制御部12b、温度設定部13b、出力部14b、発熱部15bと、温度検出部11c、制御部12c、温度設定部13c、出力部14c、発熱部15cと、温度検出部11d、制御部12d、温度設定部13d、出力部14d、発熱部15dと、が配置される。なお、温度検出部11a、11b、11c、11dは、図1の温度検出部11と同一物であり、制御部12a、12b、12c、12dは、図1の制御部12と同一物であり、温度設定部13a、13b、13c、13dは、図1の温度設定部13と同一物であり、出力部14a、14b、14c、14dは、図1の出力部14と同一物であり、発熱部15a、15b、15c、15dは、図1の発熱部15と同一物である。   FIG. 3 is a layout view of a semiconductor chip according to the second embodiment of the present invention. The semiconductor chip is provided on the semiconductor substrate 17a with temperature detection units 11a, 11b, 11c, 11d, control units 12a, 12b, 12c, 12d, temperature setting units 13a, 13b, 13c, 13d, output units 14a, 14b, 14c, 14 d, heat generating portions 15 a, 15 b, 15 c, 15 d, and a semiconductor circuit 16. The semiconductor circuit 16 is a circuit to be subjected to a high temperature test, and on the outer sides of the four sides, there are a temperature detection unit 11a, a control unit 12a, a temperature setting unit 13a, an output unit 14a, a heating unit 15a, and a temperature. Detection unit 11b, control unit 12b, temperature setting unit 13b, output unit 14b, heat generation unit 15b, temperature detection unit 11c, control unit 12c, temperature setting unit 13c, output unit 14c, heat generation unit 15c, temperature detection unit 11d, A control unit 12d, a temperature setting unit 13d, an output unit 14d, and a heat generating unit 15d are arranged. The temperature detectors 11a, 11b, 11c, and 11d are the same as the temperature detector 11 in FIG. 1, and the controllers 12a, 12b, 12c, and 12d are the same as the controller 12 in FIG. The temperature setting units 13a, 13b, 13c, and 13d are the same as the temperature setting unit 13 in FIG. 1, and the output units 14a, 14b, 14c, and 14d are the same as the output unit 14 in FIG. Reference numerals 15a, 15b, 15c, and 15d are the same as those of the heat generating portion 15 in FIG.

実施例1の半導体チップでは半導体基板上の1点のみの温度を検出しているため、半導体装置に温度分布が生じているような場合には、半導体装置の温度をほぼ均一に保つことが困難である。これに対し、図3に示す半導体チップでは、半導体基板上に複数組、例えば4組の回路を設けることによって、半導体装置における各点の温度を検出し、半導体装置の温度分布のばらつきを減らし、半導体装置の温度をほぼ均一に保つことができる。なお、図3では、温度設定部13a、13b、13c、13dを制御部12a、12b、12c、12dのそれぞれに対応して設けているが、半導体装置全体の温度をほぼ均一にするためであれば、温度設定部は、各制御部に対して共通に1つ設けるように構成してもよい。   Since the semiconductor chip of the first embodiment detects the temperature of only one point on the semiconductor substrate, it is difficult to keep the temperature of the semiconductor device substantially uniform when the temperature distribution is generated in the semiconductor device. It is. On the other hand, in the semiconductor chip shown in FIG. 3, by providing a plurality of sets, for example, four sets of circuits on the semiconductor substrate, the temperature of each point in the semiconductor device is detected, and variation in the temperature distribution of the semiconductor device is reduced. The temperature of the semiconductor device can be kept substantially uniform. In FIG. 3, the temperature setting units 13a, 13b, 13c, and 13d are provided corresponding to the control units 12a, 12b, 12c, and 12d, respectively, in order to make the temperature of the entire semiconductor device substantially uniform. For example, a single temperature setting unit may be provided for each control unit.

本発明の第1の実施例に係る半導体チップにおける配置図である。1 is a layout view of a semiconductor chip according to a first embodiment of the present invention. 本発明の第1の実施例に係る主要部における回路図である。It is a circuit diagram in the principal part which concerns on 1st Example of this invention. 本発明の第2の実施例に係る半導体チップにおける配置図である。FIG. 6 is a layout view of a semiconductor chip according to a second embodiment of the present invention. 従来の半導体装置の回路図である。It is a circuit diagram of the conventional semiconductor device. 従来の他の半導体装置の回路図である。It is a circuit diagram of another conventional semiconductor device.

符号の説明Explanation of symbols

11、11a、11b、11c、11d 温度検出部
12、12a、12b、12c、12d 制御部
13、13a、13b、13c、13d 温度設定部
14、14a、14b、14c、14d 出力部
15、15a、15b、15c、15d 発熱部
16 半導体回路
17、17a 半導体基板
20 入力端子
21 基準電圧源
22 出力端子
23 電圧計
D1、D2 ダイオード
I1、I2 電流源
N1、N2、・・NM Nchトランジスタ
P1、P2、・・PM Pchトランジスタ
OP1、OP2 演算増幅器
R1、R2、R3、R4 抵抗
11, 11a, 11b, 11c, 11d Temperature detection unit 12, 12a, 12b, 12c, 12d Control unit 13, 13a, 13b, 13c, 13d Temperature setting unit 14, 14a, 14b, 14c, 14d Output unit 15, 15a, 15b, 15c, 15d Heat generating portion 16 Semiconductor circuit 17, 17a Semiconductor substrate 20 Input terminal 21 Reference voltage source 22 Output terminal 23 Voltmeter D1, D2 Diode I1, I2 Current sources N1, N2,... NM Nch transistors P1, P2, ..PM Pch transistors OP1, OP2 Operational amplifiers R1, R2, R3, R4 Resistance

Claims (5)

半導体基板に所要の回路を形成してなる半導体装置であって、
半導体装置を加熱する発熱部と、
前記半導体装置の温度に対応する温度検出信号を出力する温度検出部と、
前記半導体装置の温度設定信号を生成する温度設定部と、
前記温度検出信号と前記温度設定信号との差信号を求め、この差信号が小さくなるように前記発熱部を制御する制御部と、
を備えることを特徴とする半導体装置。
A semiconductor device in which a required circuit is formed on a semiconductor substrate,
A heat generating part for heating the semiconductor device;
A temperature detection unit that outputs a temperature detection signal corresponding to the temperature of the semiconductor device;
A temperature setting unit for generating a temperature setting signal of the semiconductor device;
A control unit that obtains a difference signal between the temperature detection signal and the temperature setting signal and controls the heat generating unit so that the difference signal becomes smaller;
A semiconductor device comprising:
前記差信号を外部から観測できるように外部へ出力する出力部をさらに備えることを特徴とする請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, further comprising an output unit that outputs the difference signal to the outside so that the difference signal can be observed from the outside. 前記温度検出信号は、2つのダイオードの順方向降下電圧の差に基づいて生成されることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the temperature detection signal is generated based on a difference in forward voltage drop between two diodes. 一つの前記半導体基板上に前記発熱部、前記温度検出部、前記温度設定部、前記制御部をそれぞれ複数組備え、前記半導体基板内の各部の温度をそれぞれ制御することを特徴とする請求項1乃至3いずれか1項記載の半導体装置。   2. A plurality of sets of the heat generating unit, the temperature detecting unit, the temperature setting unit, and the control unit are provided on one semiconductor substrate, respectively, and the temperature of each unit in the semiconductor substrate is controlled. 4. The semiconductor device according to any one of items 3 to 3. 一つの前記半導体基板上に前記発熱部、前記温度検出部、前記制御部をそれぞれ複数組備え、前記温度設定部によって生成される前記温度設定信号に基づいてそれぞれの前記制御部が制御されることを特徴とする請求項1乃至3いずれか1項記載の半導体装置。
A plurality of sets of the heat generating unit, the temperature detecting unit, and the control unit are provided on one semiconductor substrate, and each of the control units is controlled based on the temperature setting signal generated by the temperature setting unit. The semiconductor device according to claim 1, wherein:
JP2005324852A 2005-11-09 2005-11-09 Semiconductor device Pending JP2007134442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324852A JP2007134442A (en) 2005-11-09 2005-11-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324852A JP2007134442A (en) 2005-11-09 2005-11-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2007134442A true JP2007134442A (en) 2007-05-31

Family

ID=38155870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324852A Pending JP2007134442A (en) 2005-11-09 2005-11-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2007134442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252846A (en) * 2008-04-02 2009-10-29 Sharp Corp Semiconductor integrated circuit and inspection method of the semiconductor integrated circuit
JP2011049242A (en) * 2009-08-25 2011-03-10 Nec Computertechno Ltd Temperature change adjusting module, and temperature change adjusting method
JP2015228771A (en) * 2014-06-02 2015-12-17 トヨタ自動車株式会社 Semiconductor device
JP2017032303A (en) * 2015-07-29 2017-02-09 日立オートモティブシステムズ株式会社 Burn-in test device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156850A (en) * 1985-12-28 1987-07-11 Nec Corp Semiconductor device
JP2000213992A (en) * 1999-01-26 2000-08-04 Nissan Motor Co Ltd Temperature detection circuit and semiconductor device
JP2004071811A (en) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit
JP2005172467A (en) * 2003-12-08 2005-06-30 Renesas Technology Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156850A (en) * 1985-12-28 1987-07-11 Nec Corp Semiconductor device
JP2000213992A (en) * 1999-01-26 2000-08-04 Nissan Motor Co Ltd Temperature detection circuit and semiconductor device
JP2004071811A (en) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit
JP2005172467A (en) * 2003-12-08 2005-06-30 Renesas Technology Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252846A (en) * 2008-04-02 2009-10-29 Sharp Corp Semiconductor integrated circuit and inspection method of the semiconductor integrated circuit
JP2011049242A (en) * 2009-08-25 2011-03-10 Nec Computertechno Ltd Temperature change adjusting module, and temperature change adjusting method
JP2015228771A (en) * 2014-06-02 2015-12-17 トヨタ自動車株式会社 Semiconductor device
CN105186837A (en) * 2014-06-02 2015-12-23 丰田自动车株式会社 Semiconductor Apparatus
JP2017032303A (en) * 2015-07-29 2017-02-09 日立オートモティブシステムズ株式会社 Burn-in test device and method

Similar Documents

Publication Publication Date Title
JP5189882B2 (en) Temperature sensor circuit
TWI431881B (en) Voltage regulator
KR100674974B1 (en) Semiconductor temperature sensor capable of adjusting sensing temperature
KR100766379B1 (en) Circuit for detecting temperature of semiconductor memory apparatus
JP2011024405A (en) Overheat protection circuit and power supply integrated circuit
CN207440656U (en) Integrated circuit
CN102338668A (en) Temperature detection circuit
US20150219690A1 (en) Current sensor
TW201602753A (en) Overheat protection circuit and voltage regulator
JP2004146576A (en) Semiconductor temperature measuring circuit
TW200417117A (en) Direct current stabilizing power supply
TWI651609B (en) Low voltage locking circuit and device thereof integrated with reference voltage generating circuit
KR100816150B1 (en) Tempperature sensor
US9213351B2 (en) Bi-directional current sensor
JP2007134442A (en) Semiconductor device
JP3969167B2 (en) Fluid flow measuring device
TWI614485B (en) Temperature sensing apparatus and temperature sensing method thereof
KR20100003064A (en) Temperature sensing circuit, on die thermal sensor including the same, and method for temperature sensing
JP5080721B2 (en) Semiconductor device and voltage regulator using the semiconductor device
US7586064B1 (en) Method and system for providing thermostatic temperature control in an integrated circuit
US20140076044A1 (en) Thermal flow sensor and method of generating flow rate detection signal by the thermal flow sensor
JP2015105852A (en) Diode thermometer
CN109390910B (en) Current dependent thermal shutdown
Nilsson et al. Leakage current compensation for a 450 nW, high-temperature, bandgap temperature sensor
Grigorita et al. Novel Thermal Shutdown Circuit for Automotive Power Management Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710