JP2007134200A - Fuel cell system and its gas leak detection method - Google Patents

Fuel cell system and its gas leak detection method Download PDF

Info

Publication number
JP2007134200A
JP2007134200A JP2005326920A JP2005326920A JP2007134200A JP 2007134200 A JP2007134200 A JP 2007134200A JP 2005326920 A JP2005326920 A JP 2005326920A JP 2005326920 A JP2005326920 A JP 2005326920A JP 2007134200 A JP2007134200 A JP 2007134200A
Authority
JP
Japan
Prior art keywords
pressure
fuel cell
valve
hydrogen
regulating valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005326920A
Other languages
Japanese (ja)
Inventor
Naoki Kanie
尚樹 蟹江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005326920A priority Critical patent/JP2007134200A/en
Publication of JP2007134200A publication Critical patent/JP2007134200A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system capable of performing the detection of gas leak accurately in a short time, and a detection method of gas leak of the fuel cell system. <P>SOLUTION: The fuel cell system is provided with a hydrogen supply source 30, a cut-off valve H100 installed at its downstream, hydrogen pressure control valves H9, H10 installed at further downstream, a pressure sensor P6 installed between the cut-off valve H100 and the hydrogen pressure control valve H9, a pressure sensor P9 which is installed between the hydrogen pressure control valve H9 and the hydrogen pressure control valve H10 and has an upper limit of detection lower than the pressure sensor P6. At the time of start of the fuel cell system, the fuel supply passage 74 is pressurized within the detection range of the pressure sensor P9, and the gas leak in the fuel supply system is detected based on the detection pressure of the pressure sensor P9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガス供給を受けて発電する燃料電池を備えた燃料電池システムとそのガス漏れ検知方法に係り、特に、システム起動時に燃料供給系のガス漏れ検知を行う技術に関する。   The present invention relates to a fuel cell system including a fuel cell that generates power upon receiving gas supply and a gas leak detection method thereof, and more particularly, to a technique for detecting gas leak in a fuel supply system when the system is activated.

近年、燃料ガスと酸化ガス(以下、これらを反応ガスという。)との電気化学反応によって発電する燃料電池(セル)をエネルギ源とした燃料電池システムが注目されている。従来の燃料電池システムにおいては、システムを起動させる際に以下のように燃料ガスの漏れの有無を判定している。   In recent years, a fuel cell system using a fuel cell (cell) that generates power by an electrochemical reaction between a fuel gas and an oxidizing gas (hereinafter referred to as a reactive gas) has attracted attention. In the conventional fuel cell system, when the system is started, the presence or absence of fuel gas leakage is determined as follows.

まず、燃料ガスタンクの主止弁を開き、燃料系配管内を燃料ガスによって十分に加圧する。次いで、一旦主止弁を閉止し、最上流の圧力調整要素(圧力調整弁)よりも上流に設けられている圧力センサにより、配管内の圧力変化を監視する。そして、圧力が降下した場合には、ガス漏れと判定する。
特開平9−22711号公報
First, the main stop valve of the fuel gas tank is opened, and the inside of the fuel system pipe is sufficiently pressurized with the fuel gas. Next, the main stop valve is once closed, and the pressure change in the pipe is monitored by a pressure sensor provided upstream of the most upstream pressure adjustment element (pressure adjustment valve). And when a pressure falls, it determines with a gas leak.
JP-A-9-22711

しかしながら、最上流の圧力センサは、検出上限が高く検出範囲が広いため、精度が低く、圧力センサ自身が持つ誤差も非常に大きい。例えば70MPaの検出範囲で誤差が1%であるとすると、7MPaの誤差となり、ガス漏れによるわずかな圧力変化を検出するためには、時間をかけて前記誤差以上(7MPa以上)の圧力変化を検出しなければならない、という課題がある。   However, the most upstream pressure sensor has a high detection upper limit and a wide detection range, so the accuracy is low and the error of the pressure sensor itself is very large. For example, if the error is 1% in the detection range of 70 MPa, the error is 7 MPa, and in order to detect a slight pressure change due to gas leakage, the pressure change over the error (7 MPa or more) is detected over time. There is a problem that must be done.

上記事情に鑑み、本発明は、短時間で精度良くガス漏れ検知を行うことが可能な燃料電池システム及び燃料電池システムのガス漏れ検知方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a fuel cell system and a gas leak detection method for a fuel cell system that can accurately detect a gas leak in a short time.

上記目的を達成するため、本発明の燃料電池システムは、燃料電池に燃料を供給する燃料供給源と、前記燃料供給源の下流に設けられた主止弁と、前記主止弁の下流に設けられた第1の調圧弁と、前記第1の調圧弁の下流に設けられた第2の調圧弁と、前記主止弁と前記第1の調圧弁との間に設けられた第1の圧力センサと、前記第1の調圧弁と前記第2の調圧弁との間に設けられ、前記第1の圧力センサよりも検出上限が低い第2の圧力センサと、を備えた燃料電池システムであって、システム起動時、前記第1の調圧弁の調圧値以下、かつ前記第2の調圧弁の調圧値以上に加圧をしつつ、前記第2の圧力センサの検出結果に基づき、ガス漏れ検知を行うガス漏れ検知手段を備えたものである。   In order to achieve the above object, a fuel cell system according to the present invention includes a fuel supply source for supplying fuel to a fuel cell, a main stop valve provided downstream of the fuel supply source, and a downstream of the main stop valve. The first pressure regulating valve, the second pressure regulating valve provided downstream of the first pressure regulating valve, and the first pressure provided between the main stop valve and the first pressure regulating valve. A fuel cell system comprising: a sensor; and a second pressure sensor provided between the first pressure regulating valve and the second pressure regulating valve and having a lower detection upper limit than the first pressure sensor. Then, when the system is started, the gas is pressurized based on the detection result of the second pressure sensor while pressurizing the pressure regulation value of the first pressure regulation valve to be equal to or less than the pressure regulation value of the second pressure regulation valve. Gas leak detection means for performing leak detection is provided.

この構成において、ガス漏れ検知手段は、第1の圧力センサよりも検出上限が低い第2の圧力センサによる検出結果に基づいて、当該第2の圧力センサの検出範囲(第1の調圧弁の調圧値以下、かつ第2の調圧弁の調圧値以上)でガス漏れ検知を行う。したがって、第1の圧力センサを用いてガス漏れ検知を行う場合と比較して、より短時間で精度良くガス漏れ検知を行うことが可能となる。なお、第2の調圧弁は、燃料供給系に複数設けられていてもよいし、単数でもよい。   In this configuration, the gas leak detection means is configured to detect the detection range of the second pressure sensor (adjustment of the first pressure regulating valve) based on the detection result by the second pressure sensor whose detection upper limit is lower than that of the first pressure sensor. The gas leakage is detected at a pressure value equal to or lower than the pressure value and equal to or higher than the pressure control value of the second pressure control valve. Therefore, it is possible to detect the gas leak with higher accuracy in a shorter time as compared with the case of detecting the gas leak using the first pressure sensor. Note that a plurality of second pressure regulating valves may be provided in the fuel supply system, or a single second pressure regulating valve may be provided.

また、前記燃料供給源は、高圧水素タンクであってもよい。   The fuel supply source may be a high pressure hydrogen tank.

本発明に係る燃料電池システムのガス漏れ検知方法は、燃料電池に燃料を供給する燃料供給源と、前記燃料供給源の下流に設けられた主止弁と、前記主止弁の下流に設けられた第1の調圧弁と、前記第1の調圧弁の下流に設けられた第2の調圧弁と、前記主止弁と前記第1の調圧弁との間に設けられた第1の圧力センサと、前記第1の調圧弁と前記第2の調圧弁との間に設けられ、前記第1の圧力センサよりも検出上限が低い第2の圧力センサと、を備えた燃料電池システムのガス漏れ検知方法であって、システム起動時、前記第1の調圧弁の調圧値以下、かつ前記第2の調圧弁の調圧値以上に加圧をしつつ、前記第2の圧力センサの検出結果に基づき、ガス漏れ検知を行うものである。   A gas leak detection method for a fuel cell system according to the present invention includes a fuel supply source for supplying fuel to a fuel cell, a main stop valve provided downstream of the fuel supply source, and a downstream of the main stop valve. The first pressure regulating valve, the second pressure regulating valve provided downstream of the first pressure regulating valve, and the first pressure sensor provided between the main stop valve and the first pressure regulating valve And a second pressure sensor provided between the first pressure regulating valve and the second pressure regulating valve and having a lower detection upper limit than the first pressure sensor, a gas leak of a fuel cell system In the detection method, when the system is activated, the detection result of the second pressure sensor while pressurizing the pressure regulation value of the first pressure regulation valve to be equal to or less than the pressure regulation value of the second pressure regulation valve. Based on the above, gas leak detection is performed.

このような構成によれば、第1の圧力センサよりも検出上限が低い第2の圧力センサを用いて、当該第2の圧力センサの検出範囲(第1の調圧弁の調圧値以下、かつ第2の調圧弁の調圧値以上)でガス漏れ検知を行うので、第1の圧力センサを用いてガス漏れ検知を行う場合と比較して、より短時間で精度良くガス漏れ検知を行うことが可能となる。   According to such a configuration, by using the second pressure sensor whose detection upper limit is lower than that of the first pressure sensor, the detection range of the second pressure sensor (below the pressure regulation value of the first pressure regulating valve, and Gas leak detection is performed with a pressure regulation value equal to or higher than the pressure regulating value of the second pressure regulating valve), so that gas leak detection is performed in a shorter time and with higher accuracy than when gas leak detection is performed using the first pressure sensor. Is possible.

本発明によれば、短時間で精度良くシステム起動時のガス漏れ検知を行うことが可能となる。   According to the present invention, it is possible to accurately detect a gas leak at the time of system startup in a short time.

次に、本発明に係る燃料電池システムの一実施の形態を説明する。以下、この燃料電池システムを燃料電池車両の車載発電システムに適用した場合について説明するが、本発明はこのような適用例に限らず、船舶,航空機,電車、歩行ロボット等のあらゆる移動体への適用や、例えば燃料電池が建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムへの適用も可能である。   Next, an embodiment of a fuel cell system according to the present invention will be described. Hereinafter, the case where this fuel cell system is applied to an in-vehicle power generation system of a fuel cell vehicle will be described. However, the present invention is not limited to such an application example, and is applicable to all moving objects such as ships, airplanes, trains, and walking robots. For example, the present invention can be applied to a stationary power generation system in which a fuel cell is used as a power generation facility for a building (house, building, etc.).

図1に示すように、酸化ガスとしての空気(外気)は、空気供給路71を介して燃料電池20の空気供給口に供給される。空気供給路71には、空気から微粒子を除去するエアフィルタA1、空気を加圧するコンプレッサA3、供給空気圧を検出する圧力センサP4、及び空気に所要の水分を加える加湿器A21が設けられている。コンプレッサA3は、モータ(補機)によって駆動される。このモータは、後述の制御部(ガス漏れ検知手段)50によって駆動制御される。なお、エアフィルタA1には、空気流量を検出する図示省略のエアフローメータ(流量計)が設けられている。   As shown in FIG. 1, air (outside air) as an oxidizing gas is supplied to an air supply port of the fuel cell 20 via an air supply path 71. The air supply path 71 is provided with an air filter A1 that removes particulates from the air, a compressor A3 that pressurizes the air, a pressure sensor P4 that detects the supply air pressure, and a humidifier A21 that adds required moisture to the air. The compressor A3 is driven by a motor (auxiliary machine). This motor is driven and controlled by a control unit (gas leak detection means) 50 described later. The air filter A1 is provided with an air flow meter (flow meter) (not shown) that detects the air flow rate.

燃料電池20から排出される空気オフガスは、排気路72を経て外部に放出される。排気路72には、排気圧を検出する圧力センサP1、圧力調整弁A4、及び加湿器A21の熱交換器が設けられている。圧力センサP1は、燃料電池20の空気排気口近傍に設けられている。圧力調整弁A4は、燃料電池20への供給空気圧を設定する調圧(減圧)器として機能する。   The air off gas discharged from the fuel cell 20 is discharged to the outside through the exhaust path 72. The exhaust path 72 is provided with a pressure sensor P1 that detects the exhaust pressure, a pressure adjustment valve A4, and a heat exchanger for the humidifier A21. The pressure sensor P <b> 1 is provided in the vicinity of the air exhaust port of the fuel cell 20. The pressure adjustment valve A4 functions as a pressure regulator (pressure reduction) that sets the air pressure supplied to the fuel cell 20.

圧力センサP4,P1の図示しない検出信号は、制御部50に送られる。制御部50は、コンプレッサA3のモータ回転数及び圧力調整弁A4の開度面積を調整することによって、燃料電池20への供給空気圧や供給空気流量を設定する。   Detection signals (not shown) of the pressure sensors P4 and P1 are sent to the control unit 50. The control unit 50 sets the supply air pressure and the supply air flow rate to the fuel cell 20 by adjusting the motor rotation speed of the compressor A3 and the opening area of the pressure adjustment valve A4.

燃料ガスとしての水素ガスは、水素供給源(燃料供給源)30から燃料供給路(燃料供給系)74を介して燃料電池20の水素供給口に供給される。水素供給源30は、例えば高圧水素タンクが該当するが、いわゆる燃料改質器や水素吸蔵合金等であっても良い。   Hydrogen gas as fuel gas is supplied from a hydrogen supply source (fuel supply source) 30 to a hydrogen supply port of the fuel cell 20 via a fuel supply path (fuel supply system) 74. The hydrogen supply source 30 corresponds to, for example, a high-pressure hydrogen tank, but may be a so-called fuel reformer, a hydrogen storage alloy, or the like.

燃料供給路74には、水素供給源30から水素を供給しあるいは供給を停止する遮断弁(主止弁)H100、水素供給源30からの水素ガスの供給圧力を検出する圧力センサ(第1の圧力センサ)P6、燃料電池20への水素ガスの供給圧力を所定の調圧値に減圧して調整する第1の水素調圧弁H9、第2の水素調圧弁H10、およびその下流の水素調圧弁H11、各々水素調圧弁H9,H10の下流の水素ガス圧力を検出する圧力センサ(第2の圧力センサ)P9,P10、燃料電池20の水素供給口と燃料供給路74間を開閉する遮断弁H21、及び水素ガスの燃料電池20の入口圧力を検出する圧力センサP5が設けられている。   A shutoff valve (main stop valve) H100 that supplies or stops supplying hydrogen from the hydrogen supply source 30 and a pressure sensor that detects the supply pressure of hydrogen gas from the hydrogen supply source 30 (first first) Pressure sensor) P6, a first hydrogen pressure regulating valve H9, a second hydrogen pressure regulating valve H10, and a hydrogen pressure regulating valve downstream thereof, which adjust the hydrogen gas supply pressure to the fuel cell 20 by reducing the pressure to a predetermined pressure regulation value. H11, pressure sensors (second pressure sensors) P9 and P10 for detecting the hydrogen gas pressure downstream of the hydrogen pressure regulating valves H9 and H10, respectively, and a shutoff valve H21 for opening and closing between the hydrogen supply port of the fuel cell 20 and the fuel supply path 74 , And a pressure sensor P5 for detecting the inlet pressure of the hydrogen gas fuel cell 20 is provided.

これら水素調圧弁H9〜H11のうち燃料供給路74の最上流に設けられた水素調圧弁H9とその下流に設けられた水素調圧弁H10との間に設けられた圧力センサP9の検出上限は、遮断弁H100と水素調圧弁H9との間に設けられた圧力センサP6の検出上限未満である。また、水素調圧弁H9〜H11の各調圧値は、燃料供給路74の上流側から順に、つまり、水素調圧弁H9,H10,H11の順に、次第に低くなるように設定されている。   Among these hydrogen pressure regulating valves H9 to H11, the detection upper limit of the pressure sensor P9 provided between the hydrogen pressure regulating valve H9 provided in the uppermost stream of the fuel supply path 74 and the hydrogen pressure regulating valve H10 provided downstream thereof is It is less than the detection upper limit of the pressure sensor P6 provided between the shutoff valve H100 and the hydrogen pressure regulating valve H9. Further, the pressure regulating values of the hydrogen pressure regulating valves H9 to H11 are set so as to gradually decrease in order from the upstream side of the fuel supply path 74, that is, in order of the hydrogen pressure regulating valves H9, H10, and H11.

例えば、図2に示すように、水素供給源30内の第1の圧力(例えば、70MPa、35MPa)は、水素調圧弁H9によって当該水素調圧弁H9の調圧値である第2の圧力(例えば、3MPa)に減圧(調圧)される。また、この第2の圧力は、水素調圧弁H10によって当該水素調圧弁H10の調圧値である第3の圧力(例えば、1MPa)に減圧(調圧)される。さらに、この第3の圧力は、水素調圧弁H11によって当該水素調圧弁H11の調圧値である第4の圧力(例えば、200kPa)に減圧(調圧)される。   For example, as shown in FIG. 2, the first pressure (for example, 70 MPa, 35 MPa) in the hydrogen supply source 30 is a second pressure (for example, a pressure regulation value of the hydrogen pressure regulation valve H9 by the hydrogen pressure regulation valve H9). 3 MPa). Further, the second pressure is reduced (regulated) by the hydrogen pressure regulating valve H10 to a third pressure (for example, 1 MPa) that is a pressure regulating value of the hydrogen pressure regulating valve H10. Further, the third pressure is reduced (regulated) by the hydrogen pressure regulating valve H11 to a fourth pressure (for example, 200 kPa) that is the pressure regulating value of the hydrogen pressure regulating valve H11.

なお、水素調圧弁H9の上流側圧力(一次圧)が当該水素調圧弁H9の調圧値以下の場合には、水素調圧弁H9の開度は全開となり、その下流の水素調圧弁H10まで同圧となる。このような弁特性は、他の水素調圧弁H10,H11についても同様である。   When the upstream side pressure (primary pressure) of the hydrogen pressure regulating valve H9 is equal to or lower than the pressure regulating value of the hydrogen pressure regulating valve H9, the opening degree of the hydrogen pressure regulating valve H9 is fully opened, and the same as the hydrogen pressure regulating valve H10 downstream thereof. Pressure. Such valve characteristics are the same for the other hydrogen pressure regulating valves H10 and H11.

水素調圧弁H9〜H11としては、例えば機械式の減圧を行う調圧弁を使用できるが、パルスモータで弁の開度がリニアあるいは連続的に調整される弁であっても良い。圧力センサP5,P6,P9,P10の図示しない検出信号は、制御部50に供給される。   As the hydrogen pressure control valves H9 to H11, for example, pressure control valves that perform mechanical pressure reduction can be used. However, the valve opening degree may be linearly or continuously adjusted by a pulse motor. Detection signals (not shown) of the pressure sensors P5, P6, P9, and P10 are supplied to the control unit 50.

燃料電池20で消費されなかった水素ガスは、水素オフガスとして水素循環路75に排出され、燃料供給路74の水素調圧弁H11の下流側に戻される。水素循環路75には、水素オフガスの温度を検出する温度センサT31、燃料電池20と水素循環路75を連通/遮断する遮断弁H22、水素オフガスから水分を回収する気液分離器H42、回収した生成水を水素循環路75外の図示しないタンク等に回収する排水弁H41、水素オフガスを加圧する水素ポンプH50、及び逆流阻止弁H52が設けられている。   The hydrogen gas that has not been consumed in the fuel cell 20 is discharged as a hydrogen off-gas to the hydrogen circulation path 75 and returned to the fuel supply path 74 downstream of the hydrogen pressure regulating valve H11. The hydrogen circulation path 75 includes a temperature sensor T31 that detects the temperature of the hydrogen off-gas, a shutoff valve H22 that communicates / blocks the fuel cell 20 and the hydrogen circulation path 75, a gas-liquid separator H42 that collects moisture from the hydrogen off-gas, and a hydrogen A drain valve H41 that collects the generated water in a tank (not shown) outside the hydrogen circulation path 75, a hydrogen pump H50 that pressurizes the hydrogen off-gas, and a backflow prevention valve H52 are provided.

遮断弁H21,H22は、燃料電池20のアノード側を閉鎖する。温度センサT31の図示しない検出信号は、制御部50に供給される。水素ポンプH50は、制御部50によって動作が制御される。   The shutoff valves H21 and H22 close the anode side of the fuel cell 20. A detection signal (not shown) of the temperature sensor T31 is supplied to the control unit 50. The operation of the hydrogen pump H50 is controlled by the control unit 50.

水素オフガスは、燃料供給路74で水素ガスと合流し、燃料電池20に供給されて再利用される。逆流阻止弁H52は、燃料供給路74の水素ガスが水素循環路75側に逆流することを防止する。遮断弁H100,H21,H22は、制御部50からの信号で駆動される。   The hydrogen off gas merges with the hydrogen gas in the fuel supply path 74 and is supplied to the fuel cell 20 for reuse. The backflow prevention valve H52 prevents the hydrogen gas in the fuel supply path 74 from flowing back to the hydrogen circulation path 75 side. The shutoff valves H100, H21, and H22 are driven by a signal from the control unit 50.

水素循環路75は、排出制御弁H51を介して、パージ流路76によって排気路72に接続されている。排出制御弁H51は、電磁式の遮断弁であり、制御部50からの指令によって作動することにより、水素オフガスを外部に排出(パージ)する。このパージ動作を間欠的に行うことによって、水素オフガス中の不純物濃度が増加することによるセル電圧の低下を防止することができる。   The hydrogen circulation path 75 is connected to the exhaust path 72 by the purge flow path 76 via the discharge control valve H51. The discharge control valve H51 is an electromagnetic shut-off valve, and discharges (purges) hydrogen off-gas to the outside by operating according to a command from the control unit 50. By intermittently performing this purging operation, it is possible to prevent the cell voltage from decreasing due to an increase in the impurity concentration in the hydrogen off-gas.

燃料電池20の冷却水出入口には、冷却水を循環させる冷却路73が設けられている。冷却路73には、燃料電池20から排水される冷却水の温度を検出する温度センサT1、冷却水の熱を外部に放熱するラジエータ(熱交換器)C2、冷却水を加圧して循環させるポンプC1、及び燃料電池20に供給される冷却水の温度を検出する温度センサT2が設けられている。ラジエータC2には、モータによって回転駆動される冷却ファンC13が設けられている。   A cooling path 73 for circulating the cooling water is provided at the cooling water inlet / outlet of the fuel cell 20. In the cooling path 73, a temperature sensor T1 that detects the temperature of the cooling water drained from the fuel cell 20, a radiator (heat exchanger) C2 that radiates the heat of the cooling water to the outside, and a pump that pressurizes and circulates the cooling water. C1 and a temperature sensor T2 for detecting the temperature of the cooling water supplied to the fuel cell 20 are provided. The radiator C2 is provided with a cooling fan C13 that is rotationally driven by a motor.

燃料電池20は、燃料ガスと酸化ガスの供給を受けて発電する単セルを所要数積層してなる燃料電池スタックとして構成されている。燃料電池20が発生した電力は、図示しないパワーコントロールユニットに供給される。パワーコントロールユニットは、車両の駆動モータに電力を供給するインバータと、コンプレッサモータや水素ポンプ用モータなどの各種の補機類に電力を供給するインバータと、二次電池等の蓄電手段への充電や該蓄電手段からのモータ類への電力供給を行うDC‐DCコンバータなどが備えられている。   The fuel cell 20 is configured as a fuel cell stack in which a required number of unit cells that generate power upon receiving supply of fuel gas and oxidizing gas are stacked. The electric power generated by the fuel cell 20 is supplied to a power control unit (not shown). The power control unit consists of an inverter that supplies electric power to the drive motor of the vehicle, an inverter that supplies electric power to various auxiliary devices such as a compressor motor and a motor for a hydrogen pump, and charging of power storage means such as a secondary battery. A DC-DC converter or the like that supplies power to the motors from the power storage means is provided.

制御部50は、図示しない車両のアクセル信号などの要求負荷や燃料電池システムの各部のセンサ(圧力センサ、温度センサ、流量センサ、出力電流計、出力電圧計等)から制御情報を受け取り、システム各部の弁類やモータ類の運転を制御する他、本実施形態では、遮断弁H100よりも下流の燃料系配管(燃料供給路74、燃料電池20内のガス流路、及び水素循環路75)のガス漏れ検知を行うガス漏れ検知手段としても機能する。   The control unit 50 receives control information from a requested load such as an accelerator signal of a vehicle (not shown) and sensors (pressure sensors, temperature sensors, flow sensors, output ammeters, output voltmeters, etc.) of each part of the fuel cell system. In addition to controlling the operation of the valves and motors, in this embodiment, the fuel system piping (the fuel supply path 74, the gas flow path in the fuel cell 20, and the hydrogen circulation path 75) downstream of the shutoff valve H100. It also functions as a gas leak detection means for performing gas leak detection.

つまり、制御部50は、システム起動時における燃料供給路74の加圧処理を実施するに際し、遮断弁H100から水素調圧弁H10までの間の圧力が、水素調圧弁H9の調圧値以下かつ水素調圧弁H10の調圧値以上の圧力となるように、遮断弁H100の開閉状態を制御することにより、圧力センサP6よりも検出精度の高い圧力センサP9を用いて、燃料系配管のガス漏れを検知する。   That is, when performing the pressurizing process of the fuel supply path 74 at the time of starting the system, the control unit 50 has a pressure between the shutoff valve H100 and the hydrogen pressure regulating valve H10 that is equal to or lower than the pressure regulating value of the hydrogen pressure regulating valve H9. By controlling the open / close state of the shutoff valve H100 so that the pressure is equal to or higher than the pressure regulation value of the pressure regulation valve H10, the gas leakage of the fuel system piping is prevented using the pressure sensor P9 having higher detection accuracy than the pressure sensor P6. Detect.

なお、制御部50は、図示しない制御コンピュータシステムによって構成されている。この制御コンピュータシステムは、CPU、ROM、RAM、HDD、入出力インタフェース及びディスプレイなどの公知構成から成り、市販されている制御用コンピュータシステムによって構成されている。   The control unit 50 is configured by a control computer system (not shown). The control computer system has a known configuration such as a CPU, ROM, RAM, HDD, input / output interface, and display, and is configured by a commercially available control computer system.

次に、制御部50によるシステム起動時の動作について説明する。   Next, the operation at the time of system startup by the control unit 50 will be described.

制御部50は、図示しない主制御プログラムにおいて起動動作を指令する命令(例えば、イグニッションOFF)の発令あるいはフラグが設定された(イベント発生)ことを判別すると、まず、遮断弁H100を開き、水素供給源30からの高圧水素によって燃料供給路74を加圧するとともに、燃料供給路74の圧力変化を圧力センサP5によって監視する。   When the control unit 50 determines that a command for starting operation (for example, ignition OFF) or a flag is set (event occurrence) in a main control program (not shown), the control unit 50 first opens the shutoff valve H100 to supply hydrogen. The fuel supply path 74 is pressurized with high-pressure hydrogen from the source 30, and the pressure change in the fuel supply path 74 is monitored by the pressure sensor P5.

そして、圧力センサP5の圧力が配管体積等システム毎に設計的に求められる所定の圧力値に到達したときに遮断弁H100を閉じることにより、水素調圧弁H11の上流側圧力を水素調圧弁H10の調圧値である第3の圧力とすると共に、水素調圧弁H10,H9の両上流側圧力を水素調圧弁H9の調圧値である第2の圧力よりも低い所定の加圧値、すなわち、圧力センサP9の検出範囲内の加圧値とする。なお、遮断弁H100を閉じるタイミングは、当該遮断弁H100の開弁時間で決めても良い。   Then, when the pressure of the pressure sensor P5 reaches a predetermined pressure value that is designed for each system, such as the pipe volume, the shutoff valve H100 is closed, so that the upstream pressure of the hydrogen pressure regulating valve H11 is changed to the value of the hydrogen pressure regulating valve H10. A third pressure that is the pressure regulation value and a pressure value that is lower than the second pressure that is the pressure regulation value of the hydrogen pressure regulation valve H9 is set to both upstream side pressures of the hydrogen pressure regulation valves H10 and H9. The pressure value is within the detection range of the pressure sensor P9. The timing for closing the shutoff valve H100 may be determined by the valve opening time of the shutoff valve H100.

すると、水素調圧弁H9,H10の上流側圧力、つまり、システム起動時における遮断弁H100から水素調圧弁H10までの間の燃料供給路74の加圧値は、図2に示すように、水素調圧弁H9の調圧値である第2の圧力以下、かつ、水素調圧弁H10の調圧値である第3の圧力以上となる値、例えば水素調圧弁H9の調圧値が3MPaである場合には2MPaとなる。   Then, the upstream pressure of the hydrogen pressure regulating valves H9 and H10, that is, the pressure value of the fuel supply path 74 between the shutoff valve H100 and the hydrogen pressure regulating valve H10 at the time of starting the system, as shown in FIG. A value that is equal to or lower than the second pressure that is the pressure regulation value of the pressure valve H9 and that is equal to or greater than the third pressure that is the pressure regulation value of the hydrogen pressure regulation valve H10, for example, the pressure regulation value of the hydrogen pressure regulation valve H9 is 3 MPa. Is 2 MPa.

このような加圧状態下で、制御部50は、遮断弁H100から水素調圧弁H10までの間の圧力を圧力センサP9にて所定周期で検出し、所定時間経過後の圧力変化量又は圧力変化率が所定の漏れ判定閾値以上である場合に、遮断弁H100の下流の燃料系配管内にガス漏れが発生していると判定する。   Under such a pressurized state, the control unit 50 detects the pressure between the shutoff valve H100 and the hydrogen pressure regulating valve H10 at a predetermined cycle by the pressure sensor P9, and the pressure change amount or the pressure change after a predetermined time has elapsed. When the rate is equal to or greater than a predetermined leakage determination threshold, it is determined that gas leakage has occurred in the fuel system piping downstream of the shutoff valve H100.

このときに用いる圧力センサP9の検出精度は圧力センサP6の検出精度よりも高く、しかも、圧力センサP9の検出上限は圧力センサP6の検出上限よりも低いので、遮断弁H100から水素調圧弁H10までの間のガス漏れ検知をより短時間で精度良く行うことが可能となり、ガス漏れ判定を伴うシステムの起動時間を短縮することができる。   Since the detection accuracy of the pressure sensor P9 used at this time is higher than the detection accuracy of the pressure sensor P6, and the detection upper limit of the pressure sensor P9 is lower than the detection upper limit of the pressure sensor P6, from the shutoff valve H100 to the hydrogen pressure regulating valve H10. It is possible to detect the gas leak during the period of time in a short time with high accuracy, and it is possible to shorten the startup time of the system accompanied by the gas leak determination.

なお、上記実施形態においては、水素調圧弁H9,H10の調圧値を基準にしてシステム起動時における燃料供給路74の加圧値を制御したが、更に下流の水素調圧弁H10,H11の調圧値を基準にして燃料供給路74の加圧値を制御するようにしてもよい。この場合には、圧力センサP9よりも検出上限が低い圧力センサP10を用いてガス漏れ検知を行うことになるので、より高精度なガス漏れ検知が可能となる。   In the above embodiment, the pressurization value of the fuel supply path 74 at the time of starting the system is controlled based on the pressure control values of the hydrogen pressure control valves H9 and H10. However, the pressure control values of the hydrogen pressure control valves H10 and H11 further downstream are controlled. You may make it control the pressurization value of the fuel supply path 74 on the basis of a pressure value. In this case, gas leak detection is performed using the pressure sensor P10 whose detection upper limit is lower than that of the pressure sensor P9, so that more accurate gas leak detection is possible.

本発明に係る燃料電池システムの一実施形態を概略的に示したシステム構成図である。1 is a system configuration diagram schematically illustrating an embodiment of a fuel cell system according to the present invention. 図1に示した制御部によるガス漏れ検知時の圧力制御を説明するための図である。It is a figure for demonstrating the pressure control at the time of the gas leak detection by the control part shown in FIG.

符号の説明Explanation of symbols

1…燃料電池システム、H9…水素調圧弁(第1の調圧弁)、H10…水素調圧弁(第2の調圧弁)、H100…遮断弁(主止弁)、P6…圧力センサ(第1の圧力センサ),P9…圧力センサ(第2の圧力センサ)、20…燃料電池、30…水素供給源(燃料供給源、高圧水素タンク)、50…制御部(ガス漏れ検知手段)、74…燃料供給路、75…水素循環路

DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, H9 ... Hydrogen pressure regulation valve (1st pressure regulation valve), H10 ... Hydrogen pressure regulation valve (2nd pressure regulation valve), H100 ... Shut-off valve (main stop valve), P6 ... Pressure sensor (1st Pressure sensor), P9 ... Pressure sensor (second pressure sensor), 20 ... Fuel cell, 30 ... Hydrogen supply source (fuel supply source, high-pressure hydrogen tank), 50 ... Control unit (gas leak detection means), 74 ... Fuel Supply path, 75 ... Hydrogen circulation path

Claims (3)

燃料電池に燃料を供給する燃料供給源と、
前記燃料供給源の下流に設けられた主止弁と、
前記主止弁の下流に設けられた第1の調圧弁と、
前記第1の調圧弁の下流に設けられた第2の調圧弁と、
前記主止弁と前記第1の調圧弁との間に設けられた第1の圧力センサと、
前記第1の調圧弁と前記第2の調圧弁との間に設けられ、前記第1の圧力センサよりも検出上限が低い第2の圧力センサと、を備えた燃料電池システムであって、
システム起動時、前記第1の調圧弁の調圧値以下、かつ前記第2の調圧弁の調圧値以上に加圧をしつつ、前記第2の圧力センサの検出結果に基づき、ガス漏れ検知を行うガス漏れ検知手段を備えた燃料電池システム。
A fuel supply source for supplying fuel to the fuel cell;
A main stop valve provided downstream of the fuel supply source;
A first pressure regulating valve provided downstream of the main stop valve;
A second pressure regulating valve provided downstream of the first pressure regulating valve;
A first pressure sensor provided between the main stop valve and the first pressure regulating valve;
A fuel cell system comprising: a second pressure sensor provided between the first pressure regulating valve and the second pressure regulating valve and having a lower detection upper limit than the first pressure sensor,
Gas leakage detection based on the detection result of the second pressure sensor while pressurizing to a value equal to or less than the pressure regulation value of the first pressure regulating valve and above the pressure regulation value of the second pressure regulating valve at the time of system startup A fuel cell system comprising gas leak detection means for performing
前記燃料供給源は、高圧水素タンクである請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the fuel supply source is a high-pressure hydrogen tank. 燃料電池に燃料を供給する燃料供給源と、前記燃料供給源の下流に設けられた主止弁と、前記主止弁の下流に設けられた第1の調圧弁と、前記第1の調圧弁の下流に設けられた第2の調圧弁と、前記主止弁と前記第1の調圧弁との間に設けられた第1の圧力センサと、前記第1の調圧弁と前記第2の調圧弁との間に設けられ、前記第1の圧力センサよりも検出上限が低い第2の圧力センサと、を備えた燃料電池システムのガス漏れ検知方法であって、
システム起動時、前記第1の調圧弁の調圧値以下、かつ前記第2の調圧弁の調圧値以上に加圧をしつつ、前記第2の圧力センサの検出結果に基づき、ガス漏れ検知を行う燃料電池システムのガス漏れ検知方法。

A fuel supply source for supplying fuel to the fuel cell, a main stop valve provided downstream of the fuel supply source, a first pressure regulating valve provided downstream of the main stop valve, and the first pressure regulating valve A second pressure regulating valve provided downstream, a first pressure sensor provided between the main stop valve and the first pressure regulating valve, the first pressure regulating valve and the second pressure regulating valve. A gas leak detection method for a fuel cell system, comprising: a second pressure sensor provided between a pressure valve and a lower detection upper limit than the first pressure sensor,
Gas leakage detection based on the detection result of the second pressure sensor while pressurizing to a value equal to or less than the pressure regulation value of the first pressure regulating valve and above the pressure regulation value of the second pressure regulating valve at the time of system startup A gas leak detection method for a fuel cell system.

JP2005326920A 2005-11-11 2005-11-11 Fuel cell system and its gas leak detection method Pending JP2007134200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326920A JP2007134200A (en) 2005-11-11 2005-11-11 Fuel cell system and its gas leak detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326920A JP2007134200A (en) 2005-11-11 2005-11-11 Fuel cell system and its gas leak detection method

Publications (1)

Publication Number Publication Date
JP2007134200A true JP2007134200A (en) 2007-05-31

Family

ID=38155689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326920A Pending JP2007134200A (en) 2005-11-11 2005-11-11 Fuel cell system and its gas leak detection method

Country Status (1)

Country Link
JP (1) JP2007134200A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047980A1 (en) * 2007-10-10 2009-04-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell starting method
WO2010112996A1 (en) * 2009-03-31 2010-10-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for the fuel cell system, and electric vehicle equipped with the fuel cell system
CN108844699A (en) * 2018-03-07 2018-11-20 福州艾弗斯智能科技有限公司 A kind of hydrogen energy automobile pipeline self-checking unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047980A1 (en) * 2007-10-10 2009-04-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell starting method
US9142846B2 (en) 2007-10-10 2015-09-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell activation method
DE112008002705B4 (en) * 2007-10-10 2018-03-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and activation method for a fuel cell
WO2010112996A1 (en) * 2009-03-31 2010-10-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for the fuel cell system, and electric vehicle equipped with the fuel cell system
CN102369621A (en) * 2009-03-31 2012-03-07 丰田自动车株式会社 Fuel cell system, control method for the fuel cell system, and electric vehicle equipped with the fuel cell system
US9853313B2 (en) 2009-03-31 2017-12-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for the fuel cell system, and electric vehicle equipped with the fuel cell system
DE112010001449B4 (en) * 2009-03-31 2018-02-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for a fuel cell system and electric vehicle equipped with the fuel cell system
CN108844699A (en) * 2018-03-07 2018-11-20 福州艾弗斯智能科技有限公司 A kind of hydrogen energy automobile pipeline self-checking unit

Similar Documents

Publication Publication Date Title
JP4506644B2 (en) Fuel gas consumption system and gas leak detection method of fuel gas consumption system
US8795917B2 (en) Fuel cell system with control of the pressure of the reactants within the system
US8206863B2 (en) Fuel cell system and its temperature adjusting method
JP6376184B2 (en) Fuel cell system and vehicle
WO2007018132A1 (en) Fuel cell system and method for judging fuel gas leakage in fuel cell system
US10411280B2 (en) Fuel cell system and method of shutting down the same
JP2005190824A (en) Fuel cell system
JP2008004432A (en) Fuel cell system
JP5110415B2 (en) Fuel cell system and gas leak detection method
JP2006086117A (en) Fuel cell system
JP2007134200A (en) Fuel cell system and its gas leak detection method
JP2007134063A (en) Fuel cell system and its gas leak detection method as well as moving body
EP2597714B1 (en) Fuel cell system
JP2007059348A (en) Fuel cell system and starting method of fuel cell system
JP2010135098A (en) Fuel cell system and vehicle
JP2007280755A (en) Fuel cell system, its operation method, and mobile object
JP2007127010A (en) Energy generation system
JP2009094000A (en) Fuel cell system
JP5333730B2 (en) Fuel cell system
JP2007179839A (en) Fuel cell system
JP2006107998A (en) Fuel cell system
JP2006310103A (en) Fuel cell system and its operation method
JP5297574B2 (en) Fuel cell system
JP2019096533A (en) Gas leakage detection method in fuel cell system
JP6155795B2 (en) Fuel cell system